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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) commonly adopts cen-
tralized training with decentralized execution, where value-factorization methods
enforce the individual-global-maximum (IGM) principle so that decentralized
greedy actions recover the team-optimal joint action. However, the reliability of
this recipe in real-world settings remains uncertain due to environmental uncertain-
ties arising from the sim-to-real gap, model mismatch, system noise. We address
this gap by introducing Distributionally robust IGM (DrIGM), a principle that
requires each agent’s robust greedy action to align with the robust team-optimal
joint action. We show that DrIGM holds for a novel definition of robust individual
action values, which is compatible with decentralized greedy execution and yields
a provable robustness guarantee for the whole system. Building on this founda-
tion, we derive DrIGM-compliant robust variants of existing value-factorization
architectures (e.g., VDN/QMIX/QTRAN) that (i) train on robust Q-targets, (ii)
preserve scalability, and (iii) integrate seamlessly with existing codebases with-
out bespoke per-agent reward shaping. Empirically, on high-fidelity SustainGym
simulators and a StarCraft game environment, our methods consistently improve
out-of-distribution performance.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) is a popular framework for studying how multiple agents
compete or cooperate in complex environments such as video game playing (Vinyals et al., 2019),
economic policy design (Zheng et al., 2022), wireless network communications (Qu et al., 2020), and
power grid control (Gao et al., 2021), among others. In this work, we focus on the cooperative MARL
setting, where each agent can only observe its local history, and agents must collaborate to achieve a
joint goal. To address partial observability and reduce real-time communication costs, a widely used
paradigm is the centralized training with decentralized execution (CTDE) (Oliehoek et al., 2008).
During training, the agents may aggregate global information, coordinate credit assignment, and learn
a team structure; at deployment, each agent must act myopically based on its own local history.

The CTDE paradigm is typically realized through value factorization methods (e.g., VDN (Sunehag
et al., 2017), QMIX (Rashid et al., 2020), QTRAN (Son et al., 2019)). A key concept that underpins
the success of these methods is the individual-global-maximum (IGM) principle (Son et al., 2019),
which aligns each agent’s greedy action with the team-optimal joint action via a suitable value
factorization. However, most examples where the success of this principle is demonstrated are in
virtual tasks (games (Vinyals et al., 2017) and grid worlds (Leibo et al., 2017)). It remains unclear
whether this principle maintains its reliability in real-world domains, where modeling is imperfect
and execution is noisy.

In practice, a major obstacle facing cooperative MARL is environmental uncertainty (Shi et al.,
2024): team performance can drop sharply when the deployed environment deviates from the training
environment due to model mismatch, system noise, and sim-to-real gap (Zhang et al., 2020b; Balaji
et al., 2019). While environmental uncertainty presents challenges in single-agent RL settings, it is a
more significant hurdle in cooperative MARL, where partial observability and inter-agent coupling
can cause small mismatches to cascade into coordination failures (Capitan et al., 2012; He et al.,
2022).
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In single-agent RL, uncertainty in the environment is commonly addressed by distributionally robust
RL (DR-RL) techniques (Wiesemann et al., 2013; Taori et al., 2020; Nilim & El Ghaoui, 2005;
Panaganti & Kalathil, 2021a; Shi et al., 2023) which seek policies that perform well under adversarial
perturbations of a nominal environment model. Single-agent DR-RL is well-explored, however
extending DR-RL to the cooperative MARL setting is fundamentally more challenging. In particular,
each agent acts on a local history yet shares a team reward coupled with teammates’ actions, making it
nontrivial to define individual robust Q-functions that both evaluate worst-case outcomes and remain
compatible with IGM for decentralized greedy execution. Reward engineering can help empirically,
but only a narrow class of shaping functions can provably preserve optimality (Foerster et al., 2016),
even in the single-agent setting. Thus, we seek a principled route to distributional robustness for
cooperative MARL that remains compatible with decentralized greedy execution.

Contributions. In this paper, we introduce a family of distributionally robust cooperative MARL
algorithms for the CTDE setting. Our central technique is Distributionally robust IGM (DrIGM),
a robustness principle that requires each agent’s robust greedy action to coincide with the robust
team-optimal joint action, thereby preserving decentralized greedy execution.

We first show, via a concrete counterexample, that naı̈vely adopting individual robust action-value
functions from single-agent DR-RL, where each agent considers its own worst case, does not
guarantee decentralized alignment (IGM) in the cooperative multi-agent setting. We then provide
sufficient conditions under which DrIGM holds: when individual robust action-value functions are
defined with respect to the worst-case joint action-value function, DrIGM is guaranteed.

Next, we derive DrIGM-compliant robust variants of existing value factorization architectures (VDN,
QMIX, and QTRAN), by training on robust Q-targets while retaining the CTDE information structure.
The resulting methods are scalable, easy to implement on top of existing codebases, and maintain
robustness at execution without requiring bespoke individual robust value design.

Finally, we evaluate our DrIGM-based algorithms on a realistic simulation an HVAC control task in
SustainGym (Yeh et al., 2023), as well as on SMAC, a StarCraft II-based multi-agent game-playing
environment (Samvelyan et al., 2019). Across out-of-distribution settings, our methods outperform
non-robust value factorization baselines and a recent robust cooperative MARL baseline, consistently
mitigating sim-to-real degradation on operational metrics.

Brief discussion of related work. Robustness in cooperative MARL has been studied along several
axes: adversarial or heterogeneous teammates (Li et al., 2019; Kannan et al., 2023; Li et al., 2024),
state/observation and communication perturbations (Guo et al., 2024; Yu et al., 2024), risk-sensitive
(tail-aware) objectives under a fixed model (Shen et al., 2023), and explicit model uncertainty (Kwak
et al., 2010; Zhang et al., 2020b; 2021; Liu et al., 2025). Most of the works on model uncertainty
adopt a distributionally robust optimization viewpoint and targets Nash solutions with provable
algorithms, often assuming full observability or individual rewards (Zhang et al., 2020a; Kardeş et al.,
2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024; Liu et al., 2025). In this work, we focus
on the cooperative CTDE regime with partial observability and a single team reward, providing a
systematic framework for robustness to model uncertainty without real-time communication. Due to
space constraints, we provide an extended discussion of related works in Appendix A.

2 BACKGROUND AND PROBLEM FORMULATION

Notation. For a set X , |X | denotes its cardinality and ∆(X ) the probability simplex over X .
We write

∏
i Xi for the Cartesian product. For N ∈ N, we let [N ] := {1, . . . , N}. Let [x]+ :=

max{0, x}.

Cooperative Dec-POMDPs. A cooperative multi-agent task with N agents is modeled as a Decen-
tralized Partially Observable Markov Decision Process (Dec-POMDP):

G = (S, {Ai}Ni=1, P, r, {Oi}Ni=1, {σi}Ni=1, γ),

with joint action space A :=
∏

i∈[N ] Ai. At time t, each agent i obtains an individual observation
oti := σi(s

t) from its observation space Oi, chooses an action ati ∈ Ai, a joint reward r(st,at) ∈
[0, 1] is received, where at := (at1, . . . , a

t
N ) ∈ A is the joint action, and then the state evolves via
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st+1 ∼ P (· | st,at). Here we assume the joint observation (o1, . . . , oN ) can recover the full state.1

Each agent i acts using a history-based policy πi(· | ht
i) with ht

i := (o0i , a
0
i , . . . , o

t−1
i , at−1

i , oti); the
joint policy is π = ⟨π1, . . . , πN ⟩. We use Ht

i to denote the space of possible histories for agent i
up to time t. In the following sections, we will omit the superscript t to avoid notational clutter.
The joint action-observation history is denoted h ∈ H :=

∏
i∈[N ] Hi. Given the current state s, the

joint history h and the joint action a, we denote the joint action-value function under policy π by
QP,π

tot (h,a), which can be reduced to |S × A| dimension as we assume the joint observation can
recover the full state. We use QP

tot(h,a) to denote the optimal joint action value maxπ Q
P,π
tot (h,a).

CTDE. Centralized training with decentralized execution (CTDE) leverages global information
during learning while executing individual policies from individual histories. A common CTDE
mechanism is value factorization: learn an optimal joint action-value QP

tot(h,a) and individual
action-value functions [QP

i (hi, ai)]i∈[N ] that satisfy the following individual–global–max (IGM)
principle (Son et al., 2019).
Definition 1 (IGM). We say that individual action-value functions [QP

i : Hi ×Ai → R]i∈[N ] satisfy
the individual-global-max (IGM) principle for an optimal joint action-value function QP

tot : H×A →
R under joint history h = (h1, . . . , hN ) ∈ H if(

argmax
a1

QP
1 (h1, a1), . . . , argmax

aN

QP
N (hN , aN )

)
⊆ argmax

a
QP

tot(h,a).

IGM ensures that greedy individual actions are jointly optimal w.r.t. QP
tot, enabling decentralized

execution without test-time communication.

Robust Dec-POMDPs. To capture model error and deployment shift, we consider an uncertainty
set P of environment models around a nominal P 0. In Dec-POMDPs, we work with a history-based
view: let Ph,a(·) denote the transition kernel over next joint histories h′, given the current joint
history h and the joint action a. We assume a history-action rectangular uncertainty set.

P =
∏

(h,a)∈H×A

Ph,a, Ph,a ⊆ ∆(H), (1)

e.g., balls around P 0
h,a under a probability metric with radius ρ > 0. This rectangularity assumption

is widely adopted in DRRL literature (Blanchet et al., 2023; Shi et al., 2024; Ma et al., 2023), and
ensures that a robust policy exists.

Given a function Q : H×A → R, define the robust Bellman operator T as

(T Q)(h,a) := r(s,a) + γ inf
Ph,a∈Ph,a

Eh′∼Ph,a

[
max
a′∈A

Q(h′,a′)

]
. (2)

Under standard assumptions (bounded rewards, γ ∈ (0, 1)) and rectangularity in Eq. (1), T is a
γ-contraction on the space of bounded Q, so it has a unique fixed point QP

tot (Iyengar, 2005) which
satisfies

QP
tot(h,a) = inf

P∈P
QP

tot(h,a), ∀(h,a) ∈ H ×A. (3)

We call QP
tot the optimal robust joint action-value function for the Dec-POMDP, and it admits a

deterministic robust greedy joint policy π∗(h) ∈ argmaxa Q
P
tot(h,a).

Robust Cooperative MARL. We study robust cooperative MARL under the CTDE setting. Given
a model uncertainty set P , our goal is to learn decentralized policies that maximize QP

tot. That is, we
aim to find [π⋆

i : Hi 7→ Ai]i∈[N ], such that

⟨π⋆
1 , . . . , π

⋆
N ⟩ ∈ argmax

a
QP

tot(·,a).

Specifically, we seek a value factorization method that automatically generate robust individual
action values, thereby enabling decentralized policy. This is non-trivial for two reasons. First, no
individual reward signals are available, so robust individual action values are ill-defined a priori.

1Formally, we assume that σ = (σ1(·), . . . , σN (·)) : S →
∏

i∈[N ] Oi is injective. Equivalently, there exists
a (deterministic) decoding map g :

∏
i∈[N ] Oi → S such that g(σ(s)) = s for all s ∈ S.

3
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Second, directly defining robust individual action values from the single-agent DR-RL literature can
break standard value factorization: robust individual action may not align with the robust joint action,
as demonstrated in Example 1. These challenges motivate the central question of our work: Can
we construct robust individual utilities and a mixing scheme such that decentralized greedy actions
recover the joint maximizers of QP

tot, thereby enabling a robust CTDE framework?

3 DISTRIBUTIONALLY ROBUST IGM (DRIGM)
To address the question above, we propose a novel principle for robust value factorization that builds
upon the IGM principle while explicitly incorporating robustness.

3.1 DISTRIBUTIONALLY ROBUST IGM (DRIGM) PRINCIPLE

Definition 2 (DrIGM). Given an uncertainty set P , we say that robust individual action-value
functions [Qrob

i : Hi × Ai → R]i∈[N ] satisfy the Distributionally robust IGM (DrIGM) principle
for the optimal robust joint action-value function QP

tot : H × A → R under joint history h =
(h1, . . . , hN ) ∈ H if(

argmax
a1

Qrob
1 (h1, a1), . . . , argmax

aN

Qrob
N (hN , aN )

)
⊆ argmax

a
QP

tot(h,a).

DrIGM extends classical IGM to the robust setting by requiring that the robust joint greedy action
induced by QP

tot factorizes into robust individual greedy actions from [Qrob
i ]i∈[N ]. Note that when

P = {P} is a singleton (i.e., there is no uncertainty), then DrIGM is equivalent to IGM.

Satisfying DrIGM is nontrivial. In particular, the single-agent definition Qrob
i (s, a) =

infP∈P QP
i (s, a), commonly adopted in the DR-RL literature, does not ensure DrIGM when applied

with a global uncertainty set. As shown in Example 1 in Appendix B, an adversarial model P ∈ P
that minimizes one agent’s value need not coincide with the adversarial model P ′ ∈ P that minimizes
the joint value. As a result, robust individual greedy actions may fail to align with the robust joint
greedy action. Similar inconsistencies arise even under agent-wise uncertainty sets defined in Shi
et al. (2024) for essentially the same reason. This highlights the need for a new formulation of robust
individual action values to support a consistent robust CTDE framework.

In robust cooperative MARL, the primary concern is the robustness of the entire system, as opposed
to robustness of individual agents. Thus, it is sufficient to consider the worst case for the joint action
value, rather than independently for each agent. Motivated by this idea, we show that the robust
individual action value defined under a global worst-case model can guarantee DrIGM.
Theorem 1. Given a global uncertainty set P defined in Eq. (1), suppose for all P ∈ P , there exist
[QP

i ]i∈[N ] satisfying IGM for QP
tot under joint history h = (h1, . . . , hN ) ∈ H. Let

Pworst(h,a) ∈ arg inf
P∈P

QP
tot(h,a), (4)

ā ∈ argmax
a

QP
tot(h,a), (5)

denote the global worst-case model and the robust joint greedy action respectively. For each agent
i ∈ [N ], define the robust individual action-value functions Qrob

i as

Qrob
i (hi, ai) := Q

Pworst(h,ā)
i (hi, ai). (6)

Then, [Qrob
i ]i∈[N ] satisfy DrIGM for QP

tot under joint history h.

The proof of Theorem 1 can be found in Appendix C.1. Theorem 1 demonstrates that by anchoring
individual robust action values to the global worst-case model evaluated at the robust joint greedy
action, individual robust greedy actions become aligned with the robust joint greedy action. This
construction resolves the misalignment problem that occurs when individual adversaries differ from
the global adversary. More broadly, the result highlights that robust CTDE is achieved not by
independently robustifying each agent, but by coordinating all agents against a shared adversarial
model tied to the team’s worst-case joint outcome. This perspective offers a principled foundation for
designing robust value factorization methods that maintain decentralized execution while ensuring
robustness guarantees.

4
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Common factorization methods satisfy DrIGM. Having established that robust individual ac-
tion values can be consistently defined via Theorem 1, we now examine whether these values are
compatible with standard factorization methods used in cooperative MARL.
Theorem 2. Given P defined in Eq. (1), for a joint history h ∈ H, suppose for all P ∈ P , there
exist individual action-value functions [QP

i ]i∈[N ] satisfying one of the following conditions for all
a = (a1, . . . , aN ) ∈ A:

QP
tot(h,a) =

∑
i∈[N ]

QP
i (hi, ai), (VDN)

∂QP
tot(h,a)

∂QP
i (hi, ai)

≥ 0, ∀i ∈ [N ], (QMIX)

∑
i∈[N ]

QP
i (hi, ai)−QP

tot(h,a) + Vtot(h) =

{
0, a = ā,

≥ 0, a ̸= ā,
(QTRAN)

where ā := [āi]i∈[N ] with āi := argmaxai
QP

i (hi, ai) and Vtot(h) := maxa Q
P
tot(h,a) −∑

i∈[N ] Q
P
i (hi, ai). Then [Qrob

i ]i∈[N ] as defined in Eq. (6) satisfy DrIGM for QP
tot under joint

history h.

The proof of Theorem 2 can be found in Appendix C.2. Theorem 2 shows that when the underlying
individual Q-functions satisfy the structural conditions of VDN (Sunehag et al., 2017), QMIX (Rashid
et al., 2020), or QTRAN (Son et al., 2019), the robust individual action values [Qrob

i ]i∈[N ] constructed
from Equation (6) automatically satisfy DrIGM. This result ensures that robust CTDE can be realized
directly within widely used value factorization frameworks, enabling principled distributionally
robust extensions of existing algorithms. Moreover, as long as the test environment lies within the
prescribed uncertainty set, this approach yields a provable robustness guarantee, as formalized in the
next theorem.
Theorem 3. Given P defined in Eq. (1), suppose the robust individual action values Qrob

i satisfy
Definition 2. If the test environment model Ptest is included in the uncertainty set (i.e., Ptest ∈ P),
then the robust joint action values provably lower bound the real joint action values in Ptest:

QP
tot(h,a) ≤ QPtest

tot (h,a), ∀h ∈ H, a ∈ A.

The proof of Theorem 3 can be found in Appendix C.3.

3.2 ROBUST BELLMAN OPERATORS UNDER SPECIFIC UNCERTAINTY SETS

To design training loss functions, we next present the DrIGM-based robust Bellman operators for two
common uncertainty designs: ρ-contamination and total variation (TV), which are well-studied in the
single-agent distributionally robust RL literature (Yang et al., 2022; Panaganti & Kalathil, 2021b; Xu
et al., 2023; Dong et al., 2022; Liu & Xu, 2024; Panaganti et al., 2022; Wang & Zou, 2022; Zhang
et al., 2024). Both types of uncertainty sets consider perturbations of size ρ ∈ (0, 1] around a nominal
model P 0.

The ρ-contamination uncertainty set is defined as (for all h ∈ H and a ∈ A)

Ph,a =
{
P ∈ ∆(H)

∣∣Ph,a = (1− ρ)P 0
h,a + ρHh,a, H ∈ ∆(H) is arbitrary

}
, (7)

with corresponding robust Bellman operator

(T QP
tot)(h,a)

(a)
= r(s,a) + γ(1− ρ)Eh′∼P 0

h,a

[
max
a′∈A

QP
tot(h

′
1, . . . , h

′
N ,a′)

]
(b)
= r(s,a) + γ(1− ρ)Eh′∼P 0

h,a

[
QP

tot(h
′
1, . . . , h

′
N , ā′1, . . . , ā

′
N )

]
, (8)

where ā′i = argmaxa′
i
Qrob

i (h′
i, a

′
i). Here, (a) follows from robust Bellman operator as in the single-

agent setting due to the h × a-rectangularity from Eq. (1). (b) follows from the DrIGM principle
where robust individual greedy actions are aligned with the robust joint greedy action.

Similarly, the TV-uncertainty set is defined as (for all h ∈ H and a ∈ A)

Ph,a =
{
P ∈ ∆(H)

∣∣TV(P, P 0
h,a) ≤ ρ

}
, (9)

5
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-greedy

update parameters 

robust loss
    

robustness
parameter

target network

 satisfy DrIGM w.r.t. 

MLP LSTM MLP

MLP LSTM MLP

Figure 1: Overview of our robust value factorization algorithms. Because the robust individual
action-value functions satisfy DrIGM, greedy actions can be computed efficiently in a decentralized
manner while the function parameters are trained with a robust TD loss based on global reward.

with corresponding robust Bellman operator,

(T QP
tot)(h,a) = r(s,a)− inf

η∈[0, 2
ρ(1−γ)

]
γ Eh′∼P 0

h,a

(
− (1− ρ)η(s,a)

+

[
η(s,a)−QP

tot(h
′
1, . . . , h

′
N , ā′1, . . . , ā

′
N )

]
+

)
, (10)

where η(s, a) is the dual variable.

Additional details of designing the robust Bellman operators can be found in Appendix D. In the next
section, we show how DrIGM leads to practical robust value factorization algorithms.

4 ALGORITHMS: ROBUST VALUE FACTORIZATION

Overall framework. Guided by DrIGM, we develop six robust value factorization algorithms
by combining two types of uncertainty sets (ρ-contamination, TV-uncertainty) with three different
value factorization architectures (VDN, QMIX, QTRAN). The overall framework is illustrated in
Algorithm 1 and Fig. 1, while detailed pseudocode for each variant can be found in Appendix E.
Concretely, we collect trajectories using ε-greedy exploration and train the robust individual action-
value network using TD-learning (Sutton & Barto, 2018). For stability, robust one-step targets are
evaluated using target networks, which are updated periodically.

Robust individual action-value networks. Each agent i uses a DRQN (Deep Recurrent Q
Network)-style network that maps its local history hi (observations and past actions) to action-
values Qi(hi, ai), following an MLP encoder → LSTM core → MLP output architecture. For our
training procedure, we follow the approach from Hausknecht & Stone (2015). We sample mini-
batches of sub-trajectories from the replay buffer D and use bootstrapped random updates. We use 8
burn-in steps to warm-start the LSTM state and only take the last step output to calculate the loss
and update the networks. This procedure is computationally and memory efficient while achieving
performance comparable to sequential updates from the start of each episode.

Factorization networks. We instantiate three networks for robust value factorization:

1. VDN factorizes the robust joint action-value as the sum of robust per-agent values,

QP,VDN
tot (h,a) =

N∑
i=1

Qrob
i (hi, ai).

2. Beyond direct summation, QMIX uses a monotone mixing network

QP,QMIX
tot (h,a) = fθ

(
Qrob

1 (h1, a1), . . . , Q
rob
N (hN , aN ), s

)
, (11)

where s is the global state. A lightweight hypernetwork takes s as input and outputs the
layer weights of fθ; to ensure ∂QP,QMIX

tot /∂Qrob
i ≥ 0 (the QMIX monotonicity constraint),

we enforce elementwise nonnegativity on these weights via an absolute-value (or softplus)
transform. Biases remain unconstrained.

6
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Algorithm 1 Robust value factorization

1: Input robustness parameter ρ, target network update frequency f , and ε
2: Initialize replay buffer D
3: Initialize robust individual action-value networks [Qrob

i ]i∈[N ] with random parameters θ
4: Initialize factorization networks that produce QP

tot with random parameters θ
5: Initialize target parameters θ− = θ
6: for episode h = 1, . . . ,H do
7: Observe initial state s0 and observation o0i = σi(s

0) for each agent i.
8: for t = 1, . . . , T do
9: Each agent i choose its action ati using ε-greedy policy.

10: Take joint action at, observe the next state st+1, reward rt and observation ot+1
i = σi(s

t+1)
for each agent i

11: Store transition (ht,at, rt,ht+1) in replay buffer D
12: Sample a mini-batch of transitions (h,a, r,h′) from D
13: Calculate TD loss LTD using Eq. (14)
14: // joint robust action a is obtained from individual robust action {ai}i∈[N ] by DrIGM
15: Update θ by minimizing LTD

16: Update θ− = θ with frequency f
17: end for
18: end for

3. QTRAN learns a separate joint action-value function QP,QTRAN
tot (h,a) and a baseline Vtot(h).

For efficiency and scalability, the joint network shares the encoder/head with the individual
DRQN modules. In addition to the robust TD loss, QTRAN imposes two consistency terms to
align the factorized and joint values:

Lopt =
(
QP,VDN

tot (h, ā)− Q̂P,QTRAN
tot (h, ā) + Vtot(h)

)2

, (12)

Lnopt =
(
min

[
QP,VDN

tot (h,a)− Q̂P,QTRAN
tot (h,a) + Vtot(h), 0

])2

, (13)

where the Q̂ is the detached Q value for training stability. Intuitively, Lopt enforces equality at
the (robust) greedy joint action, while Lnopt penalizes positive slack elsewhere, recovering the
QTRAN constraints in our robust setting.

TD Loss. Given the robust Bellman operator T defined in Eq. (2) for a Dec-POMDP setting, the
generic form of the TD-loss is

LTD =
(
QP

tot(h,a; θ)− (T QP
tot(·, ·; θ−))(h,a)

)2
, (14)

where θ is the network parameters, and θ− is the target network parameters for training stability.
Specifically, for ρ-contamination uncertainty sets, by the robust Bellman operator in Eq. (8), we have

LTD =
(
QP

tot(h,a; θ)− (r(s,a) + γ(1− ρ)Eh′∼P 0
h,a

QP
tot(h

′, ā′; θ−))
)2

, (15)

For TV uncertainty sets, by the robust Bellman operator in Eq. (10), we have

LTD =

(
QP

tot(h,a; θ)− r(s,a) + γ Eh′∼P 0
h,a

[
− (1− ρ)η(s,a)

+ [η(s,a)−QP
tot(h

′, ā′; θ−)]+

])2

, (16)

where η : S ×A → R is calculated by minimizing the following empirical loss:

Ldual(η,Q
P
tot) =

1

|D|
∑

(h,a,h′)∈D

([
η(s,a)−max

a′
QP

tot(h
′,a′)

]
+
− (1− ρ) η(s,a)

)
. (17)
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5 EXPERIMENTS

5.1 SUSTAINGYM

We evaluate our proposed robust value factorization methods on SustainGym (Yeh et al., 2023), a
recent benchmark suite designed to simulate real-world control tasks under distribution shift. We focus
on multi-agent environments for smart building HVAC control, which inherently involve stochastic
dynamics, distribution shifts, partial observability, and inter-agent coupling. These environments
are particularly well-suited to test robustness, as the environmental models can vary across different
days, building locations (thus climate conditions). More details about the environment and the
experiment setup are provided in Appendix F. Our code can be found in https://github.com/
iclr2026-anonymous/robust-coMARL.

Evaluation protocol. To assess generalization under distribution shift (i.e., model uncertainty), we
adopt the following protocol. In the training phase, each algorithm is trained on a single environment.
For robust MARL baselines that require multiple environments, we follow their standard protocol and
train them on a fixed set of environments. In the evaluation phase, trained policies are deployed on
unseen configurations that differ from those used in training, simulating realistic deployment where
distribution shifts inevitably arise. This design allows us to explicitly measure robustness to changes
in environment dynamics rather than simple memorization of training conditions.

Baselines. We compare our robust value factorization methods against:

• Non-robust factorization methods: VDN, QMIX, and QTRAN trained without robustness
considerations, representing the standard CTDE paradigm.

• Existing robust CTDE baseline: the multi-agent group distributionally robust algorithm from
Liu et al. (2025), which we refer to as “GroupDR”. While the original work used only the VDN
architecture, we extend the algorithm to QMIX and QTRAN for completeness.
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Figure 2: Normalized performance (averaged over 5 independent training runs, with error bars
showing standard error) across different environment configurations for our robust MARL algorithms
and other baselines. Each panel corresponds to one value factorization method. Robustness gain
is the difference in reward (shaded area) between Robust (ours) and Non-robust, which shows the
out-of-distribution performance improvement from the robust training.

Experiment 1: climatic shifts. We first test robustness under shifts induced by changes in climate
conditions. Results (averaged over five seeds) are shown in Fig. 2. Our robust MARL algorithms con-
sistently outperform both non-robust counterparts and the group DR baseline. Notably, performance
degradation scales with the severity of the shift (e.g., env 6 deviates most from the training environ-
ment, env 1), but our methods maintain relatively high returns. In contrast, the GroupDR baseline
exhibits little sensitivity to shift severity, reflecting its reliance on worst-case rewards computed only
from configurations encountered during training.

Experiment 2: seasonal shifts. We next evaluate robustness to seasonal shifts, training algorithms
on season 1 data and evaluating on season 2. Results are reported in Table 1, showing mean
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and standard error of normalized episodic returns. The results show that robust value factorization
algorithms with TV uncertainty set achieve consistent robustness gain against seasonal shifts.

Factorization Methods VDN QMIX QTRAN

Non-robust 0.877 ± 0.012 0.895 ± 0.008 0.816 ± 0.036
baseline (GroupDR) 0.624 ± 0.040 0.499 ± 0.022 0.508 ± 0.048

Robust (TV-uncertainty) 0.898 ± 0.008 0.916 ± 0.006 0.861 ± 0.006
Robust (ρ-contamination) 0.869 ± 0.013 0.911 ± 0.005 0.825 ± 0.028

Table 1: Final Performances under seasonal shifts for our robust MARL algorithms and other
baselines (mean ± standard error over 5 independent training runs). Values outperforming both the
non-robust and group DR baselines are highlighted in bold.

Experiment 3: climatic and seasonal shifts. Finally, we test on the most extreme case, where we
have distribution shifts arising from climatic and seasonal shifts. The results are presented in Table 2,
with our robust MARL algorithms achieving 10-40% higher average reward than the non-robust
baseline. Notably, QTRAN-based robust MARL algorithms demonstrate strong out-of-distribution
performance and stability.

Factorization Methods VDN QMIX QTRAN

Non-robust 0.440 ± 0.040 0.478 ± 0.052 0.654 ± 0.066
baseline (GroupDR) 0.624 ± 0.056 0.383 ± 0.053 0.520 ± 0.049

Robust (TV-uncertainty) 0.627 ± 0.049 0.520 ± 0.048 0.733 ± 0.026
Robust (ρ-contamination) 0.551 ± 0.039 0.500 ± 0.075 0.682 ± 0.026

Table 2: Final Performances under climatic and seasonal shifts for our robust MARL algorithms and
other baselines (mean ± standard error over 5 independent training runs). Values outperforming both
the non-robust and group DR baselines are highlighted in bold.

Choice of ρ. Theoretically, ρ should be chosen based on prior estimation of the model uncertainty
level. Practically, we select ρ by training on env 1 and validating on env 2 and env 3, which
yields stable performance without overfitting to a single shift.

Robustness in cooperative MARL. A noteworthy finding is that robustness in cooperative MARL
does not necessarily entail reduced performance in the training environment. Unlike in single-agent
robust RL, where conservatism often penalizes in-distribution returns, explicitly modeling robustness
here mitigates errors from partial observability and decentralized execution. In several cases, robust
training even improves in-distribution performance relative to non-robust baselines, suggesting that
robustness can simultaneously enhance stability and adaptability in multi-agent systems.

5.2 STARCRAFT II

We additionally conduct experiments in SMAC (Samvelyan et al., 2019), a well-known benchmark
consisting of two teams of agents engaged in cooperative combat scenarios based on StarCraft II.
We focus on the hard 3s vs 5z map. In the test environment, we introduce distribution shift by
adding noise to each agent’s observation of every enemy unit’s normalized position, sampled from
N (0, 0.752). Results for the ρ-contamination uncertainty set with VDN and QMIX (averaged over
five seeds) are shown in Fig. 3. The results demonstrate that for small values of ρ, our robust MARL
algorithms significantly improve out-of-distribution performance.

Ablation study. We further compare the final performance of our algorithms against their non-
robust baselines, reporting the improvement in the test win rate for different choices of ρ relative to
the baseline. The results (averaged over five seeds) are shown in Fig. 4. Interestingly, the test win
rate first increases as ρ grows, and then decreases. This observation aligns with our theory: when ρ is
small relative to the shift level, explicitly modeling distribution shift during training yields improved
out-of-distribution performance. However, when ρ becomes large, the robust MARL algorithms
become overly conservative, leading to degraded performance.
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Figure 3: Performance of our robust MARL algorithms and their non-robust baselines in SMAC
(3s vs 5z map). Each algorithm is evaluated every 10,000 environment steps, with each evaluation
averaged over 32 episodes. Shaded regions denote the standard error across 5 random seeds. For
small ρ, the robust algorithms significantly outperform their non-robust counterparts.

0.00 0.02 0.04 0.06 0.08 0.10
rho

0.2

0.0

0.2

0.4

0.6

Im
pr

ov
em

en
t 

in
 T

es
t 

W
in

 R
at

e

(a) Robust VDN

0.00 0.02 0.04 0.06 0.08 0.10
rho

0.4

0.2

0.0

0.2

0.4
Im

pr
ov

em
en

t 
in

 T
es

t 
W

in
 R

at
e

(b) Robust QMIX

Figure 4: Improvement in final test win rate of our robust MARL algorithms over their non-robust
baselines in SMAC (3s vs 5z map) for different values of ρ. Error bars denote the standard error
across 5 random seeds.

6 CONCLUSION

In this work, we introduce Distributionally robust IGM (DrIGM), a robustness principle for cooper-
ative MARL that extends the classical IGM property to settings with environmental uncertainties.
Whereas naı̈vely “robustifying” individual agent policies fails to align robust individual policies with
the joint robust policy, the DrIGM offers a principled framework for constructing robust individual
action values that remain aligned with the joint robust policy, thereby enabling decentralized greedy
execution under uncertainty.

Building on this foundation, we derive DrIGM-based robust value factorization algorithms for
VDN, QMIX, and QTRAN, trained via robust Bellman operators under standard uncertainty sets (ρ-
contamination and total variation). Empirically, on a high-fidelity building HVAC control benchmark,
our methods consistently mitigate out-of-distribution performance degradation arising from climatic
and seasonal shifts. On a StarCraft II game-playing benchmark, our methods likewise improve
out-of-distribution performance under added observation noise. Unlike single-agent robust RL, where
conservatism often harms in-distribution returns, we find that robustness in cooperative MARL can
simultaneously enhance stability and adaptability.

While we introduced the DrIGM framework for a global uncertainty set, we believe it may be possible
to further extend this framework. Future work includes developing DrIGM-compliant algorithms
under agent-wise uncertainty sets and exploring additional training paradigms (e.g., decentralized
training) to further broaden applicability.
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REPRODUCIBILITY STATEMENT

We release an anonymized repository containing all code, configuration files, and scripts needed to
reproduce our results, including data generation and figure plotting. All proofs for the main paper are
stated in Appendix C. Algorithm psuedocode is also provided in Appendix E.
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Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John Quan, Stephen
Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy
Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob
Repp, and Rodney Tsing. Starcraft ii: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782, 2017. URL https://arxiv.org/abs/1708.04782. 1

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
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A RELATED WORK

Single-agent Distributionally Robust RL (DR-RL). The single-agent setting is typically for-
malized as a robust Markov decision process (MDP). A substantial literature studies finite-sample
guarantees for distributionally robust RL, exploring a variety of ambiguity-set designs (Iyengar, 2005;
Xu & Mannor, 2012; Wolff et al., 2012; Kaufman & Schaefer, 2013; Ho et al., 2018; Smirnova et al.,
2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman & Mannor, 2020; Tamar et al., 2014;
Panaganti & Kalathil, 2021a; Roy et al., 2017; Derman et al., 2018; Mankowitz et al., 2019). Most
relevant to our work are tabular robust MDPs with (s, a)-rectangular uncertainty sets defined by
total-variation balls (Yang et al., 2022; Panaganti & Kalathil, 2021b; Xu et al., 2023; Dong et al.,
2022; Liu & Xu, 2024; Panaganti et al., 2022) or ρ-contamination models (Wang & Zou, 2022; Zhang
et al., 2024), for which minimax dynamic programming and learning algorithms admit provable
performance bounds.

Value factorization methods for cooperative MARL. Value factorization is the standard mech-
anism for scalable cooperative MARL under CTDE. Early work adopts simple additivity (VDN
(Sunehag et al., 2017)), while QMIX (Rashid et al., 2020) learn a state-conditioned monotone com-
biner to enlarge the function class without violating the IGM requirement. QTRAN (Son et al., 2019)
further relax the monotonicity assumption with consistency constraints. Other approaches include
attention-based mixers (e.g., QAtten (Yang et al., 2020), REFIL (Iqbal et al., 2021)), dueling-style
decompositions (QPlex (Wang et al., 2021)) and residual designs (ResQ (Shen et al., 2022)). Building
on this body of work, we develop robust value-factorization algorithms with provable robustness
guarantees under model uncertainty, enabling robust decentralized execution in partially observable
cooperative settings.

Robustness in MARL. In general MARL, robustness is typically studied within Markov games,
where uncertainty can be modeled in different components, such as the state space (Han et al., 2022;
He et al., 2023; Zhou & Liu, 2023; Zhang et al., 2023), other agents (Li et al., 2019; Kannan et al.,
2023), and environmental dynamics (Zhang et al., 2021; Liu et al., 2025). We refer readers to Vial
et al. (2022) for an overview. This work considers robustness to model uncertainty, primarily studied
via distributionally robust optimization (DRO) (Rahimian & Mehrotra, 2019; Gao, 2020; Bertsimas
et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019), where most prior efforts target
Nash equilibria and provide provable (actor–critic / Q-learning) algorithms (Zhang et al., 2020a;
Kardeş et al., 2011; Ma et al., 2023; Blanchet et al., 2023; Shi et al., 2024; Liu et al., 2025), often
under full observability or individually rewarded settings. We complement this line by addressing the
cooperative, partially observable CTDE regime, where agents receive a single joint reward and act
only local observations.

In cooperative MARL, robustness has been modeled along several complementary axes, including
adversarial (Byzantine) teammates (Li et al., 2024), state/observation disturbances (Guo et al.,
2024), communication errors (Yu et al., 2024), risk-sensitive objectives that guard against tail events
under a fixed model (Shen et al., 2023), and explicit model uncertainty Kwak et al. (2010); Zhang
et al. (2020b). Focusing on the last category, Kwak et al. (2010) address model uncertainty with
sparse, execution-time communication, whereas Zhang et al. (2020b) study settings in which each
agent observes the full state and receives individual reward. Similarly, Bukharin et al. (2023)
also considers settings where each agent receives individual reward, and achieve robustness by
controlling the Lipschitz constant of each agent’s policy. In contrast, our work targets robustness to
model uncertainty in the cooperative CTDE setting, complementing prior approaches by providing
a systematic framework that does not require real-time communication and operates under partial
observability with a single team reward.

B EXAMPLES

Example 1 (Naı̈ve single-agent robust action values cannot guarantee DrIGM). Consider a robust
cooperative two-agent task (illustrated in Fig. 5) with action spaces A1 = A2 = {1, 2}, state space
S = {s0, s1, s2, s3, s4}, and uncertainty set P = {P1, P2}. Let s0 be the initial state, and let
s1,s2,s3 and s4 all be absorbing states with zero reward. We assume each agent observes the full
state. For P1, all the transitions are fully deterministic. P2 differs from P1 only in transitions on joint
actions (1, 2) and (2, 1), given by:

P(S2 | 1, 2) = 1

3
, P(S3 | 1, 2) = 2

3
,
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P(S2 | 2, 1) = 2

3
, P(S3 | 2, 1) = 1

3
,

As shown in Fig. 5, the optimal joint action value function at state s0 is (we omit the γ/(1− γ) factor
for clarity)

QP1
tot(s0, 1, 1) = 0.7, QP1

tot(s0, 1, 2) = 0.4, QP1
tot(s0, 2, 1) = 1.0, QP1

tot(s0, 2, 2) = 0.7;

QP2
tot(s0, 1, 1) = 0.7, QP2

tot(s0, 1, 2) = 0.8, QP2
tot(s0, 2, 1) = 0.6, QP2

tot(s0, 2, 2) = 0.7.

Therefore, the robust joint action-value function QP
tot(s,a) = infP∈P QP

tot(s,a) is given by:

QP
tot(s0, 1, 1) = 0.7, QP

tot(s0, 1, 2) = 0.4, QP
tot(s0, 2, 1) = 0.6, QP

tot(s0, 2, 2) = 0.7,

It is straightforward to check that the following individual action-value functions {QPj

i }i,j∈[2] satisfy
QP

tot(s, a1, a2) = QP
1 (s, a1) +QP

2 (s, a2) for all s ∈ S and P ∈ P , which is a special case of the
classical IGM property:

QP1
1 (s0, 1) = 0, QP1

1 (s0, 2) = 0.3, QP1
2 (s0, 1) = 0.7, QP1

2 (s0, 2) = 0.4,

QP2
1 (s0, 1) = 0.2, QP2

1 (s0, 2) = 0.1, QP2
2 (s0, 1) = 0.5, QP2

2 (s0, 2) = 0.6.

Suppose the robust individual action-value function is defined as Qrob
i (s, a) = infP∈P QP

i (s, a), as
in the single-agent DR-RL literature. Therefore, the robust individual action-value functions are
given by:

Qrob
1 (s0, 1) = 0, Qrob

1 (s0, 2) = 0.1, Qrob
2 (s0, 1) = 0.5, Qrob

2 (s0, 2) = 0.4,

At s0, these robustifications fail to satisfy DrIGM:

(2, 1) =

(
argmax

a1

Qrob
1 (s0, a1), argmax

a2

Qrob
2 (s0, a2)

)
/∈ argmax

a
QP

tot(s0,a) = {(1, 1), (2, 2)}.

S0

r = 0.0

S1

r = 0.7
S2

r = 0.4

S3

r = 1.0
S4

r = 0.7

a = (1, 1) a = (1, 2)

a = (2, 1) a = (2, 2)

1 1

1 1

(a)

S0

r = 0.0

S1

r = 0.7
S2

r = 0.4

S3

r = 1.0
S4

r = 0.7

a = (1, 1) a = (2, 1) or a = (1, 2)

a = (1, 2) or a = (2, 1) a = (2, 2)

1 1

1 1

(b)

Figure 5: Fig. 5a is the MDP under transition kernel P1, Fig. 5b is under P2. The two differ in their
transition probabilities to s2 and s3.

Example 2 (DrIGM can address cases where IGM fails.). Consider a similar robust cooperative
two-agent task (illustrated in Fig. 6) with action spaces A1 = A2 = {1, 2}, state space S =
{s0, s1, s2, s3, s4}, and uncertainty set P = {P1, P2}. Let P1 be the training and testing environment.
For P1, all the transitions are fully deterministic, the optimal joint action value function at state s0 is
(we omit the γ/(1− γ) factor for clarity):

QP1
tot(s0, 1, 1) = 0.7, QP1

tot(s0, 1, 2) = 0.4, QP1
tot(s0, 2, 1) = 1.0, QP1

tot(s0, 2, 2) = 0.5.

P2 differs from P1 in that all actions leads to S4. Therefore, the optimal joint action value function at
state s0 is (we omit the γ/(1− γ) factor for clarity):

QP2
tot(s0, 1, 1) = 0.4, QP2

tot(s0, 1, 2) = 0.4, QP2
tot(s0, 2, 1) = 0.4, QP2

tot(s0, 2, 2) = 0.4.

It can be verified that P1 does not admit a VDN-style value decomposition, but the worst case, P2,
admits a feasible VDN-style value decomposition.
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S0

r = 0.0

S1

r = 0.7
S2

r = 0.4

S3

r = 1.0
S4

r = 0.5

a = (1, 1) a = (1, 2)

a = (2, 1) a = (2, 2)

1 1

1 1

(a)

S0

r = 0.0

S1

r = 0.7
S2

r = 0.4

S3

r = 1.0
S4

r = 0.5

all actions

1 1

1 1

(b)

Figure 6: Fig. 6a is the MDP under transition kernel P1, Fig. 6b is under P2.

C PROOFS

C.1 PROOF OF THEOREM 1
Proof. Recall that for all a ∈ A, we have

QP
tot(h,a) = inf

P∈P
QP

tot(h,a) (Eq. (3))

Pworst(h,a) ∈ arg inf
P∈P

QP
tot(h,a). (Equation (4))

Thus, Q
Pworst(h,a)
tot (h,a) = QP

tot(h,a). In Equation (4), we also defined ā ∈
argmaxa∈A QP

tot(h,a). Since Pworst(h, ā) ∈ P , by assumption there exist [QPworst(h,ā)
i ]i∈[N ]

that satisfy IGM for QPworst(h,ā)
tot under h. Therefore,(

argmax
a1

Qrob
1 (h1, a1), . . . , argmax

aN

Qrob
N (hN , aN )

)
=

(
argmax

a1

Q
Pworst(h,ā)
1 (h1, a1), . . . , argmax

aN

Q
Pworst(h,ā)
N (hN , aN )

)
(Eq. (4))

⊆ argmax
a

Q
Pworst(h,ā)
tot (h,a) (IGM)

⊆ argmax
a

Q
Pworst(h,a)
tot (h,a) (Eq. (4))

= argmax
a

QP
tot(h,a),

which shows that [Qrob
i ]i∈[N ] satisfy DrIGM under h.

Remark 1. The statement of Theorem 1 assumes that for all P ∈ P there exist [QP
i ]i∈[N ] satisfying

IGM for QP
tot under joint history h ∈ H. However, we note here that this assumption can be relaxed

to only requiring that there exist [Qi]i∈[N ] satisfying IGM for QPworst

tot under h.

Remark 2. As shown in Example 1, an adversarial model P ∈ P that minimizes one agent’s value
need not coincide with the adversarial model P ′ ∈ P that minimizes the joint value. Theorem 1
circumvents this problem by directly considering the global worst case, i.e.,

Qrob
i (hi, ai) := Q

Pworst(h,ā)
i (hi, ai). (18)

Given this definition, a robust joint action is given by a = (1, 1) or (2, 2), and there exist robust
individual action-value functions are given by:

Qrob
1 (s0, 1) = 0.2, Qrob

1 (s0, 2) = 0.1, Qrob
2 (s0, 1) = 0.7, Qrob

2 (s0, 2) = 0.4,
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where the robust individual action is given by a1 = 1, a2 = 1. Alternatively, another set of individual
action-value functions are given by:

Qrob
1 (s0, 1) = 0, Qrob

1 (s0, 2) = 0.3, Qrob
2 (s0, 1) = 0.5, Qrob

2 (s0, 2) = 0.6,

where the robust individual action is given by a1 = 2, a2 = 2. Either way, the robust individual
actions are aligned with the joint actions.

C.2 PROOF OF THEOREM 2

Proof. We proceed by proving that IGM holds for under each of the three conditions given in
Theorem 2. By Theorem 1, this suffices to show that DrIGM holds for under each of the three
conditions given in Theorem 2.

VDN condition. Given a joint history h ∈ H, for any P ∈ P , we have

QP
tot(h,a) =

∑
i∈[N ]

QP
i (hi, ai), ∀a = (a1, . . . , aN ) ∈ A.

Let āi = argmaxai
QP

i (hi, ai) for i ∈ [N ], and let ā = [āi]i∈[N ]. Then, for any a ∈ A,

QP
tot(h,a) =

∑
i∈[N ]

QP
i (hi, ai),

≤
∑
i∈[N ]

QP
i (hi, āi) (Definition of āi)

= QP
tot(h, ā).

This implies that(
argmax

a1

QP
1 (h1, a1), . . . , argmax

aN

QP
N (hN , aN )

)
⊆ argmax

a
QP

tot(h,a),

so [QP
i ]i∈[N ] satisfy IGM for QP

tot under h. Therefore, by Theorem 1, [Qrob
i ]i∈[N ] satisfy DrIGM for

QP
tot under h.

QMIX condition. Given a joint history h ∈ H, for any P ∈ P , suppose the following monotonicity
property holds:

∂QP
tot(h,a)

∂QP
i (hi, ai)

≥ 0, ∀i ∈ [N ], a = (a1, . . . , aN ) ∈ A.

Let āi = argmaxai
QP

i (hi, ai) for i ∈ [N ], and let ā = [āi]i∈[N ]. Given that
∂QP

tot(h,a)/∂Q
P
1 (h1, a1) ≥ 0 and ā1 = argmaxa1

QP
1 (h1, a1), we have (for any a ∈ A)

QP
tot(h,a) ≤ QP

tot(h, ā1, a2, . . . , aN ).

Applying the same logic to all i ∈ [N ] yields that for any a ∈ A,

QP
tot(h,a) ≤ QP

tot(h, ā1, ā2, . . . , āN ) (19)

= QP
tot(h, ā). (20)

This implies that(
argmax

a1

QP
1 (h1, a1), . . . , argmax

aN

QP
N (hN , aN )

)
⊆ argmax

a
QP

tot(h,a),

so [QP
i ]i∈[N ] satisfy IGM for QP

tot under h. Therefore, by Theorem 1, [Qrob
i ]i∈[N ] satisfy DrIGM for

QP
tot under h.
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QTRAN condition. Given a joint history h ∈ H, for any P ∈ P , we have (for all a =
(a1, . . . , aN ) ∈ A):

N∑
i=1

QP
i (hi, ai)−QP

tot(h,a) + Vtot(h) =

{
0, a = ā,

≥ 0, a ̸= ā,
(21)

where ā = [āi]i∈[N ] with āi = argmaxai
QP

i (hi, ai) and Vtot(h) = maxa Q
P
tot(h,a) −∑N

i=1 Q
P
i (hi, ai). Therefore,

QP
tot(h, ā) =

N∑
i=1

QP
i (hi, āi) + Vtot(h) (Eq. (21))

= max
a

QP
tot(h,a), (Definition of V (h))

This implies that(
argmax

a1

QP
1 (h1, a1), . . . , argmax

aN

QP
N (hN , aN )

)
⊆ argmax

a
QP

tot(h,a),

so [QP
i ]i∈[N ] satisfy IGM for QP

tot under h. Therefore, by Theorem 1, [Qrob
i ]i∈[N ] satisfy DrIGM for

QP
tot under h.

Combining the three cases concludes the proof of Theorem 2.

C.3 PROOF OF THEOREM 3

Proof. Recall that given an uncertainty set P , the robust joint action value is defined as,

QP
tot(h,a) := inf

P∈P
QP

tot(h,a), ∀(h,a) ∈ H ×A. (22)

Given that Ptest ∈ P , we directly have:

QP
tot(h,a) ≤ QPtest

tot (h,a), ∀h ∈ H, a ∈ A. (23)

This concludes the proof.

D ROBUST BELLMAN OPERATORS

We start by introducing the assumptions needed to derive the robust bellman operators.
Assumption 1 (Fail-state (Panaganti et al., 2022)). The robust Dec-POMDP has a fail state sf such
that

r(sf ,a) = 0 and Psf ,a(sf ) = 1, ∀a ∈ A, ∀P ∈ P. (24)

This requirement is mild, as fail states naturally arise in both simulated and physical systems. For
example, in robotics, a configuration where the robot falls and cannot recover, whether in simulators
such as MuJoCo or in real hardware, serves as a natural fail state. We can further relax it to the
following assumption.
Assumption 2 (Vanishing minimal value (Lu et al., 2024)). The underlying RMDP satisfies

min
s∈S

V P
tot(s) = 0. (25)

Without loss of generality, we also assume that any initial state s1 /∈ argmins∈S V P
tot(s).

This assumption states that the lowest achievable robust value across all states is normalized to zero.
The exclusion of the minimizing state as the starting point rules out the degenerate case where the
agent begins with zero guaranteed return.
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ρ-contamination uncertainty set. Given a ρ-contamination uncertainty set defined in Eq. (7), the
robust bellman operator can be expanded as:

(T PQ)(h,a) = r(s,a) + γ inf
Ph,a∈Ph,a

Eh′∼Ph,a

[
max
a′∈A

Q(h′,a′)

]
. (26)

= r(s,a) + γ(1− ρ)Eh′∼P 0
h,a

[
max
a′∈A

Q(h′,a′)

]
(27)

+ ρmin
s′∈S

V P
tot(s

′). (28)

Under Assumption 1 (Assumption 2), we obtain that:

(T PQ)(h,a) = r(s,a) + γ(1− ρ)Eh′∼P 0
h,a

[
max
a′∈A

Q(h′,a′)

]
(Assumption 1 (Assumption 2))

= r(s,a) + γ(1− ρ)Eh′∼P 0
h,a

[Q(h′, ā′)] , (Definition 2)

where ā′i = argmaxa′
i
Qrob

i (h′
i, a

′
i).

TV-uncertainty set. Leveraging Panaganti et al. (2022)[Proposition 1], given a TV-uncertainty set
defined in Eq. (9), the robust bellman operator can be expanded as:

(T QP
tot)(h,a) = r(s,a)− inf

η∈[0, 2
ρ(1−γ)

]
γ Eh′∼P 0

h,a

(
ρ

[
η(s,a)− inf

s′′∈S
V P
tot(s

′′)

]
+

− η

+

[
η(s,a)−max

a′∈A
QP

tot(h
′,a′)

]
+

)
. (29)

Under Assumption 1 (Assumption 2), we obtain that:

(T QP
tot)(h,a) = r(s,a)− inf

η∈[0, 2
ρ(1−γ)

]
γ Eh′∼P 0

h,a

(
− (1− ρ)η(s,a)

+

[
η(s,a)−max

a′∈A
QP

tot(h
′,a′)

]
+

)
. (Assumption 1 (Assumption 2))

= r(s,a)− inf
η∈[0, 2

ρ(1−γ)
]
γ Eh′∼P 0

h,a

(
− (1− ρ)η(s,a)

+

[
η(s,a)−max

a′∈A
QP

tot(h
′
1, . . . , h

′
N , ā′1, . . . , ā

′
N )

]
+

)
. (Definition 2)

E ALGORITHMS

We offer a full description of our algorithms in this section, presented in Algorithms 2 to 7.

F EXPERIMENT DETAILS

F.1 TASK DESCRIPTION

We test our algorithms and baseline algorithms in BuildingEnv in Yeh et al. (2023). This
environment considers the control of the heat flow in a multi-zone building so as to maintain a
desired temperature setpoint. Building temperature simulation uses first-principled physics models,
to capture the real-world dynamics. The environmental model and reward functions can differ from
three climate types and locations (San Diego, Tucson, New York), which jointly decide the climate.

Episode. In BuildingEnv, each episode runs for 1 day, with 5-minute time intervals. That is,
the horizon length H = 288, and the time interval length τ = 5/60 hours. We set the discount factor
γ ≃ 0.997 by using H as the effective horizon length H = 1

1−γ .

State Space. For a building with N indoor zones, the state contains observable properties of the
building environment at timestep t:

s(t) = (T1(t), . . . , TN (t), TE(t), TG(t), Q
GHI(t), Q̄p(t)), (30)

where Ti(t) denotes zone i’s temperature at time step t, Q̄p(t) is the heat acquisition from occupants’
activities, QGHI(t) is the heat gain from the solar irradiance, and TG(t) and TE(t) denote the ground
and outdoor environment temperature.
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Algorithm 2 Robust VDN with ρ-contamination uncertainty set

1: Input robustness parameter ρ, target network update frequency f and ε
2: Initialize replay buffer D
3: Initialize [Qrob

i ]i∈[N ] with random parameters θ
4: Initialize target parameters θ− = θ
5: for episode h = 1, . . . ,H do
6: Observe initial state s0 and observation o0i = σi(s

0) for each agent i.
7: for t = 1, . . . , T do
8: Each agent i choose its action ati using ε-greedy policy.
9: Take joint action at, observe the next state st+1, reward rt and observation ot+1

i = σi(s
t+1)

for each agent i
10: Store transition (ht,at, rt,ht+1) in replay buffer D
11: Sample a mini-batch of transitions (h,a, r,h′) from D
12: Set ā′ = [argmaxa′

i
Qrob

i (h′
i, a

′
i; θ

−)]i∈[N ]

13: Set QP,VDN
tot (h,a; θ) =

∑
i∈[N ] Q

rob
i (hi, ai; θ)

14: Set QP,VDN
tot (h′, ā′; θ−) =

∑
i∈[N ] Q

rob
i (h′

i, ā
′
i; θ

−)

15: Set ytarget = r + γ(1− ρ)QP,VDN
tot (h′, ā′; θ−)

16: Calculate TD loss LTD = (QP,VDN
tot (h,a; θ)− ytarget)2

17: Update θ by minimizing LTD

18: Update θ− = θ with frequency f
19: end for
20: end for

Algorithm 3 Robust QMIX with ρ-contamination uncertainty set

1: Input robustness parameter ρ, target network update frequency f and ε
2: Initialize replay buffer D
3: Initialize [Qrob

i ]i∈[N ] and mixing network fθ with random parameters θ
4: Initialize target parameters θ− = θ
5: for episode h = 1, . . . ,H do
6: Observe initial state s0 and observation o0i = σi(s

0) for each agent i.
7: for t = 1, . . . , T do
8: Each agent i choose its action ati using ε-greedy policy.
9: Take joint action at, observe the next state st+1, reward rt and observation ot+1

i = σi(s
t+1)

for each agent i
10: Store transition (ht,at, st, rt,ht+1, st+1) in replay buffer D
11: Sample a mini-batch of transitions (h,a, s, r,h′, s′) from D
12: Set ā′ = [argmaxa′

i
Qrob

i (h′
i, a

′
i; θ

−)]i∈[N ]

13: Set QP,QMIX
tot (h,a; θ) = fθ((Q

rob
i (hi, ai; θ))i∈[N ], s)

14: Set QP,QMIX
tot (h′, ā′; θ−) = fθ−((Qrob

i (h′
i, ā

′
i; θ

−))i∈[N ], s
′)

15: Set ytarget = r + γ(1− ρ)QP,QMIX
tot (h′, ā′; θ−)

16: Calculate TD loss LTD = (QP,QMIX
tot (h,a; θ)− ytarget)2

17: Update θ by minimizing LTD

18: Update θ− = θ with frequency f
19: end for
20: end for
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Algorithm 4 Robust QTRAN with ρ-contamination uncertainty set

1: Input robustness parameter ρ, target network update frequency f and ε
2: Initialize replay buffer D
3: Initialize [Qrob

i ]i∈[N ], Q
P,QTRAN
tot and V P,QTRAN

tot with random parameters θ
4: Initialize target parameters θ− = θ
5: for episode h = 1, . . . ,H do
6: Observe initial state s0 and observation o0i = σi(s

0) for each agent i.
7: for t = 1, . . . , T do
8: Each agent i choose its action ati using ε-greedy policy.
9: Take joint action at, observe the next state st+1, reward rt and observation ot+1

i = σi(s
t+1)

for each agent i
10: Store transition (ht,at, rt,ht+1) in replay buffer D
11: Sample a mini-batch of transitions (h,a, r,h′) from D
12: Set ā′ = [argmaxa′

i
Qrob

i (h′
i, a

′
i; θ

−)]i∈[N ]

13: Set ytarget = r + γ(1− ρ)QP,QTRAN
tot (h′, ā′; θ−)

14: Calculate TD loss LTD = (QP,QTRAN
tot (h,a; θ)− ytarget)2

15: Calculate Lopt using Eq. (12)
16: Calculate Lnopt using Eq. (13)
17: Update θ by minimizing L = LTD + Lopt + Lnopt

18: Update θ− = θ with frequency f
19: end for
20: end for

Algorithm 5 Robust VDN with TV uncertainty set

1: Input robustness parameter ρ, target network update frequency f and ε
2: Initialize replay buffer D
3: Initialize [Qrob

i ]i∈[N ] with random parameters θ
4: Initialize dual network ηξ with random parameters ξ
5: Initialize target parameters θ− = θ
6: for episode h = 1, . . . ,H do
7: Observe initial state s0 and observation o0i = σi(s

0) for each agent i.
8: for t = 1, . . . , T do
9: Each agent i choose its action ati using ε-greedy policy.

10: Take joint action at, observe the next state st+1, reward rt and observation ot+1
i = σi(s

t+1)
for each agent i

11: Store transition (ht,at, st, rt,ht+1) in replay buffer D
12: Sample a mini-batch of transitions (h,a, r, s,h′)
13: Calculate dual loss Ldual using Eq. (17)
14: Update ξ by minimizing Ldual

15: Sample another mini-batch of transitions (h,a, s, r,h′) from D
16: Set ā′ = [argmaxa′

i
Qrob

i (h′
i, a

′
i; θ

−)]i∈[N ]

17: Set QP,VDN
tot (h,a; θ) =

∑
i∈[N ] Q

rob
i (hi, ai; θ)

18: Set QP,VDN
tot (h′, ā′; θ−) =

∑
i∈[N ] Q

rob
i (h′

i, ā
′
i; θ

−)

19: Set ytarget = r + γ(1− ρ)ηξ(s,a)− γ[ηξ(s,a)−QP,VDN
tot (h′, ā′; θ−)]+

20: Calculate TD loss LTD = (QP,VDN
tot (h,a; θ)− ytarget)2

21: Update θ by minimizing LTD

22: Update θ− = θ with frequency f
23: end for
24: end for
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Algorithm 6 Robust QMIX with TV uncertainty set

1: Input robustness parameter ρ, target network update frequency f and ε
2: Initialize replay buffer D
3: Initialize [Qrob

i ]i∈[N ] and mixing network fθ with random parameters θ
4: Initialize dual network ηξ with random parameters ξ
5: Initialize target parameters θ− = θ
6: for episode h = 1, . . . ,H do
7: Observe initial state s0 and observation o0i = σi(s

0) for each agent i.
8: for t = 1, . . . , T do
9: Each agent i choose its action ati using ε-greedy policy.

10: Take joint action at, observe the next state st+1, reward rt and observation ot+1
i = σi(s

t+1)
for each agent i

11: Store transition (ht,at, st, rt,ht+1) in replay buffer D
12: Sample a mini-batch of transitions (h,a, r,h′)
13: Calculate dual loss Ldual using Eq. (17)
14: Update ξ by minimizing Ldual

15: Sample another mini-batch of transitions (h,a, s, r,h′) from D
16: Set ā′ = [argmaxa′

i
Qrob

i (h′
i, a

′
i; θ

−)]i∈[N ]

17: Set QP,QMIX
tot (h,a; θ) = fθ((Q

rob
i (hi, ai; θ))i∈[N ], s)

18: Set QP,QMIX
tot (h′, ā′; θ−) = fθ−((Qrob

i (h′
i, ā

′
i; θ

−))i∈[N ], s
′)

19: Set ytarget = r + γ(1− ρ)ηξ(s,a)− γ[ηξ(s,a)−QP,QMIX
tot (h′, ā′; θ−)]+

20: Calculate TD loss LTD = (QP,QMIX
tot (h,a; θ)− ytarget)2

21: Update θ by minimizing LTD

22: Update θ− = θ with frequency f
23: end for
24: end for

Algorithm 7 Robust QTRAN with TV uncertainty set

1: Input robustness parameter ρ, target network update frequency f and ε
2: Initialize replay buffer D
3: Initialize [Qrob

i ]i∈[N ], Q
P,QTRAN
tot and V P,QTRAN

tot with random parameters θ
4: Initialize dual network ηξ with random parameters ξ
5: Initialize target parameters θ− = θ
6: for episode h = 1, . . . ,H do
7: Observe initial state s0 and observation o0i = σi(s

0) for each agent i.
8: for t = 1, . . . , T do
9: Each agent i choose its action ati using ε-greedy policy.

10: Take joint action at, observe the next state st+1, reward rt and observation ot+1
i = σi(s

t+1)
for each agent i

11: Store transition (ht,at, st, rt,ht+1) in replay buffer D
12: Sample a mini-batch of transitions (h,a, r, s,h′, s′)
13: Calculate dual loss Ldual using Eq. (17)
14: Update ξ by minimizing Ldual

15: Sample another mini-batch of transitions (h,a, s, r,h′) from D
16: Set ā′ = [argmaxa′

i
Qrob

i (h′
i, a

′
i; θ

−)]i∈[N ]

17: Set ytarget = r + γ(1− ρ)ηξ(s,a)− γ[ηξ(s,a)−QP,QTRAN
tot (h′, ā′; θ−)]+

18: Calculate TD loss LTD = (QP,QTRAN
tot (h,a; θ)− ytarget)2

19: Calculate Lopt using Eq. (12)
20: Calculate Lnopt using Eq. (13)
21: Update θ by minimizing L = LTD + Lopt + Lnopt

22: Update θ− = θ with frequency f
23: end for
24: end for

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Observation Space. For agent i, given the current state s(t), its observation oi(t) is given by:

oi(t) = σi(s(t))

= (Ti(t), TE(t), TG(t), Q
GHI(t), Q̄p(t)). (31)

That is, agent i can observe the tempature at zone i, the heat acquisition from occupants’ activities,
the heat gain from the solar irradiance, and the ground and outdoor environment temperature.

Action Space. At time t, agent i’s action is a scalar ai(t) ∈ [−1, 1], which sets the controlled
heating supplied to zone i. The joint action a(t) = (a1(t), . . . , aN (t))

Reward Function. The objective is to reduce energy consumption while keeping the temperature
within a given comfort range. Therefore, the reward function is a weighted average of these two
goals:

r(t) = −(1− β)||a(t)||2 − β||T target − T (t)||2, (32)

where T target = (T target
1 (t), . . . , T target

N ) are the target temperatures and T (t) = (T1(t), . . . , TN (t))
are the actual zonal temperature, and || · ||2 denote the ℓ2 norm. We use the same default hyperparam-
eter β across all experiments.

Environmental Uncertainty. The environmental model and reward functions can differ from
three climate types and locations (San Diego, Tucson, New York), which jointly decide the climate.
Besides, BuildingEnv contains distribution shifts in the ambient outdoor temperature profile TE

incurred by seasonal shifts.

F.2 EXPERIMENTS SETUP.

we implement distributionally robust algorithms with two types of uncertainty sets (ρ-contamination
Zhang et al. (2024), TV-uncertaintyPanaganti et al. (2022)) and three different value factorization
methods (VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2020), QTRAN (Son et al., 2019)). We
also implement the groupDR MARL algorithm from (Liu et al., 2025), also with these three different
value factorization methods. Each experiment is run independently with 5 different random seeds.

Hyperparameters. Training lasts 600 episodes with parameter updates every 2 steps and target
updates every 25k steps. Replay buffer size is 10k; batch size is 64. We use ε-greedy exploration
with ε annealed from 1.0 to 0.01 over 120k steps. Hidden layer size is 64.

Environment configurations. The environment configurations we use throughout the three experi-
ments are shown in Table 3 where Env 1 is the training environment, and the other environments are
numbered in order of how much they differ from Env 1.

Environment Weather Location
Env 1 Hot Dry Tucson
Env 2 Hot Humid Tampa
Env 3 Very Hot Humid Honolulu
Env 4 Warm Dry El Paso
Env 5 Cool Marine Seattle
Env 6 Mixed Humid New York

Table 3: Environment configurations

Robust individual Q-networks. Each agent employs a recurrent Q-network (Hausknecht & Stone,
2015), encoding its local observation concatenated with the previous action (one-hot). Features pass
through a fully connected layer with ReLU, followed by a single-layer LSTM (hidden size 64). The
final hidden state is projected into Q-values. We optimize with RMSprop (lr = 5× 10−4).

Mixing networks (QMIX). Following TorchRL (Bou et al., 2023), we use hypernetworks to
generate state-dependent mixing weights while enforcing monotonicity. Per-agent Q-values are
embedded, passed through ELU, and projected to a scalar joint Q. A state-conditioned bias is added
via a two-layer MLP. Optimizer: RMSprop (lr = 5× 10−4).
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QTRAN Networks. We implement joint action-value and state-value networks as in Son et al.
(2019). The joint action is encoded by concatenated one-hots, projected with ReLU, and optionally
combined with agent features. The state-value network processes the global state and summed agent
features in parallel, concatenates them, and outputs a scalar. Both use Adam (lr = 10−3).

Dual networks (TV uncertainty). The global state and joint action (concatenated one-hots) are
separately embedded via ReLU MLPs, concatenated, and passed through another ReLU layer before
a final linear projection to a scalar. Optimizer: Adam (lr = 10−3).

GroupDR training. GroupDR first fits a contextual-bandit-based worst-case reward estimator to
estimate the worst-case reward, using data from Env 1 to Env 5 collected under a VDN-trained
behavior policy. Using this estimator, we then train the individual Q-networks by randomly sampling
episodes from Env 1 to Env 5. (For fairness, Env 6 is never used for training by any method.)

Normalized Return. Because the reward in BuildingEnv is negative, we normalize the returns
to [0, 1] by the following transformation:

Normalized return =
Return + 9000

9000
. (33)

Experiment 1: climatic shifts. During training, we train each algorithm in Env 1 by sampling
episodes from Day 1 to Day 200. During evaluation, we evaluate each algorithm in Env 1 to Env 6,
by sampling 50 episodes from Day 1 to Day 200 in each environment. This setup demonstrates
distribution shift induced by climate differences.

Experiment 2: seasonal shifts. During training, we train each algorithm in Env 1 by sampling
episodes from Day 1 to Day 200. During evaluation, we evaluate each algorithm in Env 1, by
sampling 50 episodes from Day 400 to Day 600 in each environment. This setup demonstrates
distribution shift induced by seasonality within the same location.

Experiment 3: climatic and seasonal shifts. During training, we train each algorithm in Env 1 by
sampling episodes from Day 1 to Day 200. During evaluation, we evaluate each algorithm in Env 6,
by sampling 50 episodes from Day 400 to Day 600 in each environment. This setup demonstrates the
combined effects of climate and seasonal shifts.

G DISCLOSURE OF LLM USAGE

To improve clarity and readability, we used a large language model (LLM) to assist in polishing the
writing. The LLM was only employed for language refinement (e.g., grammar, style, and conciseness)
and was not involved in designing methods, experiments, or drawing conclusions.
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