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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) commonly adopts cen-
tralized training with decentralized execution, where value-factorization methods
enforce the individual-global-maximum (IGM) principle so that decentralized
greedy actions recover the team-optimal joint action. However, the reliability of
this recipe in real-world settings remains uncertain due to environmental uncertain-
ties arising from the sim-to-real gap, model mismatch, system noise. We address
this gap by introducing Distributionally robust IGM (DrIGM), a principle that
requires each agent’s robust greedy action to align with the robust team-optimal
joint action. We show that DrIGM holds for a novel definition of robust individual
action values, which is compatible with decentralized greedy execution and yields
a provable robustness guarantee for the whole system. Building on this foundation,
we derive DrIGM-compliant robust variants of existing value-factorization archi-
tectures (e.g., VDN/QMIX/QTRAN) that (i) train on robust Q-targets, (ii) preserve
scalability, and (iii) integrate seamlessly with existing codebases without bespoke
per-agent reward shaping. Empirically, on high-fidelity SustainGym simulators,
our methods consistently improve out-of-distribution performances.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) is a popular framework for coordinating agents to
compete and coordinate with other agents in complex environments such as video game playing
(Vinyals et al., 2019), economic policy design (Zheng et al., 2022), wireless network communications
(Qu et al., 2020), and power grid control (Gao et al., 2021), among others. In this work, we are
specifically interested in the cooperative MARL setting, where each agent can only observe its
local history, and agents must collaborate to achieve a joint goal. To address partial-observability
and reduce real-time communication costs, a widely used paradigm in cooperative MARL is the
centralized training with decentralized execution (CTDE) paradigm (Oliehoek et al., 2008). During
training, the agents may aggregate global information, coordinate credit assignment, and learn a
team-level structure; at deployment, each agent must act myopically based on its own local history.

The CTDE paradigm is typically realized through value factorization methods (e.g., VDN (Sunehag
etal., 2017), QMIX (Rashid et al., 2020), QTRAN (Son et al., 2019)). A key concept that underpins
the success of these methods is the individual-global-maximum (IGM) principle (Son et al., 2019),
which aligns each agent’s greedy action with the team-optimal joint action via a suitable value
factorization. However, most examples where the success of this principle is demonstrated are in
virtual tasks (games (Vinyals et al., 2017) and grid worlds (Leibo et al., 2017)). It remains unclear
whether this principle maintains its reliability in real-world domains, where modeling is imperfect
and execution is noisy.

In practice, a major obstacle facing cooperative MARL is environmental uncertainty (Shi et al.,
2024): team performance can drop sharply when the deployed environment deviates from the training
environment due to model mismatch, system noise, and sim-to-real gap (Zhang et al., 2020b; Balaji
et al., 2019). While environmental uncertainty presents challenges in single-agent RL settings, it is a
more significant hurdle in cooperative MARL, where partial observability and inter-agent coupling
can cause small mismatches to cascade into coordination failures (Capitan et al., 2012; He et al.,
2022).
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In single-agent RL, uncertainty in the environment is commonly addressed by distributionally robust
RL (DR-RL) techniques (Wiesemann et al., 2013; Taori et al., 2020; Nilim & El Ghaoui, 2005;
Panaganti & Kalathil, 2021a; Shi et al., 2023) which seek policies that perform well under adversarial
perturbations of a nominal environment model. Single-agent DR-RL is well-explored, however
extending DR-RL to the cooperative MARL setting is fundamentally more challenging. In particular,
each agent acts on a local history yet shares a team reward coupled with teammates’ actions, making
it nontrivial to define per-agent robust Q-functions that both evaluate worst-case outcomes and remain
compatible with IGM for decentralized greedy execution. Reward engineering can help empirically,
but only a narrow class of shaping functions can provably preserve optimality (Foerster et al., 2016),
even in the single-agent setting. Thus, we seek a principled route to distributional robustness for
cooperative MARL that remains compatible with decentralized greedy execution.

Contributions. In this paper, we introduce a family of distributionally robust cooperative MARL
algorithms for the CTDE setting. Our central technique is Distributionally robust IGM (DrIGM),
a robustness principle that requires each agent’s robust greedy action to coincide with the robust
team-optimal joint action, thereby preserving decentralized greedy execution.

We first show, via a concrete counterexample, that naively adopting per-agent robust action value
formulations from single-agent DR-RL, where each agent considers its own worst case, does not
guarantee decentralized alignment (IGM) in the cooperative multi-agent setting. We then provide
sufficient conditions under which DrIGM holds: when per-agent robust value functions are defined
with respect to the worst-case joint action-value function, DrIGM is guaranteed.

Next, we derive DrIGM-compliant robust variants of existing value-factorization architectures (VDN,
QMIX, and QTRAN), by training on robust ()-targets while retaining the CTDE information structure.
The resulting methods are scalable, easy to implement on top of existing codebases, and maintain
robustness at execution without requiring bespoke per-agent robust value design.

Finally, we evaluate our DrIGM-based algorithms on high-fidelity simulators of practical control
tasks in SustainGym (Yeh et al., 2023), focusing on HVAC temperature regulation to mimic real
operational environments beyond toy domains. Across out-of-distribution settings, our methods
outperform non-robust value factorization baselines and a recent robust cooperative MARL baseline,
consistently mitigating sim-to-real degradation on operational metrics.

Brief discussion of related work. Robustness in cooperative MARL has been studied along several
axes: adversarial or heterogeneous teammates (Li et al., 2019; Kannan et al., 2023; Li et al., 2024),
state/observation and communication perturbations (Guo et al., 2024; Yu et al., 2024), risk-sensitive
(tail-aware) objectives under a fixed model (Shen et al., 2023), and explicit model uncertainty (Kwak
et al., 2010; Zhang et al., 2020b; 2021; Liu et al., 2025). Most of the works on model uncertainty
adopt a distributionally robust optimization viewpoint and targets Nash solutions with provable
algorithms, often assuming full observability or individual rewards (Zhang et al., 2020a; Kardes et al.,
2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024; Liu et al., 2025). In this work, we focus
on the cooperative CTDE regime with partial observability and a single team reward, providing a
systematic framework for robustness to model uncertainty without real-time communication. Due to
space constraints, we provide an extended discussion of related works in Appendix A.

2 BACKGROUND AND PROBLEM FORMULATION

Notation. For a set X, |X| denotes its cardinality and A(X') the probability simplex over X.
We write [ [, &; for the Cartesian product. For N € N, we let [N] := {1,...,N}. Let [z]} :=
max{0,x}.

Cooperative Dec-POMDPs. A cooperative multi-agent task with /N agents is modeled as a Decen-
tralized Partially Observable Markov Decision Process (Dec-POMDP)

G= (87 {Al}fvzh P, {Oz}iv:h {Ui}ﬁv:hfy)v

with joint action space A := [], () Ai- Attime ¢, each agent i obtains an individual observation

o} := o;(s") from its observation space O;, chooses an action a} € A;, a joint reward 7(s*,a’) €

[0, 1] is received, where a’ := (a,...,aly) € A is the joint action, and then the state evolves via
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s'Tt ~ P(-| st,a’). Here we assume the joint observation (o1, .. .,ox) can recover the full state.!
Each agent i acts using a history-based policy 7;(- | hf) with hf := (0f, af, ..., 0", a;”", 0b); the
joint policy is m = (my,...,mn). We use H! to denote the space of possible histories for agent i

up to time ¢. In the following sections, we will omit the superscript ¢ to avoid notational clutter.
The joint action-observation history is denoted h € H := [ [, (] H;. Given the current state s, the
joint history h and the joint action a, we denote the joint action-value function under policy 7 by

T (h, a), which can be reduced to |S x A| dimension as we assume the joint observation can
recover the full state. We use Q7 (h, a) to denote the optimal joint action value max, QL. (h, a).

CTDE. Centralized training with decentralized execution (CTDE) leverages global information
during learning while executing individual policies from individual histories. A common CTDE
mechanism is value factorization: learn an optimal joint action-value QX (h,a) and individual
action-value functions [QF (h;, a;)]ien that satisfy the following individual-global-max (IGM)
principle (Son et al., 2019).

Definition 1 IGM). We say that individual action-value functions [QfD cH; x Ay — R]ie[ N1 satisfy
the individual-global-max (IGM) principle for an optimal joint action-value function QL : H x A —
R under joint history h = (hy, ..., hy) € H if

(arg max QY (h1,a1),...,argmax Q% (hy, aN)) C argmax QL (h,a).

al anN

IGM ensures that greedy individual actions are jointly optimal w.r.t. QL , enabling decentralized
execution without test-time communication.

Robust Dec-POMDPs. To capture model error and deployment shift, we consider an uncertainty
set P of environment models around a nominal P°. In Dec-POMDPs, we work with a history-based
view: let P, a(-) denote the transition kernel over next joint histories h’, given the current joint
history h and the joint action a. We assume a history-action rectangular uncertainty set.

P= ]| Pna PnaCAH), e
(h,a)eH x A

e.g., balls around P}?’a under a probability metric with radius p > 0. Given a function Q) : HxA — R,
define the robust Bellman operator T as

h a):= inf  Ep/ h',a)| . 2
(TQ)(h,a) :=r(s,a) + , inf  Enwp,, [glgﬁ Q(h',a )] @
Under standard assumptions (bounded rewards, v € (0, 1)) and rectangularity (1), 7 is a y-contraction
on the space of bounded @, so it has a unique fixed point Q7 (Iyengar, 2005) which satisfies

QZZ)t (ha a) = Jyelg? Qi)t (ha a)7 V(h, a) €M x A 3

We call QT the optimal robust joint action-value function for the Dec-POMDP, and it admits a
deterministic robust greedy joint policy 7* (h) € arg max, Q% (h, a).

Robust Cooperative MARL. We study robust cooperative MARL under the CTDE setting. Given
a model uncertainty set P, our goal is to learn decentralized policies that maximize Q;,. That is, we
aim to find [7} : H; — Ai]ie[n), such that

(7Y, ..., TN) € argmaXQZt(~, a).
a

Specifically, we seek a value factorization method that automatically generate robust individual
action values, thereby enabling decentralized policy. This is non-trivial for two reasons. First, no
individual reward signals are available, so robust individual action values are ill-defined a priori.
Second, directly defining robust individual action values from the single-agent DR-RL literature can
break standard value factorization: robust individual action may not align with the robust joint action,
as demonstrated in Example 1. These challenges motivate the central question of our work: Can
we construct robust individual utilities and a mixing scheme such that decentralized greedy actions
recover the joint maximizers of QL. , thereby enabling a robust CTDE framework?

"Formally, we assume that o = (01(-),...,on(-)) : S — [Iicn O is injective. Equivalently, there exists

a (deterministic) decoding map g : Hie[N] O; — Ssuchthat g(o(s)) = sforall s € S.
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3  DISTRIBUTIONALLY ROBUST IGM (DRIGM)

To address the question above, we propose a novel principle for robust value factorization that builds
upon the IGM principle while explicitly incorporating robustness.

3.1 DISTRIBUTIONALLY ROBUST IGM (DRIGM) PRINCIPLE

Definition 2 (DrIGM). Given an uncertainty set ‘P, we say that robust individual action-value
functions [Q5°° : H; x A; — R];en) satisfy the Distributionally Robust IGM (DrIGM) principle
for the optimal robust joint action-value function QF, : H x A — R under joint history h =
(hla"'vhN) EHlf

(arg max Q%°°(h1,a1), ..., arg max Q%" (hy, aN)> C argmaxQ”, (h,a).

a anN

DrIGM extends classical IGM to the robust setting by requiring that the robust joint greedy action
induced by Q7 factorizes into robust individual greedy actions from [ngb]ie[ ~1- Note that when
P = {P} is a singleton (i.e., there is no uncertainty), then DrIGM is equivalent to IGM.

Satisfying DrIGM is nontrivial. As we show in Example 1, an adversarial model P € P that
minimizes one agent’s value need not coincide with the adversarial model P’ € P that minimizes the
joint value. As a result, robust individual greedy actions may fail to align with the optimal robust
joint action. The following example illustrates this misalignment. Similar inconsistencies arise even
under agent-wise uncertainty sets defined in Shi et al. (2024). This highlights the need for a new
formulation of robust individual action-values to support a consistent robust CTDE framework.
Example 1 (Naive single-agent robust action values cannot guarantee DrIGM). Consider a robust
cooperative two-agent task (illustrated in Fig. 1) with action spaces Ay = Ay = {1, 2}, state space
S = {s0, $1, 82, 3, S4}, and uncertainty set P = {P1, Pa}. Let sq be the initial state, and let
S1,59,83 and sy all be absorbing states with zero reward. We assume each agent observes the full
state.

As shown in Figure 1, the optimal joint action value function at state sg is (we omit the /(1 — )
factor for clarity)

Qi (50,1,1) = 0.7, QI (s0,1,2) =04, QI (s50,2,1) =10, QI (s0,2,2)=0.7;
Q{2 (50,1,1) = 0.7, Q2 (s0,1,2) = 1.0, Q2 (50,2,1) =04, QF2(s0,2,2)=0.7.
It is straightforward to check that the following individual action-value functions {QZP’ Yiojel2) satisfy

QL (s,a1,a2) = QY (s,a1) + QL (s,a2) forall s € S and P € P, which is a special case of the
classical IGM property:

QM (s0,1) = 0.2, P(s0,2) = 0.5, Q¥ (s0,1) = 0.5, P1(s0,2) = 0.2,
Q2 (s0,1) = 0.3, P (50,2) = 0.0, Q¥ (s0,1) =0.4, 22 (s0,2) = 0.7.

Suppose the robust individual action-value function is defined as Q:° (s, a) = inf pep QF (s, a), as
in the single-agent DR-RL literature. At s, these robustifications fail to satisfy DrIGM:

(2,2) = (argmin Q*°"(s0,a1), arg min Qg‘)b(so,ag)> ¢ argmin QL (s0,a) = {(1,2),(2,1)}.

ay az

3.2 GLOBAL WORST-CASE ROBUST INDIVIDUAL ACTION VALUES

In robust cooperative MARL, the primary concern is the robustness of the entire system, as opposed
to robustness of individual agents. Thus, it is sufficient to consider the worst case for the joint action
value, rather than independently for each agent. This motivates the following definition of global
robust (worst-case) model.

Definition 3 (Global robust model). Given a global uncertainty set P, define the global worst-case
model for joint history h and joint action a as

PV (h inf Qf.(h,a). Z
(h,a) € arg inf Qo (h, a) )

Let a € argmax, QR (h,a). Given joint history h, we define the global robust model as
Pworst (h, é)_
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(b)

Figure 1: Fig. la is the MDP under transition kernel P, Fig. 1b is under P». The two differ in their
transition probabilities to s2 and s3.

We then show that the robust individual action value defined under the global robust model
Pvorst(h, a) can guarantee DrIGM.

Theorem 1. Given a global uncertainty set P defined in Eq. (1), suppose for all P € P, there
exist [QF |icny satisfying IGM for Q. under joint history h = (hy, ..., hy) € H. For each agent
i € [N], define the robust individual action value function Q%°® as

Q(hyya;) = QY™ ™™ (k. a). ©)

Then, [Q%°);e(n) satisfy DrIGM for QL under joint history h.

K2

The proof of Theorem 1 can be found in Appendix B.1. Theorem 1 shows that under h X a-
rectangularity, if the individual action value functions satisfy IGM, then the robust individual action
values Q*°" under model P¥°**t(h, a) can satisfy DrIGM. This implies that DrIGM serves as an
effective principle to guide robust individual action value design.

Common factorization methods satisfy DrIGM. For practical implementation, We now proceed
to show that Qt°® implemented with common factorization methods including VDN (Sunehag et al.,
2017), QMIX (Rashid et al., 2020), and QTRAN (Son et al., 2019) all satisfy DrIGM.

Theorem 2. Given P defined in Eq. (1), for a joint history h € H, suppose for all P € P, there
exist individual action-value functions [QzP]ie[N] satisfying one of the following conditions for all
a=(ay,...,an) € A:

Qby(ha) = Y QF (hi,a), (VDN)
1€E[N]
ant(h7 a) .
> >0, Vie[N], MIX
0Q (hovar) = 0 eI (QMIX)
P P 0, a=a,
> QF (hivai) — Qo (h,a) + Vigr(h) = i (QTRAN)
) >0, a#a,
i€[N]
where a := [@;];en) with @; = argmax, QF(h;,a;) and Vo (h) = maxa Q{(h,a) —

ZiE[N] QF (hi,a;). Then [Q{»Ob]iew] as defined in Eq. (5) satisfy DrIGM for QL. under joint
history h.

The proof of Theorem 2 can be found in Appendix B.2. Theorem 2 implies that we can implement
distributionally robust algorithms with common factorization methods to achieve DrIGM, thereby
achieving a distributionally robust CTDE paradigm. As long as the test environment is included in
the uncertainty set, this approach yields a provable robustness guarantees shown in the following
theorem.

Theorem 3. Given P defined in Eq. (1), suppose the robust individual action-values Q*°" satisfy
Definition 2. If the test environment model Pi.g is included in the uncertainty set (i.e., Piest € P),
then the robust joint action values provably lower bound the real joint action values in Pyegy:

QF . (h,a) < Qe+ (h,a), YVh e H, a € A.

The proof of Theorem 3 can be found in Appendix B.3.
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Figure 2: Overview of our robust value factorization algorithms. Because the robust individual
action-value functions satisfy DrIGM, greedy actions can be computed efficiently in a decentralized
manner while the function parameters are trained with a robust TD loss based on global reward.

3.3 ROBUST BELLMAN OPERATORS UNDER SPECIFIC UNCERTAINTY SETS

To design training loss functions, we next present the DrIGM-based robust Bellman operators under
for two common uncertainty designs: p-contamination and total variation (TV), which are well-
studied in the single-agent distributionally robust RL literature (Yang et al., 2022; Panaganti &
Kalathil, 2021b; Xu et al., 2023; Dong et al., 2022; Liu & Xu, 2024; Panaganti et al., 2022; Wang &
Zou, 2022; Zhang et al., 2024). Both types of uncertainty sets consider perturbations of size p € (0, 1]
around a nominal model P°.

The p-contamination uncertainty set is defined as (for allh € H and a € A)
Pha={P E€AMH)|Paa=(1—p)P s+ pHna, H € A(H)is arbitrary}, (6)

with corresponding robust Bellman operator

(@)
(TQE)(h,a) = r(s,a) + (1 = p) By opy | max QUG (hy, ..., by, &)
(®) _ _
D (s,2) + 11— ) Enpyp [Qu (Bl By @], ()
where @, = arg max,, Q°?(h/, a}). Here, (a) follows from robust Bellman operator as in the single-

agent setting due to the h x a-rectangularity from Eq. (1). (b) follows from the DrIGM principle
where robust individual actions are aligned with the robust joint action.

Similarly, the TV-uncertainty set is defined as (for all h € H and a € A)
Pha={P€AMN)|TV(P,P,) <p}, (®)

with corresponding robust Bellman operator

(TQF )(h,a) = r(s,a) — inf  yEppo (— (1 —p)n(s,a)
n€[0, ;=] -
+ [n(s.a) — QRuh - ’N,a’h...,a’]\,)] ) ©)
+

Additional details of designing the robust Bellman operators can be found in Appendix C. In the next
section, we show how DrIGM leads to practical robust value factorization algorithms.

4 ALGORITHMS: ROBUST VALUE FACTORIZATION

Overall framework. Guided by DrIGM, we implement distributionally robust algorithms with two
types of uncertainty sets (p-contamination, TV-uncertainty) and three different value factorization
methods (VDN, QMIX, QTRAN). The general algorithm is illustrated in Fig. 2, and detailed
pseudocode for each algorithm can be found in Appendix D. Specifically, we collect trajectories
using e-greedy exploration and train the robust individual action-value network using TD-learning
(Sutton & Barto, 2018). For stability, robust one-step targets are evaluated using farget networks,
which are updated periodically.
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Robust individual action-value networks. Each agent i uses a DRQN (Deep Recurrent Q
Network)-style network that maps its local history h; (observations and past actions) to action-
values Q;(hi, a;), following an MLP encoder — LSTM core — MLP output architecture. For our
training procedure, we follow the approach from Hausknecht & Stone (2015). We sample mini-
batches of sub-trajectories from the replay buffer D and use bootstrapped random updates. We use 8
burn-in steps to warm-start the LSTM state and only take the last step output to calculate the loss
and update the networks. This procedure is computationally and memory efficient while achieving
performance comparable to sequential updates from the start of each episode.

Factorization networks. We instantiate three networks for robust value factorization:

1. VDN factorizes the robust joint action-value as the sum of robust per-agent values,
N
P,VDN b
tot (ha a) = ZQ§O (hlvaz)
i=1

2. Beyond direct summation, QMIX uses a monotone mixing network

ZZ;tQMIX(h7 a) = fﬁ(QEOb(hlv a1)> B g\cl)b(hNa aN)a S), (10)

where s is the global state. A lightweight hypernetwork takes s as input and outputs the

layer weights of fy; to ensure 8QZZ’,;QMIX / 6Q§°b > 0 (the QMIX monotonicity constraint),
we enforce elementwise nonnegativity on these weights via an absolute-value (or softplus)
transform. Biases remain unconstrained.

3. QTRAN learns a separate joint action-value function sz’tQTRAN(h, a) and a baseline V;ot(h).

For efficiency and scalability, the joint network shares the encoder/head with the individual
DRQN modules. In addition to the robust TD loss, QTRAN imposes two consistency terms to
align the factorized and joint values:

~ 2
Lop = (QE""N(0,3) = QL™ (0, 8) + Vi () (11)
~ 2
Luope = (min[QF™N (h,2) - QL™ N (h,a) + Vig(m), 0]), (12)
where the Q is the detached Q value for training stability. Intuitively, L, enforces equality at

the (robust) greedy joint action, while Loyt penalizes positive slack elsewhere, recovering the
QTRAN constraints in our robust setting.

TD Loss. Given the robust Bellman operator 7 defined in Eq. (2) for a Dec-POMDP setting, the
generic form of the TD-loss is

Lrp = (QD,(h,a;0) — (TQL(-,:607))(h,a))’, (13)

where 6 is the network parameters, and 6~ is the target network parameters for training stability.
Specifically, for p-contamination uncertainty sets, by the robust Bellman operator in Eq. (7), we have

2
MD=@&m@m—v@m+%hmmmﬂ;mmwﬂﬂvﬁ, (14)

For TV uncertainty sets, by the robust Bellman operator in Eq. (9), we have

o = (QEuh250) — r(6,8) + 9 Bry, | — (1= phi(s.2)

2
+[n(3aa) _Qﬁyt(h/aé/;e_)]+:|) ) (15)
where 17 : § x A — R is calculated by minimizing the following empirical loss:
1
Ldual(r’%QZ?)t) = ﬁ Z <|:77(57a) 7H}3XQZZt(hlﬂal):| - (1 7/)) 77(57a)) . (16)
(h,a,h')eD *
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5 EXPERIMENTS

We evaluate our proposed robust value factorization methods on SustainGym (Yeh et al., 2023), a
recent benchmark suite designed to simulate real-world control tasks under distribution shift. We focus
on multi-agent environments for smart building HVAC control, which inherently involve stochastic
dynamics, distribution shifts, partial observability, and inter-agent coupling. These environments
are particularly well-suited to test robustness, as the environmental models can vary across different
days, building locations (thus climate conditions). More details about the environment and the
experiment setup are provided in Appendix E. Our code can be found in https://github.com/
iclr2026—-anonymous/robust—-coMARL.

Evaluation protocol. To assess generalization under distribution shift (i.e., model uncertainty), we
adopt the following protocol. In the training phase, each algorithm is trained on a single environment.
For robust MARL baselines that require multiple environments, we follow their standard protocol and
train them on a fixed set of environments. In the evaluation phase, trained policies are deployed on
unseen configurations that differ from those used in training, simulating realistic deployment where
distribution shifts inevitably arise. This design allows us to explicitly measure robustness to changes
in environment dynamics rather than simple memorization of training conditions.

Baselines. 'We compare our robust value factorization methods against:

¢ Non-robust factorization methods: VDN, QMIX, and QTRAN trained without robustness
considerations, representing the standard CTDE paradigm.

* Existing robust CTDE baseline: the multi-agent group distributionally robust algorithm from
Liu et al. (2025), which we refer to as “GroupDR”. While the original work used only the VDN
architecture, we extend the algorithm to QMIX and QTRAN for completeness.

VDN QMIX QTRAN
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Figure 3: Normalized performance (averaged over 5 independent training runs, with error bars
showing standard error) across different environment configurations for our robust MARL algorithms
and other baselines. Each panel corresponds to one value factorization method. Robustness gain
refers to the the difference in reward between Robust (ours) and Non-robust, which is the shaded area
that shows the out-of-distribution performance improvement from the robust training.

Experiment 1: Climatic shifts. We first test robustness under shifts induced by changes in
climate conditions. Results (averaged over five seeds) are shown in Fig. 3. Our robust MARL
algorithms consistently outperform both non-robust counterparts and the group DR baseline. Notably,
performance degradation scales with the severity of the shift (e.g., env_6 deviates most from the
training environment, env_1), but our methods maintain relatively high returns. In contrast, the
GroupDR baseline exhibits little sensitivity to shift severity, reflecting its reliance on worst-case
rewards computed only from configurations encountered during training.

Experiment 2: Seasonal Shifts. We next evaluate robustness to seasonal shifts, training algorithms
on season_1 data and evaluating on season_2. Results are reported in Table 1, showing mean
and standard error of normalized episodic returns. The results show that robust value factorization
algorithms with TV uncertainty set achieve consistent robustness gain against seasonal shifts.
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Factorization Methods VDN QMIX QTRAN
Non-robust 0.877 £0.012 0.895 £0.008 0.816 + 0.036
baseline (GroupDR) 0.624 +0.040 0.499 £0.022 0.508 + 0.048
Robust (TV-uncertainty)  0.898 £+ 0.008 0.916 + 0.006 0.861 + 0.006
Robust (p-contamination) 0.869 4+ 0.013  0.911 4+ 0.005  0.825 + 0.028

Table 1: Final Performances under seasonal shifts for our robust MARL algorithms and other
baselines (mean =+ standard error over 5 independent training runs). Values outperforming both the
non-robust and group DR baselines are highlighted in bold.

Experiment 3: Climatic and seasonal shifts. Finally, we test on the most extreme case, where
we have distribution shifts arising from climatic and seasonal shifts. The results are presented in
Table 2. Notably, QTRAN-based robust MARL algorithms demonstrate strong out-of-distribution

performances and stability.

Factorization Methods VDN QMIX QTRAN
Non-robust 0.440 £0.040 0.478 £0.052 0.654 £+ 0.066
baseline (GroupDR) 0.624 £ 0.056 0.383 £0.053 0.520 £+ 0.049
Robust (TV-uncertainty)  0.627 £ 0.049  0.520 £+ 0.048  0.733 + 0.026
Robust (p-contamination)  0.551 + 0.039  0.500 £ 0.075 0.682 £ 0.026

Table 2: Final Performances under temporal and regional shifts for our robust MARL algorithms and
other baselines (mean =+ standard error over 5 independent training runs). Values outperforming both
the non-robust and group DR baselines are highlighted in bold.

Choice of p. Theoretically, p should be chosen based on prior estimation of the model uncertainty
level. Practically, we select p by training on env_1 and validating on env_2 and env_3, which
yields stable performance without overfitting to a single shift.

Robustness in cooperative MARL. A noteworthy finding is that robustness in cooperative MARL
does not necessarily entail reduced performance in the training environment. Unlike in single-agent
robust RL, where conservatism often penalizes in-distribution returns, explicitly modeling robustness
here mitigates errors from partial observability and decentralized execution. In several cases, robust
training even improves in-distribution performance relative to non-robust baselines, suggesting that
robustness can simultaneously enhance stability and adaptability in multi-agent systems.

6 CONCLUSION

In this work, we introduce Distributionally Robust IGM (DrIGM), a robustness principle for cooper-
ative MARL that extends the classical IGM property to settings with environmental uncertainties.
Whereas naively “robustifying” individual agent policies fails to align robust individual policies with
the joint robust policy, the DrIGM offers a principled framework for constructing robust individual
action values that remain aligned with the joint robust policy, thereby enabling decentralized greedy
execution under uncertainty.

Building on this foundation, we derive DrIGM-based robust value factorization algorithms for
VDN, QMIX, and QTRAN, trained via robust Bellman operators under standard uncertainty sets (p-
contamination and total variation). Empirically, on a high-fidelity building HVAC control benchmark,
our methods consistently mitigate out-of-distribution performance degradation arising from climatic
and seasonal shifts. Unlike single-agent robust RL, where conservatism often harms in-distribution
returns, we find that robustness in cooperative MARL can simultaneously enhance stability and
adaptability.

While we introduced the DrIGM framework for a global uncertainty set, we believe it may be possible
to further extend this framework. Future work includes developing DrIGM-compliant algorithms
under agent-wise uncertainty sets and exploring additional training paradigms (e.g., decentralized
training) to further broaden applicability.
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REPRODUCIBILITY STATEMENT

We release an anonymized repository containing all code, configuration files, and scripts needed to
reproduce our results, including data generation and figure plotting. All proofs for the main paper are
stated in Appendix B. Algorithm psuedocode is also provided in Appendix D.
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A RELATED WORK

Single-agent Distributionally Robust RL (DR-RL). The single-agent setting is typically for-
malized as a robust Markov decision process (MDP). A substantial literature studies finite-sample
guarantees for distributionally robust RL, exploring a variety of ambiguity-set designs (Iyengar, 2005;
Xu & Mannor, 2012; Wolff et al., 2012; Kaufman & Schaefer, 2013; Ho et al., 2018; Smirnova et al.,
2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman & Mannor, 2020; Tamar et al., 2014;
Panaganti & Kalathil, 2021a; Roy et al., 2017; Derman et al., 2018; Mankowitz et al., 2019). Most
relevant to our work are tabular robust MDPs with (s, a)-rectangular uncertainty sets defined by
total-variation balls (Yang et al., 2022; Panaganti & Kalathil, 2021b; Xu et al., 2023; Dong et al.,
2022; Liu & Xu, 2024; Panaganti et al., 2022) or p-contamination models (Wang & Zou, 2022; Zhang
et al., 2024), for which minimax dynamic programming and learning algorithms admit provable
performance bounds.

Value factorization methods for cooperative MARL. Value factorization is the standard mech-
anism for scalable cooperative MARL under CTDE. Early work adopts simple additivity (VDN
(Sunehag et al., 2017)), while QMIX (Rashid et al., 2020) learn a state-conditioned monotone com-
biner to enlarge the function class without violating the IGM requirement. QTRAN (Son et al., 2019)
further relax the monotonicity assumption with consistency constraints. Other approaches include
attention-based mixers (e.g., QAtten (Yang et al., 2020), REFIL (Igbal et al., 2021)), dueling-style
decompositions (QPlex (Wang et al., 2021)) and residual designs (ResQ (Shen et al., 2022)). Building
on this body of work, we develop robust value-factorization algorithms with provable robustness
guarantees under model uncertainty, enabling robust decentralized execution in partially observable
cooperative settings.

Robustness in MARL. In general MARL, robustness is typically studied within Markov games,
where uncertainty can be modeled in different components, such as the state space (Han et al., 2022;
He et al., 2023; Zhou & Liu, 2023; Zhang et al., 2023), other agents (Li et al., 2019; Kannan et al.,
2023), and environmental dynamics (Zhang et al., 2021; Liu et al., 2025). We refer readers to Vial
et al. (2022) for an overview. This work considers robustness to model uncertainty, primarily studied
via distributionally robust optimization (DRO) (Rahimian & Mehrotra, 2019; Gao, 2020; Bertsimas
et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019), where most prior efforts target
Nash equilibria and provide provable (actor—critic / Q-learning) algorithms (Zhang et al., 2020a;
Kardes et al., 2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024; Liu et al., 2025), often
under full observability or individually rewarded settings. We complement this line by addressing the
cooperative, partially observable CTDE regime, where agents receive a single joint reward and act
only local observations.

In cooperative MARL, robustness has been modeled along several complementary axes, including
adversarial (Byzantine) teammates (Li et al., 2024), state/observation disturbances (Guo et al., 2024),
communication errors (Yu et al., 2024), risk-sensitive objectives that guard against tail events under
a fixed model (Shen et al., 2023), and explicit model uncertainty Kwak et al. (2010); Zhang et al.
(2020b). Focusing on the last category, Kwak et al. (2010) address model uncertainty with sparse,
execution-time communication, whereas Zhang et al. (2020b) study settings in which each agent
observes the full state and receives individual rewards. In contrast, our work targets robustness to
model uncertainty in the cooperative CTDE setting, complementing prior approaches by providing
a systematic framework that does not require real-time communication and operates under partial
observability with a single team reward.

B PROOFS

B.1 PROOF OF THEOREM 1
Proof. Recall that for all a € A, we have

P : P
h,a) = inf h Eq. (3
Qiot(h,a) Pep Qiot(h,a) (Eq. 3))
PY"'(h,a) € arg Igrelf;) QL. (h,a). (Definition 3)
Thus, Qi‘;’o"“(h,a) (h,a) = Q. (h,a). In Definition 3, we also defined a € arg max, 4 QL (h, a).

worst (h,é) }

Since P¥°"t(h ,a) € P, by assumption there exist {Qf ien] that satisfy IGM for
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Pworst (h é)

tot **/ under h. Therefore,
(arg max Q1°(h1,a1),...,argmax Q" (hy, aN))
a1 an
= <arg max Qf)wom (e (h1,a1), ..., argmax QZWOM (e (hw, aN)) (Definition 3)
a1 an

C arg max Qf:tvom (h.2) (h,a) (IGM)
C arg max Qfovtvom(h ) (h, a) (Definition 3)
= argmax Q7 (h, a),

which shows that [Q1°"]; () satisfy DrIGM under h. O

B.2 PROOF OF THEOREM 2

Proof. We proceed by proving that IGM holds for under each of the three conditions given in
Theorem 2. By Theorem 1, this suffices to show that DrIGM holds for under each of the three
conditions given in Theorem 2.

VDN condition. Given a joint history h € H, for any P € P, we have
QL (h,a) Z QF (hi,a;), VYa=(ay,...,an) € A

Let a; = argmax, QF (h;,a;) fori € [N], and let a = [a;];c|n. Then, for any a € A,

Qtot h a Z QP hz7az
< Z Qf-j (hi,a;) (Definition of a;)

= Q{;t(h7 é)'
This implies that
(arg max QY (h1,a1),...,argmax QF (hy, aN)) C argmax QZ . (h,a),
ai an a

50 [QF ;e ) satisfy IGM for Q. under h. Therefore, by Theorem 1, [Q:°"];(n satisfy DrIGM for
QF . under h.

QMIX condition. Given a joint history h € H, for any P € P, suppose the following monotonicity
property holds:

8Q§t(h,a) >0,
an (hia ai)
Let a; = argmax, Q7 (h;,a;) for i € [N], and let a = [a;]ien). Given that
0Q{:(h,a)/0QY (h1,a1) > 0and a; = argmax,, Q] (h1,a1), we have (for any a € A)
sz))t(ha a) S Qtit(ha a’la az,. .., aN)'
Applying the same logic to all ¢ € [IV] yields that for any a € A,
Qior(h,2) < Qigy(h, @1, Gz, ..., an) (17)
= Qicy(h,a). (18)

Vi € [N], a=(a1,...,an) € A.

This implies that

(arg max QY (h1,a1),...,argmax QF (hy, aN)) C argmax QZL . (h,a),

ay anN

50 [QF ]ie ) satisfy IGM for Qf; under h. Therefore, by Theorem 1, [Q:°"];(n satisfy DrIGM for
QP under h.
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QTRAN condition. Given a joint history h € H, for any P € P, we have (for all a =

(al,...,aN) S ./4)
a 0 a=a
P P _ ’ — d,
> QF (o) ~ Qi) + Vi) = {8 20 19
where & = [a@;];e;n) With @; = argmax, QF (hi,a;) and Vige(h) = maxa Qfi(h,a) —
Zi]\il QF (hi, a;). Therefore,
N
Qf(h,a) = QF (hi, a:) + Vior(h) (Eq. (19))
i=1
= max QL (h,a), (Definition of V (h))

This implies that

(arg max QY (h1,a1),...,arg max Q% (hy, aN)) C argmax QL. (h,a),
a

ay anN

so [QF Jie[ny satisfy IGM for QL under h. Therefore, by Theorem 1, [Qgc’b]ie[ ) satisfy DrIGM for
QF . under h.

Combining the three cases concludes the proof of Theorem 2. O

B.3 PROOF OF THEOREM 3

Proof. Recall that given an uncertainty set P, the robust joint action value is defined as,
QR (h,a) = jnf, Qioi(h,a), V(h,a) € H x A. (20)
Given that P,gy € P, we directly have:
Qh.(h,a) < Q{%*(h,a), Vhe H, ac A 1)

This concludes the proof. O

C ROBUST BELLMAN OPERATORS

We start by introducing the assumptions needed to derive the robust bellman operators.
Assumption 1 (Fail-state (Panaganti et al., 2022)). The robust Dec-POMDP has a fail state sy such
that

r(sf,a) =0 and Pj a(sp) =1, Vac A, VP eP. (22)

This requirement is mild, as fail states naturally arise in both simulated and physical systems. For
example, in robotics, a configuration where the robot falls and cannot recover, whether in simulators
such as MuJoCo or in real hardware, serves as a natural fail state. We can further relax it to the
following assumption.

Assumption 2 (Vanishing minimal value (Lu et al., 2024)). The underlying RMDP satisfies

rsxéig Vil (s) =0. (23)

Without loss of generality, we also assume that any initial state s, ¢ argminges V;7, (s).

This assumption states that the lowest achievable robust value across all states is normalized to zero.
The exclusion of the minimizing state as the starting point rules out the degenerate case where the
agent begins with zero guaranteed return.
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p-contamination uncertainty set. Given a p-contamination uncertainty set defined in Eq. (6), the
robust bellman operator can be expanded as:

P _ , /AN
(T7Q)(h,a) =r(s,a) +~ hireli;haEh ~Pha |IAX Q' a )} : (24)
= r(s.2) 421 ) By, e Q)| (5)
+pmin Vg (s). (26)

Under Assumption 1 (Assumption 2), we obtain that:
(TPQ)(h,a) = r(s,a) +v(1 — p) Ep ~po [maﬁ Q1 a’)} (Assumption 1 (Assumption 2))
a |a’g

=r(s,a) +7(1 = p) Enopp [Q(h,a")], (Definition 2)

where @, = arg max,, me( a;).

1

TV-uncertainty set. Leveraging Panaganti et al. (2022)[Proposition 1], given a TV-uncertainty set
defined in Eq. (8), the robust bellman operator can be expanded as:

(TQL)(h,a) =r(s,a) = inf  yEpopo (P [77(8 a) — inf VZi(s")| —n
€0, 5] “ s +
+ [n(s,a) max QF.(h } ) (27)
Under Assumption 1 (Assumption 2), we obtain that:
(TQEI0 ) = rlsa) — _inf 3Byry, (= (1 pi(s.a)
n€lo, (1= “r)]
+ [n(s, a) — max QF.(h } > (Assumption 1 (Assumption 2))
+
=r(s,a)— inf 7K W~ PQ ( n(s,a)
nelo, p(1— w)]
+ {n(s,a) —max QL (hy,..., Wy, al,....ax)| ). (Definition 2)
a’e A +

D ALGORITHMS

We offer a full description of our algorithms in this section, presented in Algorithms 1 to 6.

E EXPERIMENT DETAILS

E.1 TASK DESCRIPTION

We test our algorithms and baseline algorithms in BuildingEnv in Yeh et al. (2023). This
environment considers the control of the heat flow in a multi-zone building so as to maintain a
desired temperature setpoint. Building temperature simulation uses first-principled physics models,
to capture the real-world dynamics. The environmental model and reward functions can differ from
three climate types and locations (San Diego, Tucson, New York), which jointly decide the climate.

Episode. In BuildingEnv, each episode runs for 1 day, with 5-minute time intervals. That is,
the horizon length H = 288, and the time interval length 7 = 5/60 hours. We set the discount factor

~v =~ 0.997 by using H as the effective horizon length H = ﬁ

State Space. For a building with N indoor zones, the state contains observable properties of the
building environment at timestep ¢:

S(t) = (Tl (t)7 SERE) TN (t)a TE (t)a TG(t)v QGHI(t)7 Qp (t))7 (28)
where T;(t) denotes zone 4’s temperature at time step ¢, QP () is the heat acquisition from occupants’

activities, Q91 (t) is the heat gain from the solar irradiance, and T (¢) and Tz (t) denote the ground
and outdoor environment temperature.
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Algorithm 1 Robust VDN with p-contamination uncertainty set

WRRDINE 2N

15:
16:
17:
18:
19:
20:

Input robustness parameter p, target network update frequency f and
Initialize replay buffer D
Initialize [Q}°"];c(n7 with random parameters ¢
Initialize target parameters 6~ = 0
for episode h =1,..., H do
Observe initial state s” and observation oY = ¢;(s?) for each agent i.
fort=1,...,Tdo
Each agent i choose its action a! using e-greedy policy.
Take joint action a, observe the next state s'*!, reward r* and observation o/ ™' = o;(s'*!)
for each agent ¢
Store transition (hf,a, 7!, h*™!) in replay buffer D
Sample a mini-batch of transitions (h, a, r,h’) from D
Seta’ = [arg max,, QP (hf, al; 07) e

Set szo’tVDN(hv a;f) = Zie[N] Q§Ob(hi7 ai;0)

Set Qi N (0, a367) = 37,y Q5P (h), al; 67)

Set 5t — 1+ (1 - QL (K, & 6)
Calculate TD loss Ltp = (Q1Y PN (h, a; §) — ytareet)?
Update 6 by minimizing LTp

Update 6§~ = 6 with frequency f

end for
end for

Algorithm 2 Robust QMIX with p-contamination uncertainty set

1:

Input robustness parameter p, target network update frequency f and €

2: Initialize replay buffer D

3: Initialize [Qf‘ﬂie[ ~) and mixing network fy with random parameters 6
4: Initialize target parameters 6~ = 6

5: for episode h =1,..., H do

0

6:  Observe initial state s” and observation oY = o;(s°) for each agent i.
7. fort=1,...,Tdo
8: Each agent i choose its action a! using -greedy policy.
9: Take joint action a‘, observe the next state s'*, reward r* and observation o/ " = ¢;(s**1)
for each agent ¢
10 Store transition (h?, a?, s, 7, h**1 s'*1) in replay buffer D
11: Sample a mini-batch of transitions (h, a, s,r, h’, s’) from D
12: Seta’ = [arg max,, QP (hf, als 07 )] ien
130 Set Qi (h,2:0) = fo((Q1°°(hiy ai:6))iepw), )
14 Set QUM (W& 07) = fo- (QF(h a5 07)iein. ')
150 Sety'™=t =1+ (1 - p)Qrg ™ (W& 67)
16: Calculate TD loss Ltp = (Q1 3 (h, a; §) — ytarset)?
17: Update 6 by minimizing Lrp
18: Update 6~ = 6 with frequency f
19:  end for
20: end for
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Algorithm 3 Robust QTRAN with p-contamination uncertainty set

1: Input robustness parameter p, target network update frequency f and €
2: Initialize replay buffer D
3: Initialize [Q5°"];e (N, QP QTRAN ynd VP QTRAN yith random parameters ¢
4: Initialize target parameters 6~ = 6
5: for episode h =1,..., H do
6:  Observe initial state s” and observation 0? = ;(s?) for each agent i.
7. fort=1,...,Tdo
8: Each agent i choose its action a! using -greedy policy.
9: Take joint action a‘, observe the next state s'*, reward r* and observation o/ " = ¢;(s'*1)
for each agent ¢
10: Store transition (h?, a?, 7t h*1) in replay buffer D
11: Sample a mini-batch of transitions (h, a, r, h’) from D
12: Seta’ = [arg max,, Q1P (hf, als 07 )] ien
13 Sety' ™=t =14 q(1-p)Qry* (W, 67)
14: Calculate TD loss Ltp = (Q78TRAN(h, a; §) — ytarset)2
15: Calculate L, using Eq. (11)
16: Calculate Ly,p¢ using Eq. (12)
17: Update ¢ by minimizing L = Lrp + Lopt + Lnopt
18: Update 6~ = 6 with frequency f
19:  end for
20: end for
Algorithm 4 Robust VDN with TV uncertainty set
1: Input robustness parameter p, target network update frequency f and ¢
2: Initialize replay buffer D
3: Initialize [Q5°"];c(n] with random parameters ¢
4: Initialize dual network 7 with random parameters
5: Initialize target parameters 6~ = 0
6: for episode h =1,...,H do
7:  Observe initial state s” and observation 0} = o;(s°) for each agent i.
8. fort=1,...,Tdo
9: Each agent i choose its action a! using e-greedy policy.
10: Take joint action a‘, observe the next state s'!, reward r* and observation o/ ™' = o;(s'*!)
for each agent 7
11: Store transition (hf,a’, s*, 7t h'™1) in replay buffer D
12: Sample a mini-batch of transitions (h, a, r, s,h’)
13: Calculate dual loss Lqya using Eq. (16)
14: Update ¢ by minimizing Lqya)
15: Sample another mini-batch of transitions (h, a, s, r, h’) from D
16: Seta’ = [arg max,, Q;°°(h},a};07)]ic(n]
17: Set Qi PN (h,a;0) = 37,y Q1 (hi ai; 0)
18 SetQuy N (W, &567) = Y Q1" (hG ) 67)
19: Set y' et = r + (1 — p)e(s, a) — Y[ne(s,a) — Qfr (W', a5 67)]
20: Calculate TD loss Ltp = (QYPN (h, a; §) — ytarset)?
21: Update 6 by minimizing Lrp
22: Update 6~ = 6 with frequency f
23:  end for
24: end for
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Algorithm 5 Robust QMIX with TV uncertainty set

1: Input robustness parameter p, target network update frequency f and €
2: Initialize replay buffer D

3: Initialize [Q?b]ie[ ~] and mixing network fy with random parameters 6
4: Initialize dual network 7 with random parameters §

5: Initialize target parameters 6~ = 6

6: for episode h =1,..., H do

7:  Observe initial state s” and observation 0} = o;(s°) for each agent i.
8: fort=1,...,Tdo

9: Each agent i choose its action a! using e-greedy policy.

10: Take joint action a‘, observe the next state s'*, reward r* and observation o/ " = ¢;(s'*1)
for each agent ¢

11: Store transition (h?, a?, s, 7!, h**1) in replay buffer D

12: Sample a mini-batch of transitions (h, a,r, h’)

13: Calculate dual loss Lqy,) using Eq. (16)

14: Update & by minimizing Lqya)

15: Sample another mini-batch of transitions (h, a, s, r, h’) from D

16: Seta’ = [arg max,, QP (hf, als 07 ) ien

170 Set Qi (hyaf) = fo((Q5°°(hiy ais 0)) ey, )

18 Set QU (W& 67) = fo- (Q°P(h, a5 07))iein), ')

19: Sety'E = r 4+ (1 - p)ne(s,a) — Y[ne(s,a) — Qi (W, 85074

20: Calculate TD loss Ltp = (Q7 M (h, a; §) — ytareet)2

21: Update 6 by minimizing Ltp

22: Update §~ = 6 with frequency f

23:  end for

24: end for

Algorithm 6 Robust QTRAN with TV uncertainty set

1: Input robustness parameter p, target network update frequency f and €
2: Initialize replay buffer D
3: Initialize [Q5°"];e (N, QP QTRAN gnd VP QTRAN yith random parameters ¢
4: Initialize dual network 7 with random parameters £
5: Initialize target parameters 6~ = 0
6: for episode h =1,..., H do
7:  Observe initial state s” and observation 0} = o;(s°) for each agent i.
8. fort=1,...,Tdo
9: Each agent i choose its action a! using e-greedy policy.
10: Take joint action a’, observe the next state s'!, reward r* and observation o/ ™' = o;(s'*!)
for each agent 7
11: Store transition (hf,a’, s, 7t ht™1) in replay buffer D
12: Sample a mini-batch of transitions (h, a,r, s,h’, s")
13: Calculate dual loss Lqya using Eq. (16)
14: Update £ by minimizing Lqya)
15: Sample another mini-batch of transitions (h, a, s, 7, h’) from D
16: Seta’ = [argmax,, Q;°°(h},a};07)]ic(n]
17: Sety'™E =+ (1 - p)ne(s,a) — ylne(s,a) — Q¥ AN (W, 8% 07)]
18: Calculate TD loss Ltp = (Q78TRAN(h, a; §) — ytarset)2
19: Calculate L, using Eq. (11)
20: Calculate Lyqpt using Eq. (12)
21: Update 6 by minimizing L = Ltp + Lopt + Lnopt
22: Update 6~ = 6 with frequency f
23:  end for
24: end for
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Observation Space. For agent ¢, given the current state s(t), its observation o;(¢) is given by:

0i(t) = o4(s(t))
= (T;(t), Te(t), Ta(t), Q€M1 (t), QP (t)). (29)

That is, agent ¢ can observe the tempature at zone 4, the heat acquisition from occupants’ activities,
the heat gain from the solar irradiance, and the ground and outdoor environment temperature.

Action Space. At time ¢, agent ¢’s action is a scalar a;(¢) € [—1,1], which sets the controlled
heating supplied to zone 4. The joint action a(t) = (a1 (t),...,an(t))

Reward Function. The objective is to reduce energy consumption while keeping the temperature
within a given comfort range. Therefore, the reward function is a weighted average of these two
goals:

r(t) = —(1 = B)lla@®)ll2 — BT = T(B)]]2, (30)
where T8¢t — (T8 () ... T\**8") are the target temperatures and T'(t) = (T1(t), ..., Tn(t))
are the actual zonal temperature, and || - ||2 denote the £5 norm. We use the same default hyperparam-

eter 3 across all experiments.

Environmental Uncertainty. The environmental model and reward functions can differ from
three climate types and locations (San Diego, Tucson, New York), which jointly decide the climate.
Besides, BuildingEnv contains distribution shifts in the ambient outdoor temperature profile Tz
incurred by seasonal shifts.

E.2 EXPERIMENTS SETUP.

we implement distributionally robust algorithms with two types of uncertainty sets (p-contamination
Zhang et al. (2024), TV-uncertaintyPanaganti et al. (2022)) and three different value factorization
methods (VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2020), QTRAN (Son et al., 2019)). We
also implement the groupDR MARL algorithm from (Liu et al., 2025), also with these three different
value factorization methods. Each experiment is run independently with 5 different random seeds.

Hyperparameters. Training lasts 600 episodes with parameter updates every 2 steps and target
updates every 25k steps. Replay buffer size is 10k; batch size is 64. We use e-greedy exploration
with € annealed from 1.0 to 0.01 over 120k steps. Hidden layer size is 64.

Environment configurations. The environment configurations we use throughout the three experi-
ments are shown in Table 3 where Env_1 is the training environment, and the other environments are
numbered in order of how much they differ from Env_1.

Environment Weather Location
Env_1 Hot_Dry Tucson
Env_2 Hot_Humid Tampa
Env_3 Very_Hot_ Humid Honolulu
Env_4 Warm_Dry El Paso
Env_5 Cool_Marine Seattle
Env_6 Mixed_Humid New York

Table 3: Environment configurations

Robust individual Q-networks. Each agent employs a recurrent Q-network (Hausknecht & Stone,
2015), encoding its local observation concatenated with the previous action (one-hot). Features pass
through a fully connected layer with ReLU, followed by a single-layer LSTM (hidden size 64). The
final hidden state is projected into Q-values. We optimize with RMSprop (Ir = 5 x 10~%).

Mixing networks (QMIX). Following TorchRL (Bou et al., 2023), we use hypernetworks to
generate state-dependent mixing weights while enforcing monotonicity. Per-agent Q-values are
embedded, passed through ELU, and projected to a scalar joint Q. A state-conditioned bias is added
via a two-layer MLP. Optimizer: RMSprop (Ir = 5 x 10~%).
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QTRAN Networks. We implement joint action-value and state-value networks as in Son et al.
(2019). The joint action is encoded by concatenated one-hots, projected with ReLU, and optionally
combined with agent features. The state-value network processes the global state and summed agent
features in parallel, concatenates them, and outputs a scalar. Both use Adam (Ir = 1079).

Dual networks (TV uncertainty). The global state and joint action (concatenated one-hots) are
separately embedded via ReLU MLPs, concatenated, and passed through another ReLLU layer before
a final linear projection to a scalar. Optimizer: Adam (Ir = 1073).

GroupDR training. GroupDR first fits a contextual-bandit-based worst-case reward estimator to
estimate the worst-case reward, using data from Env_1 to Env_5 collected under a VDN-trained
behavior policy. Using this estimator, we then train the individual Q-networks by randomly sampling
episodes from Env_1 to Env_5. (For fairness, Env_6 is never used for training by any method.)

Normalized Return. Because the reward in BuildingEnv is negative, we normalize the returns
to [0, 1] by the following transformation:

Return + 9000
N lized_ret = 31
ormalized_return 9000 31

Experiment 1 (Climate shift). During training, we train each algorithm in Env_1 by sampling
episodes from Day 1 to Day 200. During evaluation, we evaluate each algorithm in Env_1 to Env_6,
by sampling 50 episodes from Day 1 to Day 200 in each environment. This setup demonstrates
distribution shift induced by climate differences.

Experiment 2 (Seasonal shift). During training, we train each algorithm in Env_1 by sampling
episodes from Day 1 to Day 200. During evaluation, we evaluate each algorithm in Env_1, by
sampling 50 episodes from Day 400 to Day 600 in each environment. This setup demonstrates
distribution shift induced by seasonality within the same location.

Experiment 3 (Climate + seasonal shift). During training, we train each algorithm in Env_1 by
sampling episodes from Day 1 to Day 200. During evaluation, we evaluate each algorithm in Env_6,
by sampling 50 episodes from Day 400 to Day 600 in each environment. This setup demonstrates the
combined effects of climate and seasonal shifts.

F DISCLOSURE OF LLM USAGE

To improve clarity and readability, we used a large language model (LLM) to assist in polishing the
writing. The LLM was only employed for language refinement (e.g., grammar, style, and conciseness)
and was not involved in designing methods, experiments, or drawing conclusions.
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