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Abstract

We study the problem of controlling worst-case errors in misspecified linear regres-
sion under the random design setting, where the regression function is estimated
via (penalized) least-squares. This setting arises naturally in value function ap-
proximation for bandit algorithms and reinforcement learning (RL). Our first main
contribution is the observation that the amplification of the misspecification er-
ror when using least-squares is governed by the Lebesgue constant, a classical
quantity from approximation theory that depends on the choice of the feature
subspace and the covariate distribution. We also show that this dependence on the
misspecification error is tight for least-squares regression: in general, no method
minimizing the empirical squared loss, including regularized least-squares, can
improve it substantially. We argue this explains the empirical observation that
some feature-maps (e.g., those derived from the Fourier bases) “work better in RL”
than others (e.g., polynomials): given some covariate distribution, the Lebesgue
constant is known to be highly sensitive to choice of the feature-map. As a second
contribution, we propose a method that augments the original feature set with
auxiliary features designed to reduce the error amplification. We then prove that
the method successfully competes with an “oracle” that knows the best way of
using the auxiliary features to reduce this amplification. For example, when the
domain is a real interval and the features are monomials, our method reduces the
amplification factor to O(1) as d→∞, while without our method, least-squares
with the monomials (and in fact polynomials) will suffer a worst-case error amplifi-
cation of order Ω(d). It follows that there are functions and feature maps for which
our method is consistent, while least-squares is inconsistent.

1 Introduction

Value function approximation plays a central role in modern reinforcement learning (RL) and
contextual bandit algorithms [Sutton and Barto, 2018, Lattimore and Szepesvári, 2020]. In many
such settings, policies are evaluated or selected based on value estimates obtained by regressing
observed returns. To this end, (penalized) linear regression—based on empirical squared loss—serves
as a core subroutine due to its simplicity and favorable computational properties [Ernst et al., 2005,
Antos et al., 2008]. A fundamental challenge arises, however, when the true value function or reward
model lies outside the span of the chosen features—a situation referred to as model misspecification.
Recent work by Du et al. [2020] highlighted that in this setting for any d, there are feature maps so
that the worst-case prediction error incurred by least-squares regression can be

√
d larger than the

misspecification error, even if the learner can control the covariate distribution.1 This amplification is
concerning because it implies that adding more features may not improve the learner’s performance if

1Du et al. [2020] prove the stronger result that any learner that has access to a polynomially sized sample is
ought to suffer a “large” worst-case prediction error no matter the method they use.
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the misspecification error decreases at a rate of Ω(1/
√
d). As such, in the RL and bandits communities

much ink was spilled on the implications and the control of error amplification [Lattimore et al., 2020,
Dong and Yang, 2023, Amortila et al., 2023, Maran et al., 2024, Amortila et al., 2024].

In this paper, we further investigate this error amplification and suggest a method designed to dras-
tically reduce it. We study this problem in the context of misspecified linear regression under the
random design setting, where inputs are drawn from an unknown distribution. Our first contribution is
to identify how the amplification of the misspecification error depends directly on the interaction be-
tween the sampling distribution and the feature subspace. Specifically, we show that this amplification
is governed by the Lebesgue constant—a classical quantity in approximation theory that captures how
well the 2-norm projection underlying least-squares regression projects arbitrary functions onto the
span of the features. This result provides a significant refinement of previous results in this direction.
While prior work established a worst-case, feature-agnostic amplification factor of

√
d (which is

known to be tight for some feature maps), our approach identifies the governing principle for this
amplification, explaining why the true factor can range from as low as 1 for favorable features. This
distinction is critical, as it allows for significantly tighter finite-sample guarantees than those derived
from the universal

√
d scaling. Moreover, we prove that this dependence on the Lebesgue constant is

tight: no estimator based on least-squares can substantially improve upon this bound. This sensitivity
of least-squares regression to misspecification is in fact a modern re-emergence of a phenomenon
that is well known in classical approximation theory. When polynomial bases are used on equispaced
grids, the Runge phenomenon causes the uniform error to explode near the boundary despite good
L2 behaviour, precisely because the associated Lebesgue constants grow in an uncontrolled way.
Likewise, in Fourier approximation, the well-known Gibbs phenomenon, although far milder than the
Runge blow-up, causes localized oscillatory overshoots near discontinuities [Gottlieb and Shu, 1997].

The disparity in error severity is not accidental. It corresponds directly to their differing Lebesgue
constant growth rates: logarithmic for Fourier bases, exponential (in the case of equispaced grids) for
polynomials. Yet, despite its central role in approximation theory since the early works of Gregory
et al. [1848], De La Vallée Poussin et al. [1919] and Szegő [1939], the link between the Lebesgue
constant and misspecification error has, to the best of our knowledge, been overlooked in the modern
statistical and reinforcement learning literature. In fact, while the superiority of Fourier bases over
polynomials for value function approximation has been empirically observed (see Konidaris et al.
[2011]), this phenomenon has lacked a precise theoretical explanation.

Motivated by this connection to the Lebesgue constant, our second contribution is a method for
reducing misspecification error amplification. The approach works by augmenting the original feature
set with auxiliary features and then using a weighted ridge regression approach to explicitly regularize
the corresponding projection operator to give small error amplification. To illustrate, we show that
when the domain is an interval and the base and auxiliary features are monomials, our method reduces
the amplification factor to O(1) as d→∞. In contrast, standard least squares suffers from arbitrarily
large worst-case errors in the same setting.

2 Problem Formulation

We consider the problem of estimating a function with uniform accuracy using a misspecified linear
model. We first detail the statistical setting, introduce the standing assumptions and define the
performance criterion that will be used in the rest of the paper.

Let R denote the set of reals, X be a measurable input space, and let f : X → R denote an
unknown measurable target (or regression) function that we wish to estimate from a sample Dn =
((x1, y1), . . . , (xn, yn)) of n independent, identically distributed pairs that belong to X × R and
which satisfy that almost surely for all t ∈ [n] := {1, . . . , n},

f(xt) = E[yt|xt] .

We denote the marginal distribution of the inputs xt by µ, while the distribution underlying (xt, yt)
is denoted by P .
Assumption 1 (Sub–Gaussian Noise). For some σ > 0, y1 − f(x1) is σ-subgaussian conditionally
on x1. That is, almost surely,

λ ∈ R E[exp(λ(y1 − f(x1)))|x1] ≤ exp(λ2σ2/2)

.
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We are interested in the problem of linear function approximation. That is, the goal is to approximate
f as a linear combination of d basis functions, φ1, . . . , φd : X → R. When these are clear from the
context, for θ ∈ Rd, we let fθ : X → R be defined via

fθ(x) =

d∑
i=1

θiφi(x), x ∈ X .

We shall also collect them into a feature-map φ : X → Rd and write fθ(x) = φ(x)⊤θ, where
φ(·) = (φ1(·), . . . , φd(·))⊤. Motivated by the applications mentioned earlier, we depart from the
bulk of the literature in this setting and evaluate performance via the uniform (or maximum) norm.
For a function g : X → R, this is defined as ∥g∥∞ = supx∈X |g(x)| . We let L∞(X ) denote the set
of functions with finite maximum norm. In what follows, we assume that both f and our basis
functions φi belong to this set. For f ∈ L∞(X ) and θ ∈ Rd we let

E∞(θ, f) := ∥fθ − f∥∞ , E∞(f) := inf
θ∈Rd

E∞(θ, f).

Thus, E∞(θ, f) is the maximum error suffered when approximating f with fθ. The quantity E∞(f)
represents the best possible uniform approximation error achievable by our basis functions, and its
value is unknown to the learner. When E∞(f) > 0, we refer to this as the misspecified setting, and
refer to E∞(f) as the misspecification error. In the next section, we investigate the behavior of the
error E∞(θ̂n, f) when θ̂n is the ordinary least-squares (OLS) parameter estimate2:

θ̂n = argmin
θ∈Rd

n∑
t=1

(
yt −φ(xt)

⊤θ
)2

.

As we will see, while the OLS estimator is simple, a rigorous analysis of its uniform error under
misspecification is involved.

3 Characterizing the behavior of OLS

Let F = {fθ : θ ∈ Rd} denote the subspace of L∞(X ) spanned by the basis functions un-
derlying the feature-map φ. From now on we assume that the population Gram matrix
Vµ =

∫
φ(x)φ(x)⊤µ(dx) is non-singular. As n→∞, the Strong Law of Large Numbers ensures

that fθ̂n converges almost surely to

Πd,µf := argmin
g∈F

∥g − f∥2µ , (1)

where ∥ · ∥µ denotes the L2(µ)-norm, defined for any measurable g : X → R by ∥g∥2µ =∫
X g2(x)µ(dx). Since µ is a probability measure, we have ∥g∥2µ ≤ ∥g∥2∞. The map Πd,µ de-

fined in Eq. (1) is the orthogonal projection onto F with respect to the L2(µ) inner product and is
well-defined thanks to our assumption on the Gram matrix Vµ. The map Πd,µ is linear, idempotent
and satisfies Πd,µf = f for all f ∈ F . Moreover, it is non-expansive in the L2(µ)-norm.

By continuity, the almost sure convergence of the OLS estimate implies that, almost surely,
limn→∞ E∞(θ̂n, f) = ∥Πd,µf−f∥∞. The first question we must address is how large ∥Πd,µf−f∥∞
can be relative to the best possible error, E∞(f). In other words, by how much is the misspecification
error E∞(f) amplified when we use the L2(µ) projection of f onto F? The following classical result
provides an answer:
Lemma 1 (Lebesgue’s lemma, e.g., Proposition 4.1 from Chapter 2 of DeVore and Lorentz [1993] ).
Let (S, ∥ · ∥) be a normed vector space, F a subspace of S and Π : S → S be a linear map such that
Π(S) ⊆ F and Π is an identity on F .3 Then, for any f ∈ S,

∥f −Πf∥ ≤ (1 + ∥Π∥) inf
g∈F
∥f − g∥ ,

where ∥Π∥ := supf∈S: ∥f∥≤1 ∥Πf∥ is the operator norm of Π.

2In principle, this minimizer may not be unique; however, it is unique under the assumptions required for the
results we are about to show.

3A map Π with this property is called a projection. Note that orthogonal projections are projections, but there
are projections of course which are not orthogonal with respect to any inner product.
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When Π maps between two normed spaces, (X, ∥ · ∥X) and (Y, ∥ · ∥Y ), we denote its operator norm
by ∥Π∥X→Y . Applying this result to our setting with (S, ∥ · ∥) = (L∞(X ), ∥ · ∥∞) we obtain

∥f −Πf∥∞ ≤ (1 + ∥Π∥∞) inf
g∈F
∥f − g∥∞,

where ∥Π∥∞ denotes the operator norm ∥Π∥L∞(X )→L∞(X ). In honor of its discoverer, this quantity
is formally named as follows:
Definition 1 (Lebesgue constant). For a linear operator Π : L∞(X )→ L∞(X ), its induced norm is
called the Lebesgue constant associated with Π, and is denoted by

Λ(Π) := ∥Π∥∞ = sup
f∈L∞(X ):∥f∥∞≤1

∥Πf∥∞ .

Since the Lebesgue constant of our projection operators will be frequently needed, to minimize clutter
we introduce the shorthand

Λd,µ := Λ(Πd,µ).

Notably, it is the subspace F—not the specific feature map used to define it—that is the fundamental
object: F alone determines the intrinsic misspecification error E∞(f), while its interplay with µ
governs the projection Πd,µ and the amplification factor Λd,µ. With the notation just introduced,
Lemma 1 yields the upper bound

∥f −Πd,µf∥∞ ≤ (1 + Λd,µ)E∞(f) . (2)

It is easy to see that Λd,µ ≥ 1 (consider any nonzero f ∈ F). Unfortunately, there is no general
upper limit on how large this constant can be. Moreoever, the bound in Lemma 1 is essentially tight:
Theorem 1. For any ε > 0 and any subspace F there exist f ∈ L∞(X ) such that

∥f −Πd,µf∥∞ ≥ (Λd,µ − 1− ε)E∞(f) .

We relegate all proofs to the Appendix. The proof of this specific result can be found in Appendix C.1.

Given the tightness of the lower bound established above, we expect any guarantee on the uniform
error E∞(θ̂n, f) to inherently involve Λd,µE∞(f). Our main result of this section confirms this.

To state the result, we need one additional quantity characterizing the feature space. Let (φi)1≤i≤d

be an orthonormal basis of F with respect to L2(µ) (obtained, for instance, via the Gram-Schmidt
procedure on the original basis functions). We let φ : X → Rd denote the orthogonalized featuremap
defined via φ(x) = (φ1(x), . . . , φd(x))

⊤. We further define ϑd,2 = supx∈X ∥φ(x)∥2.

While the orthonormal basis (φi)1≤i≤d is not unique, the quantity ϑd,2 is uniquely defined. In
particular (see Proposition 16), it is the L2(µ)→ L∞(X ) operator norm of the projection Πd,µ:

ϑd,2 = ∥Πd,µ∥L2(µ)→L∞(X ). (3)

Being µ a probability measure, Λd,µ = ∥Πd,µ∥L∞(X )→L∞(X ) ≤ ∥Πd,µ∥L2(µ)→L∞(X ) = ϑd,2.
Theorem 2. Let X be finite and Assumption 1 hold. Let X be finite and Assumption 1 hold. For any
δ ∈ (0, 1/3] and any n ≥ 20ϑ2

d,2 log(d/δ), the OLS estimate θ̂n satisfies, with probability at least
1− 3δ,

E∞(θ̂n, f) ≤ (1 + Λd,µ)E∞(f) + 3(σ + Λd,µE∞(f))ϑd,2

√
log(|X |/δ)

n

+
poly(d, ϑd,2,Λd,µE∞(f))

n
.

The first term in the bound matches the deterministic amplification derived in Eq. (2), accounting for
the irreducible approximation gap between Πd,µf and f . The remaining terms bound the additional
finite-sample stochastic error. While stated for finite X for simplicity, the result extends to continuous
domains via standard covering arguments For example, if X = [−1, 1] and the basis functions are
Lφ-Lipschitz, a uniform bound over X can be obtained by considering an ε/Lφ−cover of X . This
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extension incurs only a mild logarithmic factor proportional to log(Lφ/ε). Alternatively, a sometimes
tighter bound can be achieved by covering the feature set {φ(x) : x ∈ X} ⊂ Rd directly.

Beyond Λd,µ, the bound also depends on the constant ϑd,2, which scales with the dimension d. In
particular, we show that ϑd,2 ≥

√
d holds regardless of the chosen feature map (see Proposition 18 in

the appendix). The scaling of the terms in Theorem 2 aligns with standard expectations. The first
term represents the unavoidable approximation error (bias) discussed previously. The remaining
terms quantify the estimation error (variance) due to finite sampling. Specifically, the term that
involves σ captures the effect of additive noise, while the remaining term accounts for the additional
variance induced by the random design, which itself is amplified by the Lebesgue constant and the
intrinsic misspecification level. Below we show that when an a priori upper bound ε on E∞(f) is
available (as can be the case in certain numerical applications when the target function belongs to
some known class of functions, such as a smoothness class), we can obtain a semi-empirical bound.
This bound, which relies on data-dependent quantities, has the potential to significantly improve upon
the worst-case bound given in Theorem 2.

A uniform, semi-empirical bound Our purpose here is to bound the uniform error of the OLS
estimate using empirical quantities. Let µn = 1

n

∑n
t=1 δxt

denote the empirical measure associated
with the inputs (x1, . . . , xn). A key advantage of this analysis is that it relies on the empirical
Lebesgue constant Λd,µn

associated with Πd,µn
, allowing us to drop all assumptions regarding how

the inputs are generated (i.e., it applies to fixed design). The empirical operator Πd,µn
takes the form

Πd,µn
f(·) := φd(·)⊤(Φ⊤Φ)−1Φ⊤fn where fn := [f(x1), . . . , f(xn)]

⊤,

and Φ ∈ Rn×d is the design matrix with rows φ⊤(xt). Analogous to the population case, assuming
that Vµn

is non-singular, we let (φ̂i)1≤i≤d be an orthonormal basis of F in L2(µn), define the
feature map φ̂ : X → Rd via φ̂(x) = (φ̂1(x), . . . , φ̂d(x))

⊤, and let ϑ(n)
d,2 = supx∈X ∥φ̂(x)∥2.

Theorem 3. Let X be finite, Assumption 1 hold, θ̂n be the OLS estimate. Then, for any fixed δ > 0,
with probability at least 1− δ,

E∞(θ̂n) ≤ (1 + Λd,µn
)E∞(f) +

σϑ
(n)
d,2

√
2 log(2|X |/δ)
√
n

.

Compared to Theorem 2, this bound offers several improvements: it eliminates the lower-order
O(1/n) term entirely and it removes the dependence on the misspecification error E∞(f) from the
leading stochastic term (the 1/

√
n term). Furthermore, the population Lebesgue constant Λd,µ is

replaced by its empirical counterpart Λd,µn
, which may be smaller than Λd,µ. When X is finite,

Λd,µn
, which is a matrix maximum norm, can be calculated in O(n|X |) time.

If the input points (x1, . . . , xn) can be chosen, one may attempt to optimize this bound directly. Both
Λd,µn

and ϑ
(n)
d,2 depend on µn. In experimental optimal design, a G-optimal design minimizes ϑ(n)

d,2

by carefully selecting µn. A fundamental result by Kiefer and Wolfowitz [1960] establishes that for
n = Ω(d), there exists a design µn such that ϑ(n)

d,2 = O(
√
d), which is the best possible scaling.

Assuming that µn is a G-optimal design, we can compare our result with Proposition 5.1 from
Lattimore et al. [2020] (see their equation (2) and the corresponding bound in high probability).
Rephrased in our notation, their bound (adapted to high probability with σ = 1) states that if µ is an
optimal design, then

E∞(θ̂n, f) ≤ O

(
√
dE∞(f) +

√
d log(|X |/δ)

n

)
.

This result is recoverable as a special case of our Theorem 2. Indeed, for a G-optimal design,
ϑ
(n)
d,2 =

√
d, and it is straightforward to show that Λd,µn

≤ ϑ
(n)
d,2 always holds. In the large sample

limit (n→∞), the term
√
dE∞(f) dominates their bound. Therefore, our finer bound involving the

Lebesgue constant yields a strictly better guarantee whenever Λd,µn
is smaller than

√
d. For example,

consider a partition-based feature map where each φi is an indicator function of a distinct region Xi

in a partition of X . In this case, Λd,µ = 1 regardless of µ, offering a massive improvement over the
worst-case

√
d-factor. While Proposition 5.1 can be refined to replace

√
d by ϑ

(n)
d,2 in the variance

term, this improvement still falls short of recovering the Λd,µn
factor in the bias term.
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Basis functions µ Λd,µ Source Note

Polynomial uniform on Ω(2d) [Quarteroni et al., 2010]
regular d-grid

Polynomials uniform Θ(d) DeVore and Lorentz [1993] ϑd,2 ≈ d
Fourier uniform O(log(d)) [Katznelson, 2004, p.59, Ex. 1]
Continuous B-splines uniform O(1) Huang [2003]
Wavelets uniform O(1) Chen and Christensen [2013]

Table 1: Examples of Lebesgue constants. Domain is X = [−1, 1].

3.1 The Lebesgue constant: properties and particular cases

While we established with Eq. (3) that Λd,µ ≤ ϑd,2 always hold, ϑd,2 itself is lower-bounded by
√
d

(see Proposition 18). To find cases where Λd,µ is significantly smaller than
√
d, we must look at

specific feature maps. Table 1 summarizes known results for several classical bases on [−1, 1].
As shown in the table, the Lebesgue constant varies dramatically depending on the basis and measure.
Polynomials on a regular d-grid exhibit the worst behavior, with exponential growth Ω(2d). Even
with a uniform measure, polynomials still suffer from a linear growth Θ(d). In stark contrast, Fourier
series enjoy a much slower logarithmic growth O(log d). It follows that if a target function’s L2

approximation error decreases as O(1/ds) with some s > 0, the additional uniform error incurred
by least-squares is minimal for d large. Interestingly, as was noted earlier, empirical work in
reinforcement learning has identified Fourier bases as a strong general-purpose choice [Konidaris
et al., 2011]. Our analysis provides a theoretical justification for this: their slowly growing Lebesgue
constant ensures reasonable error control even under misspecification.

Finally, localized basis functions like wavelets and B-splines achieve the ideal constant scaling O(1),
independent of d. This makes them excellent candidates when uniform accuracy is paramount. We
speculate that tile coding, a popular localized representation in RL, likely shares these favorable
extrapolation properties.

A practical limitation of relying on tabulated Lebesgue constants is their dependence on the specific
sampling distribution µ. Calculating these constants is non-trivial, and standard results typically only
exist for simple, idealized distributions (e.g., uniform). The following proposition provides a way to
transfer these known bounds to other distributions, provided they are not too dissimilar:
Proposition 4. Let µ, ν be two discrete probability measures supported on a countable set X such
that for all x ∈ X , 0 ≤ c ≤ µ(x)

ν(x) ≤ C. Then, Λd,µ ≤ C
c Λd,ν .

4 Regularized estimators

Crefthm:lowerboundone establishes a fundamental limitation of the OLS estimator: its worst-case
error is inescapably amplified by the Lebesgue constant. Importantly, this bound holds even in the
infinite data limit, meaning the issue is not standard overfitting to finite-sample noise. Rather, the
problem stems from the geometry of the L2(µ)-projection itself: due to the rigidity of the feature
subspace, minimizing the average error can force the projection Πd,µf to exhibit large oscillations
entirely absent from the target f , particularly in low-density regions.

A natural strategy to dampen such oscillations is regularizing the loss. In the next theorem, however,
we show that the standard Ridge Regression approach is ineffective for this purpose, even when the
ideal orthonormal basis φ̄d is known and used.

Theorem 5. Let θ̂n,RIDGE be the λ−ridge regression estimate. For any feature map φd(·) : X → Rd,
there exists a target function f ∈ L∞(X ) such that, in the infinite data limit,

E∞(θ̂∞,RIDGE) = Ω

(
max

{
(Λd,µ − 2λ)E∞(f),

λ

λ+ 1

})
.

This result highlights a “damned if you do, damned if you don’t” dilemma for ridge regression. If we
choose a large penalty λ ≈ Λd,µ/2 to counteract the amplification, the second term in the lower bound
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approaches 1, preventing convergence even as the misspecification error E∞(f)→ 0. Conversely,
if λ is small, we essentially recover the poor Ω(Λd,µ) worst-case bound of OLS. Crucially, this
phenomenon persists even in the infinite data regime, indicating that it is not merely a sample size
issue, but a geometric defect of the projection operator itself. Consequently, standard techniques
designed to achieve small test mean-squared error —such as cross-validation or early stopping
[Ghojogh and Crowley, 2019]—cannot overcome this fundamental geometric limitation, as they will
asymptotically converge to the OLS solution, which is what minimizes the test mean-squared error.

Let us examine why ridge regression fails. The proof of Theorem 5 relies on the explicit form of the
corresponding ridge operator ΠRidge

d,µ in the infinite data limit:

ΠRidge
d,µ f(x) = α

d∑
i=1

φi(x)

∫
X
φi(z)f(z) dµ(z) where α =

1

1 + λ
. (4)

Importantly, this is not a projection operator because it does not preserve functions in F . For example,
applying this operator to the basis function f = φ1 yields an error of φ1 −ΠRidge

d,µ φ1 = λ
1+λφ1. To

obtain an error bound that scales with the misspecification E∞(f) (i.e., a bound that is zero when
f ∈ F), every function in F must be a fixedpoint of the operator. In Eq. (4), this requires α = 1,
which forces λ = 0, bringing us back to OLS and its associated amplification problems.

Stabilization via Feature Augmentation Instead of ridge regression, we propose a different
approach: we augment the feature map and use the additional degrees of freedom purely to “stabilize”
the operator, rather than to improve approximation: After all, our bounds depend on both E∞(f)
and Λd,µ. Selecting sufficiently many features E∞(f) may be under control; hence, the idea is
to use additional features to control Λd,µ. Let us denote our original feature map by φd and its
corresponding subspace by Fd. We now augment this map with D − d additional features, yielding
the extended map φD. While these extra features could be arbitrary, many standard bases (Fourier,
polynomials, splines) have a natural nested structure that provides a canonical sequence of extensions.

Let φD denote the orthonormal basis for this extended space obtained via Gram-Schmidt on φD
with respect to L2(µ). We now define a weighted ridge regression operator on this extended basis.
For any sequence of weights λ = (λ1, . . . , λD) ∈ [0,∞)D, let

ΠRidge
α,µ f(x) :=

D∑
i=1

αiφi(x)

∫
X
φi(z)f(z) dµ(z) where αi =

1

1 + λi
. (5)

Crucially, we want this new operator to serve as a superior replacement for Πd,µ while maintaining
the approximation power of our original space Fd. We do not aim to target the potentially better
(but likely much less stable) approximation of the full space FD. This requirement forces us to use
zero regularization on the first d components (λi = 0 =⇒ αi = 1 for i ≤ d), ensuring that every
function in Fd is fixed by the operator. This leads to the set of valid attenuation parameters:

AD
d := {α ∈ [0, 1]D : ∀i ≤ d, αi = 1} . (6)

For any α ∈ AD
d , the operator ΠRidge

α,µ fixes every function in Fd, thereby avoiding the pitfall of
standard ridge regression.

Remark 1 (Connection to Averaging Projections). This formulation generalizes the classical
technique of averaging projections to increase stability. For instance, the averaged operator Π̄ =

1
D−d+1

∑D
k=d Πk,µ is exactly equivalent to Eq. (5) with a specific choice of linearly decaying weights

α ∈ AD
d . The intuition is that while individual high-degree projections Πk,µ may oscillate wildly,

these oscillations often cancel out when averaged, leaving a stable estimate. Our framework allows
for optimizing these weights directly.

4.1 Weighted ridge estimator and the Oracle Operator

Every operator ΠRidge
α,µ with α ∈ AD

d maintains the elements of the original subspace Fd as its fixed
points. Hence, the operators satisfy the conditions of Lebesgue’s Lemma (Lemma 1) with F = Fd.
Denoting by Λα,µ the Lebesgue constant of ΠRidge

α,µ , we immediately obtain the following result:
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Proposition 6. Let α ∈ AD
d (see (6)) and ΠRidge

α,µ be defined as in (5). Then, for any f ∈ L∞(X ),

∥f −ΠRidge
α,µ f∥∞ ≤ (1 + Λα,µ)E∞(f) .

Established in Proposition 6 that the error amplification is governed by Λα,µ, our goal is to select the
parameter α ∈ AD

d that minimizes this constant. We refer to this ideal choice as the ORACLE choice:

αOracle
µ := argmin

α∈AD
d

Λα,µ , ΛOracle
µ := min

α∈AD
d

Λα,µ.

Unfortunately, αOracle
µ is unknown to the learner, as it depends on the unknown distribution µ. The

remainder of this section addresses two key questions:

• Q1 Can we design a finite sample estimator whose error, for fixed α ∈ AD
d , asymptotically

scales with Λα,µ?

• Q2 Can we design a finite sample estimator whose error asymptotically scales with the
optimal ΛOracle

µ ?

Q1 To answer these questions, we first generalize Theorem 3 to incorporate regularization with
a chosen parameter α. Although µ is unknown, we can define an empirical counterpart of the
operator in Eq. (5) using the empirical measure µn. Recalling that φ̂D is the feature map obtained by
orthogonalizing φD w.r.t. µn, we have

ΠRidge
α,µn

f(·) :=
D∑
i=1

αiφ̂i(·)
1

n

n∑
t=1

φ̂i(xt)f(xt). (7)

This empirical operator has two key properties: (1) it depends on the evaluations f(xt), and (2) its
output is a linear combination of the basis functions φ̂i. Property (1) allows us to estimate ΠRidge

α,µnf(·)
from noisy data by simply replacing the unknown values f(xt) with the observed targets yt. Property
(2) ensures that the resulting estimate can be parameterized as φD(·)⊤θ̂ for some coefficient vector
θ̂. Specifically, let Rn be the upper triangular matrix from the Gram-Schmidt procedure, such that
φD(·)⊤ = φ̂D(·)⊤Rn. Letting Iα = diag(α) be the the regularization weights matrix, we define
our estimator as follows

θ̂n,α := R−1
n Iα

1

n

n∑
t=1

φ̂d(xt)yt. (8)

Theorem 7. Let Assumption 1 hold. Then, for any δ > 0, with probability 1− δ,

E∞(θ̂n,α) ≤ (1 + Λα,µn
)E∞(f) +

σφ̂2,D

√
2 log(2|X |/δ)√

n
.

This result confirms that the amplification error of our estimator scales with Λα,µn . To fully answer
question Q1, we must show that for large n, this empirical constant is a good proxy for the population
constant Λα,µ. The following proposition establishes this convergence:
Proposition 8. Fix δ > 0. With probability 1 − δ, the following bounds holds simultaneously for
every α ∈ AD

d : |ϑD,2 − ϑ
(n)
D,2| = Õ(ϑ2

D,2

√
log(1/δ)/n), and

|Λα,µn
− Λα,µ| = Õ

(√
dϑ2

D,2

√
log(1/δ)

√
n

+

√
dϑ3

D,2 log(1/δ)

n

)
.

Q2 For this more challenging goal, we must optimize α to converge to the oracle value, despite
not knowing the true distribution µ. Our strategy is to rely on computable quantities: the empirical
operator ΠRidge

α,µn (Eq. (7)) and its associated empirical Lebesgue constant Λα,µn
. A key observation

enables this approach: the Lebesgue constant is convex with respect to α:
Proposition 9. The function J : AD

d → (0,+∞) defined by J(α) := Λα,µn
is convex in α.
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Figure 1: Comparison between the OLS estimator and the BWR estimator using polynomial features
on [−1, 1], with d = 10 features (left) and d = 15 features (right). The inputs are chosen uniformly
at random from [−1, 1]. Even if the true function is bounded, OLS suffers from large oscillations
near the boundaries due to the high Lebesgue constant. In contrast, BWR achieves a much more
uniform approximation error across the domain by effectively controlling the amplification effect.

This convexity allows us to provably find an approximate minimizer in a finite number of iterations.
We employ a standard subgradient method [Boyd et al., 2003]: starting from an arbitrary α ∈ AD

d ,
we iteratively update it until convergence. The details are provided in Algorithm 1 (Appendix D.4).

Theorem 10. Fix ϵ > 0. After I = Õ(ϵ−2ϑ
(n)
D,2

2
(D−d)) iterations, Algorithm 1 outputs α(I) ∈ AD

d

such that J(α(I)) ≤ infα∈AD
d
J(α) + ϵ.

By definition of J , this result guarantees that α(I) is an approximate minimizer of the empirical
Lebesgue constant Λα,µn

. To finally answer Q2, we define the BWR (Best Weighted Regularizer)
estimator by plugging α(I) into Eq. (8):

θ̂n,BWR := R−1
n Iα(I)

1

n

n∑
t=1

φ̂D(xt)yt. (9)

Theorem 11. Let Assumption 1 hold and fix δ > 0. Then, with probability 1− δ,

E∞(θ̂n,BWR) ≤ (1 + ΛOracle
µ )E∞(f) + Õ

(
ϑD,2

√
D log(|X |/δ)√

n
+

ϑD,2
2 log(|X |/δ)

n

)
.

This oracle inequality affirmatively answers Q2: our estimator is asymptotically able to compete with
the Oracle Lebesgue constant.

5 Case study: polynomial basis

The method introduced in Section 4 aims to reduce error amplification by explicitly controlling the
Lebesgue constant. While broadly applicable, its impact is best illustrated in settings where standard
estimators suffer from poor uniform behavior. A canonical example is polynomial regression on a
compact interval, where the feature map φd consists of the first d monomials, {1, x, x2, . . . , xd−1}.
Consider the standard setting where X = [−1, 1] and the data-generating distribution µ is uniform on
this interval. Even in this favorable scenario, the Lebesgue constant for the polynomial basis grows
linearly with the degree, Λd,µ ≈ d. Consequently, the worst-case uniform error for OLS scales as
O(d · E∞(f)), meaning small misspecification errors can be amplified into large prediction errors.

In contrast, the BWR estimator augments the feature space—for instance, by doubling the degree to
D = 2d—and optimizes the attenuation vector α to minimize the empirical Lebesgue constant. This
yields a projection operator that preserves the original degree-d polynomials exactly while using the

9



extra degrees of freedom to stabilize the approximation. Theoretically, this reduces the amplification
factor from O(d) to O(1), as the following theorem shows:
Theorem 12. Let µ be the uniform distribution on [−1, 1]. There exists a constant C > 0 independent
of d such that, if we choose D = 2d and φD(x) = [1, . . . x2d−1] as the augmented feature map for
the target space spanned by φd(x) = [1, . . . , xd−1]⊤, we have ΛOracle

µ ≤ C.

This theoretical improvement translates directly to empirical performance, as shown in Fig. 1. While
OLS exhibits characteristic large oscillations near the boundaries (a manifestation of the classical
Runge phenomenon), BWR remains stable across the entire domain. By effectively controlling the
Lebesgue constant, BWR achieves a significantly smaller uniform error despite using the same base
features for the final representation.

The above simulations visually demonstrate how the amplification factor is exacerbated by increasing
d. We complement them with an asymptotic result showing just how severe this factor can be, even
for target functions where the approximation error E∞(f) → 0 as d → ∞. In fact, there exist
a bounded function that can be uniformly approximated by polynomials, yet for which the OLS
estimator diverges with a uniform error roughly of order Ω(d):

Proposition 13. Fix γ > 0. Let θ̂n be the OLS estimator, and θ̂n,BWR be our estimator defined in
equation (9). There exists a function f : [−1, 1]→ R such that, E∞(f)→ 0 as d→∞, and under
Assumption 1 with µ = U([−1, 1]), the following hold with probability one:

lim
d→∞

lim
n→∞

∥f(·)−φd(·)⊤θ̂n,BWR∥∞ = 0 while lim
n→∞

∥f(·)−φd(·)⊤θ̂n∥∞ ≳ d1−γ .

6 Related works

The problem we address, while motivated by the goal of designing principled algorithms for bandits
and reinforcement learning, has roots in several fields, including mathematical analysis, econometrics,
and approximation theory. We provide a brief overview here, with an extended discussion in
Appendix A.

In mathematical analysis the problem of projecting onto a linear subspace of L∞(X ) in a way
that minimizes the uniform error have long been a central topic. Classical results on orthogonal
polynomials Szegő [1939] and Fourier series Katznelson [2004] share this goal. More recently, Kobos
and Lewicki [2024] proposed an approach for general feature maps. In econometrics, a related line
of research studies pointwise estimators based on least-squares from noisy samples [Newey, 1997,
Belloni et al., 2015, Li and Liao, 2020], which can be naturally adapted to yield uniform convergence
guarantees. Most recently, this problem has resurfaced in bandits and reinforcement learning under
the name misspecified linear function approximation [Du et al., 2020, Lattimore et al., 2020, Maran
et al., 2024, Dong and Yang, 2023, Amortila et al., 2024].

The specific regularization technique we propose in Section 4 is inspired by classical methods for
regularizing Fourier series [de la Vallée Poussin, 1918, De La Vallée Poussin et al., 1919]. Variants
of this technique remain an active topic of study in numerical mathematics today [Németh, 2016,
Themistoclakis and Van Barel, 2017, Occorsio and Themistoclakis, 2025].

7 Conclusion

We investigated the problem of uniform error control in misspecified linear regression under the
random design setting. Our key insight is that the amplification of E∞(f) by least-squares methods is
governed by the Lebesgue constant, a fundamental concept from approximation theory. We showed
that this amplification is tight and intrinsic to the geometry of L2-projection, thereby exposing a
fundamental limitation of ordinary and ridge least-squares methods, even in the infinite data regime.

To overcome this limitation, we introduced a novel regularization framework based on weighted
ridge regression over extended feature sets, which preserves the approximation power of the base
features while using the auxiliary features to stabilize the projection operator. We proved that this
approach allows us to, asymptotically for n→∞, compete with the best possible (oracle) projection
in terms of uniform error, and we proposed an efficient algorithm for learning such weights from data.
In the canonical case of polynomial features, we demonstrated a dramatic improvement: from Ω(d)
amplification with OLS to the optimal O(1) with our method.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: —
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limits of the paper and the future research directions in order
to address them.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the statements are provided with proofs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the code in the supplementary material (very simple, just one very
short Jupyter notebook)
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We include the code in the supplementary material (very simple, just one very
short Jupyter notebook)
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include the code in the supplementary material (very simple, just one very
short Jupyter notebook)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The simulation is straightforward and its computational time is negligible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is coherent with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Related Works

Classical approximation theory The idea of approximating a class of functions with a family of
vector spaces in a uniform sense has always been an important topic in mathematical analysis. On
the more general level, this theory takes the name of Kolmogorov’s n-width (Kolmogoroff [1936];
see Lorentz [1966] and Pinkus [2012] for a more modern formalization). The idea, central to this
paper, of finding a linear operator that well approximates the non-linear L∞ projection operator has
also been the main topic of multiple line of research. In particular, many result about orthogonal
polynomials Szegő [1939] or Fourier Series Katznelson [2004] approximation have this goal. More
recently, Kobos and Lewicki [2024] studied the problem for general feature map, investigating the
class of linear operators that achieve the lower bound.

Asymptotic pointwise and uniform convergence of LS series in the econometric literature In the
econometric literature, the series least squares (LS) estimators have been analyzed primarily through
an asymptotic lens: with the sample size n→ +∞ and the basis dimension d→ +∞, one studies
asymptotic Gaussianity of the estimator of the function in each single point. Newey [1997] provided
seminal results for this literature, which were then improved by Belloni et al. [2015], the first to use
the Lebesgue constant in this field, and by Li and Liao [2020], who generalize the result to time
series data. All these contributions, however, remain asymptotic: they provide limiting distributions
or rates without explicit high–probability bounds, and—crucially—they do not propose algorithmic
modifications capable of reducing the amplification factor induced by the Lebesgue constant.

Uniform bounds for linear regression in the context of Online Learning As anticipated in the
introduction, the problem of getting L∞ bounds for regression over a domain naturally arises in the
context of Online Learning with linear function approximation; bandits and RL in particular. Du et al.
[2020] established the first

√
d amplification lower bound in some specific cases, which was then

refined by Lattimore et al. [2020], who also derives the corresponding an upper bound of
√
d , using

an optimal design argument. In fact, it can be proved that the factor
√
d is precisely the maximal

Lebesgue constant of any feature map for µ that is the optimal design. These lower bound hold
for a worst-case feature map, but allowing the learner to choose the data distribution. Following
these works, many papers tried to understand how this amplification factor could be reduced. Maran
et al. [2024] shows how to remove it in case of a locally linear feature map; Dong and Yang [2023]
improves the

√
d amplification in case of sparsity. Perhaps, the most similar paper to our one is

Amortila et al. [2024], which proposes a method to mitigate the effect of misspecification w.r.t. the
least-squares fitting. Still, the latter focuses on a different objective, i.e. the error under covariate
shift (measuring the MSE under a distribution ν ̸= µ), and scales with the density ratio ν(·)/µ(·).
Generalizing to the uniform error would mean to take ν(·) as a Dirac’s delta, which would make this
bound vacuous.

De la Valleè Poussin approach The to reduce the Lebesgue constant by adding auxiliary features is
rooted in a concept that dates back in the history of mathematics to Baron de la Vallée Poussin [de la
Vallée Poussin, 1918, De La Vallée Poussin et al., 1919]. The technique he invented is still studied
today in numerical mathematics [Németh, 2016, Themistoclakis and Van Barel, 2017, Occorsio and
Themistoclakis, 2025].

Finite-sample bounds for ridge regression Hsu et al. [2014] gives finite-sample bounds for ridge
regression under random design. The results, when translated into our setting, bound the error between
fθ̂n and f̄ where f̄ := g ◦ φ and the bound is expressed in terms of f̄ − Πµ,df . Here for u ∈ Rd,
g(u) =

∫
f(x)µ(dx|u) where µ(dx|u) is the disintegration of µ with respect to the push-forward

of µ under φ. In particular, for S ⊂ X , u ∈ Rd, µ(S|u) =
∫
I(x ∈ S, φ(x) = u)µ(dx). In the

special case when φ is injective, f̄ = f . Just like in the result that can be extracted from the work of
Lattimore et al. [2020], the bounds in this work depend on ϑd,2 (or ϑ(n)

d,2 ) and scale similarly.

In fact, papers like Lattimore et al. [2020] adopt the following way to bound the uniform error of least
squares. Let Vn =

∑n
t=1 φ(xt)φ(xt)

⊤ be the Gramian matrix and θ⋆ be the vector realizing the
L∞ projection, so that φ(x)⊤θ⋆ = Π∞f(x). Then each yt takes the form φ(xt)

⊤θ⋆ + ε(xt) + ηt,
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meaning

φ(x)⊤(θ⋆ − θ̂n) = φ(x)⊤

(
θ⋆ − V −1

n

n∑
t=1

φ(xt)(φ(xt)
⊤θ⋆ + ε(xt))

)
+ stoc. part

= φ(x)⊤

(
−V −1

n

n∑
t=1

φ(xt)ε(xt)

)
+ stoc. part

= −
∑n

t=1
φ(x)⊤V −1

n φ(xt)ε(xt) + stoc. part.

While the stochastic part is bounded as in our Theorems 2 and 3, the one containing the misspecifica-
tion is treated as follows

|φ(x)⊤(θ⋆ − θ̂n)| ≤

∣∣∣∣∣
n∑

t=1

φ(x)⊤V −1
n φ(xt)ε(xt)

∣∣∣∣∣
≤

n∑
t=1

∣∣φ(x)⊤V −1
n φ(xt)ε(xt)

∣∣
≤

n∑
t=1

∣∣φ(x)⊤V −1
n φ(xt)

∣∣ E∞(f)

≤
n∑

t=1

∥φ(x)∥V −1
n
∥φ(xt)∥V −1

n
E∞(f)

= ∥φ(x)∥V −1
n

n∑
t=1

∥φ(xt)∥V −1
n
E∞(f)

≤ ∥φ(x)∥V −1
n

√√√√n

n∑
t=1

φ(xt)⊤V
−1
n φ(xt)E∞(f)

≤ ∥φ(x)∥V −1
n

√
nE∞(f)

= ∥φ(x)∥(Vn/n)−1E∞(f)

= ∥(Vn/n)
−1/2φ(x)∥2E∞(f).

By definition, (Vn/n)
−1/2φ(x) = φ̂(x). Therefore, when making the supremum over x ∈ X we

end up with ϑ
(n)
d,2E∞(f). As we pointed out in the main paper and also noted by Lattimore et al.

[2020], whatever the choice of (xt)t and the feature map, ϑ(n)
d,2 ≥

√
d. Therefore, this strategy is

doomed to achieve sub-optimal guarantees, whenever Λd,µn < O(
√
d).

B General-interest results

We start from the usual Bernstein’s inequality Boucheron et al. [2003], here written for variables that
are bounded in [−B,B] and in the "high probability" form.
Theorem 14. Let (xt)

n
t=1 be a sequence of zero-mean random variable bounded in [−B,B]. Let

σ2 :=
∑n

t=1 Var(Xt). Then, with probability at least 1− δ∣∣∣∣∣
n∑

t=1

Xt

∣∣∣∣∣ ≤√2σ2 log(2/δ) +
2B

3
log(2/δ).

Lemma 2. Let φd be an orthonormal feature map w.r.t. ρ.

Ex∼ρ

[
φd(x)φd(x)

⊤] = Id,

where Id is the d−dimensional identity matrix.
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Proof. In this proof, let us denote with ei, for i = 1, . . . d, the standard basis of Rd. By definition of
outer product between two vectors we get what follows.

Ex∼ρ

[
φd(x)φd(x)

⊤] = Ex∼ρ

 d∑
i=1

d∑
j=1

φi(x)φj(x)eie
⊤
j


=

d∑
i=1

d∑
j=1

Ex∼ρ

[
φi(x)φj(x)

]
eie

⊤
j

=

d∑
i=1

d∑
j=1

δijeie
⊤
j = Id.

This completes the proof.

Lemma 3. Let {vt}kt=1 be a sequence of independent d−dimensional random vectors such that

E[vtv⊤t ] = σId ∥vt∥22 ≤ B.

Let V :=
∑k

t=1 vtv
⊤
t . Then,

1. W.p. at least 1− δ

λmin(V ) ≥

(
1−

√
5B log(d/δ)

kσ2

)
kσ2,

if
(
1−

√
5B log(d/δ)

kσ2

)
≤ 1/2.

2. W.p. at least 1− δ

λmax(V ) ≤

(
1 +

√
2B log(d/δ)

kσ2

)
kσ2,

if
(
1 +

√
2B log(d/δ)

kσ2

)
≤ 1.

Proof. Note that, as λmax(vtv
⊤
t ) = ∥vt∥2s ≤ B, we can then apply Theorem 5.1.1 from Tropp et al.

[2015] taking

µmin = µmax = kσ2 L = B,

which ensures that

∀ε ∈ (0, 1), P
(
λmin(V ) ≤ (1− ε)kσ2

)
≤ d

(
e−ε

(1− ε)1−ε

)kσ2/B

,

while

∀ε > 0, P
(
λmax(V ) ≥ (1 + ε)kσ2

)
≤ d

(
eε

(1 + ε)1+ε

)kσ2/B

.

The thesis is going to follow by just simplifying the previous expressions. We recall from elementary
Taylor expansions that

ε < 0.5 =⇒ −ε− 4ε2/5 ≤ log(1− ε) ≤ −ε− ε2

2
.
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and

ε < 1 =⇒ ε− ε2

2
≤ log(1 + ε) ≤ ε− ε2

4
.

Therefore, we have, for ε < 0.5

e−ε

(1− ε)1−ε
= exp(−ε− (1− ε) log(1− ε))

≤ exp
(
−ε− (1− ε)(−ε− 4ε2/5)

)
= exp

(
−ε+ ε− ε2/5 +O(ε3))

)
≈ e−ε2/5.

On the other side, for ε ≤ 1,

eε

(1 + ε)1+ε
= exp(ε− (1 + ε) log(1 + ε))

≤ exp(ε− (1 + ε)(ε− ε2/2))

= exp(−ε2/2 +O(ε3)) ≈ e−ε2/2.

This tells us that

∀ε ∈ (0, 1/2), P
(
λmin(V ) ≤ (1− ε)kσ2

)
≤ de−kσ2ε2/(5B),

and

∀ε ∈ (0, 1), P
(
λmax(V ) ≥ (1 + ε)kσ2

)
≤ de−kσ2ε2/(2B).

We can reformulate the previous results in the high-probability notation. Indeed, taking δ =

de−kσ2ε2/(5B), we get

ε =

√
5B log(d/δ)

kσ2
,

which entails that

√
5B log(d/δ)

kσ2
≤ 1/2 =⇒ P

(
λmin(V ) ≤

(
1−

√
5B log(d/δ)

kσ2

)
kσ2

)
≤ δ.

Doing the same for the other result, we get

√
2B log(d/δ)

kσ2
≤ 1 =⇒ P

(
λmax(V ) ≥

(
1 +

√
2B log(d/δ)

kσ2

)
kσ2

)
≤ δ,

which completes the proof.

Proposition 15. The Lebesgue constant satisfies Λd,µ = supx∈X
∫
X

∣∣∣∑d
i=1 φi(z)φi(x)

∣∣∣ dµ(z).
Proof. See Cheney [1966], chapter 4.
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C Proofs from Section 3

C.1 Lower bound for LS

Let Π∞f = argming∈F ∥f − g∥∞ with ties broken arbitrarily. Theorem 1.1 of Chapter 3 in the
book of DeVore and Lorentz [1993] guarantees that at least one minimizer exists. (As discussed there,
uniqueness may or may not hold.)
Lemma 4. We have

sup
f∈F

∥Πd,µf − f∥∞
E∞(f)

≥ Λd,µ − 1 .

Proof. By definition of Lebesgue constant, for every ε > 0 there is a function g such that

∥Πd,µg∥∞ ≥ (Λd,µ − ε)∥g∥∞.

Take f = Π∞g−g. We will use twice that for any h ∈ F , ∥h∥∞ = ∥0−h∥∞ ≥ infu∈F ∥u−h∥∞ =
∥Π∞h− h∥∞. Now,

∥Πd,µf − f∥∞ = ∥Πd,µ(Π∞g − g)−Π∞g + g∥∞
= ∥Π∞g −Πd,µg −Π∞g + g∥∞
= ∥ −Πd,µg + g∥∞
≥ ∥Πd,µg∥∞ − ∥g∥∞
≥ (Λd,µ − 1− ε)∥g∥∞
≥ (Λd,µ − 1− ε)∥Π∞g − g∥∞
= (Λd,µ − 1− ε)∥f∥∞
≥ (Λd,µ − 1− ε)∥Π∞f − f∥∞.

The result follows by letting ε→ 0.

Theorem 1. For any ε > 0 and any subspace F there exist f ∈ L∞(X ) such that

∥f −Πd,µf∥∞ ≥ (Λd,µ − 1− ε)E∞(f) .

Proof. The result is immediate from Lemma 4.

For the next result we abbreviate ∥ · ∥L2(µ)→L∞(X ) by ∥ · ∥2→∞.
Proposition 16.

ϑd,2 = sup
x∈X
∥φ(x)∥2 = ∥Πd,µ∥2→∞

Proof. The following equalities hold:

∥Πd,µ∥2→∞ = sup
∥f∥2=1

∥Πd,µf∥∞

= sup
∥f∥2=1

∥∥∥∥∥
d∑

i=1

φi(·)⟨f, φi⟩

∥∥∥∥∥
∞

= sup
∥f∥2=1

sup
x∈X

∣∣∣∣∣
d∑

i=1

φi(x)⟨f, φi⟩

∣∣∣∣∣
= sup

x∈X
sup

∥f∥2=1

∣∣∣∣∣
d∑

i=1

φi(x)⟨f, φi⟩

∣∣∣∣∣
= sup

x∈X
sup

v∈Rd,∥v∥2=1

∣∣∣∣∣
d∑

i=1

φi(x)vi

∣∣∣∣∣
= sup

x∈X
∥φ(x)∥2 = ϑd,2.
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In particular, the first is by definition of induced 2 → ∞-norm, the second one by definition
of projection operator, and the third by definition of infinity norm. The fourth passage follows
exchanging the two supremum, while the fifth from Parseval’s theorem and the sixth one by duality
of the two-norm (i.e. for any w, w = sup∥v∥2=1⟨v,w⟩).

C.2 Towards the proof of Theorem 2

Lemma 5. Fix δ > 0, and n ≥ 20ϑ2
d,2 log(d/δ). Let

Vn =

n∑
t=1

φ(xt)φ(xt)
⊤.

Then, λmin(Vn) ≥ n/2.

Proof. The matrices we are summing correspond to φ(xt)φ(xt)
⊤ each one being semi-positive

definite with the biggest eigenvalue bounded by ϑ2
d,2 almost surely (indeed, v⊤φ(xt)φ(xt)

⊤v is
maximized for v parallel to φ(xt) and produces ∥φ(xt)∥22). Moreover, as we have seen in Lemma 2,

E

[
n∑

t=1

φ(xt)φ(xt)
⊤

]
=

n∑
t=1

E
[
φ(xt)φ(xt)

⊤] = nId.

These two ingredients allow us to apply Lemma 3 part one, which ensures that with probability at
least 1− δ

λmin(Vn) ≥

1−

√
5ϑ2

d,2 log(d/δ)

n

n,

if
(
1−

√
5ϑ2

d,2 log(d/δ)

n

)
≤ 1/2. Therefore, taking n ≥ 20ϑ2

d,2 log(d/δ), we get λmin(Vn) ≥ n/2,

which completes the proof.

Lemma 6. Let ζ(·) := f(·)−Πd,µf(·). With probability at least 1− δ,∣∣∣∣∣φ(z)⊤V −1
n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣ ≤ 2Λd,µE∞(f)ϑd,2√
n

√
log(1/δ),

plus a lower-order term depending on n−1 which takes the form of
Õ
(
n−1d1/2ϑ2

d,2Λd,µE∞(f) + n−3/2dϑ3
d,2Λd,µE∞(f)

)
.

Proof. We start rearranging the equation as follows∣∣∣∣∣φ(z)⊤V −1
n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣ =
∣∣∣∣∣φ(z)⊤

(
1

n
Vn

)−1
1

n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣
=

∣∣∣∣∣φ(z)⊤ (Id +∆n)
1

n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣
≤

∣∣∣∣∣φ(z)⊤ 1

n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣
+

∣∣∣∣∣φ(z)⊤∆n
1

n

n∑
t=1

φd(xt)ζ(xt)

∣∣∣∣∣ .
For ∆n := (Vn/n)

−1−Id. To bound both parts, we start by giving a result for 1
n

∑n
t=1 v

⊤φ(xt)ζ(xt)

that holds for one fixed v ∈ Rd. Indeed,
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1. Every random variable v⊤φ(xt)ζ(xt) is bounded by ∥v∥2ϑd,2Λd,µE∞(f) a.s.

2. The variance of the same random variable is
Ex∼ρ[(v

⊤φ(x)ζ(x))2] = Ex∼ρ[ζ(x)
2v⊤φ(x)⊤φ(x)v]

≤ (Λd,µE∞(f))2v⊤Ex∼ρ[φ(x)
⊤φ(x)]v

= (Λd,µE∞(f))2v⊤Idv

= (Λd,µE∞(f))2∥v∥22,
the main step following from Lemma 2.

So by Bernstein’s inequality (Theorem 14),

1

n

n∑
t=1

v⊤φ(xt)ζ(xt) ≤
2Λd,µE∞(f)∥v∥2√

n

√
log(1/δ) +

2∥v∥2ϑd,2Λd,µE∞(f)

3n
log(1/δ). (10)

We can use the previous equation to bound both parts. For the first, we just take v = φ(z), which
respects ∥v∥2 ≤ ϑd,2, in Eq. (10) and get∣∣∣∣∣φ(z)⊤ 1

n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣ ≤ 2Λd,µE∞(f)ϑd,2√
n

√
log(1/δ) +

2ϑd,2Λd,µE∞(f)

3n
log(1/δ).

Let us now focus on the second part. Indeed,∣∣∣∣∣φ(z)⊤∆n
1

n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣ ≤ ϑd,2∥∆n∥2

∥∥∥∥∥ 1n
n∑

t=1

φ(xt)ζ(xt)

∥∥∥∥∥
2

Now, using Lemma 3 as done in the proof of Lemma 5, we have

∥∆n∥2 ≤ ϑd,2

√
5 log(d/δ)

n
,

while for the last part we can write

∥∥∥∥∥ 1n
n∑

t=1

φ(xt)ζ(xt)

∥∥∥∥∥
2

= sup
∥v∥2=1

1

n

n∑
t=1

v⊤φ(xt)ζ(xt)

≤ sup
∥v∥2∈B

1/n
d

1

n

n∑
t=1

v⊤φ(xt)ζ(xt) +
ϑd,2Λd,µE∞(f)

n
,

where B
1/n
d is a 1/n covering of the set of vectors such that ∥v∥2 = 1. It is well-known that we can

choose B
1/n
d so that |B1/n

d | ≈ n−d, so that, making a union bound together with Eq. (10), we get

∥∥∥∥∥ 1n
n∑

t=1

φ(xt)ζ(xt)

∥∥∥∥∥
2

≤ 2Λd,µE∞(f)√
n

√
d log(1/δ) +

2ϑd,2dΛd,µE∞(f)

3n
log(1/δ) +

Λd,µE∞(f)

n
.

As a consequence,

∣∣∣∣∣φ(z)⊤∆n
1

n

n∑
t=1

φ(xt)ζ(xt)

∣∣∣∣∣
≤ ϑ2

d,2

√
5 log(d/δ)

n

(
2Λd,µE∞(f)√

n

√
d log(1/δ) +

2ϑd,2dΛd,µE∞(f)

3n
log(1/δ) +

Λd,µE∞(f)

n

)
= Õ

(
n−1d1/2ϑ2

d,2Λd,µE∞(f) + n−3/2dϑ3
d,2Λd,µE∞(f)

)
.

This completes the proof.
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C.3 Proof of Theorem 2

Theorem 2. Let X be finite and Assumption 1 hold. Let X be finite and Assumption 1 hold. For any
δ ∈ (0, 1/3] and any n ≥ 20ϑ2

d,2 log(d/δ), the OLS estimate θ̂n satisfies, with probability at least
1− 3δ,

E∞(θ̂n, f) ≤ (1 + Λd,µ)E∞(f) + 3(σ + Λd,µE∞(f))ϑd,2

√
log(|X |/δ)

n

+
poly(d, ϑd,2,Λd,µE∞(f))

n
.

Proof. In this proof, let ζd,µ(·) := f(·) − Πd,µf(·) and ηt = yt − f(xt). Moreover, we will call
θ̂n the OLS estimator parametrized w.r.t. φ, rather than φ. We will also call f̂n(·) = φ(·)⊤θ̂n the
corresponding estimated function (which does not change with the parameterization of the basis, as it
only depends on F).

We start making the following decomposition:

|φ(x)⊤θ̂n − f(x)| ≤ |φ(x)⊤θ̂n −Πd,µf(x)|+ ∥Πd,µf − f∥∞
≤ |φ(x)⊤θ̂n −Πd,µf(x)|+ (1 + Λd,µ)E∞(f).

To bound the first part, we let θ⋆ be such that Πd,µf(·) = φ(·)⊤θ⋆. By Assumption 1, the samples take
the form yt = φ(xt)

⊤θ⋆ + ζd,µ(xt) + ηt, where (ηt)
n
t=1 is a family of independent σ−subgaussian

random variables. By definition, letting Vn =
∑n

t=1 φ(xt)φ(xt)
⊤, the LS solution takes the form

φ(xt)
⊤θ̂n, where

θ̂n = Vn
−1

n∑
t=1

φ(xt)yt

= Vn
−1

n∑
t=1

φ(xt)(φ(xt)
⊤θ⋆ + ηt + ζd,µ(xt))

= θ⋆ + Vn
−1

n∑
t=1

φ(xt)(ηt + ζd,µ(xt)).

Therefore, we have

|φd(x)
⊤θ̂n −Πd,µf(x)| ≤

∣∣∣∣∣φ(x)⊤Vn
−1

n∑
t=1

φ(xt)ηt

∣∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∣φ(x)⊤Vn
−1

n∑
t=1

φ(xt)ζd,µ(xt)

∣∣∣∣∣︸ ︷︷ ︸
(II)

.

We are going to bound the two terms separately. First, let E := {λmin(Vn) ≥ n/2}. From Lemma 5,
under the assumptions of this theorem, we have P(E) ≥ 1− δ.

(I) Since ηt are independent and σ−subgaussian conditionally to (xt)
n
t=1 (Assumption 1),

Lemma 5.4 and Theorem 5.3 from Lattimore and Szepesvári [2020] ensure that, with
probability at least 1− 2δ∣∣∣∣∣φ(x)⊤Vn

−1
n∑

t=1

φ(xt)ηt

∣∣∣∣∣ ≤
√√√√2σ2

n∑
t=1

(
φ(x)⊤Vn

−1φ(xt)
)2

log(1/δ)

=
√
2σ2∥φ(x)∥2

Vn
−1 log(1/δ)

=
√

2 log(1/δ)σ∥φ(x)∥Vn
−1 .

Moreover, if event E holds,

∥φ(x)∥Vn
−1 ≤ 2∥φ(x)∥2√

n
≤ 2ϑd,2√

n
,

so that the full term is bounded by
√
8 log(1/δ)σϑd,2n

−1/2.
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(II) This term is bounded by Lemma 6 which, with probability at least 1− δ gives∣∣∣∣∣φ(z)⊤V −1
n

n∑
t=1

φ(xt)ζd,µ(xt)

∣∣∣∣∣ ≤ 2Λd,µE∞(f)ϑd,2√
n

√
log(1/δ),

plus lower-order terms of the form poly(d,ϑd,2,Λd,µE∞(f))
n .

Note that, thanks to Lemma 5, event E holds with probability 1− δ under the assumptions of this
theorem. Moreover, imposing that both events in (I) and (II) verify, we get, with probability at least
1− 3δ,

|φ(x)⊤θ̂n − f(x)|∞ ≤ (1 + Λd,µ)E∞(f) + |φ(x)⊤θ̂n −Πd,µf(x)|

≤ (1 + Λd,µ)E∞(f) +
3(σ + Λd,µE∞(f))ϑd,2√

n

√
log(1/δ)

plus lower-order terms of the form poly(d,ϑd,2,Λd,µE∞(f))
n . This completes the proof.

C.4 Bound scaling with the empirical Lebesgue constant

Theorem 3. Let X be finite, Assumption 1 hold, θ̂n be the OLS estimate. Then, for any fixed δ > 0,
with probability at least 1− δ,

E∞(θ̂n) ≤ (1 + Λd,µn
)E∞(f) +

σϑ
(n)
d,2

√
2 log(2|X |/δ)
√
n

.

Proof. In this proof, let ζ(·) := f(·)−Πd,µn
f(·) and ηt = yt−f(xt). Moreover, we will call θ̂n the

OLS estimator parametrized w.r.t. φ̂, rather than φ. We will also f̂n(·) = φ̂(·)⊤θ̂n the corresponding
estimated function (which does not change with the parameterization of the basis, as it only depends
on F).

The following decomposition holds:

∥f(·)− f̂n(·)∥∞ ≤ ∥f(·)−Πd,µnf(·)∥∞ + ∥Πd,µnf(·)− f̂n(·)∥∞
≤ (1 + Λ̂d,µ)E∞(f) + ∥Πd,µnf(·)− f̂n(·)∥∞.

Now, we focus on the second term. As done in the previous proof of Theorem 2, we let θ⋆ be such
that Πd,µnf(·) = φ̂(·)⊤θ⋆ and ζ(·) := f(·) − φ̂(·)⊤θ⋆. In this way, our samples take the form
yt = φ̂(xt)

⊤θ⋆ + ζ(xt) + ηt.

For any fixed x ∈ X we have

f̂n(x) = φ̂(x)⊤θ̂n

= φ̂(x)⊤
1

n

n∑
t=1

φ̂(xt)yt

= φ̂(x)⊤
1

n

n∑
t=1

φ̂(xt)(φ̂(xt)
⊤θ⋆ + ζ(xt) + ηt)

= φ̂(x)⊤θ⋆ + φ̂(x)⊤
1

n

n∑
t=1

φ̂(xt)ζ(xt)︸ ︷︷ ︸
(I)

+ φ̂(x)⊤
1

n

n∑
t=1

φ̂(xt)ηt︸ ︷︷ ︸
(II)

.

Here, the last passage is due to the fact that, being φ̂(·) orthogonal w.r.t. µn(·), it follows
1
n

∑n
t=1 φ̂(xt)φ̂(xt)

⊤ = Id. Now, we analyze the two terms (I) and (II) separately.
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(I) = φ̂(x)⊤
1

n

n∑
t=1

φ̂(xt)ζ(xt)

= φ̂(x)⊤
∫
X
φ̂(z)ζ(z) dµn(z) = φ̂(x)⊤0 = 0.

In fact, by definition of orthogonal projection, ζ(·) is orthogonal in L2(µn) to the span of φ̂(·), so to
each of its components in particular.

Let us look at the second term. Since ηt are independent and σ−subgaussian conditionally on (xt)
n
t=1,

Lemma 5.4 and Theorem 5.3 from Lattimore and Szepesvári [2020] ensure that, with probability at
least 1− 2δ ∣∣∣∣∣φ̂(x)⊤n−1

n∑
t=1

φ̂(xt)ηt

∣∣∣∣∣ ≤
√√√√2σ2n−1

n∑
t=1

(φ̂(x)⊤φ̂(xt))
2
log(1/δ)

=
√
2σ2n−1∥φ̂(x)∥22 log(1/δ)

=
√
2 log(1/δ)σn−1/2∥φ̂(x)∥2.

Where the second passage comes once again from the fact that 1
n

∑n
t=1 φ̂(xt)φ̂(xt)

⊤ = Id. This
proves that (II) is bounded by

√
2 log(1/δ)σn−1/2φ̂2,d. Making a union bound over x ∈ X , this

entails w.p. 1− δ,

sup
x∈X

∣∣∣∣∣φ̂(x)⊤n−1
n∑

t=1

φ̂(xt)ηt

∣∣∣∣∣ ≤√2 log(|X |/δ)σn−1/2φ̂2,d.

We have proved that

E∞(θ̂n) = ∥f(·)− f̂n(·)∥∞
≤ (1 + Λ̂d,µ)E∞(f) + ∥Πd,µn

f(·)− f̂n(·)∥∞
≤ (1 + Λ̂d,µ)E∞(f) +

√
2 log(|X |/δ)σn−1/2φ̂2,d.

C.5 Proofs from Section 3.1

Proposition 17. The Lebesgue constant is bounded by Λd,µ ≤ ϑd,2.

Proof. Let f ∈ L∞(X ) with ∥f∥∞ = 1. We have, for any x ∈ X ,

|Πd,µf(x)| =

∣∣∣∣∣
d∑

i=1

⟨f, φi⟩φi(x)

∣∣∣∣∣
≤

√√√√ d∑
i=1

⟨f, φi⟩2
d∑

i=1

φi(x)
2

≤
√
∥f∥2µ∥φi(x)∥22

≤ ∥f∥∞
√
∥φi(x)∥22 ≤ ϑd,2,

the last passage coming from the fact that as ρ is a probability measure, ∥f∥µ ≤ ∥f∥∞. The thesis
follows taking the supremum on f, x.
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Proposition 18. Let φd : X → Rd be any feature map, and ρ a probability measure. Then,

φ2 ≥
√
d.

Proof. The key for this result is to note that, being ρ a probability measure, ϑ2
d,2 ≥ Ex∼ρ

[
∥φd(x)∥22

]
(the supremum of a function upper bounds its integral on any probability measure). Then,

ϑd,2 ≥
√

Ex∼ρ [∥φd(x)∥22]

=
√

Ex∼ρ [φd(x)
⊤φd(x)]

=
√

Ex∼ρ [Tr(φd(x)
⊤φd(x))]

=
√

Ex∼ρ [Tr(φd(x)φd(x)
⊤)]

=
√

Tr(Ex∼ρ [φd(x)φd(x)
⊤])

∗
=
√

Tr(Id) =
√
d.

Where the passage (∗) comes from Lemma 2.

Proposition 19. Let X = [k] and φi(j) = Xij , with all the Xij being independent bounded
zero-mean unit variance random variables. Then, if d = O(

√
k), the feature map φd, satisfies

Λd,µ = O(
√
d log(k/δ))

with probability at least 1− δ. Moreover, E[Λd,µ] ≥ Ω(
√
d).

Proof. By convenience, we call Φ ∈ Rk×d the matrix having, as columns, the features of φd.
Precisely, the i−th column of Φ corresponds to φi. It is well-known that, in a finite dimensional
space the orthogonal projection operator writes as

Πd,µ := Φ(Φ⊤Φ)−1Φ⊤.

We call Φm· the m−th row of Φ which, by assumption, is a random vector of independent entries
bounded in [−B,B] and with variance one. We have

Φ⊤Φ =

k∑
m=1

Φm·Φ
⊤
m·, E[Φm·Φ

⊤
m·] = σ2Id, λd(Φm·Φ

⊤
m·) ≤ dB2.

At this point, we can apply Lemma 3, that ensures with probability 1− 2δ, for k sufficiently large,

(
1−

√
5dB2 log(d/δ)

kσ2

)
kσ2 ≤ λmin(Φ

⊤Φ) ≤ λmax(Φ
⊤Φ) ≤

(
1 +

√
2dB2 log(d/δ)

kσ2

)
kσ2.

Now, we can fix σ = 1 as in the assumption and rewrite the projection operator in the following form

Πd,µ := k−1Φ(k−1Φ⊤Φ)−1Φ⊤ = k−1ΦΦ⊤ + k−1Φ∆Φ⊤,

where ∆ has all the eigenvalues of magnitude less than
√

5dB2 log(d/δ)
kσ2 , by the previous result.

We now bound the infinity norm of the two terms separately. First,
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∥k−1ΦΦ⊤∥∞
∗
=

1

k
max

m=1,...k
∥(ΦΦ⊤)m·∥1

= max
m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ ,
where ∗ holds since the infinity norm of a matrix corresponds to the maximum 1−norm between its
rows. Now, note that, as the rows are independent, each variable

∑d
i=1 ΦmiΦni, for m ̸= n is a sum

of i.i.d. random variables such that

• ΦmiΦni is bounded in [−B2, B2] almost surely.

• The variance is

E[(ΦmiΦni)
2] = E[Φ2

miΦ
2
ni] = E[Φ2

mi]E[Φ2
ni] = 1.

Therefore, Bernstein’s inequality (14) ensures that, w.p. 1− δ∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ ≤√2d log(2/δ) +
2B2

3
log(2/δ).

Making a union bound over the k2 − k pairs m ̸= n, we get, still with probability at least 1− δ,

∀n ̸= m

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ ≤√4d log(2k/δ) +
4B2

3
log(2k/δ). (11)

At this point, we simply have, with probability 1− δ,

∥k−1ΦΦ⊤∥∞ = max
m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
≤ dB2

k
+ max

m=1,...k

1

k

k∑
n=1,n̸=m

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
(11)
≤ dB2

k
+ max

m=1,...k

1

k

k∑
n=1,n̸=m

(√
4d log(2k/δ) +

4B2

3
log(2k/δ)

)

=
√
4d log(2k/δ) +

4B2

3
log(2k/δ) +

dB2

k
.

For the second term, we have

∥k−1Φ∆Φ⊤∥∞ ≤ k−1 max
m=1,...k

k∑
n=1

∣∣⟨Φm·, (∆Φ⊤)·n⟩
∣∣

≤ k−1 max
m=1,...k

k∑
n=1

∥Φm·∥2∥(∆Φ⊤)·n∥2

∗
≤ k−1 max

m=1,...k

k∑
n=1

dB2

√
k

≤ dB2

√
k
,
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where ∗ comes from the bound on the eigenvalues of ∆. Putting everything together, we have proved
that

∥Πd,µ∥∞ ≤
√
4d log(2k/δ) +

4B2

3
log(2k/δ) +

dB2

k
+

dB2

√
k

=
√

4d log(2k/δ) +O(d/
√
k).

To show that we cannot go much lower than this quantity, note that, even ignoring the contribution of
∆ we have

∥Πd,µ∥∞ ≈ ∥k−1ΦΦ⊤∥∞ = max
m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣ .
Therefore,

E[∥Πd,µ∥∞] ≈ E

[
max

m=1,...k

1

k

k∑
n=1

∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
]

≥ max
m=1,...k

1

k

k∑
n=1

E

[∣∣∣∣∣
d∑

i=1

ΦmiΦni

∣∣∣∣∣
]

≥ max
m

1

k

k∑
n=1,n̸=m

Ω(
√
d) = Ω(

√
d).

The last passage comes from the fact that, for n ̸= m, we have the expected value of the modulus a
sum of d independent random variables, which grows as

√
d.

Proposition 20. Let µ, ν be two discrete probability measures supported on a countable set X such
that for all x ∈ X , 0 ≤ c ≤ µ(x)

ν(x) ≤ C. Then, Λd,µ ≤ C
c Λd,ν .

Proof. The following identity holds for the Lebesgue constant

Λd,µ = sup
x∈X

∫
X
φ(x)⊤φ(z) dµ(z)

= sup
x∈X

∫
X
φ(x)⊤R(µ)−1R(µ)−⊤ dµ(z)

= sup
x∈X

∫
X
|φ(x)⊤G(µ)−1φ(z)| dµ(z),

where G(µ) =
∫
X φ(x)φ(x)⊤ dµ(x) and R(µ) is its Cholesky factor, such that R(µ)⊤R(µ) =

G(µ); here, the second passage comes from the fact that the Cholesky factor of a matrix corresponds
to the R factor in the QR factorization, which is the one giving Graham-Schmidt orthogonalization
Quarteroni et al. [2010]. In fact, letting φ(x) be the basis orthonomalized w.r.t. µ, we have

φ(x)⊤φ(z)⊤ = φ(x)⊤G(µ)−1φ(z).

Note that, by absolute continuity, we have, for any x ∈ X
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∫
X
|φ(x)⊤G(µ)−1φ(z)| dµ(z) ≤ C

∫
X
|φ(x)⊤G(µ)−1φ(z)| dν(z)

≤ C

∫
X

∣∣∣∣∣φ(x)⊤
(∫

X
φ(z′)φ(z′)⊤ dµ(z′)

)−1

φ(z)

∣∣∣∣∣ dν(z)
≤ C

∫
X

∣∣∣∣∣φ(x)⊤c−1

(∫
X
φ(z′)φ(z′)⊤ dν(z′)

)−1

φ(z)

∣∣∣∣∣ dν(z)
=

C

c

∫
X

∣∣∣∣∣φ(x)⊤
(∫

X
φ(z′)φ(z′)⊤ dν(z′)

)−1

φ(z)

∣∣∣∣∣ dν(z)
=

C

c

∫
X

∣∣φ(x)⊤G(ν)−1φ(z)
∣∣ dν(z).

Passing to the supremum, we get the thesis.

D Proofs from Section 4

D.1 Lower bound for standard ridge regression

Lemma 7. Let Πλ
d,µ be the operator defined in this way:

Πλ
d,µf := φ(·)⊤θλ θλ = argmin

θ
∥f(·)−φ(·)⊤θ∥2L2 + λ∥θ∥22. (12)

Then, we have

Πλ
d,µf =

Πd,µf

1 + λ
.

Proof. We start from the definition of θλ:

θλ = argmin
θ
∥f(·)−φ(·)⊤θ∥2L2 + λ∥θ∥22

= argmin
θ
∥Πd,µf(·) + ζd,µ(·)−φ(·)⊤θ∥2L2 + λ∥θ∥22

= argmin
θ
∥ζd,µ∥2L2 + ∥Πd,µf(·)−φ(·)⊤θ∥2L2 + λ∥θ∥22,

where the last passage comes from Parseval’s theorem, as ζd,µ is orthogonal in L2 to the span of φ,
while Πd,µf(·),φ(·)⊤θ belongs to this vector space. We then write the operator Πd,µf explicitly:

θλ = argmin
θ
∥Πd,µf(·)−φ(·)⊤θ∥2L2 + λ∥θ∥22

= argmin
θ

∥∥∥∥∥
d∑

i=1

⟨f, φi⟩L2φi(·)−φ(·)⊤θ

∥∥∥∥∥
2

L2

+ λ∥θ∥22

= argmin
θ

d∑
i=1

(⟨f, φi⟩L2 − θi)
2 + λθ2i .

The last passage holds from Parseval’s theorem since φi are orthonormal in L2. Note that, as the θi
in the last minimization problem are disentangled, we can find as explicit solution

θλ,i =
⟨f, φi⟩L2

1 + λ
, Πλ

d,µf =
Πd,µf

1 + λ
.

This completes the proof.
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Lemma 8. Let Πλ
d,µ be defined according to Eq. (12). For every feature map φ we have

sup
f∈L∞(X )

∥Πλ
d,µf − f∥∞

∥Π∞f − f∥∞
≥
(
Λd,µ − 1− 2λ

1 + λ

)
.

Proof. By definition of Lebesgue constant, for every ε > 0 there is a function g such that

∥Πd,µg∥∞ = (Λd,µ − ε)∥g∥∞.

Take f = Π∞g − g. We have, by Lemma 7,

∥Πλ
d,µf − f∥∞ =

∥∥∥∥Πd,µf

1 + λ
− f

∥∥∥∥
∞

= ∥(1 + λ)−1Πd,µ(P
d
∞g − g)−Π∞g + g∥∞

= ∥(1 + λ)−1Π∞g − (1 + λ)−1Πd,µg − P d
∞g + g∥∞

=

∥∥∥∥−(1 + λ)−1Πd,µg −
λ

1 + λ
P d
∞g + g

∥∥∥∥
∞

.

At this point, note that
∥Π∞g∥∞ ≤ 2∥g∥∞,

as follows from

∥Π∞g∥∞ ≤ ∥g −Π∞g∥∞ + ∥g∥∞
≤ ∥g − 0∥∞ + ∥g∥∞ = 2∥g∥∞.

Using this property, we have

∥Πλ
d,µf − f∥∞ ≥

∥∥∥∥−(1 + λ)−1Πd,µg −
λ

1 + λ
Π∞g + g

∥∥∥∥
∞

≥ ∥ − (1 + λ)−1Πd,µg∥∞ −
1 + 2λ

1 + λ
∥g∥∞.

At this point, using the definition of g,

∥ − (1 + λ)−1Πd,µg∥∞ −
1 + 2λ

1 + λ
∥g∥∞ ≥

(
Λd,µ

1 + λ
− ε− 1 + 2λ

1 + λ

)
∥Π∞g − g∥∞

=

(
Λd,µ

1 + λ
− ε− 1 + 2λ

1 + λ

)
∥f∥∞

≥
(

Λd,µ

1 + λ
− ε− 1 + 2λ

1 + λ

)
∥Π∞f − f∥∞.

The thesis follows letting ε→ 0.

Theorem 5. Let θ̂n,RIDGE be the λ−ridge regression estimate. For any feature map φd(·) : X → Rd,
there exists a target function f ∈ L∞(X ) such that, in the infinite data limit,

E∞(θ̂∞,RIDGE) = Ω

(
max

{
(Λd,µ − 2λ)E∞(f),

λ

λ+ 1

})
.

Proof. Let f̂n be the output of λ−ridge regression, that is the function φ(·)⊤θ̂n, where

θ̂n := argmin
θ∈Rd

n∑
t=1

(φ(xt)
⊤θ − yt)

2 + λn∥θ∥22 xt
i.i.d.∼ µ.
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By the uniform law of large numbers, in the limit, the minimizer f̂n converges to Πλ
d,µf , the

regularized projection operator is defined as follows

Πλ
d,µf (·) := φ(·)⊤θλ θλ = argmin

θ
∥f(·)−φ(·)⊤θ∥2L2 + λ∥θ∥22.

We start showing the λ
λ+1 lower bound. Taking any function in the span of φ(·) with ∥f∥∞ = 1 we

have, by Lemma 7,

∥f −Πλ
d,µf∥∞ = ∥f − (1 + λ)−1f∥∞ =

λ

λ+ 1
.

To show the other part, use Lemma 8 to define a function f such that

∥Πλ
d,µf − f∥∞ ≥

(
Λd,µ − 2− 2λ

1 + λ

)
∥Π∞f − f∥∞.

Replacing ∥Π∞f − f∥∞ = E∞(f) completes the proof.

D.2 Proofs from Section 4.1

Theorem 7. Let Assumption 1 hold. Then, for any δ > 0, with probability 1− δ,

E∞(θ̂n,α) ≤ (1 + Λα,µn)E∞(f) +
σφ̂2,D

√
2 log(2|X |/δ)√

n
.

Proof. In this proof, let ζ(·) := f(·) − ΠRidge
α,µnf(·) and ηt = yt − f(xt) and θ̂n be the estimator

corresponding to ΠRidge
α,µn in the parameterization of φ̂D(·), so that

φ̂d(·)⊤θ̂n = ΠRidge
α,µn

f =: f̂n(·).

The following decomposition holds:

∥f(·)− f̂n(·)∥∞ ≤ ∥f(·)−ΠRidge
α,µn

f(·)∥∞ + ∥ΠRidge
α,µn

f(·)− f̂n(·)∥∞
≤ (1 + Λα,µn

)E∞(f) + ∥ΠRidge
α,µn

f(·)− f̂n(·)∥∞.

where we have applied Proposition 6 for µn. Let us focus on the second term. As in the proof of the
previous theorems, we call θ⋆ the vector corresponding to the orthogonal projection over φ̂D(·) so
that we have, for every x ∈ X

f̂n(x) = φ̂D(x)⊤Iα
1

n

n∑
t=1

ytφ̂D(xt)

= φ̂D(x)⊤Iα
1

n

n∑
t=1

(φ̂D(xt)
⊤θ⋆ + ζ(xt) + ηt)φ̂D(xt)

= φ̂D(x)⊤Iα
1

n

n∑
t=1

φ̂D(xt)φ̂D(xt)
⊤θ⋆

+ φ̂D(x)⊤Iα
1

n

n∑
t=1

ζ(xt)φ̂D(xt)

+ φ̂D(x)⊤Iα
1

n

n∑
t=1

ηtφ̂D(xt).

By orthogonality, the first term corresponds to
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φ̂D(x)⊤Iα
1

n

n∑
t=1

φ̂D(xt)φ̂D(xt)
⊤

︸ ︷︷ ︸
ID

θ⋆ = φ̂D(x)⊤Iαθ⋆ = ΠRidge
α,µn

f(x).

The second term is

φ̂D(x)⊤Iα
1

n

n∑
t=1

ζ(xt)φ̂D(xt) = φ̂D(x)⊤Iα

∫
X
ζ(z)φ̂D(z) dµn(z)︸ ︷︷ ︸

0 vector

= 0,

by definition of orthogonal projection. The third term is

φ̂D(x)⊤Iα
1

n

n∑
t=1

ηtφ̂D(xt),

which can be bounded as the corresponding terms in Theorems 2 and 3: as ηt are independent and
σ−subgaussian subgaussian conditionally on (xt)

n
t=1, Lemma 5.4 and Theorem 5.3 from Lattimore

and Szepesvári [2020] ensure that, with probability at least 1− 2δ∣∣∣∣∣φ̂d(x)
⊤Iαn

−1
n∑

t=1

φ̂d(xt)ηt

∣∣∣∣∣ ≤
√√√√2σ2n−1

n∑
t=1

(φ̂d(x)
⊤Iαφ̂d(xt))

2
log(1/δ)

=
√
2σ2n−1∥φ̂d(x)∥22 log(1/δ)

=
√
2 log(1/δ)σn−1/2∥φ̂d(x)∥2.

Where the only difference w.r.t. the other proofs is the presence of Iα, which is erased after the
first step since, being α ∈ AD

d , its norm is ≤ 1. This proves that the last term is bounded by√
2 log(1/δ)σn−1/2φ̂2,D. Making a union bound over X gives, w.p. 1− δ,

sup
x∈X
|ΠRidge

α,µn
f(x)− f̂n(x)| ≤

√
2 log(1/δ)σn−1/2φ̂2,D.

Putting everything together, we have proved that

E∞(θ̂n,α) ≤ ∥f(·)− f̂n(·)∥∞ ≤ (1 + Λ̂α)E∞(f) +
σφ̂2,D

√
2 log(2X/δ)√
n

.

Proposition 21. Fix δ > 0. With probability 1− δ, the following bounds holds simultaneously for
every α ∈ AD

d : |ϑD,2 − ϑ
(n)
D,2| = Õ(ϑ2

D,2

√
log(1/δ)/n), and

|Λα,µn
− Λα,µ| = Õ

(√
dϑ2

D,2

√
log(1/δ)

√
n

+

√
dϑ3

D,2 log(1/δ)

n

)
.

We prove this theorem for a generic d ∈ N. The result follows for d = D.

We define Vn := 1
n

∑n
t=1 φd(xt)φd(xt)

⊤. Let φ̂d(·) the basis obtained from φd by Gram-Schmidt
orthogonalization w.r.t. µn, the empirical distribution of the {xt}t. As in the main paper, we let
Rn = Chol(Vn) and, since the Cholesky factor corresponds to the matrix given by Graham Schmidt
orthogonalization (proposition 3.4 in Quarteroni et al. [2010]),

φd(xt) = R⊤
n φ̂d(xt) φ̂d(xt) = R−⊤

n φd(xt). (13)
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so that, under this convenient normalization, we can pass from φd(xt) to φ̂d(xt) trough a matrix
that is exactly the Cholesky factor of Vn. In this setting, Theorem 2.1. in Drmač et al. [1994], which
provides a stability result for the Cholesky decomposition which, combined with our theorem gives

1−O
(
ϑd,2

√
log(1/δ)/n log(d)

)
≤ λmin(Rn) ≤ λmax(Rn) ≤ 1 +O

(
ϑd,2

√
log(1/δ)/n log(d)

)
(14)

We can now proceed with the proof.

Proof. Bounding norm difference

We have to measure

sup
x∈X
∥φ̂d(x)−φd(x)∥2.

As we said, the relation between the two is φd(x) = R⊤
n φ̂d(x) which we can also wite as

R−⊤
n φd(x) = φ̂d(x), so that

sup
x∈X
∥φ̂d(x)−φd(x)∥2 = sup

x∈X
∥(Id −R−⊤

n )φd(x)∥2.

At this point, equation (14) ensures that ∥Id −R−⊤
n ∥2→2 = O

(
ϑd,2

√
log(1/δ)/n log(d)

)
, so we

get

sup
x∈X
∥φ̂d(x)−φd(x)∥2 ≤ O

(
ϑ2
d,2

√
log(1/δ)/n log(d)

)
. (15)

A simple yet useful consequence of this result is

|ϑd,2 − ϑ
(n)
d,2 | = sup

x∈X
|∥φ̂d(x)∥2 − sup

x∈X
∥φd(x)∥2| (16)

≤ sup
x∈X
|∥φ̂d(x)∥2 − ∥φd(x)∥2| (17)

≤ sup
x∈X
∥φ̂d(x)−φd(x)∥2 (18)

= O
(
ϑ2
d,2

√
log(1/δ)/n log(d)

)
(19)

Lebesgue constants difference

Let us bound the distance between the estimated and the true Lebesgue constant, for any α ∈ AD
d ,
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|Λα,µn
− Λα,µ| =

∣∣∣∣∣supx∈X

1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣− sup
x∈X

∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣

≤ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣

≤ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣− 1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣
∣∣∣∣∣

+ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣

= sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∣∣∣∣∣

d∑
i=1

αiφi(x)φi(xt)

∣∣∣∣∣
∣∣∣∣∣

+ sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣ .

In the following, we call

First term := sup
α∈AD

d ,x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∣∣∣∣∣

d∑
i=1

αiφi(x)φi(xt)

∣∣∣∣∣
∣∣∣∣∣

and

Second term := sup
α∈AD

d ,x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣ .

Bound the first term.

Fix α ∈ AD
d ,

First part =
1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)

∣∣∣∣∣−
∣∣∣∣∣

d∑
i=1

αiφi(x)φi(xt)

∣∣∣∣∣
≤ 1

n

n∑
t=1

∣∣∣∣∣
d∑

i=1

αiφ̂i(x)φ̂i(xt)−
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣
=

1

n

n∑
t=1

∣∣φ̂d(x)
⊤Iαφ̂d(xt)−φd(x)

⊤Iαφd(xt)
∣∣ .

Where, Iα = diag(α). At this point, we can replace the result of Eq. (13): getting
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First part ≤ 1

n

n∑
t=1

∣∣φ̂d(x)
⊤Iαφ̂d(xt)−φd(x)

⊤Iαφd(xt)
∣∣

=
1

n

n∑
t=1

∣∣φ̂d(x)
⊤Iαφ̂d(xt)− φ̂d(x)

⊤RnIαR
⊤
n φ̂d(xt)

∣∣
≤ 1

n

n∑
t=1

∣∣φ̂d(x)
⊤(Iα −RnIαR

⊤
n )φ̂d(xt)

∣∣
≤ 1

n

n∑
t=1

∥φ̂d(x)∥2∥Iα −RnIαR
⊤
n ∥2∥φ̂d(xt)∥2.

This formulation allows us to apply Eq. (14): As Iα is diagonal matrix with elements in [0, 1], we
have

∥Iα −RnIαR
⊤
n ∥2 = O

(
ϑd,2

√
log(1/δ)/n log(d)

)
.

This gives the following

First part ≤ O

(
1

n

n∑
t=1

∥φ̂d(x)∥2∥H −RnHR⊤
n ∥2∥φ̂d(xt)∥2

)

≤ O

(
ϑd,2

√
log(1/δ) log(d)√

n

1

n

n∑
t=1

∥φ̂d(x)∥2∥φ̂d(xt)∥2

)

≤ O

(
ϑd,2ϑ

(n)
d,2

√
log(1/δ) log(d)
√
n

∑n
t=1 ∥φ̂d(xt)∥2

n

)

≤ O

(
ϑd,2ϑ

(n)
d,2

√
log(1/δ) log(d)
√
n

√
n
∑n

t=1 ∥φ̂d(xt)∥22
n

)

= O

(
ϑd,2ϑ

(n)
d,2

√
log(1/δ) log(d)
√
n

√
n2d

n

)

= O

(√
dϑd,2ϑ

(n)
d,2

√
log(1/δ) log(d)
√
n

)
.

Here, the first equality is due to the fact that, being φ̂d orthonormal w.r.t. µn, we have∑n
t=1 ∥φ̂d(xt)∥22 = nd. This holds uniformly for every α, as we have only used the fact that

∥Iα∥2 ≤ 1.

Bounding the second term.

The second term corresponds to

Second term = sup
x∈X

∣∣∣∣∣ 1n
n∑

t=1

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(xt)

∣∣∣∣∣−
∫
X

∣∣∣∣∣
d∑

i=1

αiφi(x)φi(z)

∣∣∣∣∣ dµ(z)
∣∣∣∣∣ .

First, we fix x ∈ X and α ∈ AD
d and use the scalar product to write it as∣∣∣∣∣ 1n

n∑
t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣ . (20)
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Note that by definition

E[|φd(x)
⊤Iαφd(xt)|] =

∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z).
Moreover,

Var(|φd(x)
⊤Iαφd(xt)|) ≤ E

[
|φd(x)

⊤Iαφd(xt)|2
]

= E
[
φd(x)

⊤Iαφd(xt)φd(xt)
⊤Iαφd(x)

]
= φd(x)

⊤Iα E
[
φd(xt)φd(xt)

⊤]︸ ︷︷ ︸
=Id

Iαφd(x)

= φd(x)
⊤I2αφd(x)

≤ ϑ2
d,2,

where the last step comes from the fact that I2α ⪯ Id. For the same reason, we also have
|φd(x)

⊤Iαφd(xt)| ≤ ϑ2
d,2 almost surely. These three results allow us to apply Bernstein’s in-

equality (14) for

• Xt = |φd(x)
⊤Iαφd(xt)| − E[|φd(x)

⊤Iαφd(xt)|].

• σ2 =
∑n

t=1 Var(|φd(x)
⊤Iαφd(xt)|) ≤ nϑ2

d,2.

• B = ϑ2
d,2.

This gives, with probability at least 1− δ,∣∣∣∣∣
n∑

t=1

Xt

∣∣∣∣∣ ≤√2nϑ2
d,2 log(2/δ) +

2ϑ2
d,2

3
log(2/δ).

So, we can bound Eq. (20), which corresponds to 1
n |
∑n

t=1 Xt|, as follows.

∣∣∣∣∣ 1n
n∑

t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣ ≤
√

2ϑ2
d,2 log(2/δ)

n
+
2ϑ2

d,2

3n
log(2/δ).

The former holds for any fixed α ∈ AD
d . To have a uniform bound, let

A′ = ε− Cover of AD
d ε = (nϑd,2)

−1,

so that log |A′| ≤ d log(nϑd,2). Making a union bound gives, ∀α ∈ A′

∣∣∣∣∣ 1n
n∑

t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣
≤

√
2dϑ2

d,2 log(2nϑd,2/δ)

n
+

2dϑ2
d,2

3n
log(2nϑd,2/δ).

To pass to the general case, note that for every α ∈ AD
d there is α′ ∈ A′ such that∣∣ 1

n

∑n
t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫X ∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣ changes no more than 2ϑd,2 between
the two, by definition of ε−cover. Therefore, we have, with probability at least 1−δ over all α ∈ AD

d
at the same time
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∣∣∣∣∣ 1n
n∑

t=1

∣∣φd(x)
⊤Iαφd(xt)

∣∣− ∫
X

∣∣φd(x)
⊤Iαφd(z)

∣∣ dµ(z)∣∣∣∣∣
≤

√
2dϑ2

d,2 log(2nϑd,2/δ)

n
+

2dϑ2
d,2

3n
log(2nϑd,2/δ) + 2ϑd,2.

This means,

Second term ≤ Õ

√dϑ2
d,2 log(1/δ)

n
+

dϑ2
d,2

n
log(1/δ)

 .

Putting the two results together. By the two bounds that we got for the two terms, it follows with
probability at least 1− δ

sup
α∈AD

d

|Λα,µn
− Λα,µ| ≤ Õ

√dϑd,2ϑ
(n)
d,2

√
log(1/δ)

√
n

+

√
dϑ2

d,2 log(1/δ)

n
+

dϑ2
d,2

n
log(1/δ)

 .

To end the proof, note that, using Eq. (19), the difference between ϑd,2 and ϑ
(n)
d,2 is of order

ϑ2
d,2

√
log(1/δ)/n, so that

√
dϑd,2ϑ

(n)
d,2

√
log(1/δ)

√
n

≤
√
dϑd,2(ϑd,2 + ϑ2

d,2

√
log(1/δ)/n)

√
log(1/δ)

√
n

=

√
dϑ2

d,2

√
log(1/δ)
√
n

+

√
dϑ3

d,2 log(1/δ)

n
.

Finally, note that, as
√
d ≤ ϑd,2, the term

√
dϑ3

d,2 log(1/δ)

n dominates over
dϑ2

d,2

n log(1/δ) that we had
before.

D.3 Proofs about gradient method

Proposition 22. The function J : AD
d → (0,+∞) defined by J(α) := Λα,µn

is convex in α.

Proof. By definition,
J(α) = ∥M(α)∥∞,

where M(α) = 1
n

∑d
i=1 αiφ̂i(x)φ̂i(xt). Therefore, in particular

J(α) = sup
x∈X ,f∈{−1,1}n

∣∣∣∣∣ 1n
d∑

i=1

αiφ̂i(x)φ̂i(xt)f

∣∣∣∣∣ .
This function is convex, being the supremum of a family of linear functions 1

n

∑d
i=1 αiφ̂i(x)φ̂i(xt)

in α.

Theorem 10. Fix ϵ > 0. After I = Õ(ϵ−2ϑ
(n)
D,2

2
(D−d)) iterations, Algorithm 1 outputs α(I) ∈ AD

d

such that J(α(I)) ≤ infα∈AD
d
J(α) + ϵ.

Proof. The first step of this proof consists in finding an upper bound for any sub-gradient of α. As
we said,
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J(α) = sup
x∈X ,f∈{−1,1}n

∣∣∣∣∣ 1n
d∑

i=1

αiφ̂i(x)φ̂i(xt)f

∣∣∣∣∣ = sup
x∈X ,f∈{−1,1}n

∣∣∣∣ 1n φ̂D(x)⊤IαΦ̂
⊤f
∣∣∣∣ ,

where Iα = diag(α) is a D ×D diagonal matrix and Φ̂ is the n× d matrix having, as rows, φ̂D(xt)
for each t = 1, . . . n. At this point note that, by duality

J(α) = sup
x∈X ,f∈{−1,1}n

∣∣∣∣ 1n φ̂D(x)⊤IαΦ̂
⊤f
∣∣∣∣ = sup

x∈X

1

n

n∑
t=1

|{φ̂D(x)⊤IαΦ̂
⊤}t|,

where {}t denotes the t−th component of φ̂D(x)⊤IαΦ̂
⊤, which is a 1 × n row vector. Now,

assuming4 that the supremum is obtained by just one value x∗ ∈ X , we can compute the gradient as

∇J(α) = ∇ 1

n

n∑
t=1

|{φ̂D(x∗)
⊤IαΦ̂

⊤}t|

=
1

n

n∑
t=1

sign({φ̂D(x∗)
⊤IαΦ̂

⊤}t)∇{φ̂D(x∗)
⊤IαΦ̂

⊤}t

=
1

n

n∑
t=1

sign({φ̂D(x∗)
⊤IαΦ̂

⊤}t)φ̂D(x∗)
⊤ ⊙ {Φ̂}⊤t .

In the last line, we have used the Hadamard product ⊙, that is defined, for two vectors of length D

like φ̂D(x∗)
⊤ and {Φ̂}⊤t , as the component-wise product, generating another vector of length D.

Now, we are going to bound the two-norm of this gradient:

∥∇J(α)∥22 =

D∑
i=1

{
1

n

n∑
t=1

sign({φ̂D(x∗)
⊤IαΦ̂

⊤}t)φ̂D(x∗)
⊤ ⊙ {Φ̂}⊤t

}2

i

≤
D∑
i=1

1

n

n∑
t=1

{
sign({φ̂D(x∗)

⊤IαΦ̂
⊤}t)φ̂D(x∗)

⊤ ⊙ {Φ̂}⊤t
}2

i

≤
D∑
i=1

1

n

n∑
t=1

{
φ̂D(x∗)

⊤ ⊙ {Φ̂}⊤t
}2

i

≤
D∑
i=1

1

n

n∑
t=1

φ̂i(x∗)
2φ̂i(xt)

2

≤
D∑
i=1

φ̂i(x∗)
2 1

n

n∑
t=1

φ̂i(xt)
2

︸ ︷︷ ︸
=1

= φ̂2
D,2,

where the last passage holds since the features φ̂i(·) are orthonormal w.r.t. µn(·). Under these
assumption, namely

1. J is convex

2. Each sub-gradient has norm bounded by G := ϑ
(n)
D,2

3. The diameter of the optimization spaceHD
d is R :=

√
D − d

4if there are ties, the argument applied to each of them still holds bounding the norm of the sub-gradient

42



equation (3) on Boyd et al. [2003] guarantees that running the subgradient method for I iterations
with step size

γℓ =
R

G
√
ℓ+ 1

(corresponding to line 7), achieves suboptimality ϵI bounded by

ϵI ≤
R2 +G2

∑I
ℓ=1 γ

2
ℓ

2
∑I

ℓ=1 γℓ
≤ R2 +R2(log(I) + 1)

(R/G)
√
I

≤ 2RG log(I)√
I

=
2ϑ

(n)
D,2

√
D − d log(I)
√
I

.

Therefore, a number of iterations I = 4ϵ−2ϑ
(n)
D,2

2
(D − d) log3(4ϑ

(n)
D,2

2
(D − d)) allows to ensure

ϵI ≤ ϵ. In this way, we have

Λ̂α∗ − inf
α∈AD

d

Λ̂α = J(α(I))− inf
α∈AD

d

J(α) ≤ ϵI ≤ ϵ,

which completes the proof.

Theorem 11. Let Assumption 1 hold and fix δ > 0. Then, with probability 1− δ,

E∞(θ̂n,BWR) ≤ (1 + ΛOracle
µ )E∞(f) + Õ

(
ϑD,2

√
D log(|X |/δ)√

n
+

ϑD,2
2 log(|X |/δ)

n

)
.

Proof. By Theorem 7 and the definition of θ̂n,BWR,

E∞(θ̂n,BWR) ≤ (1 + Λα(I),µn
)E∞(f) +

σφ̂2,D

√
2 log(2X/δ)√
n

. (21)

By Theorem 10, for fixed ϵ, we have Λα(I),µn
≤ minα∈AD

d
Λα,µn + ϵ. Moreover, note that

ΛOracle
µ = ΛαOracle

µ ,µ

≥ ΛαOracle
µ ,µn

− Õ

(
ϑD,2

√
D log(|X |/δ)√

n
+

ϑD,2
2 log(|X |/δ)

n

)

≥ min
α∈AD

d

Λα,µn
− Õ

(
ϑD,2

√
D log(|X |/δ)√

n
+

ϑD,2
2 log(|X |/δ)

n

)

≥ Λα(I),µn
− ϵ− Õ

(
ϑD,2

√
D log(|X |/δ)√

n
+

ϑD,2
2 log(|X |/δ)

n

)
.

Replacing this relation in Eq. (21) we get the result.

D.4 Gradient method

The algorithm we use for our estimator is called Subgradient Method in the literature, and is presented
in Algorithm 1.

E Proofs of Section 5

Theorem 12. Let µ be the uniform distribution on [−1, 1]. There exists a constant C > 0 independent
of d such that, if we choose D = 2d and φD(x) = [1, . . . x2d−1] as the augmented feature map for
the target space spanned by φd(x) = [1, . . . , xd−1]⊤, we have ΛOracle

µ ≤ C.
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Algorithm 1 Subgradient Method

Require: Feature map φD, d, Number I of iterations
Ensure: Sequence α∗ ∈ AD

d
1: Compute φ̂D from φD via Gram-Schmidt orthogonalization
2: Define the following loss:

J(α) = ∥M(α)∥∞

3: Initialize α(0) ← [ones(d), zeros(D − d)]⊤

4: for ℓ = 1 to I do
5: Compute step size γℓ =

√
D−d

φ̂2,d

√
ℓ+1

6: Compute a subgradient gℓ ∈ ∂J(α(ℓ−1))
7: Update: α(ℓ) = α(ℓ−1) − γℓgℓ
8: if α(ℓ) /∈ AD

d then
9: Project: h(ℓ) = ΠHD

d
α(ℓ)

10: end if
11: end for
12: return α∗ = α(I)

Proof. See Theorem 3.1 by Themistoclakis and Van Barel [2017]

Proposition 23. Fix γ > 0. Let θ̂n be the OLS estimator, and θ̂n,BWR be our estimator defined in
equation (9). There exists a function f : [−1, 1]→ R such that, E∞(f)→ 0 as d→∞, and under
Assumption 1 with µ = U([−1, 1]), the following hold with probability one:

lim
d→∞

lim
n→∞

∥f(·)−φd(·)⊤θ̂n,BWR∥∞ = 0 while lim
n→∞

∥f(·)−φd(·)⊤θ̂n∥∞ ≳ d1−γ .

Most of the proof of this proposition is about in building the function, that we are calling f(·).
The construction of the function in this proof is going to be quite involved. The function is going to
be a sum over n of terms of the form f̃n(·). The following notation will be used

1. Let dn dimension of the basis function used at step n

2. Let an = d−γ
n , for a parameter γ > 0 to be defined

3. Let hn width of the mollifier
4. Let Mn(·) = M(·/hn), where M(·) is the standard mollifier, that is, a nonnegative function

M(·) ∈ C∞((−1, 1)) with integral one and compact support.

5. fn(·) := sgn(φdn
(·)⊤φdn

(xn)), where xn is such that

∥φdn
(·)⊤φdn

(xn)∥L1 ≥ sup
x∈(−1,1)

∥φdn
(·)⊤φdn

(x)∥L1 − 1.

6. f̃n := fn ∗Mn

We are able to prove the following lemmas:
Lemma 9. For every n,

∥fn − f̃n∥L2 = ∥fn − fn ∗Mn∥L2 ≤ 4
√

hndn

Proof. In order to perform this proof, we need one result from mathematical analysis. In fact, call
bounded variation a function X = (−1, 1)→ R such that the following norm is bounded

∥f∥BV := sup
{xn}n⊂X

∑
n

|f(xn+1)− f(xn)|.

A well-known characterization of this space Ambrosio et al. [2000] ensures that the former norm is
equivalent to
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∥fn∥BV ∝ ∥f∥L1 + ∥f ′∥M ∥f ′∥M := sup
g∈C0(X ),∥g∥∞=1

∫
X
g(x)f ′(x)dx.

Now, we can proceed to the proof. First, note that by definition fn is in the BV ((−1, 1)) class with
∥fn∥BV = O(dn). Indeed, fn(·) takes only values in {−1,+1}, and can only jump between the two
values when φdn

(·)⊤φdn
(xn) = 0, which happens at most dn times, as the previous is a polynomial

of degree dn. At this point, by the properties of convolution,

fn(y)− fn ∗Mn(y) = fn ∗ (Mn(y)− δ(y))

= f ′
n ∗
(∫ y

−1

Mn(t)− δ(t) dt

)
,

Where we have moved the derivative in the first term. At this point, the properties of convolution
allow us to say that for any pair of functions g1, g2, ∥g1 ∗ g2∥L2 ≤ ∥g1∥M∥g2∥L2 . Therefore, we
have

∥fn(·)− fn ∗Mn(·)∥L2 ≤ ∥f ′
n(·)∥M

∥∥∥∥∫ y

−1

Mn(t)− δ(t) dt

∥∥∥∥
L2

≤ ∥fn(·)∥BV︸ ︷︷ ︸
≤dn

∥∥∥∥∫ y

−1

Mn(t)− δ(t) dt

∥∥∥∥
L2

.

At this point, note that by definition Mn(t) ≥ 0, its integral is one and its support is contained in
(−hn, hn). Therefore,

∣∣∣∣∫ y

−1

Mn(t)− δ(t) dt

∣∣∣∣ ≤

0 y ≥ hn

2 −hn < y < hn

0 y ≤ −hn

,

so that its L2 norm is bounded by 4
√
hn. This completes the proof.

Lemma 10. For every m ≤ n, and s > 0

∥f̃m −Π∞
dn+1,∞f̃m∥∞ ≤ O(d−s

n+1h
−s
m ).

Proof. First, let us examine the smoothness of f̃m. Indeed, we have, for any s > 0

∥f̃m∥Cs = ∥fm ∗Mm∥Cs

≤ ∥fm∥∞∥Mm∥Cs

= ∥Mm∥Cs = O(h−s
m ).

Therefore, by Jackson’s theorem, we have for any s,

∥f̃m −Πdn+1,∞f̃m∥ ≤ O(d−s
n+1∥f̃m∥Cs) = O(d−s

n+1h
−s
m ).

Theorem 24. For any γ < 1/4 there is f∗ such that

• limd ∥f∗ −Πd,∞f∗∥∞ = 0
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• lim supd
∥f∗−Πd,µf

∗∥∞
d1−γ > 0.

Proof. Let

f∗(·) =
∞∑

n=1

anf̃n(·).

First part

Fix ε > 0. As an goes to zero faster than exponentially and ∥f̃n(·)∥∞ ≤ 1, we can find n0 such that∥∥∥∥∥f∗(·)−
n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε/2.

Now,
∑n0

n=1 anf̃n(·) is a finite sum of C∞([−1, 1]) functions, so it is uniformly continuous, in
particular. Therefore, by Stone-Weierstrass theorem, for sufficiently large d,∥∥∥∥∥

n0∑
n=1

anf̃n(·)−Πd,∞

n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε/2.

Putting the two results together, we have proved that, for sufficiently large d,

∥f∗ −Πd,∞f∗∥∞ ≤

∥∥∥∥∥f∗(·)−Πd,∞

n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε/2 +

∥∥∥∥∥
n0∑
n=1

anf̃n(·)−Πd,∞

n0∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤ ε.

Second part Let us fix n = ℓ and consider

∥Πdℓ,µf
∗∥∞ =

∥∥∥∥∥Πdℓ,µ

∞∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

=

∥∥∥∥∥Πdℓ,µ

ℓ−1∑
n=1

anf̃n(·) + Πdℓ,µaℓf̃ℓ(·) + Πdℓ,µ

∞∑
n=ℓ+1

anf̃n(·)

∥∥∥∥∥
∞

≥
∥∥∥Πdℓ,µaℓf̃ℓ(·)

∥∥∥
∞︸ ︷︷ ︸

A

−

∥∥∥∥∥Πdℓ,µ

ℓ−1∑
n=1

anf̃n(·)

∥∥∥∥∥
∞︸ ︷︷ ︸

B

−

∥∥∥∥∥Πdℓ,µ

∞∑
n=ℓ+1

anf̃n(·)

∥∥∥∥∥
∞︸ ︷︷ ︸

C

.

We are going to analyze the three terms separately.

(A) We start bounding the first term from below,

A = aℓ

∥∥∥Πdℓ,µf̃ℓ(·)
∥∥∥
∞

≥ aℓ ∥Πdℓ,µfℓ(·)∥∞ − aℓ

∥∥∥Πdℓ,µ(f̃ℓ(·)− fℓ(·))
∥∥∥
∞

≥ αℓΛdℓ,µ − αℓφ2,dℓ
∥cdℓ

(f̃ℓ(·)− fℓ(·))∥2
= αℓΛdℓ,µ − αℓφ2,dℓ

∥f̃ℓ(·)− fℓ(·)∥L2

≥ αℓΛdℓ,µ − 4αℓφ2,dℓ
dℓ
√
hℓ.
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Here, the second inequality comes from Cauchy-Schwartz, the sequent equality from
Parseval’s theorem and the last comes from Lemma 9. Note that, for the polynomial basis,
φ2,dℓ

≈ Λdℓ,µ ≈ dℓ, so we get

A ≥ Ω
(
αℓdℓ(1− dℓ

√
hℓ)
)

(B) This term is

B =

∥∥∥∥∥Πdℓ,µ

ℓ−1∑
n=1

anf̃n(·)

∥∥∥∥∥
∞

≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µf̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µ(f̃n(·)−Πdℓ,∞f̃n(·))
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

.

The last passage holds as Πdℓ,µΠdℓ,∞f̃n(·) = Πdℓ,∞f̃n(·). Now, we can apply Lemma 10,
as n < ℓ, which ensures

B ≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µ(f̃n(·)−Πdℓ,∞f̃n(·))
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

an

∥∥∥Πdℓ,µ(f̃n(·)−Πdℓ,∞f̃n(·))
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

anΛℓ

∥∥∥f̃n(·)−Πdℓ,∞f̃n(·)
∥∥∥
∞

+ an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

≤
ℓ−1∑
n=1

and
−s+1
ℓ h−s

n + an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

.

(C) The last term can be simply bounded due to the fact that ∥f̃n∥∞ ≤ 1:

C ≤ dℓ

∞∑
n=ℓ+1

an.

Now, fix any γ < 1/4 and take

s = 2; dn = exp(1/γn); hn = exp(−1/(2γn+1)); an = exp(−1/γn−1).

We get

A ≥ Ω
(
αℓdℓ(1− dℓ

√
hℓ)
)

≥ Ω
(
exp((1− γ)/γℓ)(1− exp(1/γn − 1/(4γn+1)))

)
≥ Ω

exp((1− γ)/γℓ)(1− exp(1/γn (1− 1/(4γ))︸ ︷︷ ︸
≤0

))


≥ Ω

(
exp((1− γ)/γℓ)

)
= Ω(d1−γ

ℓ ).
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For term B, we have

B ≤ O

(
ℓ−1∑
n=1

and
−s+1
ℓ h−s

n + an

∥∥∥Πdℓ,∞f̃n(·)
∥∥∥
∞

)

≤ O

(
ℓ−1∑
n=1

and
−s+1
ℓ h−s

n + an

)

≤ O

(
ℓ−1∑
n=1

an exp((−s+ 1)/γℓ) exp(s/(2γn+1)) + an

)

≤ O

(
ℓ−1∑
n=1

an exp((−s+ 1)/γℓ) exp(s/(2γℓ)) + an

)

≤ O

ℓ−1∑
n=1

an exp((−s/2 + 1)/γℓ)︸ ︷︷ ︸
≤1

+an

 .

Last term:

C ≤ O

(
dℓ

∞∑
n=ℓ+1

an

)
≤ O

(
exp(1/γℓ)

∞∑
n=ℓ+1

exp(−1/γn−1)

)
= O

( ∞∑
m=0

exp(−1/γm)

)
.

Again, this term satisfies C = O(1), as the term exp(−1/γm) in the last sum decays faster than
2−m.

where the last passage holds as s = 2. Therefore we get B ≤ O(
∑ℓ−1

n=1 an) = O(1), since an decays
faster than 2−n which already generates a convergent seqeuence.

All together, these passages prove

∥Πdn,µf
∗∥∞ ≥ Ω(d1−γ

n ).

Therefore, taking this dn sequence entails lim supd→∞
∥f∗−Πd,µf

∗∥∞
d1−γ > 0.

Proof. (of Proposition 13). Let f = f∗ defined before, for the specific value of γ > 0. Thanks to
part one of Theorem 245, assumption E∞(f)

d→ 0 is satisfied:

E∞(f) = ∥f∗ −Πd,∞f∗∥∞
d→ 0.

Then, we prove the two theses point by point. Point one: for fixed d, Theorem 11 gives

∥f(·)−φd(·)⊤θ̂n,BWR∥∞ ≤ (1+ΛOracle
µ )E∞(f)+Õ

(
ϑD,2

√
D log(|X |/δ)√

n
+

ϑD,2
2 log(|X |/δ)

n

)
.

As X is [−1, 1] and the feature map is Lipschitz continuous, we can get rid of the |X | by a covering
argument. As n→∞, the former gives

lim
n
∥f(·)−φd(·)⊤θ̂n,BWR∥∞ ≤ (1 + ΛOracle

µ )E∞(f).

5formally, the result holds for γ > 1/4 but, for what we are trying to prove, the validity of the statement for
γ implies its validity for every γ′ > γ, therefore we can proceed w.l.o.g.
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For µ = U([−1, 1]), Theorem 12 ensured that ΛOracle
µ < C, a universal constant independent on d.

Therefore,

lim
d

lim
n
∥f(·)−φd(·)⊤θ̂n,BWR∥∞ ≤ lim

n
(1 + C)E∞(f) = 0.

Let us pass to the second thesis:

lim
n→∞

∥f(·)−φd(·)⊤θ̂n,OLS∥∞ ≳ d1−γ .

This follows from the fact that, for n→∞, φd(·)⊤θ̂n,OLS → Πd,µf(·) and that Theorem 24 ensures

lim supd
∥f∗−Πd,µf

∗∥∞
d1−γ > 0.
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