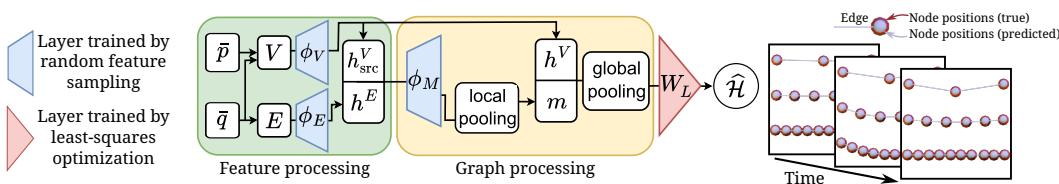


000 001 002 003 004 005 RAPID TRAINING OF HAMILTONIAN GRAPH 006 NETWORKS USING RANDOM FEATURES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

011 Learning dynamical systems that respect physical symmetries and constraints re-
012 mains a fundamental challenge in data-driven modeling. Integrating physical laws
013 with graph neural networks facilitates principled modeling of complex N-body
014 dynamics and yields accurate and permutation-invariant models. However, training
015 graph neural networks with iterative, gradient-descent-based optimization algo-
016 rithms (e.g., Adam, RMSProp, LBFGS) often leads to slow training, especially for
017 large, complex systems. In comparison to 15 different optimizers, we demonstrate
018 that Hamiltonian Graph Networks (HGN) can be trained 150-600x faster—but with
019 comparable accuracy—by replacing iterative optimization with random feature-
020 based parameter construction. We show robust performance in diverse simulations,
021 including N-body mass-spring and molecular systems in up to 3 dimensions and
022 10,000 particles with different geometries, while retaining essential physical invar-
023 iances with respect to permutation, rotation, and translation. Our proposed approach
024 is benchmarked using a NeurIPS 2022 Datasets and Benchmarks Track publication
025 to further demonstrate its versatility. We reveal that even when trained on minimal
026 8-node systems, the model can generalize in a zero-shot manner to systems as large
027 as 4096 nodes without retraining. Our work challenges the dominance of iterative
028 gradient-descent-based optimization algorithms for training neural network models
029 for physical systems.
030



031
032
033
034
035
036
037 Figure 1: We propose an efficient training method for Hamiltonian graph networks using random
038 feature sampling and linear solvers (left, also see Figure 3). The HGN captures ground truth dynamics
039 of physical systems (shown: chain of 10 nodes, trained on 5) and trains up to 600x faster than
040 State-Of-The-Art (SOTA) optimizers.
041
042
043
044

1 INTRODUCTION

045 **Learning from data** requires careful design in several key areas: the data, the model, and the training
046 processes. To enable the model to generalize beyond the training set, it is important to incorporate a
047 set of inductive biases into these processes. **When approximating physical systems**, it is beneficial
048 to include physical priors to accurately capture the system’s characteristics, including its dynamics
049 and the fundamental physical laws (Tenenbaum et al., 2000; Chang et al., 2016; Watters et al.,
050 2017; de Avila Belbute-Peres et al., 2018; Sharma & Fink, 2025). Consequently, many architectural
051 designs are rooted in modeling physical frameworks, such as Hamiltonian mechanics (Bertalan et al.,
052 2019; Greydanus et al., 2019), Lagrangian mechanics (Cranmer et al., 2019; Lutter et al., 2019;
053 Ober-Bloebaum & Offen, 2023), port-Hamiltonian systems (Desai et al., 2021; Roth et al., 2025),
and GENERIC (Hernández et al., 2021; Lee et al., 2021; Zhang et al., 2022b; Gruber et al., 2025).

054 **Graph networks** have useful inductive biases such as locality and permutation invariance (Corso
 055 et al., 2024), which are desirable for many interconnected, complex systems observed in nature.
 056 Thus, for many applications in natural sciences, a graph network model is a suitable choice. The
 057 key aspects of modern graph networks include neural message passing (Gilmer et al., 2017) and
 058 encoding additional local information into the system (Corso et al., 2024; Schlichtkrull et al., 2018;
 059 Brockschmidt, 2020). In physics, graph networks have been employed to analyze data from the Large
 060 Hadron Collider (DeZoort et al., 2023), model mechanical systems (Zhao et al., 2024), and fluid
 061 dynamics (Xue et al., 2022; Peng et al., 2023; Li et al., 2024).

062 Efficient and robust training of graph networks on large systems for natural and life sciences is an
 063 active area of research. Despite the advantages of using graphs for physical N-body systems, their
 064 **training is reportedly slow due to gradient-descent-based iterative optimization** (Kose & Shen,
 065 2023; Shukla et al., 2022; Vignac et al., 2020; Kumar et al., 2023; Zhao & Cheah, 2025; Marino et al.,
 066 2025). These challenges become even more pronounced when a numerical integrator is incorporated
 067 into the model architecture (Xiong et al., 2021). Furthermore, physics-informed models are often
 068 sensitive to the selection of hyperparameters (Shukla et al., 2022), which increases the challenges
 069 posed by slow iterative training.

070 Recently **random feature (RF) networks** have been shown to be promising for approximating
 071 physical systems (Fabiani et al., 2021; Datar et al., 2024; Rahma et al., 2024; Bolager et al., 2024;
 072 Fabiani et al., 2025; Galaris et al., 2022). However, to the best of our knowledge, random features have
 073 not been used to train graph networks for modeling physical systems. Recent work on RF-Hamiltonian
 074 neural networks (RF-HNNs) is promising (Rahma et al., 2024), where RF-HNNs are trained without
 075 using iterative algorithms. The authors demonstrate very low approximation errors, but only for very
 076 small systems and without leveraging the graph structure. In this paper, we introduce an efficient and
 077 accurate training method that utilizes random features for Hamiltonian Graph Networks (RF-HGNs,
 078 see Figure 1). Our main contributions are as follows.

- 079 • We **introduce Random Feature Hamiltonian Graph Networks**, combining random sam-
 080 pling with graph-based physics-informed models for the first time, and show how one can
 081 incorporate translation, rotation, and permutation invariance as well as knowledge about the
 082 physical system (see Section 3).
- 083 • We provide a **much faster and more efficient alternative to gradient-descent-based**
 084 **iterative optimization algorithms** for training that avoids challenges related to slow, non-
 085 convex optimization and vanishing or exploding gradients (see Section 4).
- 086 • We perform a **comprehensive optimizer comparison** with 15 different optimizers and
 087 demonstrate that random feature-based parameter construction offers up to 600 times faster
 088 training for HGNs, without sacrificing predictive performance (see Section 4.1). The
 089 demonstrations are performed on challenging benchmark problems, including mass-spring
 090 and molecular dynamics systems.
- 091 • We **demonstrate strong zero-shot generalization**, with models trained on graphs with tens
 092 of nodes accurately predicting dynamics on graphs with thousands of nodes (see Section 4.2).

095 2 RELATED WORK

096 **Training graph networks:** A graph structure allows for modeling a wide range of processes due to
 097 structural properties or underlying causal relationships. For many problems, the best way to achieve
 098 good performance is by using a large, high-quality dataset to train a large model. In such settings,
 099 training can be significantly slowed down due to the computational effort needed for backpropagation.
 100 Improvements can be achieved with specific sampling methods for the training data (Nagarajan &
 101 Raghunathan, 2023; Zhang et al., 2022a; Zhou et al., 2022; Kaler et al., 2022; Zhang et al., 2021;
 102 Lin et al., 2020), graph coarsening (Hashemi et al., 2024; Kumar et al., 2023; Jin et al., 2022a;b;
 103 Bravo Hermsdorff & Gunderson, 2019), or hardware acceleration(Shao et al., 2024; Gupta et al.,
 104 2024; Zhu et al., 2025; Wan et al., 2023; Yang et al., 2022; Kaler et al., 2022; Wang et al., 2021; Cai
 105 et al., 2021; Lin et al., 2020). Nevertheless, graph networks for physics still face challenges during
 106 training due to a need for high accuracy in the dataset, irregular memory access, load imbalance
 107 during backpropagation (Shukla et al., 2022), and hyperparameter tuning (Schmidt et al., 2021).

108 **Graph networks for physics:** A notable advantage of graph-based models is that they are tractable
 109 for high-dimensional data, assuming that the graph connectivity remains sparse, which is suitable
 110 for many physical systems learned in a data-driven way. Recent work has incorporated graph neural
 111 networks into their model architectures for approximating physical systems (Pfaff et al., 2021;
 112 Sanchez-Gonzalez et al., 2019; Sanchez-Gonzalez et al., 2020; Tierz et al., 2025; Varghese et al.,
 113 2025; Bhatoo et al., 2022; Thangamuthu et al., 2022). However, training a graph network for a
 114 very large number of nodes is challenging; one possible remedy is to partition a large graph and
 115 enable information exchange between partitions, which are trained individually (Nabian et al., 2024).
 116 **Approaches for graph networks for Hamiltonian and Lagrangian systems are used by Thangamuthu**
 117 **et al. (2022); Bhatoo et al. (2022); Bishnoi et al. (2023); these models are typically trained with**
 118 **the Adam optimizer and applied to N-body systems.** Other work addresses the issue of long-range
 119 information loss in large graphs by adding physics-based connections (Yu et al., 2025), yielding
 120 better predictions but not addressing training difficulties that might arise.

121 **Random features for graph networks:** Random features originated with the idea of using a
 122 perceptron by Rosenblatt (1962) and gained traction after theoretical contributions established that
 123 they can lead to accurate approximations (Johnson & Lindenstrauss, 1984; Barron, 1993; Rahimi
 124 & Recht, 2007) at low computational cost. As the machine learning community gains a better
 125 understanding of random features (Rahimi & Recht, 2008; Bolager et al., 2023; Fabiani, 2024), many
 126 new variants are being explored (Zozoulenko et al., 2025; Bolager et al., 2024; Datar et al., 2024;
 127 Rahma et al., 2024). An innovative approach for graph classification problems used a random features
 128 approach and demonstrated competitive accuracy on large classification datasets with a training time
 129 of only a few seconds or minutes (Gallicchio & Micheli, 2020). Such an approach is related to
 130 echo state graph networks (Gallicchio & Micheli, 2010; Wang et al., 2023). Recent work has also
 131 developed graph random features enabling kernel methods on large graphs (Choromanski, 2023; Reid
 132 et al., 2023b;a), leading to a notable reduction of the cubic time-complexity for kernel learning.

3 METHOD

136 **Problem setup:** In this study, we aim to efficiently learn the Hamiltonian of a dynamical system from
 137 observed phase space trajectories, while exploiting the underlying graph structure and incorporating
 138 relevant physical invariances into the model. We consider a target Hamiltonian for an N-body system
 139 on $\mathbb{R}^{2d \cdot N}$, the Euclidean phase-space of dimension $2d \cdot N \in \mathbb{N}$, where d is the spatial dimension. We
 140 denote the generalized position and momentum vectors by $q, p \in \mathbb{R}^{d \cdot N}$, with $q_i, p_i \in \mathbb{R}^d$, denoting
 141 the i^{th} particle's state. We denote by \dot{x} the time derivatives of a trajectory $x(t) : \mathbb{R} \rightarrow \mathbb{R}^k$ for $k \in \mathbb{N}$.
 142 The Hamiltonian is a scalar-valued function $\mathcal{H} : \mathbb{R}^{2d \cdot N} \rightarrow \mathbb{R}$ that describes the system dynamics in
 143 the phase-space through Hamilton's equations (Hamilton, 1834; 1835) given by

$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = J \nabla \mathcal{H}(q, p), \quad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \in \mathbb{R}^{(2d \cdot N) \times (2d \cdot N)}, \quad (1)$$

146 where $I \in \mathbb{R}^{(d \cdot N) \times (d \cdot N)}$ is the identity matrix. We summarize the notation in Appendix A.

147 **Graph representation:** We focus on N-body systems in this work, where the graph representation is
 148 naturally available, e.g., a chain of masses connected via springs. Given $d_V, d_E \in \mathbb{N}$, we write the
 149 system with N nodes as a graph $G = (V, E)$ with a node feature set $V = \{v_i \in \mathbb{R}^{d_V} \mid i = 1, \dots, N\}$
 150 and an edge feature set $E = \{e_{ij} \in \mathbb{R}^{d_E} \mid \forall i, j \text{ such that } A_{ij} = 1\}$, where $A \in \mathbb{R}^{N \times N}$ is the
 151 symmetric adjacency matrix that encodes the node connectivity information. We parametrize the
 152 Hamiltonian function \mathcal{H} with a graph neural network, and then use the trained network to simulate
 153 the physical system by integrating Equation (1) with the symplectic Störmer-Verlet integrator ((Hairer
 154 et al., 2003), also see (Offen & Ober-Bloebaum, 2022)). In contrast to previous work on Hamiltonian
 155 Neural Networks (Bertalan et al., 2019; Greydanus et al., 2019; Dierkes et al., 2023), we train our
 156 networks through random feature sampling algorithms rather than iterative, gradient-descent-based
 157 optimization. Thus, we call our approach “**gradient-descent-free**.”

3.1 ENCODING INVARIANCES

158 The systems we consider are translation-, permutation-, and rotation-invariant, i.e., when the whole
 159 system is shifted, permuted, or rotated, the Hamiltonian stays constant. To construct such invariant

162 representations, we introduce transformed coordinates $\bar{q}, \bar{p} \in \mathbb{R}^{d \cdot N}$ derived from the original phase-
 163 space coordinates $q, p \in \mathbb{R}^{d \cdot N}$ defined in an arbitrary reference frame.
 164

165 **Translation-invariant representation:** To make the position representation (and consequently the
 166 system representation) translation invariant, we normalize the positions by subtracting the mean
 167 $q_i \leftarrow q_i - \frac{1}{N} \sum_{i=1}^N q_i$. We do not make the generalized momenta p translation invariant, as shifting
 168 the momenta would change the total energy of the system in N-body systems, for instance, when the
 169 kinetic energy depends on the norm of p .

170 **Permutation-invariance:** The graph structure and appropriate message passing algorithms inherently
 171 provide us with a system representation that is invariant with respect to node index permutation.
 172

Rotation-invariant representation:

173 Starting from the translation-invariant
 174 representation, we then perform an-
 175 other transformation to make the final
 176 representation also rotation-invariant.
 177 Here, we explain how to encode a
 178 rotation-invariant representation for a
 179 single-body system $N = 1$ and spatial
 180 dimension $d = 2$ for brevity.

181 We construct a new representation in a
 182 local orthonormal basis starting from
 183 the original coordinates $p, q \in \mathbb{R}^2$.
 184 To construct the basis, we choose the
 185 first basis vector as $e_1 = \frac{q_1}{\|q_1\|} \in \mathbb{R}^2$,
 186 where $\|\cdot\|$ denotes the l^2 norm. We
 187 construct a second basis vector $e_2 = $$$

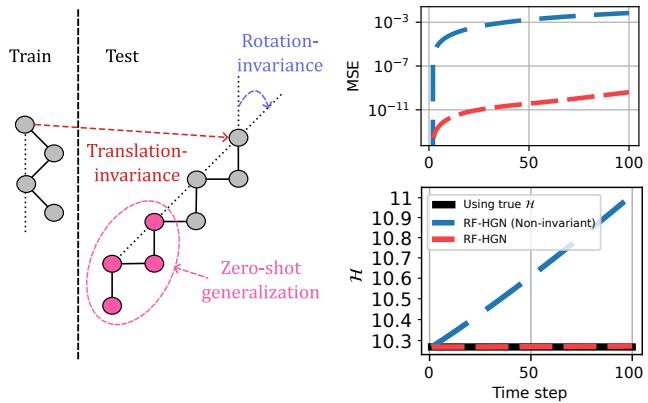


Figure 2: Illustration of train and test N-body system positions showcasing the RF-HGN’s translation- and rotation-invariance, and its zero-shot generalization capability, validated by conserved Hamiltonian and low trajectory prediction errors for the test data (see Appendix B.1 for details).

190 Given a fixed first point, our procedure yields a rotation-invariant representation. One can uniquely
 191 identify the first point, independent of node ordering or orientation, as the one closest to the mean \bar{q} .
 192 In case of ties, we select the point with the smallest angle relative to the first coordinate axis centered
 193 at \bar{q} . The same procedure is applied to obtain rotation-invariant representations of the momenta.
 194 In higher dimensions, when $d > 2$ and $N > 1$, we follow a similar procedure, but construct the
 195 orthogonal bases using Gram-Schmidt orthogonalization instead (see Appendix B.2). Figure 2
 196 demonstrates how translating the N-body system, rotating it, and even adding new nodes without
 197 re-training (zero-shot-generalization), yields low trajectory errors while conserving the Hamiltonian.
 198

3.2 MODEL

204 We now describe each component of the architecture of the Hamiltonian Graph Network (HGN) in
 205 detail (see Figure 3). Please refer to Appendix B.3 for details on the forward pass.
 206

3.2.1 NODE AND EDGE ENCODING

207 **Node features:** For an N-body system with translation- and rotation-invariant position and momenta
 208 representations, we define node features as $v_i = [\bar{q}_i^\top \bar{p}_i^\top]^\top \in \mathbb{R}^{d_V}$, where $d_V = 2d$, for each
 209 $i \in \{1, \dots, N\}$. We define the set $V := \{v_i \mid i = 1, \dots, N\}$ that collects all node encodings.
 210

211 **Edge features:** We define the edge features for each edge (i, j) with $i > j$ as $e_{ij} = $$$

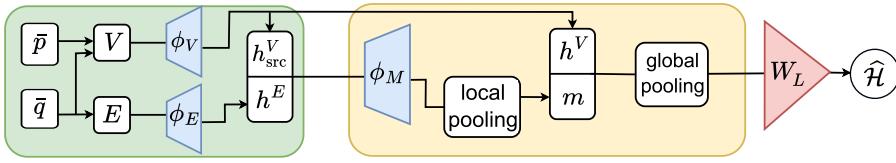


Figure 3: Random-feature Hamiltonian graph neural network architecture. **Left (green box):** Construction of node and edge encodings h_{src}^V and h^E from translation and rotation invariant position q and momenta p representations of an N-body system. **Right (orange box):** Construction of a global encoding for the graph using message passing. In RF-HGN, dense layers (blue) are constructed with random features, and linear layer weights (red) are optimized by solving a linear problem.

canonical direction by always computing edge features from higher to lower-indexed nodes, such that each edge is represented only once and set ($e_{ji} = e_{ij}$). We use the relative displacement vector $\bar{q}_i - \bar{q}_j$ and its norm to represent the direction and distance between connected nodes in the system, in order to capture local geometric structure and pairwise interaction properties.

Input encoding: The constructed node and edge features are then encoded via separate dense layers,

$$h_i^V = \phi_V(v_i) = \sigma(W_V v_i + b_V) \in \mathbb{R}^{d_h} \quad \forall v_i \in V, \text{ and} \quad (2)$$

$$h_{ij}^E = \phi_E(e_{ij}) = \sigma(W_E e_{ij} + b_E) \in \mathbb{R}^{d_h} \quad \forall e_{ij} \in E, \quad (3)$$

where $\phi_V : \mathbb{R}^{d_V} \rightarrow \mathbb{R}^{d_h}$, and $\phi_E : \mathbb{R}^{d_E} \rightarrow \mathbb{R}^{d_h}$ are outputs of dense layers that encode the node and edge features, respectively, with weights $W_V \in \mathbb{R}^{d_h \times d_V}$, $W_E \in \mathbb{R}^{d_h \times d_E}$ and biases $b_V, b_E \in \mathbb{R}^{d_h}$. We denote the activation function (here, softplus or gelu) by σ . Using the symmetric edge features described earlier avoids duplicate memory and computation overhead in the input encoding as well, since we only compute the encoding h_{ij}^E of each undirected edge feature e_{ij} where $i > j$, and use the same encoding for both directions h_{ij}^E and h_{ji}^E .

3.2.2 MESSAGE PASSING AND FINAL LAYER

We perform bidirectional message passing along edges (i, j) , where $A_{ij} = 1$, allowing nodes to aggregate information from their local neighborhoods.

Message construction: Messages are constructed from the encodings of source and edge nodes via a dense layer $\phi_M : \mathbb{R}^{2d_h} \rightarrow \mathbb{R}^{d_M}$ as

$$h_{ij}^M = \phi_M \left(\begin{bmatrix} h_i^V \\ h_{ij}^E \end{bmatrix} \right) = \sigma \left(W_M \begin{bmatrix} h_i^V \\ h_{ij}^E \end{bmatrix} + b_M \right) \in \mathbb{R}^{d_M}, \quad (4)$$

with weights $W_M \in \mathbb{R}^{d_M \times 2d_h}$ and biases $b_M \in \mathbb{R}^{d_M}$.

Message passing (local pooling): Each node aggregates incoming messages using a permutation-invariant operation (here, summation) $m_j = \sum_{i \in \mathcal{N}_j} h_{ij}^M$, where \mathcal{N}_j is the set of neighbors of node j (source of incoming edges to j where $A_{ij} = 1$).

Graph-level representation (global pooling): All node embeddings and aggregated messages are pooled to form a global encoding of the network, such that

$$h_G = \sum_{j=1}^N \begin{bmatrix} h_j^V \\ m_j \end{bmatrix} \in \mathbb{R}^{d_L}, \text{ where } d_L = d_h + d_M. \quad (5)$$

Linear layer: The graph representation is linearly mapped to a scalar value that approximates the conserved value (energy) of the system, such that $\hat{\mathcal{H}} = W_L \cdot h_G + b_L$, where $W_L \in \mathbb{R}^{d_L}$ and $b_L \in \mathbb{R}$ denote weights and bias of the linear layer, respectively. Without loss of generality, we omit the bias term, as it acts only as an integration constant and does not affect the dynamics $\frac{\partial \mathcal{H}}{\partial q}$ and $\frac{\partial \mathcal{H}}{\partial p}$, which are our primary interest. We assume this constant is known to align the model's conserved quantity with the true Hamiltonian \mathcal{H} in all examples.

270 3.3 TRAINING
271272
273 We now describe the central idea of this paper – our training algorithm, where we use random
274 feature sampling techniques instead of gradient-descent-based, iterative optimization algorithms. In
275 particular, we discuss how to compute dense and linear layer parameters of the network.276 **Dense layer parameters:** We compute the weights and biases $W_V, W_E, W_M, b_V, b_E, b_M$ of all the
277 dense layers (ϕ_V, ϕ_E, ϕ_M) using random sampling algorithms. Specifically, we use two sampling
278 approaches here: Extreme Learning Machines (ELM) (Schmidt et al., 1992; Pao & Takefuji, 1992;
279 Huang et al., 2004; 2006; Rahimi & Recht, 2008; Zhang et al., 2012; Leung et al., 2019) and the
280 “Sample Where It Matters” (SWIM) algorithm (see (Bolager et al., 2023)) for unsupervised learning
281 problems (see (Rahma et al., 2024; Datar et al., 2024)). As an illustrative example, we describe
282 how to compute the parameters of the dense layer ϕ_V and use the notation from Equation (2). The
283 parameters of the other dense layers are sampled analogously.284 The **(ELM) RF-HGN** approach is data-agnostic. The weights W_V are sampled from the standard
285 normal distribution, and biases b_V from the standard uniform distribution. The **(SWIM) RF-HGN** ap-
286 proach is data-driven. The network parameters are computed from pairs selected uniformly at random
287 from input data points x_i , where the point coordinates correspond to dense layer inputs. The weight
288 and the bias of the i^{th} neuron in the dense layer are constructed using the input data pair $(x_i^{(1)}, x_i^{(2)})$
289 chosen uniformly at random from all possible pairs, so that $w_i = s_1(x_i^{(2)} - x_i^{(1)})\|x_i^{(2)} - x_i^{(1)}\|^{-2}$
290 and $b_i = -\langle w_i, x_i^{(1)} \rangle - s_2$. Here, (w_i, b_i) are the weight and bias of the i^{th} neuron, and (s_1, s_2) are
291 constants depending on the activation function used in the dense layer (see (Bolager et al., 2023) for
292 an analysis).293 **Linear layer parameters:** After sampling all the dense layer parameters, we compute the optimal
294 parameters for the linear output layer of the network by computing the least squares solution (see
295 (Rahma et al., 2024), but also related work (Bertalan et al., 2019)). For an N -body system, we
296 denote a single input to the RF-HGN by $y \in \mathbb{R}^{2d \cdot N}$ and the output of the global pooling layer by
297 $\Phi(y) \in \mathbb{R}^{d_L}$, and the total number of input data points by M . The linear system that approximately
298 satisfies Hamilton’s equations is then

300
301
302
$$\underbrace{\begin{bmatrix} \nabla \Phi(y_1) & \cdots & \nabla \Phi(y_M) & \Phi(y_0) \\ 0 & \cdots & 0 & 1 \end{bmatrix}^\top}_{Z \in \mathbb{R}^{(2d \cdot N \cdot M + 1) \times (d_L + 1)}} \cdot \underbrace{\begin{bmatrix} W_L^\top \\ b_L \end{bmatrix}}_{\theta_L \in \mathbb{R}^{d_L + 1}} \stackrel{!}{=} \underbrace{\begin{bmatrix} J^{-1} \dot{y}_1 & \cdots & J^{-1} \dot{y}_M & \mathcal{H}(y_0) \end{bmatrix}^\top}_{u \in \mathbb{R}^{2d \cdot N \cdot M + 1}}. \quad (6)$$

303
304
305

306
307 Equation (6) is solved for the linear layer parameters W_L and b_L using l^2 regularization. The
308 regularization constant in most examples was chosen very small (see Appendix D). We assume the
309 true Hamiltonian value $\mathcal{H}(y_0)$ to be known for a single data point to fix the integration constant
310 b_L . We assume there is no external force acting on the system during training, such that the
311 total energy is conserved. However, we can easily add an external force while evaluating the
312 trajectory during inference. In the computational experiments, we mostly train with explicitly
313 given time derivatives \dot{x} . We demonstrate training the model purely from time series data as
314 part of the benchmark experiments (Section 4.4). Equation (6) results in a convex optimization
315 problem, $[W_{L+1}^\top b_{L+1}]^\top = \arg \min_{\theta_L} \|Z\theta_L - u\|^2$, which can be solved using efficient least-squares
316 algorithms (Meng et al., 2014b).317 **Runtime and memory complexity:** During training, the sampling of dense layer parameters and
318 gradient computation are fast, with the primary run-time bottleneck being the least squares solve
319 (Equation (6)). Assuming $d_L \ll K = 2d \cdot N \cdot M$ (which is always the case in our experiments),
320 the total run-time complexity is $\mathcal{O}(Kd_L^2)$. This highlights an important feature of our approach:
321 training time scales linearly with data size M , the number of particles N , and the spatial dimension
322 d , given fixed settings for other variables. The memory complexity during training is $\mathcal{O}(MN_e)$ and
323 thus also scales linearly with the number of edges, and dataset size (see (Bolager et al., 2023) and
Appendix B.4 for details).

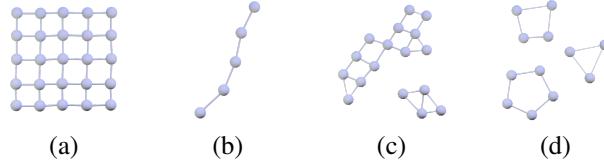
324 4 COMPUTATIONAL EXPERIMENTS

326 We evaluate our method on mass-spring and molecular dynamics systems with two and three degrees
 327 of freedom (2D and 3D), as illustrated in Figure 4. We provide further details on the used datasets,
 328 setup, and hardware in Appendix C, Appendix D, and Appendix E, respectively. We additionally
 329 discuss hyperparameter tuning and **ablation studies of increasing feature widths and number of**
 330 **message passes in Appendix F**, test robustness against noise in Appendix H.4, demonstrate batch-
 331 wise training in Appendix H.5, and provide further random feature benchmarks in Appendix H.6. For
 332 $x_{\text{true}}, x_{\text{pred}} \in \mathbb{R}^m$ for $m \in \mathbb{N}$, we define the relative error as $\|x_{\text{true}} - x_{\text{pred}}\|_2 / \|x_{\text{true}}\|_2$.

334 4.1 BENCHMARKING AGAINST SOTA OPTIMIZERS

336 Table 1: Results of training the HGN architecture for the 3D lattice system (see Figure 4 (a)) with
 337 different optimizers. Results show **mean (min, max)** over three runs on the same GPU hardware.

338 Optimizer	339 Test MSE	340 Train time [s]	341 Speed-up
342 RF-HGN (ours)	8.95e-5 (6.96e-5, 1.13e-4)	343 0.16 (0.13, 0.22)	-
LBFGS (Liu & Nocedal, 1989)	344 3.56e-5 (1.21e-5, 7.94e-5)	23.85 (23.71, 23.95)	148.96x
Rprop (Riedmiller & Braun, 1993)	9.59e-4 (7.49e-5, 2.63e-3)	30.84 (30.74, 30.94)	192.62x
RMSprop (Tieleman & Hinton, 2012)	1.09e-3 (2.55e-5, 3.18e-3)	91.62 (91.13, 92.42)	572.24x
Adam (Kingma & Ba, 2015)	2.90e-3 (4.11e-5, 8.53e-3)	91.64 (89.97, 92.66)	572.37x
SGD+momentum (Sutskever et al., 2013)	4.23e-3 (3.81e-3, 4.66e-3)	91.65 (91.14, 92.20)	572.43x
SGD (Robbins, 1951)	2.36e-2 (1.85e-2, 2.86e-2)	91.75 (91.51, 91.91)	573.07x
Adagrad (Duchi et al., 2011)	2.58e-2 (2.88e-3, 7.05e-2)	92.03 (91.58, 92.47)	574.84x
AdamW (Loshchilov & Hutter, 2019)	2.91e-3 (4.30e-5, 8.53e-3)	92.15 (91.86, 92.31)	575.59x
Adamax (Kingma & Ba, 2015)	1.85e-3 (1.55e-4, 4.32e-3)	92.33 (92.07, 92.69)	576.68x
Adadelta (Zeiler, 2012)	8.11e-3 (1.49e-3, 1.96e-2)	92.60 (92.25, 93.07)	578.39x
Radam (Liu et al., 2021)	1.69e-3 (5.36e-5, 4.75e-3)	93.00 (92.75, 93.42)	580.88x
Nadam (Dozat, 2016)	9.11e-4 (4.08e-5, 2.61e-3)	93.42 (92.88, 93.80)	583.54x
Averaged SGD (Gower et al., 2019)	2.36e-2 (1.85e-2, 2.86e-2)	94.50 (94.01, 94.78)	590.26x
Adafactor (Shazeer & Stern, 2018)	2.41e-3 (1.06e-3, 4.71e-3)	96.36 (95.67, 96.88)	601.92x



351
 352 Figure 4: Graphs considered in the experiments: **(a)** 3D
 353 lattice (nodes arranged on a 2D grid, moving in a 3D space -
 354 see Section 4.1 and Section 4.2), **(b)** an open chain (nodes
 355 moving in 2D space - see Section 4.2 and 4.3), **(c)** molecules
 356 interacting through Lennard-Jones potential (nodes moving
 357 in 2D space with dynamic edges - see section Section 4.2),
 358 and **(d)** 2D closed chain (nodes moving in 2D space - see
 359 Section 4.4).

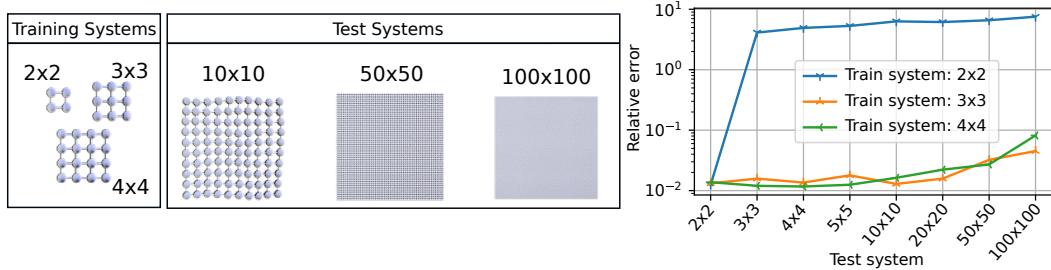
360 by training time. The hyperparameters are tuned for each optimizer separately, and early stopping
 361 was used for all iterative approaches. **Our proposed training method significantly outperforms all**
 362 **iterative approaches in terms of training time** by a factor of **148 up to 601**, and is only slightly
 363 less accurate compared to the LBFGS method (a second-order optimizer). Section 4.4 includes
 364 comparisons for other graph network architectures on benchmark datasets, where we observed similar
 365 results.

366 4.2 ZERO-SHOT GENERALIZATION AND COMPARISON OF RANDOM FEATURE METHODS

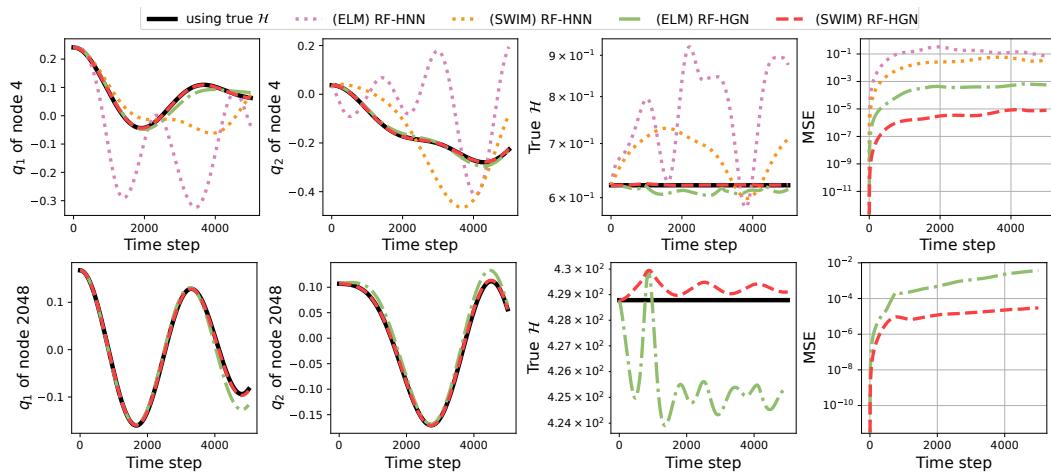
367 We now study zero-shot generalization, where we train an RF-HGN on small systems of size 2x2, 3x3,
 368 and 4x4, and test on systems going from 2x2 up to 100x100. Figure 5 shows that we can accurately
 369 approximate a Hamiltonian for much smaller systems with 3x3 nodes and reliably predict it with
 370 extremely large systems of size 100x100 without retraining. A 2x2 system is an edge case where all
 371

372 The goal of this experiment is to
 373 demonstrate the efficiency of our training
 374 approach in comparison with the
 375 conventional training methods that
 376 rely on SOTA iterative optimization
 377 algorithms. To this end, we consider
 378 all of the existing optimizers available
 379 in PyTorch (Paszke et al., 2019) as the
 380 current SOTA iterative training proce-
 381 dures. In this experiment, the target
 382 function is the Hamiltonian of a gen-
 383 eralized $N_x \times N_y$ -body lattice mass-
 384 spring system with a spatial dimen-
 385 sion $d = 3$ given by Equation (C.7).
 386 Table 1 lists the results of training the
 387 HGN architecture for the lattice sys-
 388 tem with different optimizers, sorted
 389 by training time.

378 nodes have only two edges, lacking the nodes with four edges, as in the test data, explaining the poor
 379 zero-shot generalization.
 380



390 Figure 5: Illustration of accurate zero-shot generalization for 3D lattice (see Figure 4 (a)): Training on
 391 smaller systems (left) enables accurate predictions (right) on extremely large test systems (middle).



409 Figure 6: Illustration of position trajectories (first two columns), their true Hamiltonian values (third
 410 column), and MSE (fourth column) over time from models trained on a system with eight nodes on
 411 the 2D open chain (see Figure 4 (b)). Top row: Results from RF-HNN and RF-HGN architectures are
 412 visualized along with the ground truth. A system of the same size for training and testing is used (2^3
 413 nodes). Bottom row: Results from RF-HGN architectures and ground truth for a zero-shot test case
 414 with a system size of 2^{12} nodes (trained on 2^3 nodes).

415 We consider another example of an N-body chain mass-spring system in a 2D space (eq. (C.8)).
 416 Figure H.16 shows that by training on a much smaller system with 2^3 nodes, RF-HGN trained with
 417 ELM and SWIM results in very low errors for systems as large as 2^{12} nodes. This demonstrates
 418 robust and strong zero-shot generalization in graph-based architectures, with training using SWIM
 419 outperforming ELM by approximately an order of magnitude. Since HNNs are not graph-based
 420 architectures, they have to be re-trained for each system, and even after re-training, they perform
 421 much poorly in comparison with graph-based architectures (by 1-2 orders of magnitude). We also
 422 observe that the graph-based architectures (RF-HGN) are slower to train compared to their respective
 423 counterparts trained with fully connected networks (RF-HNN), but are more accurate by 1-2 orders
 424 of magnitude, especially for large systems, even without re-training.

425 Figure 6 (top row) shows that the trajectories evaluated with the RF-HGN accurately match the true
 426 ones closely while approximately conserving the Hamiltonian, unlike RF-HNN. The RF-HGN trained
 427 with SWIM, in particular, outperforms the one trained with ELM by roughly two orders of magnitude.
 428 In the bottom row of Figure 6, we show zero-shot results, which are limited to only the graph
 429 networks. Our (SWIM) RF-HGN is robust and again exhibits a low error, while the ELM-trained
 430 model exhibits deviations from the true Hamiltonian.

431 We now consider another Hamiltonian, using the Lennard-Jones potential (eq. (C.9)) to investigate
 432 generalization properties to different geometries. First, a small system with 9 particles was trained

432 with Adam and the random feature methods ELM and SWIM. The accuracy with ELM was poor
 433 (see Figure H.18), and thus the results are omitted in Figure H.19. We speculate that the main reason
 434 for poor performance is the non-isotropic input variables, which makes normal distributions a bad
 435 choice for the weights. The results are given in Table 2, Figure H.19, Table H.32, Table H.33, and
 436 Figure H.18. To evaluate RF-HGN in a more complex scenario, we employed dynamic edge indices
 437 with a cutoff of 2.0, trained our model with 36 particles, and tested with 64 particles to test zero-shot
 438 generalization. We visualize the rollout trajectories in Figure H.20 and Figure H.21, and observe
 439 that SWIM sampling clearly outperformed ELM, while maintaining slightly worse approximation
 440 than the Adam-trained HGN. We note that none of the trainers could reach low approximation errors
 441 ($\sim 10\%$ relative error). To the best of our knowledge, our RF-HGN is the first random feature-based
 442 physics-informed graph network, and can be trained approximately 100 times faster than with the
 443 Adam optimizer at comparable accuracy.
 444

444 Table 2: Molecular dynamics zero-shot evaluation with 9 particles. Mean squared error (MSE)
 445 and relative l^2 error (rel. l^2) are reported together with the true Hamiltonian over the ground-truth
 446 trajectory and the (SWIM) RF-HGN predicted quantity over the rolled-out trajectory.

	T=1	T=25000	T=50000	T=74999	T=99999
q MSE	4.374e-13	7.376e-04	5.061e-03	6.840e-03	1.781e-02
q rel. l^2	4.597e-07	1.898e-02	4.891e-02	5.753e-02	9.413e-02
True \mathcal{H}	-1.233e+01	-1.233e+01	-1.233e+01	-1.233e+01	-1.233e+01
Model $\hat{\mathcal{H}}$	-1.233e+01	-1.164e+01	-1.146e+01	-1.121e+01	-1.061e+01

453 4.3 BENCHMARKING WITH REAL-WORLD POTENTIALS WITH INCREASING COMPLEXITY

454 To further evaluate the applicability of RF-HGN, we experiment with additional potentials from
 455 quantum mechanics (anharmonic oscillator Atkins et al. (2023) and molecular dynamics (the Morse
 456 potential Morse (1929)), and list testing results with an unseen initial condition in Table 3. In addition
 457 to using more complicated potential, we also now apply an external (gravitational) force node-wise
 458 during integration and simulate for a long-time horizon (see Figure H.10, H.12, H.14 for learned
 459 Hamiltonian plots over the trajectory; see Figure H.11, H.13, H.15 snapshot visualization of the
 460 predicted trajectories). The results show that more challenging potentials (non-linear forces) than
 461 the standard mass-spring (linear force) can also be approximated with the RF-HGN model with
 462 reasonable accuracy, compared to the Adam optimizer, still achieving 200-300 \times speed-ups, even
 463 without GPU acceleration. See Table 3 for details, and note that the RF-HGN results are achieved
 464 without extensive hyperparameter tuning (as opposed to Adam).

465 Table 3: Zero-shot (trained with 5 nodes, tested with 10 nodes) test evaluation by solving an unseen
 466 initial condition of a 2D chain (see Figure 4 (b)) using Hamiltonian graph models trained differently.
 467 The system is solved for 10,000 time steps with time step size $\Delta t = 10^{-2}$ with gravitational force
 468 applied during integration, and the last position MSE is reported against the reference solution using
 469 the true Hamiltonian. The results are listed for the standard spring, anharmonic oscillator, and the
 470 Morse potential in that order.

Potential	(Adam) HGN	(ELM) RF-HGN	(SWIM) RF-HGN
$V(r) = \frac{1}{2}\beta r^2$	3.875e-03	2.331e-03	3.408e-05
$V(r) = \frac{1}{2}\beta r^2 + \frac{1}{4}\eta r^4$	4.562e-02	4.324e-02	5.232e-04
$V(r) = D(1 - \exp(-ar))^2$	8.893e-02	7.398e-04	1.218e-03

476 4.4 BENCHMARKING AGAINST SOTA ARCHITECTURES

477 The goal of this benchmark is to compare the results of our model with the existing state-of-the-art
 478 graph-based network architectures used to model physical systems. The Adam optimizer (Kingma &
 479 Ba, 2015), widely regarded as the SOTA optimizer for physics-informed GNNs (Kumar et al., 2023;
 480 Thangamuthu et al., 2022), is used as the default in our comparisons. We use the dataset and code
 481 from Thangamuthu et al. (2022), introduced at the NeurIPS 2022 Datasets and Benchmarks Track. In
 482 line with the other experiments, we observe excellent performance on the benchmark spring systems
 483 (Figure 4, d) with orders of magnitude faster training times while maintaining a comparable accuracy.
 484 Training times are reported in Table 4. In our evaluations, certain specialized architectures such as
 485 Lagrangian Graph Networks (LGN) (Bhattoo et al., 2022) occasionally exhibit instability and diverge

486 on test trajectories, whereas our model maintains robust performance. For a detailed problem setup,
 487 accuracy comparison, and the architectures, please see Appendix G.
 488

489
 490 Table 4: Comparison of training times (in seconds) for RF-HGN optimized using SWIM to existing
 491 physics-informed graph models optimized with Adam on a benchmark dataset from Thangamuthu
 et al. (2022) on a 2D closed chain (see Figure 4 (d)).

System size	(SWIM) HGN	RF-HGN	FGNN	FGNODE	GNODE	LGN	LGNN	HGN	HGNN
$N = 3$	2.51	406.14	380.35	2367.37	12534.81	7225.88	1288.08	3568.12	
$N = 4$	3.87	475.24	430.32	2499.04	20536.78	6259.58	1370.14	4021.59	
$N = 5$	5.42	536.27	520.54	2600.31	53148.24	8774.59	1676.78	4380.46	

492 5 CONCLUSION

501 We propose a training algorithm for Hamiltonian graph networks via rapid random feature sampling
 502 and linear system solvers. Our approach completely avoids slow, iterative gradient-descent-based
 503 optimization, which is especially challenging in the graph network and the physics-informed settings.
 504 We demonstrate our approach on chain, lattice, and molecular systems in up to three spatial dimensions,
 505 encompassing N-body systems. By incorporating translation, rotation, and index-permutation
 506 invariances, we extend random feature methods to graph-based Hamiltonian network architectures.
 507 Compared to 15 optimizer baselines, our method offers dramatic speedups (100 \times to 1000 \times) while
 508 achieving competitive accuracy in 3D physical systems. Remarkably, training on 3×3 systems
 509 suffices to accurately predict dynamics in systems of size 100×100 , demonstrating strong zero-shot
 510 generalization capabilities. With this generalization from such small-scale training systems, one can
 511 deploy models without needing to re-train on full-scale data, enabling fast prototyping.

512 **Limitations and future work:** For very small graphs, the HNN architecture is often faster to train
 513 than a graph-based approach, making it a better choice than HGN in these cases. Generalization
 514 capabilities of the HGN models are typically limited to the same type of graphs, i.e., models trained
 515 on chains (edge degrees up to two) cannot be used to predict dynamics of lattices (edge degrees
 516 up to four) (Corso et al., 2024). **We observed similar challenges when using dynamic edges in the**
 517 **molecular dynamics examples for all optimizers. Our approach does not easily generalize to other**
 518 **graph neural network architectures (e.g., convolution or self-attention on the individual node features).**
 519 In future work, we intend to extend this work by employing multiple message passing layers and
 520 deeper architectures where random feature boosting might help (Zozoulenko et al., 2025).

521 **Ethics statement:** We demonstrate that data-driven construction of random features can signifi-
 522 cantly outperform many SOTA optimizers in terms of accuracy and training time. The tremen-
 523 dously increased training speeds we report may also speed up the development of nefarious and even dan-
 524 gerous applications. Similar to all HGN and HNN models, our specific training method is not designed
 525 for this purpose. However, specific bad intent as well as significant further development would be
 526 required for this to happen. We hope that, instead, our work has a profound positive societal impact
 527 in the future, because training such accurate models from data is important in many sciences as well
 528 as in engineering – but has been slow up to now, due to the difficulties in training.

529 **Reproducibility statement:** We provide details on the used datasets, model setup with hyperpa-
 530 rameters, and hardware details in Appendix C, Appendix D, and Appendix E, respectively for all the
 531 numerical experiments discussed in the main text and in the appendix. In the supplementary materials
 532 we provide further instructions in a README .md on how to reproduce all results in the form of tables
 533 and plots. Our codebase will be made open-source upon acceptance.

536 537 REFERENCES

538 Peter William Atkins, R George Ratcliffe, Julio De Paula, and Mark Wormald. *Physical chemistry*
 539 *for the life sciences*. Oxford University Press, 2023.

- 540 A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE*
 541 *Transactions on Information Theory*, 39(3):930–945, May 1993. ISSN 0018-9448, 1557-9654.
 542 doi: 10.1109/18.256500.
- 543
- 544 Tom Bertalan, Felix Dietrich, Igor Mezic, and Ioannis G. Kevrekidis. On learning hamiltonian
 545 systems from data. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 29(12), 2019.
- 546 Ravinder Bhattoo, Sayan Ranu, and N M Anoop Krishnan. Learning articulated rigid body dynamics
 547 with lagrangian graph neural network. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
 548 K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp.
 549 29789–29800. Curran Associates, Inc., 2022.
- 550
- 551 Suresh Bishnoi, Ravinder Bhattoo, Jayadeva, Sayan Ranu, and N. M. Anoop Krishnan. Discovering
 552 Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks, July 2023.
- 553 Erik L Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of
 554 deep neural networks. In *Advances in Neural Information Processing Systems*, volume 36, pp.
 555 63075–63116. Curran Associates, Inc., 2023.
- 556
- 557 Erik Lien Bolager, Ana Cukarska, Iryna Burak, Zahra Monfared, and Felix Dietrich. Gradient-free
 558 training of recurrent neural networks. *arXiv preprint arXiv:2410.23467*, 2024.
- 559 Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-preserving graph
 560 sparsification and coarsening. *Advances in Neural Information Processing Systems*, 32, 2019.
- 561
- 562 Marc Brockschmidt. GNN-FiLM: Graph neural networks with feature-wise linear modulation.
 563 In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on*
 564 *Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 1144–1152.
 565 PMLR, July 2020.
- 566
- 567 Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. Dgcl: an efficient commu-
 568 nication library for distributed gnn training. In *Proceedings of the Sixteenth European Conference*
 569 *on Computer Systems*, EuroSys ’21, pp. 130–144, New York, NY, USA, 2021. Association for
 570 Computing Machinery. ISBN 9781450383349. doi: 10.1145/3447786.3456233.
- 571
- 572 Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
 573 object-based approach to learning physical dynamics. *arXiv*, 2016.
- 574
- 575 Krzysztof Marcin Choromanski. Taming graph kernels with random features. In Andreas Krause,
 576 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
 577 (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of
 578 *Proceedings of Machine Learning Research*, pp. 5964–5977. PMLR, July 2023.
- 579
- 580 Gabriele Corso, Hannes Stark, Stefanie Jegelka, Tommi Jaakkola, and Regina Barzilay. Graph neural
 581 networks. *Nature Reviews Methods Primers*, 4(1):1–13, March 2024. ISSN 2662-8449. doi:
 582 10.1038/s43586-024-00294-7.
- 583
- 584 Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
 585 Lagrangian neural networks. In *ICLR 2020 Workshop on Integration of Deep Neural Models and*
 586 *Differential Equations*, 2019.
- 587
- 588 Chinmay Datar, Taniya Kapoor, Abhishek Chandra, Qing Sun, Iryna Burak, Erik Lien Bolager, Anna
 589 Veselovska, Massimo Fornasier, and Felix Dietrich. Solving partial differential equations with
 590 sampled neural networks. *arXiv preprint arXiv:2405.20836*, 2024.
- 591
- 592 Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter. End-
 593 to-end differentiable physics for learning and control. *Advances in neural information processing*
 594 *systems*, 31, 2018.
- 595
- 596 Shaan A Desai, Marios Mattheakis, David Sondak, Pavlos Protopapas, and Stephen J Roberts. Port-
 597 hamiltonian neural networks for learning explicit time-dependent dynamical systems. *Physical*
 598 *Review E*, 104(3):034312, 2021.

- 594 Gage DeZoort, Peter W Battaglia, Catherine Biscarat, and Jean-Roch Vlimant. Graph neural networks
 595 at the large hadron collider. *Nature Reviews Physics*, 5(5):281–303, 2023.
 596
- 597 Eva Dierkes, Christian Offen, Sina Ober-Blöbaum, and Kathrin Flaßkamp. Hamiltonian neural
 598 networks with automatic symmetry detection. *Chaos: An Interdisciplinary Journal of Nonlinear
 599 Science*, 33(6), 2023.
- 600 Timothy Dozat. Incorporating Nesterov momentum into Adam. *Proceedings of the 4th International
 601 Conference on Learning Representations, Workshop Track*, May 2016.
 602
- 603 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 604 stochastic optimization. *Journal of Machine Learning Research*, 12(61):2121–2159, 2011.
 605
- 606 Gianluca Fabiani. Random Projection Neural Networks of Best Approximation: Convergence theory
 607 and practical applications, February 2024.
 608
- 609 Gianluca Fabiani, Francesco Calabrò, Lucia Russo, and Constantinos Siettos. Numerical solution
 610 and bifurcation analysis of nonlinear partial differential equations with extreme learning machines.
 611 *Journal of Scientific Computing*, 89(2):44, November 2021. ISSN 0885-7474, 1573-7691. doi:
 10.1007/s10915-021-01650-5.
 612
- 613 Gianluca Fabiani, Ioannis G. Kevrekidis, Constantinos Siettos, and Athanasios N. Yannacopoulos.
 614 RandONets: Shallow networks with random projections for learning linear and nonlinear operators.
 615 *Journal of Computational Physics*, 520:113433, January 2025. ISSN 00219991. doi: 10.1016/j.jcp.2024.113433.
 616
- 617 David Chin-Lung Fong and Michael Saunders. Lsmr: An iterative algorithm for sparse least-squares
 618 problems. *SIAM Journal on Scientific Computing*, 33(5):2950–2971, 2011.
 619
- 620 Evangelos Galaris, Gianluca Fabiani, Ioannis Gallos, Ioannis Kevrekidis, and Constantinos Siettos.
 621 Numerical Bifurcation Analysis of PDEs From Lattice Boltzmann Model Simulations: A Parsi-
 622 monious Machine Learning Approach. *Journal of Scientific Computing*, 92(2):34, August 2022.
 623 ISSN 0885-7474, 1573-7691. doi: 10.1007/s10915-022-01883-y.
 624
- 625 Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In *The 2010 international joint
 626 conference on neural networks (IJCNN)*, pp. 1–8. IEEE, 2010.
 627
- 628 Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural networks. In *Proceedings of the
 629 AAAI conference on artificial intelligence*, volume 34, pp. 3898–3905, 2020.
 630
- 631 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
 632 message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), *Proceedings
 633 of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine
 634 Learning Research*, pp. 1263–1272. PMLR, August 2017.
 635
- 636 Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
 637 Richtarik. Sgd: General analysis and improved rates, 2019.
 638
- 639 Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In H. Wallach,
 640 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural
 641 Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
 642
- 643 Anthony Gruber, Kookjin Lee, Haksoo Lim, Noseong Park, and Nathaniel Trask. Efficiently
 644 parameterized neural metriplectic systems. In *The Thirteenth International Conference on Learning
 645 Representations*, 2025.
 646
- 647 Vipul Gupta, Xin Chen, Ruoyun Huang, Fanlong Meng, Jianjun Chen, and Yujun Yan. Graphscale: A
 648 framework to enable machine learning over billion-node graphs. In *Proceedings of the 33rd ACM
 649 International Conference on Information and Knowledge Management*, CIKM '24, pp. 4514–4521,
 650 New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704369. doi:
 10.1145/3627673.3680021.
 651
- 652 Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration illustrated by
 653 the störmer–verlet method. *Acta numerica*, 12:399–450, 2003.
 654

- 648 William Rowan Hamilton. On a general method in dynamics. *Philosophical Transactions of the*
 649 *Royal Society*, 124:247–308, 1834.
 650
- 651 William Rowan Hamilton. Second essay on a general method in dynamics. *Philosophical Transactions*
 652 *of the Royal Society*, 125:95–144, 1835.
- 653 Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B. Aditya Prakash, and Wei Jin. A
 654 comprehensive survey on graph reduction: Sparsification, coarsening, and condensation, 2024.
 655
- 656 Quercus Hernández, Alberto Badías, David González, Francisco Chinesta, and Elías Cueto. Structure-
 657 preserving neural networks. *Journal of Computational Physics*, 426:109950, 2021.
- 658 Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: a new learning
 659 scheme of feedforward neural networks. In *2004 IEEE international joint conference on neural*
 660 *networks (IEEE Cat. No. 04CH37541)*, volume 2, pp. 985–990, 2004.
- 661
- 662 Guang-Bin Huang, Lei Chen, and Chee Siew. Universal approximation using incremental constructive
 663 feedforward networks with random hidden nodes. *IEEE transactions on neural networks / a*
 664 *publication of the IEEE Neural Networks Council*, 17:879–92, 2006.
- 665 Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
 666 Condensing graphs via one-step gradient matching. In *Proceedings of the 28th ACM SIGKDD*
 667 *Conference on Knowledge Discovery and Data Mining*, KDD '22, pp. 720–730, New York, NY,
 668 USA, 2022a. Association for Computing Machinery. ISBN 9781450393850. doi: 10.1145/
 669 3534678.3539429.
- 670 Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozan Liu, Jiliang Tang, and Neil Shah. Graph condensation
 671 for graph neural networks. In *International Conference on Learning Representations*, 2022b. URL
 672 <https://openreview.net/forum?id=WLEx3Jo4QaB>.
 673
- 674 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
 675 In Richard Beals, Anatole Beck, Alexandra Bellow, and Arshag Hajian (eds.), *Contemporary*
 676 *Mathematics*, volume 26, pp. 189–206. American Mathematical Society, Providence, Rhode Island,
 677 1984. ISBN 978-0-8218-5030-5 978-0-8218-7611-4. doi: 10.1090/conm/026/737400.
- 678 Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao Schardl, Charles E.
 679 Leiserson, and Jie Chen. Accelerating training and inference of graph neural networks with fast
 680 sampling and pipelining. In D. Marculescu, Y. Chi, and C. Wu (eds.), *Proceedings of Machine*
 681 *Learning and Systems*, volume 4, pp. 172–189, 2022.
- 682
- 683 D. P. Kingma and L. J. Ba. Adam: A Method for Stochastic Optimization. In *International Conference*
 684 *on Learning Representations ICLR 2015*, 2015.
- 685 Oyku Deniz Kose and Yanning Shen. Fast&fair: Training acceleration and bias mitigation for
 686 GNNs. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=nOk4XEB7Ke>.
 687
- 688 Manoj Kumar, Anurag Sharma, Shashwat Saxena, and Sandeep Kumar. Featured graph coarsening
 689 with similarity guarantees. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 690 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International*
 691 *Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp.
 692 17953–17975. PMLR, July 2023.
- 693
- 694 Kookjin Lee, Nathaniel Trask, and Panos Stinis. Machine learning structure preserving brackets
 695 for forecasting irreversible processes. *Advances in Neural Information Processing Systems*, 34:
 696 5696–5707, 2021.
- 697
- 698 Ho Chun Leung, Chi Sing Leung, and Eric Wing Ming Wong. Fault and noise tolerance in the
 699 incremental extreme learning machine. *IEEE Access*, 7:155171–155183, 2019.
- 700 Siye Li, Zhensheng Sun, Yujie Zhu, and Chi Zhang. Physics-constrained and flow-field-message-
 701 informed graph neural network for solving unsteady compressible flows. *Physics of Fluids*, 36(4),
 2024.

- 702 Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. Paragraph: Scaling gnn training
 703 on large graphs via computation-aware caching. In *Proceedings of the 11th ACM Symposium on*
 704 *Cloud Computing*, SoCC '20, pp. 401–415, New York, NY, USA, 2020. Association for Computing
 705 Machinery. ISBN 9781450381376. doi: 10.1145/3419111.3421281.
- 706 Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
 707 *Mathematical programming*, 45(1):503–528, 1989.
- 708 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
 709 Han. On the variance of the adaptive learning rate and beyond, 2021.
- 710 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.
- 711 Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model
 712 prior for deep learning. In *International Conference on Learning Representations*, 2019.
- 713 Antonio Marino, Claudio Pacchierotti, and Paolo Robuffo Giordano. A gated graph neural network
 714 approach to fast-convergent dynamic average estimation. *ACM Trans. Intell. Syst. Technol.*, March
 715 2025. ISSN 2157-6904. doi: 10.1145/3725857. Just Accepted.
- 716 Xiangrui Meng, Michael A Saunders, and Michael W Mahoney. Lsrn: A parallel iterative solver
 717 for strongly over-or underdetermined systems. *SIAM Journal on Scientific Computing*, 36(2):
 718 C95–C118, 2014a.
- 719 Xiangrui Meng, Michael A. Saunders, and Michael W. Mahoney. LSRN: A parallel iterative solver
 720 for strongly over- or underdetermined systems. *SIAM Journal on Scientific Computing*, 36(2):
 721 C95–C118, January 2014b. ISSN 1064-8275, 1095-7197. doi: 10.1137/120866580.
- 722 Philip M Morse. Diatomic molecules according to the wave mechanics. ii. vibrational levels. *Physical*
 723 *review*, 34(1):57, 1929.
- 724 Mohammad Amin Nabian, Chang Liu, Rishikesh Ranade, and Sanjay Choudhry. X-meshgraphnet:
 725 Scalable multi-scale graph neural networks for physics simulation, 2024.
- 726 Amrit Nagarajan and Anand Raghunathan. FASTRAIN-GNN: Fast and accurate self-training for
 727 graph neural networks. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.
- 728 Sina Ober-Bloebaum and Christian Offen. Variational learning of Euler–Lagrange dynamics from
 729 data. *Journal of Computational and Applied Mathematics*, 421:114780, 2023.
- 730 C. Offen and S. Ober-Bloebaum. Symplectic integration of learned Hamiltonian systems. *Chaos: An*
 731 *Interdisciplinary Journal of Nonlinear Science*, 32(1):013122, 2022.
- 732 Christopher C Paige and Michael A Saunders. Lsqr: An algorithm for sparse linear equations and
 733 sparse least squares. *ACM Transactions on Mathematical Software (TOMS)*, 8(1):43–71, 1982.
- 734 Y-H Pao and Yoshiyasu Takefuji. Functional-link net computing: theory, system architecture, and
 735 functionalities. *Computer*, 25(5):76–79, 1992.
- 736 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 737 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 738 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 739 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 740 learning library. In *Advances in Neural Information Processing Systems 32*, pp. 8024–8035. Curran
 741 Associates, Inc., 2019.
- 742 Jiang-Zhou Peng, Yue Hua, Yu-Bai Li, Zhi-Hua Chen, Wei-Tao Wu, and Nadine Aubry. Physics-
 743 informed graph convolutional neural network for modeling fluid flow and heat convection. *Physics*
 744 *of Fluids*, 35(8), 2023.
- 745 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
 746 simulation with graph networks. In *International Conference on Learning Representations*, 2021.
- 747 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in*
 748 *neural information processing systems*, 20, 2007.

- 756 Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In *2008*
 757 *46th annual allerton conference on communication, control, and computing*, pp. 555–561. IEEE,
 758 2008.
- 759 Atamert Rahma, Chinmay Datar, and Felix Dietrich. Training Hamiltonian neural networks without
 760 backpropagation. In *NeurIPS 2024 Workshop on Machine Learning and the Physical Sciences*.
 761 NeurIPS 2024, November 2024.
- 762 Isaac Reid, Krzysztof Choromanski, Eli Berger, and Adrian Weller. General graph random features,
 763 2023a.
- 764 Isaac Reid, Krzysztof M Choromanski, and Adrian Weller. Quasi-monte carlo graph random features.
 765 In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in
 766 Neural Information Processing Systems*, volume 36, pp. 14770–14796. Curran Associates, Inc.,
 767 2023b.
- 768 Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learning:
 769 The rprop algorithm. In *IEEE international conference on neural networks*, pp. 586–591. IEEE,
 770 1993.
- 771 Herbert E. Robbins. A stochastic approximation method. *Annals of Mathematical Statistics*, 22:
 772 400–407, 1951.
- 773 Frank Rosenblatt. *Perceptions and the theory of brain mechanisms*. Spartan books, 1962.
- 774 Fabian J. Roth, Dominik K. Klein, Maximilian Kannapinn, Jan Peters, and Oliver Weeger. Stable
 775 Port-Hamiltonian Neural Networks, February 2025.
- 776 Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian Graph
 777 Networks with ODE Integrators, September 2019.
- 778 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
 779 Battaglia. Learning to simulate complex physics with graph networks. In *International conference
 780 on machine learning*, pp. 8459–8468. PMLR, 2020.
- 781 Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
 782 Welling. Modeling relational data with graph convolutional networks. In *The Semantic Web: 15th
 783 International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings*,
 784 pp. 593–607, Berlin, Heidelberg, 2018. Springer-Verlag. ISBN 978-3-319-93416-7.
- 785 Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley -
 786 benchmarking deep learning optimizers. In Marina Meila and Tong Zhang (eds.), *Proceedings of
 787 the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine
 788 Learning Research*, pp. 9367–9376. PMLR, 2021.
- 789 Wouter F Schmidt, Martin A Kraaijveld, Robert PW Duin, et al. Feed forward neural networks with
 790 random weights. In *International conference on pattern recognition*, pp. 1–1. IEEE Computer
 791 Society Press, 1992.
- 792 Yingxia Shao, Hongzheng Li, Xizhi Gu, Hongbo Yin, Yawen Li, Xupeng Miao, Wentao Zhang, Bin
 793 Cui, and Lei Chen. Distributed graph neural network training: A survey. *ACM Comput. Surv.*, 56
 794 (8), April 2024. ISSN 0360-0300. doi: 10.1145/3648358.
- 795 Vinay Sharma and Olga Fink. Dynami-cal graphnet: A physics-informed graph neural network
 796 conserving linear and angular momentum for dynamical systems, 2025.
- 797 Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
 798 In *International Conference on Machine Learning*, pp. 4596–4604. PMLR, 2018.
- 799 Khemraj Shukla, Mengjia Xu, Nathaniel Trask, and George E. Karniadakis. Scalable algorithms
 800 for physics-informed neural and graph networks. *Data-Centric Engineering*, 3:e24, 2022. doi:
 801 10.1017/dce.2022.24.

- 810 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
 811 and momentum in deep learning. In *International conference on machine learning*, pp. 1139–1147.
 812 PMLR, 2013.
- 813 Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
 814 nonlinear dimensionality reduction. *science*, 290(5500):2319–2323, 2000.
- 815 Abishek Thangamuthu, Gunjan Kumar, Suresh Bishnoi, Ravinder Bhattoo, NM Krishnan, and Sayan
 816 Ranu. Unravelling the performance of physics-informed graph neural networks for dynamical
 817 systems. *Advances in Neural Information Processing Systems*, 35:3691–3702, 2022.
- 818 Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its
 819 recent magnitude. lecture 6.5, 2012.
- 820 Alicia Tierz, Icfar Alfaro, David González, Francisco Chinesta, and Elías Cueto. Graph neural
 821 networks informed locally by thermodynamics. *Engineering Applications of Artificial Intelligence*,
 822 144:110108, March 2025. ISSN 09521976. doi: 10.1016/j.engappai.2025.110108.
- 823 Alan John Varghese, Zhen Zhang, and George Em Karniadakis. SympGNNs: Symplectic Graph
 824 Neural Networks for identifying high-dimensional Hamiltonian systems and node classification.
 825 *Neural Networks*, 187:107397, July 2025. ISSN 08936080. doi: 10.1016/j.neunet.2025.107397.
- 826 Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
 827 neural networks with structural message-passing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
 828 Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp.
 829 14143–14155. Curran Associates, Inc., 2020.
- 830 Xinchen Wan, Kaiqiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and Xin Jin. Scalable and efficient
 831 full-graph gnn training for large graphs. *Proc. ACM Manag. Data*, 1(2), June 2023. doi: 10.1145/
 832 3589288.
- 833 Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan Yu, Zihang Yao, and
 834 Jingren Zhou. Flexgraph: a flexible and efficient distributed framework for gnn training. In
 835 *Proceedings of the Sixteenth European Conference on Computer Systems*, EuroSys ’21, pp. 67–82,
 836 New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383349. doi:
 837 10.1145/3447786.3456229.
- 838 Shaocong Wang, Yi Li, Dingchen Wang, Woyu Zhang, Xi Chen, Danian Dong, Songqi Wang,
 839 Xumeng Zhang, Peng Lin, Claudio Gallicchio, et al. Echo state graph neural networks with
 840 analogue random resistive memory arrays. *Nature Machine Intelligence*, 5(2):104–113, 2023.
- 841 Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
 842 Tacchetti. Visual interaction networks: Learning a physics simulator from video. *Advances in
 843 neural information processing systems*, 30, 2017.
- 844 Shiying Xiong, Yunjin Tong, Xingzhe He, Shuqi Yang, Cheng Yang, and Bo Zhu. Nonseparable
 845 symplectic neural networks. In *International Conference on Learning Representations*, 2021.
- 846 Tianju Xue, Zhengtao Gan, Shuheng Liao, and Jian Cao. Physics-embedded graph network for
 847 accelerating phase-field simulation of microstructure evolution in additive manufacturing. *npj
 848 Computational Materials*, 8(1):201, 2022.
- 849 Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen, Wenyuan Yu, and
 850 Jingren Zhou. Gnnlab: a factored system for sample-based gnn training over gpus. In *Proceedings
 851 of the Seventeenth European Conference on Computer Systems*, EuroSys ’22, pp. 417–434, New
 852 York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450391627. doi:
 853 10.1145/3492321.3519557.
- 854 Youn-Yeol Yu, Jeongwhan Choi, Jaehyeon Park, Kookjin Lee, and Noseong Park. Piorf: Physics-
 855 informed ollivier-ricci flow for long-range interactions in mesh graph neural networks, 2025.
- 856 Matthew D Zeiler. Adadelta: an adaptive learning rate method. *arXiv preprint arXiv:1212.5701*,
 857 2012.

- 864 Lizhi Zhang, Zhiqian Lai, Shengwei Li, Yu Tang, Feng Liu, and Dongsheng Li. 2pgraph: Acceler-
 865 ating gnn training over large graphs on gpu clusters. In *2021 IEEE International Conference on*
 866 *Cluster Computing (CLUSTER)*, pp. 103–113, 2021. doi: 10.1109/Cluster48925.2021.00036.
- 867 Rui Zhang, Yuan Lan, Guang-Bin Huang, and Zong-Ben Xu. Universal approximation of extreme
 868 learning machine with adaptive growth of hidden nodes. *IEEE Transactions on Neural Networks*
 869 *and Learning Systems*, 23(2):365–371, 2012.
- 870 Xin Zhang, Yanyan Shen, and Lei Chen. Feature-oriented sampling for fast and scalable gnn training.
 871 In *2022 IEEE International Conference on Data Mining (ICDM)*, pp. 723–732, 2022a. doi:
 872 10.1109/ICDM54844.2022.00083.
- 873 Zhen Zhang, Yeonjong Shin, and George Em Karniadakis. GFINNs: GENERIC formalism informed
 874 neural networks for deterministic and stochastic dynamical systems. *Philosophical Transactions*
 875 *of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 380(2229):20210207,
 876 August 2022b. ISSN 1364-503X, 1471–2962. doi: 10.1098/rsta.2021.0207.
- 877 Xinge Zhao and Chien Chern Cheah. Ensuring reliable learning in graph convolutional networks:
 878 Convergence analysis and training methodology. *IEEE Transactions on Artificial Intelligence*, pp.
 879 1–15, 2025. doi: 10.1109/TAI.2025.3550458.
- 880 Yingxue Zhao, Haoran Li, Haosu Zhou, Hamid Reza Attar, Tobias Pfaff, and Nan Li. A review of
 881 graph neural network applications in mechanics-related domains. *Artificial Intelligence Review*, 57
 882 (11):315, 2024.
- 883 Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. Tgl: a
 884 general framework for temporal gnn training on billion-scale graphs. *Proc. VLDB Endow.*, 15(8):
 885 1572–1580, April 2022. ISSN 2150-8097. doi: 10.14778/3529337.3529342.
- 886 Zeyu Zhu, Peisong Wang, Qinghao Hu, Gang Li, Xiaoyao Liang, and Jian Cheng. Fastgl: A gpu-
 887 efficient framework for accelerating sampling-based gnn training at large scale. In *Proceedings of*
 888 *the 29th ACM International Conference on Architectural Support for Programming Languages and*
 889 *Operating Systems, Volume 4*, ASPLOS ’24, pp. 94–110, New York, NY, USA, 2025. Association
 890 for Computing Machinery. ISBN 9798400703911. doi: 10.1145/3622781.3674167.
- 891 Nikita Zozoulenko, Thomas Cass, and Lukas Gonon. Random feature representation boosting. In
 892 *Forty-second International Conference on Machine Learning*, 2025.
- 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

Table A.5: Notation used in Section 3 and in the appendix.

Problem setup	
N	Number of nodes/particles in the system
d	Spatial dimension
M	Number of training data points
N_e	Number of edges in the graph
$q, p \in \mathbb{R}^{d \cdot N}$	Positions and momenta of all the nodes
$q_i, p_i \in \mathbb{R}^d$	Positions and momenta of the i^{th} node
$\mathcal{H} : \mathbb{R}^{2d \cdot N} \rightarrow \mathbb{R}$	True Hamiltonian function
$\hat{\mathcal{H}} : \mathbb{R}^{2d \cdot N} \rightarrow \mathbb{R}$	Predicted Hamiltonian function
A	Symmetric adjacency matrix
RF-HGN setup	
V	Set of node feature encodings
E	Set of edge feature encodings
$d_V \in \mathbb{N}$	Number of node features
$d_E \in \mathbb{N}$	Number of edge features
$d_h \in \mathbb{N}$	Latent (hidden) dimension for encoding node and edge features
$d_M \in \mathbb{N}$	Latent (hidden) dimension for encoding messages
$d_L \in \mathbb{N}$	Size of the input to the linear layer (here also the network width)
$\bar{q}_i, \bar{p}_i \in \mathbb{R}^d$	Invariant representation
$v_i \in \mathbb{R}^{d_V}$	Node features for the i^{th} node
$e_{ij} \in \mathbb{R}^{d_E}$	Edge features for the edge (i, j) with $i > j$
\mathcal{N}_j	Set of source nodes connected to destination node j
$\phi_V : \mathbb{R}^{d_V} \rightarrow \mathbb{R}^{d_h}$	dense layer for encoding the node features
$\phi_E : \mathbb{R}^{d_E} \rightarrow \mathbb{R}^{d_h}$	dense layer for encoding the edge features
$\phi_M : \mathbb{R}^{2d_h} \rightarrow \mathbb{R}^{d_M}$	Message encoder
$W_V \in \mathbb{R}^{d_h \times d_V}, b_V \in \mathbb{R}^{d_h}$	Weights and biases of the node encoder
$W_E \in \mathbb{R}^{d_h \times d_E}, b_E \in \mathbb{R}^{d_h}$	Weights and biases of the edge encoder
$W_M \in \mathbb{R}^{d_M \times \mathbb{R}^{2d_h}}, b_M \in \mathbb{R}^{d_M}$	Weights and biases of the message encoder
$W_L \in \mathbb{R}^{d_L}, b_L \in \mathbb{R}$	Weights and biases of the linear layer
$m_j \in \mathbb{R}^{d_M}$	aggregated incoming message of node j
$h_i^V \in \mathbb{R}^{d_h}$	Node feature encoding for the i^{th} node
$h_{ij}^E \in \mathbb{R}^{d_h}$	Edge feature encoding for the edge defined by nodes i, j
$h_{ij}^M \in \mathbb{R}^{d_M}$	Constructed message encoding
$h_G \in \mathbb{R}^{d_L}$	Global encoding of the graph

APPENDIX

A NOTATION

We define the notation we use in the main text and in the Appendix in Table A.5.

B ADDITIONAL DETAILS ON RANDOM-FEATURE HAMILTONIAN GRAPH NETWORKS

We discuss the problem setup used in Figure 2 in Appendix B.1, how to construct rotation-invariant representation for spatial dimension $d = 3$ in Appendix B.2, the algorithm for the forward pass for RF-HGN in Appendix B.3 and run-time and memory complexity in Appendix B.4.

B.1 ADDITIONAL DETAILS FOR FIGURE 2

The initial conditions for training the networks in Figure 2 are generated by displacing the positions by $dq \sim U(-0.5, +0.5)$ and with momenta $p \sim U(-2, +2)$ from some fixed reference frame illustrated

972 on the left of Figure 2. The system is integrated using symplectic Störmer-Verlet Hairer et al. (2003)
 973 with $\Delta t = 10^{-4}$ for 100 steps using the true dynamics and predictions of invariant and non-invariant
 974 variations of (SWIM) RF-HGN.

975

976 **B.2 ROTATION-INVARIANT REPRESENTATION FOR SPATIAL DIMENSION $d = 3$**
 977

978 The details on obtaining rotation-invariant representations for the spatial dimension $d = 2$ are
 979 discussed in Section 3. Here, we extend this approach to the spatial dimension $d = 3$, leveraging the
 980 classical Gram-Schmidt orthogonalization method.

981 We pick $q_1 \in \mathbb{R}^3$ and $q_2 \in \mathbb{R}^3$ as the reference vectors and let $e_1 = \frac{q_1}{\|q_1\|}$ and $e'_2 = \frac{q_2}{\|q_2\|}$. e_1 is the first
 982 basis vector of the new frame. If $|e_1^\top e'_2| > \epsilon$ (near colinear), set $e'_2 = e_1 \times e'_2$ (cross product). We then
 983 project $u_2 = e'_2 - \text{proj}_{e_1} e'_2$ and scale $e_2 = \frac{u_2}{\|u_2\|}$ (Gram-Schmidt) to compute the second basis vector
 984 e_2 , where $\text{proj}_{e_1} e'_2 = (e'_2^\top e_1) e_1$ is the projection of e'_2 onto e_1 . We then construct $e_3 = e_1 \times e_2$,
 985 where \times is the cross-product. Finally, we define the orthonormal basis $\mathcal{B} = [e_1 \ e_2 \ e_3]$. We set
 986 $\epsilon = 0.98$ if not specified otherwise.
 987

988 One can uniquely identify the first two points, independent of node ordering or orientation, as the
 989 ones closest to the mean \bar{q} . In case of ties, we select the point with the smallest angle relative to the
 990 first coordinate axis centered at \bar{q} . If the ties persist, we can then select the point with the smallest
 991 angle relative to the second coordinate axis.

992

993 **B.3 ALGORITHM**

994 Here, we outline the algorithm for the forward pass of the Random-Feature Hamiltonian Graph
 995 Network (RF-HGN) using the notation introduced in Section 3.

996 **Algorithm B.1:** Forward pass for RF-HGN: The parameters of all dense layers ϕ_V, ϕ_E, ϕ_M
 997 are computed leveraging random sampling techniques and last layer parameters W_L and b_L are
 998 computed using least squares (see Section 3.3). We denote the set of neighbors that transmit
 999 information to node j by \mathcal{N}_j . In the following, we use a single subscript, for instance, for v_i , to
 1000 denote that we compute v_i for all values of $i \in \{1, 2, \dots, N\}$ for brevity. Also, we use a double
 1001 subscript, for instance, for e_{ij} , to denote that we compute e_{ij} for $i, j \in \{1, \dots, N\}$ and $i > j$,
 1002 and set $e_{ji} = e_{ij}$.

1003 **Input:** Positions and momenta of the N bodies in spatial dimension d ($p, q \in \mathbb{R}^{2d \cdot N}$), adjacency
 1004 matrix $A \in \mathbb{R}^{N \times N}$
 1005 **Output:** Approximation of Hamiltonian $\hat{\mathcal{H}} \in \mathbb{R}$
 1006 **Parameters:** Node/edge encoder dimension $d_h \in \mathbb{N}$ and message encoder dimension $d_M \in \mathbb{N}$
 1007 $\bar{q}_i, \bar{p}_i \in \mathbb{R}^{2d \cdot N} \leftarrow \text{encode_invariances}(p, q)$ for each $i \in \{1, \dots, N\}$ {Encode translation-
 1008 and rotation-invariance}
 1009 $v_i \leftarrow [\bar{q}_i \ \bar{p}_i]^\top \in \mathbb{R}^{2 \cdot d}$ {Node features}
 1010 $e_{ij} \leftarrow [(\bar{q}_i - \bar{q}_j)^\top; \|\bar{q}_i - \bar{q}_j\|]^\top \in \mathbb{R}^{d+1}$ {Edge features}
 1011 $h_i^V \leftarrow \phi_V(v_i) \in \mathbb{R}^{d_h}$ {Node encoding}
 1012 $h_{ij}^E \leftarrow \phi_E(e_{ij}) \in \mathbb{R}^{d_h}$ {Edge encoding}
 1013 $h_{ij}^M \leftarrow \phi_M \left([h_i^V]^\top \ [h_{ij}^E]^\top \right)^\top \in \mathbb{R}^{d_M}$ {Message encoding}
 1014 $m_j \leftarrow \sum_{i \in \mathcal{N}_j} h_{ij}^M \in \mathbb{R}^{d_M}$ {Message passing (local pooling)}
 1015 $h_G \leftarrow \sum_{j=1}^N [h_j^V]^\top \ [m_j]^\top \in \mathbb{R}^{d_L}$, where $d_L := d_h + d_M$ {Message passing (global
 1016 pooling)}
 1017 $\hat{\mathcal{H}} \leftarrow W_L \cdot h_G + b_L$, where $W_L \in \mathbb{R}^{d_L}$ and $b_L \in \mathbb{R}$ {Linear layer}
 1018 **return** $\hat{\mathcal{H}}$

1022
 1023 The forward pass discussed here is independent of how the network parameters are computed.
 1024 The training leverages random sampling, automatic differentiation to compute gradients of the
 1025 Hamiltonian with respect to inputs to compute $\nabla \mathcal{H}$ using PyTorch (Paszke et al., 2019), and least
 squares solvers as described in Section 3.3.

1026 B.4 RUN-TIME AND MEMORY COMPLEXITY OF TRAINING
1027

1028 We use the notation defined in Table A.5.

1029 **Run-time complexity:** The bottleneck of the run-time complexity is described in Section 3.3.
1030 Encoding the translational symmetry requires a mean-shift of the particles which can be done in
1031 $\mathcal{O}(MN)$ because for each system first the mean value of the positions has to be computed and then
1032 the values are updated which can all be done linearly in M , N , and d given d positions we have to
1033 shift. For encoding rotational symmetry we have implemented Gram-Schmidt orthogonalization,
1034 which is in $\mathcal{O}(MNd^2)$.1035 Also note that there are $\frac{M(M-1)}{2}$ pairs of data points to choose from when sampling random features
1036 with SWIM. In practice, we do not consider all possible pairs, but rather subsample this set uniformly
1037 by choosing the candidate number of pairs to be $\lceil \frac{|W|}{M} \rceil M$, where $|W|$ is the number of neurons. This
1038 is much less than the theoretically possible number of pairs, and still results in a robust sampling
1039 method.1040 **Memory complexity:** Memory requirements for a training set of size M graphs include $\mathcal{O}(d \cdot N \cdot M)$
1041 node features, $\mathcal{O}(d \cdot N_e \cdot M)$ for edge features, and $\mathcal{O}(N_e)$ for the sparse adjacency matrix, assuming
1042 the graph stays the same for each example in the training set. For sparsity, we assume $\mathcal{O}(1)$ number
1043 of neighbors for each node. The three dense layers (node, edge, and message encoders incur costs of
1044 $\mathcal{O}(d_h \cdot d_V)$, $\mathcal{O}(d_h \cdot d_E)$, $\mathcal{O}(d_M \cdot d_h)$. The linear readout layer adds a further $\mathcal{O}(d_L) = \mathcal{O}(d_h + d_M) =$
1045 $\mathcal{O}(d_M)$.1046 Unlike gradient-descent-based iterative optimization schemes, we only need to compute the gradients
1047 of the Hamiltonian $\hat{\mathcal{H}}$ with respect to inputs, and not with respect to parameters. For this, we
1048 additionally need to store the partial derivatives of the output with respect to the input of each dense
1049 layer for back-propagation. This amounts to an additional cost of $\mathcal{O}(d_L \cdot d \cdot N \cdot M)$ for the partial
1050 derivatives of the global graph value with respect to inputs.1051 For a fixed spatial dimension $d < 4$ and network width d_L , since the dominant terms depend on the
1052 dataset size M , the number of nodes N , and the number of edges in a graph N_e , the total memory
1053 footprint during training is $\mathcal{O}(M(N + N_e))$. If we further assume zero-shot generalization with a
1054 fixed training system, then the total memory requirement is in $\mathcal{O}(M)$ and the geometry of the system
1055 (the number of nodes N and edges N_e) can grow independently of this training.1058 C DATASETS
10591060 Table C.6 lists summary information of the datasets used in our experiments, which are explained
1061 in more detail in the following subsections. All the constants (masses, spring, and Lennard-Jones
1062 constants) are set to one in all the experiments, and for the chain and lattice examples we have
1063 used relative distances (all positions are given as displacements relative to the equilibrated state).
1064 More information can be found in the code repository, which will be made publicly available upon
1065 acceptance.1066 C.1 BENCHMARKING AGAINST SOTA OPTIMIZERS
1067

1068 The target Hamiltonian is

1069
1070
$$\mathcal{H}_1(q, p) = \frac{1}{2} \left(\sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \frac{\|p_{ij}\|^2}{\alpha_{ij}} \right. \\ 1071 \left. + \sum_{i=1}^{N_x} \sum_{j=1}^{N_y-1} \beta_{ij}^x \|q_{i,j+1} - q_{ij}\|^2 + \sum_{j=1}^{N_y} \sum_{i=1}^{N_x-1} \beta_{ij}^y \|q_{i+1,j} - q_{ij}\|^2 \right), \quad (C.7)$$

1072
1073
1074
1075
1076

1077 where $q_{ij}, p_{ij} \in \mathbb{R}^3$, and $\alpha_{ij}, \beta_{ij} \in \mathbb{R}$ denote masses and spring constants, respectively. All
1078 constants are equal to one if not specified otherwise. N_x and N_y are set to three to build a 3x3
1079 lattice structure (with number of total nodes $N = 9$), which moves in 3D ($d = 3$). We generate a
synthetic dataset of 2000 structures (graphs) with their true time derivatives $\{q_i, p_i, \dot{q}_i, \dot{p}_i\}_{i=1}^{2000}$ where

1080
1081
1082 Table C.6: Summary of the datasets used in our main experiments. Low and high specify the uniform
1083 distribution used to sample the dataset. In Appendix C.1, Appendix C.2 and Appendix C.3 we give
1084 more details on how we generate the datasets.

Experiment	Train points	Test points	Low	High
Table 1	$1000 \cdot N \cdot 6$	$1000 \cdot N \cdot 6$	-0.5	+0.5
Table 3	$3000 \cdot N \cdot 4$	$3000 \cdot N \cdot 4$	-1.0	+1.0
Figure 5 ($N_x \times N_y$ train)	$1000 \cdot N_x \cdot N_y \cdot 6$	$1000 \cdot N_x \cdot N_y \cdot 6$	-0.5	+0.5
Figure 5 ($N_x \times N_y$ test)	—	$1000 \cdot N_x \cdot N_y \cdot 6$	-0.5	+0.5
Figure H.16 and 6 (train N)	$2000 \cdot N \cdot 4$	$2000 \cdot N \cdot 4$	-1.0	+1.0
Figure H.16 (test N)	—	$2000 \cdot N \cdot 4$	-1.0	+1.0
Table 2, H.32, H.33; Figure H.18 and H.19	$810 \cdot N \cdot 4$	$90 \cdot N \cdot 4$	-0.1	+0.1
Figure H.20 and H.21	$540 \cdot N \cdot 4$	$60 \cdot N \cdot 4$	-0.1	+0.1
Section 4.4	$10000 \cdot N \cdot 4$	$100 \cdot N \cdot 4$	—	—

1094
1095 $q_i, p_i, \dot{q}_i, \dot{p}_i \in \mathbb{R}^{d \cdot N} \forall i$. We first set all q_i, p_i to be in the equilibrium state. Then we sample the
1096 displacements dq_i and dp_i from the uniform distribution $U(-0.5, +0.5)$, and compute $q_i \leftarrow q_i + dq_i$
1097 and $p_i \leftarrow p_i + dp_i$. We then compute the ground truths \dot{q}_i, \dot{p}_i using Equation (1) and the ground truth
1098 gradient $\nabla \mathcal{H}_1$. We shuffle and split the dataset into train (1000) and test (1000) sets. All the errors
1099 reported in Table 1 are the average test errors of three independent runs using different seeds. The
1100 total number of training and test points then becomes $1000 \cdot N \cdot d \cdot 2 = 54000$ each.

1101 Additional to the standard spring potential $V(r) = \frac{1}{2}\beta r^2$ given distance r with spring constant $\beta = 1$,
1102 we use an anharmonic spring potential $V(r) = \frac{1}{2}\beta r^2 + \frac{1}{4}\eta r^4$ with nonlinearity coefficient $\eta = 1$
1103 and the Morse potential $V(r) = D(1 - \exp(-ar))^2$ (Morse, 1929) with well-depth $D = 1$ and
1104 potential-width $a = 1.0$ for the 2D chain potential experiments in Table 3, (also in Figure H.10, H.11,
1105 H.12, H.13, H.14 and H.15). The data generation follows the same procedure explained above, with
1106 $N = 5$, resulting in a total of $3000 \cdot N \cdot d \cdot 2 = 60000$ train and test points each.

1108 C.2 ZERO-SHOT GENERALIZATION AND COMPARISON OF RANDOM FEATURE METHODS

1109 The experiment in Figure 5 uses the same procedure explained in Appendix C.1, with N_x and N_y set
1110 to two, three, and four to build 2x2, 3x3, and 4x4 lattice structures.

1111 For the experiment in Figure H.16, the procedure is again similar, but the structure of the experiment
1112 and data is different (an open chain). The target function for the open chain system is given in
1113 Section 4.2 as

$$1114 \mathcal{H}_2(q, p) = \frac{1}{2} \left(\sum_{i=1}^N \frac{\|p_i\|^2}{\alpha_i} + \sum_{i=1}^{N-1} \beta_i \|q_{i+1} - q_i\|^2 \right), \quad (C.8)$$

1115 where $q_i, p_i \in \mathbb{R}^2$, $\alpha_i, \beta_i \in \mathbb{R}$ are positions, momenta, masses, and spring constants in the system,
1116 respectively, for $i \in \{1, \dots, N\}$. All constants are equal to one if not specified otherwise. \mathcal{H}_2 . N
1117 is scaled from exponentially from 2^1 to 2^{12} in the experiment, which always moves in 2D ($d = 2$).
1118 For each N , we again generate a synthetic dataset of 4000 structures (graphs) with their true time
1119 derivatives $\{q_i, p_i, \dot{q}_i, \dot{p}_i\}_{i=1}^{4000}$ where $q_i, p_i, \dot{q}_i, \dot{p}_i \forall i$. We first set all q_i, p_i to be in the equilibrium
1120 state. Then we sample the displacements dq_i and dp_i from the uniform distribution $U(-1.0, +1.0)$,
1121 and compute $q_i \leftarrow q_i + dq_i$ and $p_i \leftarrow p_i + dp_i$. We then compute the ground truths \dot{q}_i, \dot{p}_i using
1122 Equation (1) and the ground truth gradient $\nabla \mathcal{H}_2$. We shuffle and split the dataset into train (2000)
1123 and test (2000) sets.

1124 For the molecular dynamics scenarios with the Lennard-Jones (LJ) potential the Hamiltonian is
1125 defined as

$$1126 \mathcal{H}_3(q, p) = \frac{1}{2} \sum_{i=1}^N \frac{\|p_i\|}{\alpha_i} + \sum_{i=1}^N \sum_{j=i+1}^N V^{\text{LJ}}(\|q_j - q_i\|), \quad (C.9)$$

1127 where

$$1128 V^{\text{LJ}}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right],$$

1134 **Table D.7: Model parameters (see Figure 3) used in Section 4.1.**

1135 Model	1136 Encoder width (d_h)	1137 Network width (d_L)	1138 Activation	1139 Precision
1140 HGN (fig. 3)	1141 48	1142 384	1143 softplus	1144 single

1145 **Table D.8: Hyperparameters used in Section 4.1 and Section 4.2 are listed for SWIM. Driver and**
1146 **rcond (l^2 reg.) are the parameters of `torch.linalg.lstsq` (Paszke et al., 2019). Resample**
1147 **duplicates specifies to resample till we get a unique pair of points in the SWIM algorithm (Bolager**
1148 **et al., 2023).**

1142 Optimizer	1143 Driver	1144 Parameter sampler	1145 Resample duplicates	1146 l^2 reg.
1147 SWIM Bolager et al. (2023)	1148 GELS	1149 relu	1150 True	1151 1e-6

1152 and where $r_{ij} = \|q_j - q_i\|$. We set the parameters $\alpha_i, \epsilon, \sigma$ to 1.0 and the cutoff to 2.0 when computing
1153 the dynamic edge indices (Figure H.20, H.21), and static edge indices when training with 9 particles
1154 and testing with 9 particles (Figure H.18, H.19, Table 2, H.32, H.33). For the static edge experiment,
1155 we generated 300 trajectories with 9 particles, and for the dynamic edge experiment, we generated
1156 200 trajectories with 36 particles with the q displacement specified in Table C.6 from the equilibrium
1157 state with momenta set to zero. Each trajectory is simulated for 50 time steps with $\Delta t = 5 \cdot 10^{-3}$
1158 and snapshots are taken every 20th step with a train-test ratio of 0.9.

1159 C.3 BENCHMARKING AGAINST SOTA ARCHITECTURES

1160 To benchmark our model, we considered the N-body spring system from Thangamuthu et al. (2022),
1161 for which details are available in the original work. Nonetheless, we mention the key properties of
1162 the dataset for completeness.

1163 A system of N bodies with equal masses, connected by elastic springs such that each body has
1164 two connections and the system forms a closed loop. The system’s physical behavior additionally
1165 depends on the spring’s stiffness and its undeformed length, both are set to one. Initial positions q_0
1166 are sampled as $q_0 \sim U(0, 2)$ and initial momenta p_0 are sampled as $p_0 \sim U(0, 0.1)$ and subsequently
1167 mean-centered. The symplectic Störmer-Verlet (Hairer et al., 2003) integrator with a timestep of
1168 10^{-3} is used to generate 100000 datapoints, which are subsampled to 100 datapoints. The approach
1169 is repeated for 100 trajectories to obtain a dataset that is split in a 75:25 ratio for a training and
1170 validation set. Unlike the original work, the test data we use consists of only one trajectory because
1171 with 100 trajectories, we were often experiencing failed simulations with the existing Adam-trained
1172 benchmarks (in particular with the LGN architecture), which significantly hinders comparison with
1173 our method.

1174 D TRAINING AND ZERO-SHOT INTEGRATION SETUP

1175 D.1 BENCHMARKING AGAINST SOTA OPTIMIZERS

1176 Table D.7 and Table D.8 list the model and SWIM hyperparameters, respectively. Table D.9 lists the
1177 hyperparameters used for the SOTA optimizers listed in Table 1. All the optimizers are run once
1178 with the default settings that are optimized initially for the Adam optimizer (Kingma & Ba, 2015),
1179 and tuned further with multiple iterations. Note that we only want to give a “**time to solution**”,
1180 with similar accuracies in order to compare the SOTA optimizers against our method, since the
1181 iterative routines can be done arbitrarily long and may be tuned further to reach lower approximation
1182 errors than our method with excessive hyperparameter tuning and larger number of iterations for
1183 each optimizer—at the cost of even longer training times. **The SGD family** (SGD (Robbins, 1951),
1184 SGD+momentum (Sutskever et al., 2013), and Averaged SGD (Gower et al., 2019)) required lower
1185 learning rate starts than the adaptive-gradient based optimizers, otherwise they led to NaN (Not a
1186 Number) results. Even with a very low learning rate, starting at 5e-4, they all produced one NaN
1187 value out of three experiments, which shows their instability and difficulty in setup. In our results,
1188 we therefore only average the two valid results of the SGD-family. **In Averaged SGD** (Gower et al.,
1189 2019), the averaging may have acted as an implicit regularizer, and required no weight decay to
1190 perform similarly. Also, regularization was not necessary for **Rprop** (Riedmiller & Braun, 1993),
1191 **LBFGS** (Liu & Nocedal, 1989), and **RMSprop** (Tieleman & Hinton, 2012). **Adadelta** (Zeiler, 2012)

Table D.9: Hyperparameters used in Section 4.1 and Section 4.2 are listed for SOTA optimizers. SGD(+m) represents both SGD Robbins (1951) and SGD+momentum (Sutskever et al., 2013). The momentum parameter is set to 0.9. Avg. SGD specified the Averaged SGD (Gower et al., 2019). Default values are given in the first row (Defaults) for all the optimizers not present in this table, but are listed in Table 1. #steps is the number of total iterations (one iteration per batch). If LR schedule is specified, exponential decay is used as the learning rate scheduler. All optimizers use the `kaiming_normal` (Paszke et al., 2019) weight initialization. l^2 regularization (l^2 reg.) is specified using the `weight_decay` parameter (Paszke et al., 2019). Full batch size is 1000.

Optimizer	#steps	Batch size	LR schedule	LR (start, end)	l^2 reg.
Defaults	10000	256	Yes	1e-2, 5e-5	1e-6
SGD(+m.)	10000	256	Yes	5e-4, 5e-5	1e-6
Avg. SGD	10000	256	Yes	5e-4, 5e-5	0
Adadelta	10000	256	No	1e-1 (fixed)	1e-6
Rprop	2560	Full	No	1e-2 (fixed)	0
RMSprop	10000	256	Yes	1e-2, 5e-5	0
LBFGS	100	Full	No	1e-1 (fixed)	0

Table D.10: Parameters used in Table 3 (also in Figure H.10, H.11, H.12, H.13, H.14, H.15). #steps is the total number of time steps, Δt is the time step size.

Parameter	Value
Symplectic solver	Störmer-Verlet (Hairer et al., 2003)
#steps	1e4
Δt	1e-2

is an adaptive method that dynamically scales updates; therefore, it does not require any scheduler. Also, **Rprop** (Riedmiller & Braun, 1993) uses the sign of the gradients and adapts the step size dynamically, which makes it suitable to be used with large batch updates and no scheduler. Since it uses full batch updates (with batch size of 1000), its number of gradient steps is reduced to provide around the same epoch as the other optimizers. **LBFGS** is a second-order method and outperformed the other optimizers with only 100 steps using full batch updates and no learning rate scheduler.

Table D.11, D.14, D.12, and D.14 list model hyperparameters for the chain potential experiment in Table 3 for training. Table D.10 lists the integration hyperparameters used in the same experiment when zero-shot testing. Note that during testing, we apply a constant gravitational force $[0, -0.075]^\top$ to every node in the negative y-axis direction.

D.2 ZERO-SHOT GENERALIZATION AND COMPARISON OF RANDOM FEATURE METHODS

Table D.15, Table D.8, and Table D.16 list the model, SWIM, and ELM hyperparameters used for the experiments in Section 4.2, respectively. For the zero-shot evaluation presented in Figure 5, we have trained (SWIM) RF-HGN ten times with different random seeds (also see Figure H.8, Figure H.9, and Table H.31), and used the pretrained (SWIM) RF-HGN model with the median test error to evaluate on the zero-shot test cases in order to avoid any statistical bias, as this is a random feature method. Table D.17 lists the parameters used to integrate the system in Figure 6 and Figure H.17.

For the molecular systems, Table D.19 lists the model parameters, Table D.20 lists SWIM hyperparameters, Table D.21 lists ELM hyperparameters, and Table D.22 lists Adam hyperparameters. No early stopping was triggered in these experiments. Table D.18 lists the parameters used to integrate all the molecular systems presented in this paper.

D.3 BENCHMARKING AGAINST SOTA ARCHITECTURES

Table D.23 lists the model parameters, Table D.24 lists SWIM hyperparameters, Table D.25 lists SOTA architecture hyperparameters used in Section 4.4.

Table D.11: Model parameters (see Figure 3) used in Table 3.

Model	Encoder width (d_h)	Network width (d_L)	Activation	Precision
HGN (fig. 3)	64	1024	softplus	double

1242 Table D.12: Hyperparameters used in Table 3 are listed for SWIM. Driver and rcond (l^2 reg.) are
 1243 the parameters of `torch.linalg.lstsq` (Paszke et al., 2019). Resample duplicates specifies to
 1244 resample till we get a unique pair of points in the SWIM algorithm (Bolager et al., 2023).

Optimizer	Driver	Parameter sampler	Resample duplicates	l^2 reg.
SWIM Bolager et al. (2023)	GELS	relu	True	1e-10

1248 Table D.13: Hyperparameters used in Table 3 are listed for ELM (Huang et al., 2004). Driver
 1249 and rcond (l^2 reg.) are the parameters of `torch.linalg.lstsq` (Paszke et al., 2019). Bias
 1250 low and high specify the uniform distribution of low and high values, from which the biases of the
 1251 random feature layers are sampled. The weights are sampled using the standard normal distribution
 1252 as explained in Section 3.3.

Optimizer	Driver	Bias low	Bias high	l^2 reg.
ELM (Huang et al., 2004)	GELS	-1.0	+1.0	1e-10

1253 Table D.14: Hyperparameters used in Table 3 are listed for Adam.

Optimizer	#steps	Batch size	LR schedule	LR (start, end)	l^2 reg.	Initialization	Patience
Adam	10000	256	exponential decay	1e-2, 5e-5	1e-6	Kaiming normal	1000

1255 Table D.15: Model parameters used in Section 4.2. The network width specifies the size of the input
 1256 to the last linear layer in both RF-HNN (Bertalan et al., 2019; Greydanus et al., 2019) and RF-HGN.
 1257

Model	Encoder width (d_h)	Network width	Activation	Precision
RF-HGN (fig. 3)	64	512	softplus	single
RF-HNN	—	512	softplus	single

1259 Table D.16: Hyperparameters used in Section 4.2 are listed for ELM (Huang et al., 2004). Driver
 1260 and rcond (l^2 reg.) are the parameters of `torch.linalg.lstsq` (Paszke et al., 2019). Bias
 1261 low and high specify the uniform distribution of low and high values, from which the biases of the
 1262 random feature layers are sampled. The weights are sampled using the standard normal distribution
 1263 as explained in Section 3.3.

Optimizer	Driver	Bias low	Bias high	l^2 reg.
ELM (Huang et al., 2004)	GELS	-1.0	+1.0	1e-6

1270 Table D.17: Parameters used in Figure 6 (and consequently Figure H.17). #steps is the total number
 1271 of time steps, Δt is the time step size.

Parameter	Value
Symplectic solver	Störmer-Verlet (Hairer et al., 2003)
#steps	5000
Δt	1e-3

1278 Table D.18: Parameters used in Figure H.18 and Figure H.20 (and consequently Table 2, H.32, H.33,
 1279 Figure H.19 H.21). #steps is the total number of time steps, Δt is the time step size.

Parameter	Value
Symplectic solver	Störmer-Verlet (Hairer et al., 2003)
#steps	1e5
Δt	1e-5

1285 Table D.19: Model parameters used in Table 2, H.32, H.33, Figure H.18, H.19 (top row) and in
 1286 Figure H.20, H.21 (bottom row) are listed for the RF-HGNs and Adam-HGN.

Model	Encoder width (d_h)	Network width (d_L)	Activation	Precision
HGN	40	800	softplus	single
HGN	32	256	gelu	single

1290 Table D.20: Hyperparameters used in Table 2, H.32, H.33, Figure H.18, H.19 and in Figure
 1291 H.20, H.21 are listed for SWIM. Driver and rcond (l^2 reg.) are the parameters of
 1292 `torch.linalg.lstsq` (Paszke et al., 2019). Resample duplicates specifies to resample till
 1293 we get a unique pair of points in the SWIM algorithm (Bolager et al., 2023).

Optimizer	Driver	Parameter sampler	Resample duplicates	l^2 reg.
SWIM Bolager et al. (2023)	GELSD	relu	True	1e-10

1296
12971298 Table D.21: Hyperparameters used in Table 2, H.32, H.33, Figure H.18, H.19 and in Figure H.20,
1299 H.21 are listed for ELM (Huang et al., 2004). Driver and `rcond` (l^2 reg.) are the parameters of
1300 `torch.linalg.lstsq` (Paszke et al., 2019). Bias low and high specify the uniform distribution
1301 of low and high values, from which the biases of the random feature layers are sampled. The weights
1302 are sampled using the standard normal distribution as explained in Section 3.3.

Optimizer	Driver	Bias low	Bias high	l^2 reg.
ELM (Huang et al., 2004)	GELSD	-1.0	+1.0	1e-10

1303
1304
1305

1306

1307

1308

1309

1310 Table D.22: Hyperparameters used in Table 2, H.32, H.33, Figure H.18, H.19 and in Figure H.20,
1311 H.21 are listed for Adam.

Optimizer	#steps	Batch size	LR schedule	LR (start, end)	l^2 reg.	Initialization	Patience
Adam	10000	8	exponential decay	1e-3, 5e-5	1e-10	Kaiming normal	500

1312
1313
1314

1315

1316

1317

1318

1319 Table D.23: Random feature Hamiltonian graph network (RF-HGN) parameters used in Section 4.4.
1320 The network width specifies the size of the input to the last linear layer in the RF-HGN.

Model	Encoder width (d_h)	Network width	Activation	Precision
RF-HGN (fig. 3)	32	512	softplus	double

1324

1325

1326

1327

1328

Table D.24: Hyperparameters used in Section 4.4 are listed for SWIM (Bolager et al., 2023). Driver
1329 and `rcond` (l^2 reg.) are the parameters of `torch.linalg.lstsq` (Paszke et al., 2019).

Optimizer	Driver	Parameter sampler	Resample duplicates	l^2 reg.
SWIM (Bolager et al., 2023)	GELS	relu	True	1e-15

1333

1334

1335

1336

1337

1338

Table D.25: Hyperparameters used in Section 4.4 are listed.

Model	FGNN, FGNODE, LGN, HGN	GNODE, LGNN, HGNN
Node embedding dim.	8	5
Edge embedding dim.	8	5
# hidden layers	2	2
# hidden neurons (per layer)	16	5
# message passing layers	1	1
Activation	squareplus	squareplus
Optimizer	Adam	Adam
Learning rate	10^{-3}	10^{-3}
Batch size	100	100
Epochs	10000	10000
Precision	double	double
l^2 regularization	—	—

1348

1349

1350
 1351 Table E.26: Hardware used for the experiments is listed with details on CPUs (Intel i7 and AMD
 1352 EPYC), memory, GPU (NVIDIA), CUDA version (driver version, CUDA version), and operating
 1353 system (OS) versions of Ubuntu LTS, together with memory requirements (in GB).

Experiment	CPU (cores)	Memory	GPU (vram)	CUDA	OS
section 4.1	i7-14700K (20)	66	RTX 4070 (12)	550.120, 12.4	24.04.2
fig. 5 train	i7-14700K (20)	66	RTX 4070 (12)	550.120, 12.4	24.04.2
fig. 5 4x4 train	i7-14700K (20)	66	—	—	24.04.2
fig. 5 test	EPYC 7402 (24)	256	—	—	20.04.2
fig. H.16	EPYC 7402 (24)	256	—	—	20.04.2
section 4.2 molecular systems	i7-14700K (20)	66	—	—	24.04.2
section 4.4	EPYC 7402 (24)	256	—	—	20.04.2

1361
 1362 Table F.27: Ablation study showing the influence of widths of the dense layers encoding the node
 1363 and edge features and the linear layer on the mean squared error between predicted and true system
 1364 dynamics \dot{y} .

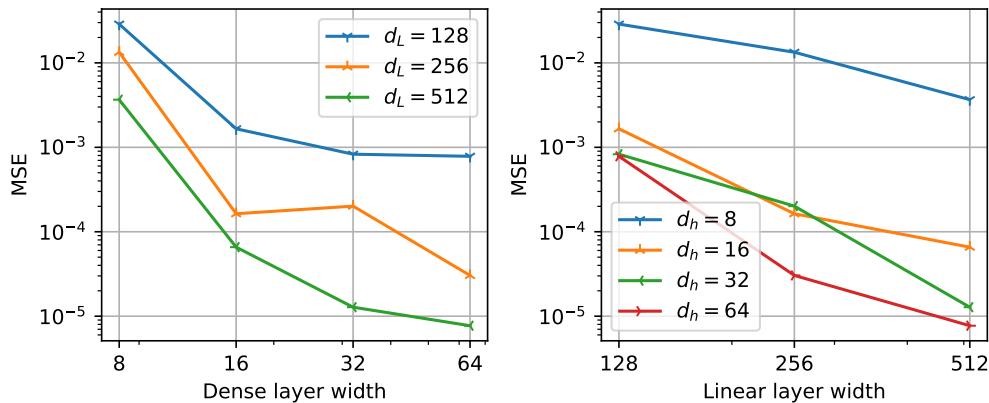
	$d_L = 128$	$d_L = 256$	$d_L = 512$
$d_h = 8$	2.879e-02	1.336e-02	3.666e-03
$d_h = 16$	1.657e-03	1.634e-04	6.571e-05
$d_h = 32$	8.290e-04	2.011e-04	1.278e-05
$d_h = 64$	7.826e-04	3.037e-05	7.713e-06

E HARDWARE

1372 Table E.26 lists hardware used for all the experiments presented in Section 4. The experiments
 1373 presented in section 4.1, Figure 5 (training of the 2x2 and 3x3 lattice systems), and Section 4.4 are
 1374 conducted on a CUDA GPU. Figure 5 (training of the 4x4 lattice), Figure 5 (testing), and Figure H.16
 1375 are conducted on CPUs because of their larger memory requirements.

F ABLATION STUDIES

1379 We vary the widths of the encoders and linear layers to understand how they affect the mean squared
 1380 error defined on the true and predicted solutions. We experimented with the Hamiltonian \mathcal{H}_2 explained
 1381 in Section 4.2, chain of 8 nodes in 2D. We evaluated the model on the training and testing sets with
 1382 2000 samples each in the phase space and report the test errors. The message encoder’s width is
 1383 chosen by subtracting the width of the hidden layer from the width of the linear layer in the ablation
 1384 study, i.e., $d_M = d_L - d_h$. Figure F.7 and Table F.27 reveal that increasing either the linear layer
 1385 width d_L or the hidden dimension d_h while keeping the other parameter fixed consistently reduces
 1386 the mean squared error. In the same experiment, we also computed the condition number $\kappa(Z) = \frac{\sigma_1}{\sigma_n}$
 1387 in terms of the singular values $\sigma_1 > \dots > \sigma_n$ of the matrix Z associated with the linear system in
 1388



1403 Figure F.7: Ablation study for widths of the dense and linear layers.

1404 Table F.28: **Ablation study showing the condition number of the matrix associated with Equation (6)**
 1405 **with increasing feature widths.**

	$d_L = 128$	$d_L = 256$	$d_L = 512$
$d_h = 8$	4.266e+05	8.985e+06	2.612e+08
$d_h = 16$	1.525e+05	1.687e+06	3.545e+07
$d_h = 32$	8.105e+04	1.352e+06	2.974e+07
$d_h = 64$	1.072e+05	9.625e+05	1.766e+07

1411 Table F.29: **Ablation study showing the influence of applying recursive message-passing on the mean**
 1412 **squared error between predicted and true system dynamics \dot{y} . #msg is the number of message passes.**

	#msg = 1	#msg = 2	#msg = 3	#msg = 4	#msg = 5	#msg = 6
Summing	7.713e-06	1.866e-05	1.271e-04	1.150e-03	7.620e-04	2.222e-03
Averaging	2.020e-02	1.265e-02	1.280e-02	1.057e-02	1.175e-02	1.089e-02

1419 Equation (6) to assess the sensitivity of the solution. We avoided the bias term when computing the
 1420 condition, as it was only used to fit the integration constant in practice. Table F.28 reveals larger values
 1421 as the system size (network width d_L) increases, but increasing the feature width of the encoders d_h
 1422 slightly stabilizes the system for large network widths, as expected.

1423 We additionally vary the number of message passes (#msg) by recursively applying the local-pooling
 1424 $h_j^V \leftarrow \sum_{i \in \mathcal{N}_j} h_i^V$ aggregating the node encodings h_i^V of the neighboring nodes $i \in \mathcal{N}_j$ (#msg-1
 1425 times), and then applying the final message scheme explained in Section 3.2.2 with two different
 1426 schemes: summing ($h_j^V \leftarrow \sum_{i \in \mathcal{N}_j} h_i^V$) and averaging ($h_j^V \leftarrow \frac{1}{|\mathcal{N}_j|} \sum_{i \in \mathcal{N}_j} h_i^V$). Table F.29 reveals
 1427 that having multiple message-passes can improve the accuracy for the 8-particle mass-spring system
 1428 when averaging is used. We believe that summing works better than averaging because it implicitly
 1429 encodes the node degree information by aggregating the neighboring messages. Each neighboring
 1430 message is the output of a `softplus` activation function and has non-negative values. In all the
 1431 other experiments presented in this paper, we use only a single message pass and do not optimize the
 1432 number of message passes, as all the ground truth systems we consider only require a single step of
 1433 neighborhood information.

G COMPARISON WITH A BENCHMARK DATASET

1435 To further support our claims, here we perform benchmarking of our model against existing suitable
 1436 graph network approaches. We made use of the existing publication from the NeurIPS 2022 Datasets
 1437 and Benchmarks Track by Thangamuthu et al. (2022) and their corresponding repository. The
 1438 considered models for comparison include:

- 1442 • **Full Graph Neural Network (FGNN)** : Based on the work of Sanchez-Gonzalez et al.
 1443 (2020), these models utilize message-passing as a key feature to enable a simulation frame-
 1444 work. Note that in the original work the architecture is called Graph Network-based
 1445 Simulators (GNS) but for benchmarking it is called FGNN and we use this name as well.
- 1446 • **Full Graph Neural ODE (FGNODE)** : An ODE version of FGNN is what we refer to as
 1447 FGNODE (Sanchez-Gonzalez et al., 2019).
- 1448 • **Graph Neural ODE (GNODE)** : This architecture uses a graph topology to parameterize
 1449 the force of a system using a neural ODE approach, it was introduced by Thangamuthu et al.
 1450 (2022).
- 1451 • **Lagrangian Graph Network (LGN)** : This architecture uses an FGNN to predict the
 1452 Lagrangian of the system (Bhatoo et al., 2022).
- 1453 • **Lagrangian Graph Neural Network (LGNN)** : Similar to LGN, this architecture decouples
 1454 the kinetic and potential energies (Thangamuthu et al., 2022).
- 1455 • **Hamiltonian Graph Network (HGN)** : In this architecture an FGNN predicts the Hamilto-
 1456 nian of the system (Sanchez-Gonzalez et al., 2019; Thangamuthu et al., 2022).

1458
1459 Table G.30: Comparison of the SOTA physics-informed graph network architectures (also see Table 4)
1460 and our (SWIM) RF-HGN.
1461

Model	(SWIM)	RF-HGN	FGNN	FGNODE	GNODE	LGN	LGNN	HGN	HGNN
Translation invariance	✓		✗		✗	✗	✗	✗	✗
Rotation invariance	✓		✗	✗	✗	✗	✗	✗	✗
Energy conservation	✓		✗	✗	✗	✓	✓	✓	✓
Gradient-descent-free training	✓		✗	✗	✗	✗	✗	✗	✗

1462
1463
1464
1465
1466
1467 Table H.31: Summary of the training times of the experiment presented in Figure H.9 for (SWIM)
1468 RF-HGN and (Adam) HGN in seconds. For the systems of sizes 2×2 (GPU trained), 3×3 (GPU
1469 trained), and 4×4 (CPU trained), we observe approximately three, two, and three orders of magnitude
1470 faster training, respectively.
1471

System size	(SWIM) RF-HGN	(Adam) HGN
2×2	≈ 0.06 seconds	≈ 82.93 seconds
3×3	≈ 0.15 seconds	≈ 92.1 seconds
4×4	≈ 3.06 seconds	≈ 936.12 seconds

- 1472
1473
1474
1475
1476
1477
1478 • **Hamiltonian Graph Neural Network (HGNN)** : Analogously, this architecture is similar
1479 to HGN but it decouples the potential and kinetic energies of the Hamiltonian (Thangamuthu
1480 et al., 2022).

1481 First, we highlight the similarities and differences in model properties in table G.30, noting that
1482 our model satisfies requirements necessary for modeling physical systems while maintaining energy
1483 conservation.

1484 A key metric of interest for our work is the training time, thus we have re-trained models from
1485 (Thangamuthu et al., 2022) on their datasets of the spring system with 3, 4 and 5 nodes and record
1486 the training time. All runs were performed on the same machine as the experiments in the main paper.
1487 The resulting training times in table Table 4 show clearly that our proposed approach is much faster
1488 to train, especially compared to the specialized Lagrangian and Hamiltonian graph networks.

1489 Of course, a model is only useful if it can accurately make predictions, thus we plot errors on a test
1490 trajectory for all mentioned models in Figure H.22. We observe that our (SWIM) RF-HGN has a
1491 similar predictive ability as the SOTA architectures. It should be noted that for the test trajectory
1492 shown for $N = 4$ the LGN model diverged after around 25 steps. Similar results of diverging models
1493 were also observed from LGNN and the NODE architectures when we attempted to test on 100
1494 trajectories, where multiple predicted trajectories would diverge from the true trajectory.

1497 H ADDITIONAL RESULTS

1498
1499 Our submitted folder contains an animation of the test system shown in Figure 1 of the main text, as
1500 well as the molecular dynamics systems (see Figure H.18 and Figure H.20).

1503 H.1 BENCHMARKING AGAINST SOTA OPTIMIZERS

1504
1505 In Figure H.8, we show loss curves for the Adam optimizer, highlighting how its train and test losses
1506 evolve over time relative to the loss of our non-iterative approach in 2×2 , 3×3 , and 4×4 systems. The
1507 model and optimizer hyperparameters are set accordingly as explained in Appendix C.1, Table D.7,
1508 Table D.9, and Table D.8. We observe comparable accuracies of Adam and SWIM (Bolager et al.,
1509 2023), even after 10000 gradient descent iterations using the Adam (Kingma & Ba, 2015) optimizer.
1510 Moreover, Figure H.9 reveals that our method scales better than iterative optimization, maintaining
1511 low error as system size increases. And Table H.31 reveals two to three orders of magnitude quicker
1512 training of (SWIM) RF-HGN than (Adam) HGN in different 3D lattice systems.

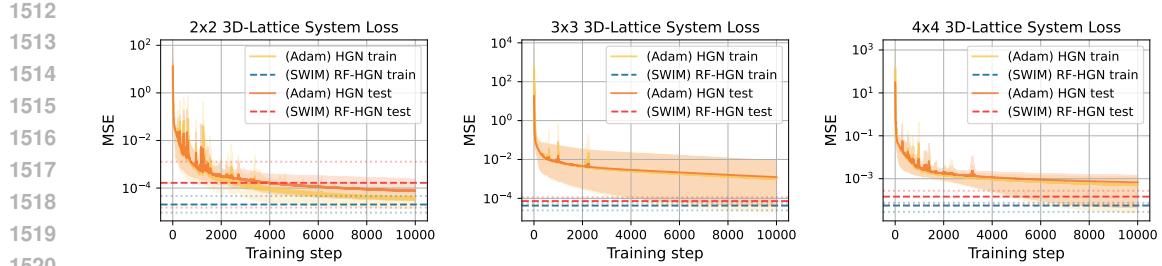


Figure H.8: MSE losses on the training and test dataset for a 2x2 (left), 3x3 (middle) and 4x4 (right) lattice during iterative training are given with solid lines for the average over ten runs; the shaded region extends from the minimum to the maximum value. The dashed lines denote the (constant) MSE losses for our non-iterative optimization, and shaded dashes show the minimum and maximum.

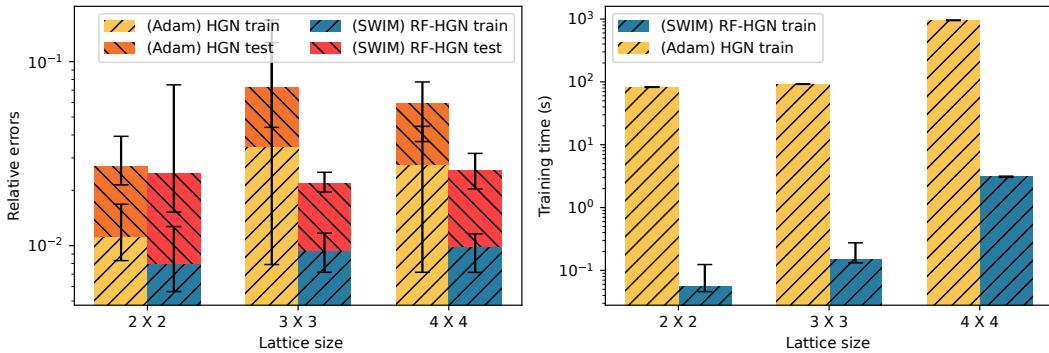


Figure H.9: Relative error and training time are shown for different lattice sizes. Boxplots show the mean and error bars based on ten runs with different random seeds.

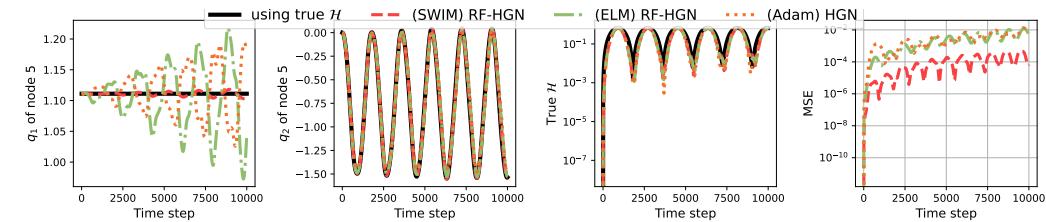


Figure H.10: Illustration of position trajectories of the middle node over time (also see Figure H.11). Models are trained with 5 nodes and tested (here) with 10 nodes using the standard spring potential (see Appendix C.1).

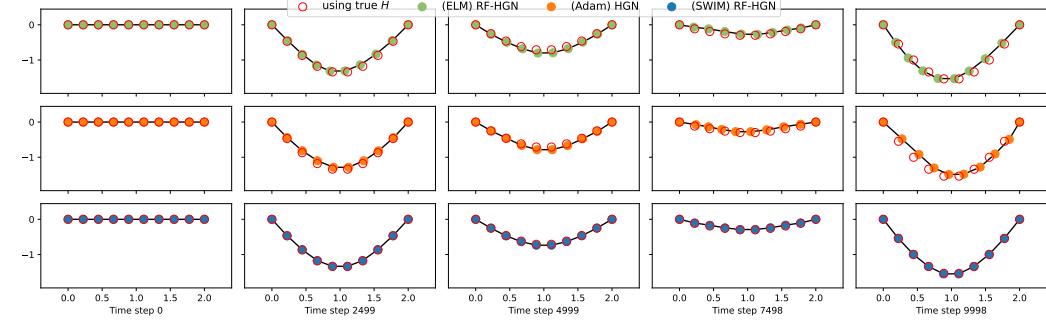


Figure H.11: Illustration of position trajectories over time from models trained on a system with 5 nodes using the standard chain potential (see Appendix C.1) and zero-shot tested with 10 nodes with an external force (gravitational).

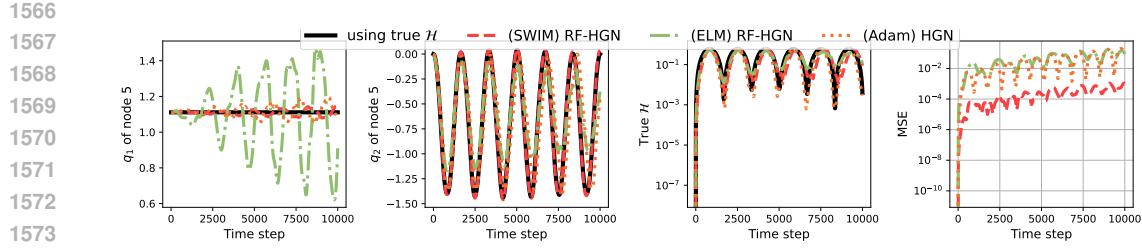


Figure H.12: Illustration of position trajectories of the middle node over time (also see Figure H.11). Models are trained with 5 nodes and tested (here) with 10 nodes using anharmonic spring potential (see Appendix C.1).

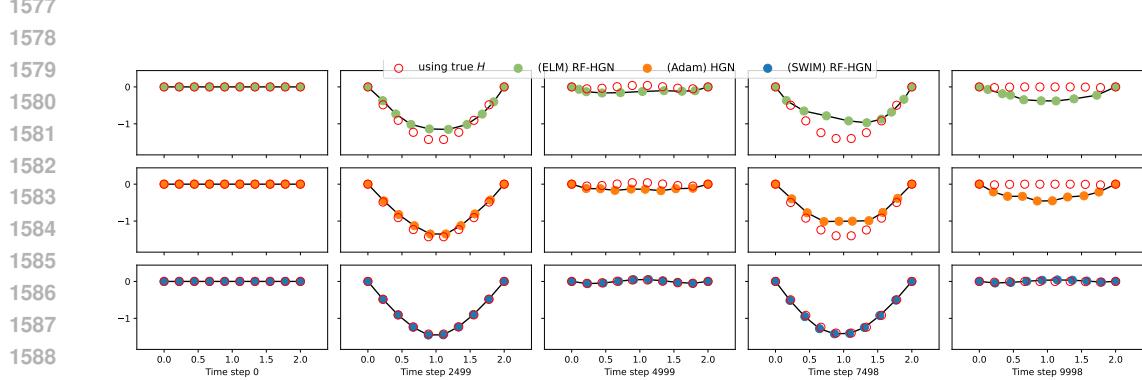


Figure H.13: Illustration of position trajectories over time from models trained on a system with 5 nodes using anharmonic spring potential (see Appendix C.1) and zero-shot tested with 10 nodes with an external force (gravitational).

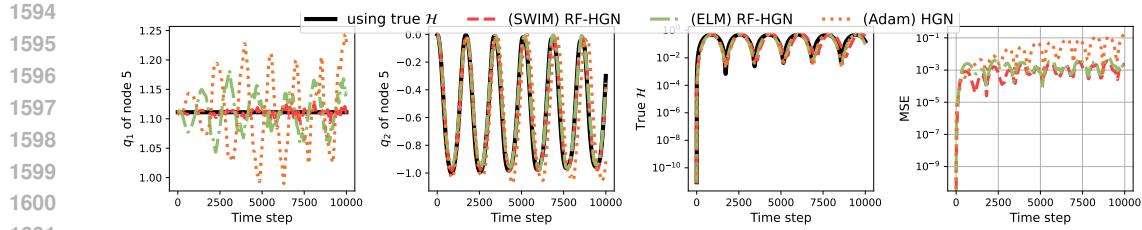


Figure H.14: Illustration of position trajectories of the middle node over time (also see Figure H.11). Models are trained with 5 nodes and tested (here) with 10 nodes using the Morse potential (see Appendix C.1).

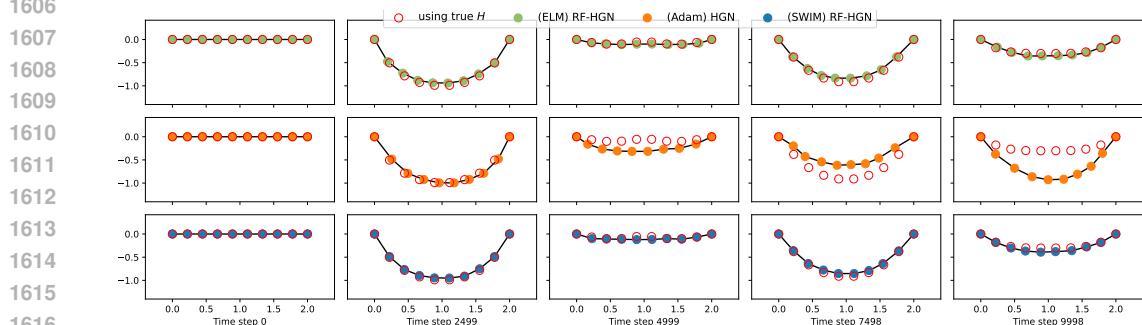


Figure H.15: Illustration of position trajectories over time from models trained on a system with 5 nodes using the Morse spring potential (see Appendix C.1) and zero-shot tested with 10 nodes with an external force (gravitational).

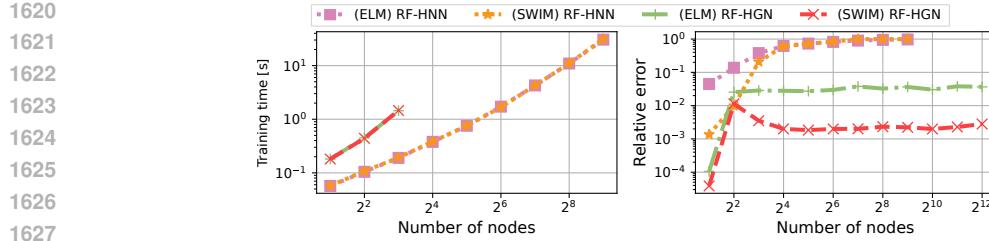


Figure H.16: Zero-shot generalization in 2D open chain (see Figure 4 (b)): RF-HGN trained up to $N = 8$ accurately generalizes up to $N = 4096$, outperforming retrained RF-HNN (right). RF-HGN with zero-shot generalization is also faster than RF-HNN for node counts larger than 2^6 (left).

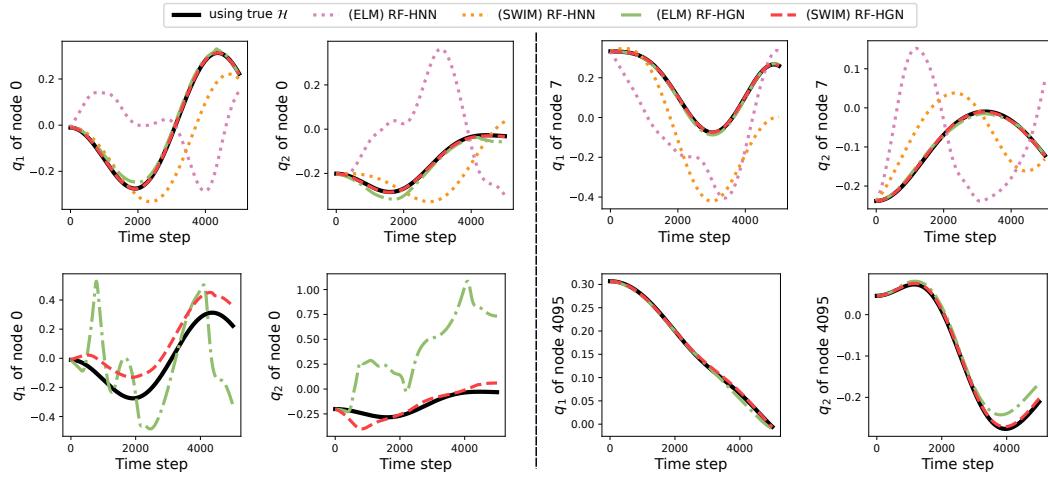


Figure H.17: Illustration of position trajectories of the corner nodes over time (also see Figure 6). Top: Trained with 2^3 nodes and tested with 2^3 nodes. Bottom: Trained with 2^3 nodes and tested with 2^{12} nodes.

1652 H.2 ZERO-SHOT GENERALIZATION AND COMPARISON OF RANDOM FEATURE METHODS

1653 Figure H.17 illustrates the trajectories of the corner nodes of the experiment in Figure 6. For this
1654 particular example the left corner trajectory (node with id 0) seems to be harder to capture than the
1655 other nodes in the system for the extreme zero-shot case (trained with 8 nodes, tested with 4096
1656 nodes) case, hence slightly higher error on the trajectories compared to the non-zero-shot case (trained
1657 with 8 nodes and tested with 8 nodes) as one can see in Figure 6.

1659 H.3 BENCHMARKING AGAINST SOTA ARCHITECTURES

1661 H.4 ROBUSTNESS AGAINST NOISE

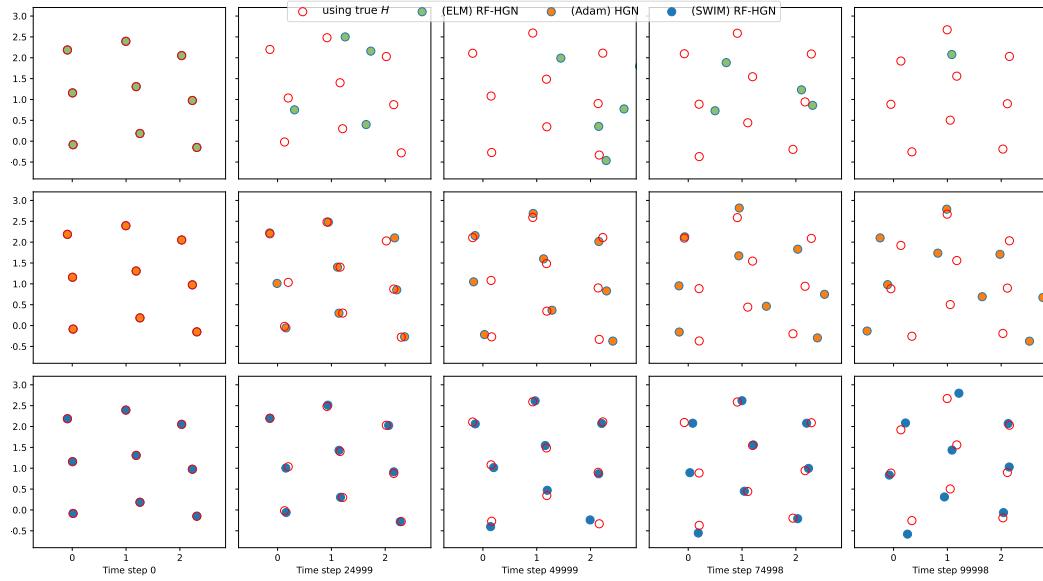
1663 To evaluate our model's robustness against additive noise, we add Gaussian noise with different
1664 standard deviations (σ) to the ground truth positions and momenta before including them in the
1665 training set. We experimented with 5 nodes in 3D on the training set with 1000 samples in phase

1667 Table H.32: Molecular dynamics evaluation with 9 particles. Mean squared error (MSE) and relative
1668 l^2 error (rel. l^2) are reported together with the true Hamiltonian over the ground-truth trajectory and
1669 the (ELM) RF-HGN predicted quantity over the rolled-out trajectory.

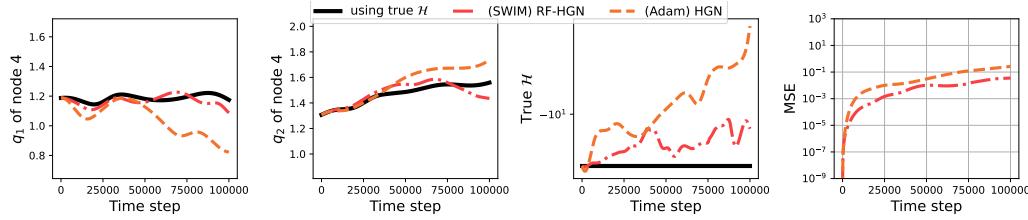
	T=1	T=25000	T=50000	T=74999	T=99999
q MSE	2.695e-08	1.548e+07	3.260e+08	1.944e+08	1.125e+08
q rel. l^2	1.141e-04	2.751e+03	1.241e+04	9.698e+03	7.481e+03
True \mathcal{H}	-1.233e+01	-1.233e+01	-1.233e+01	-1.233e+01	-1.233e+01
Model $\hat{\mathcal{H}}$	-1.233e+01	2.293e+09	6.538e+09	7.215e+09	7.059e+09

1674
 1675
 1676
 1677 Table H.33: Molecular dynamics evaluation with 9 particles. Mean squared error (MSE)
 1678 and relative
 1679 l^2 error (rel. l^2) are reported together with the true Hamiltonian over the ground-truth trajectory and
 the (Adam) HGN predicted quantity over the rolled-out trajectory.

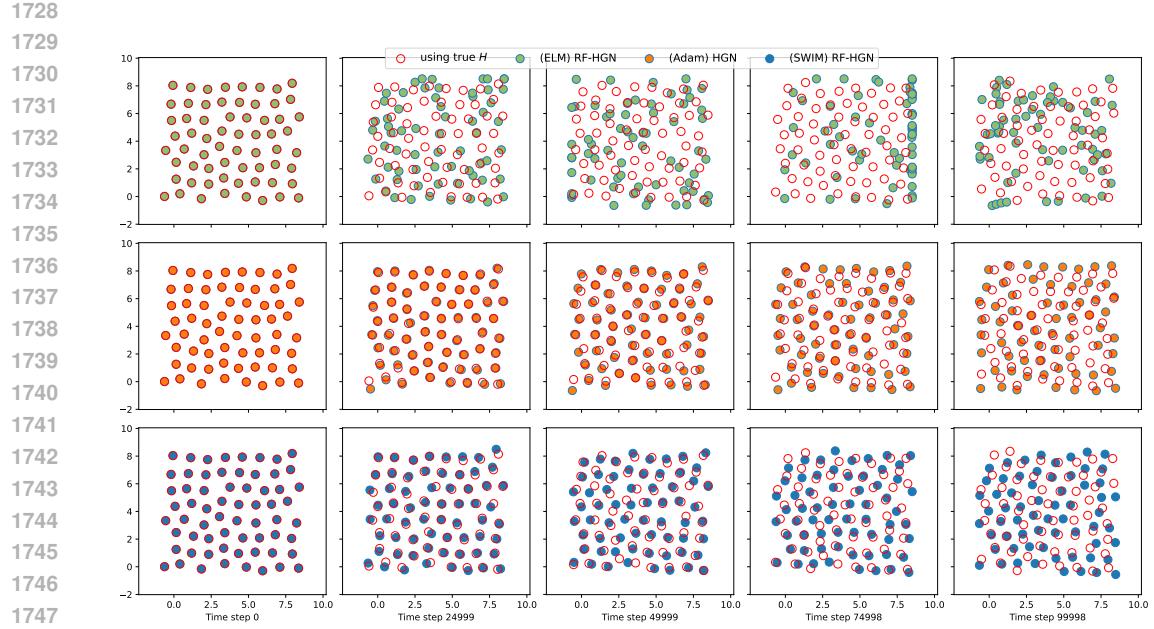
	T=1	T=25000	T=50000	T=74999	T=99999
q MSE	3.280e-13	5.045e-03	1.530e-02	6.107e-02	1.312e-01
q rel. l^2	3.981e-07	4.965e-02	8.503e-02	1.719e-01	2.555e-01
True \mathcal{H}	-1.233e+01	-1.233e+01	-1.233e+01	-1.233e+01	-1.233e+01
Model $\hat{\mathcal{H}}$	-1.233e+01	-1.061e+01	-9.796e+00	-8.665e+00	-6.998e+00



1708 Figure H.18: Illustration of position trajectories over time from models trained on a system with 9
 1709 nodes on the 2D molecular dynamics system (see Figure 4 (c)).



1723 Figure H.19: Illustration of position trajectories over time from models trained on a system with 9
 1724 nodes on the 2D molecular dynamics system (see Figure 4 (c)). Results from ELM RF-HGN training
 1725 are omitted due to very large errors which distort the representations in the plots.



1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure H.20: Illustration of position trajectories over time from models trained on a system with 36 nodes and zero-shot tested with 64 nodes on the 2D molecular dynamics system (see Figure 4 (d)).

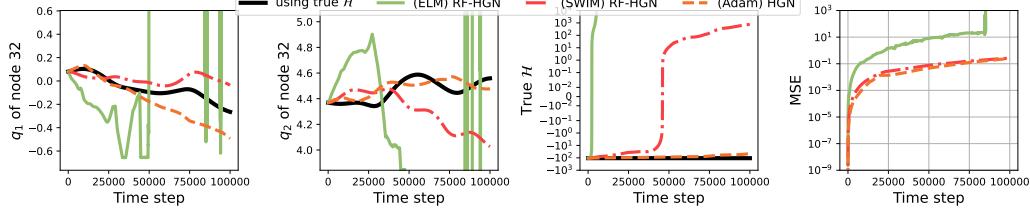


Figure H.21: Illustration of position trajectories over time from models trained on a system with 36 nodes and tested with 64 nodes on the 2D molecular dynamics system (see Figure 4 (c)).

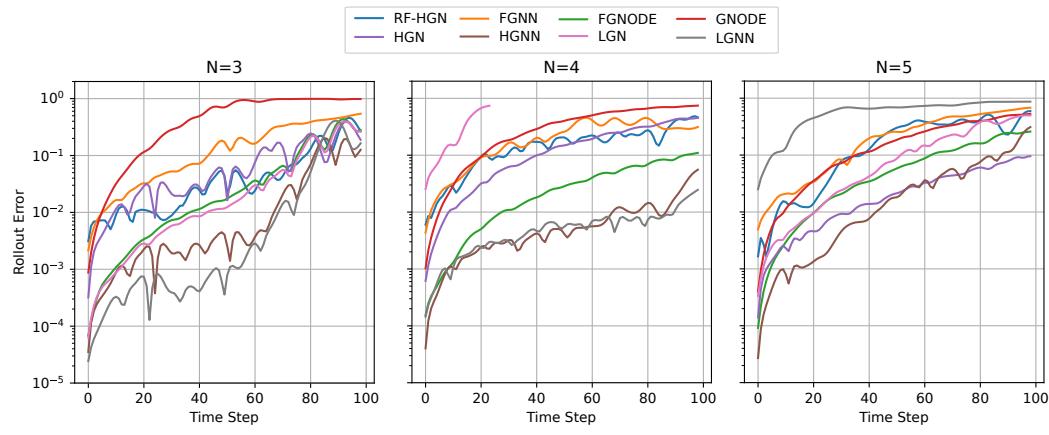


Figure H.22: Rollout errors on test trajectory benchmark for $N = 3, 4, 5$.

1782 Table H.34: Results of training with noisy data are displayed. Relative l^2 and mean-squared errors
 1783 are displayed.

σ	0	1e-5	1e-4	1e-3	1e-2	1e-1	1	2
CV MSE	6.18e-3	6.59e-3	5.35e-3	7.84e-3	6.45e-3	3.38e-2	2.78	1.11e+1
CV rel. l^2	4.03e-2	4.07e-2	3.72e-2	4.29e-2	4.05e-2	9.61e-2	6.64e-1	8.78e-1
Test MSE	9.52e-3	9.77e-3	9.12e-3	1.04e-2	9.12e-3	9.67e-3	1.01e-1	3.94e-1
Test rel. l^2	4.96e-2	4.92e-2	4.83e-2	5.09e-2	4.80e-2	4.94e-2	1.65e-1	3.27e-1

1789 Table H.35: Batch-wise training results compared to direct least squares solutions are displayed
 1790 with training time in seconds and memory usage in GiB. Relative l^2 and mean-squared errors are
 1791 displayed.

	ELM	ELM (batched)	SWIM	SWIM (batched)
CV MSE	9.01	2.15e+03	3.84e-1	1.08
CV rel. l^2	2.59e-1	2.54	4.65e-2	7.89e-2
Test MSE	9.06	1.98e+3	3.71e-1	1.09
Test rel. l^2	2.6e-1	2.49	4.61e-2	8.02e-2
Training time	3.96	4.48	3.88	4.42
Memory usage	2.4	1.1	2.4	1.1

1799 space using 5-fold cross-validation, and on a test set of 1000 samples in phase space. To stabilize
 1800 the results, we repeated this experiment 5 times with different seeds and report the average results in
 1801 Table H.34.

1803 The columns in Table H.34 list the standard deviation σ used in the experiments. The results indicate
 1804 the robustness of our method to Gaussian noise added to the state. For more realistic scenarios, the
 1805 model can further be improved by modeling uncertainties and assessing sensitivities for noise in a
 1806 real-data setting.

1807 H.5 BATCH-WISE TRAINING

1809 To demonstrate batching, we prepared an example with Lennard-Jones potential with 4 particles in
 1810 2D trained with both ELM, SWIM, and their batch-wise versions when solving the linear problem
 1811 (Equation (6)). Batching is performed by sub-sampling the training data set (5000 states in phase
 1812 space) and averaging the resulting last-layer coefficients. Table H.35 lists the results, where the
 1813 columns indicate which random feature method is used, rows indicate cross-validation (5-fold) errors
 1814 with train set size 5000 and test errors averaged over 5 different seeds of test size 5000.

1815 We note that the memory required for batch-wise training can be further improved with additional
 1816 tuning, for example, by explicitly freeing the GPU memory, we could tune the memory requirement
 1817 to be as minimal as possible (0.04 GiB). In this case, however, the training time also increases to
 1818 around 5.7 seconds. Different tuning strategies (e.g., for lower memory, for quicker runtime) are
 1819 therefore important to consider when comparing different training strategies.

1820 We believe that with an established linear solver like LSQR (Paige & Saunders, 1982), LSMR (Fong
 1821 & Saunders, 2011), LSRN (Meng et al., 2014a), one can further study the batch-wise training of our
 1822 model for even larger systems, tuned for specific needs such as low memory or fast training.

1824 H.6 BENCHMARKING DIFFERENT RANDOM FEATURES

1826 We also experimented with random Fourier features (RFF) (Rahimi & Recht, 2007) by setting

$$1828 W_{ij} \sim \mathcal{N}(0, \frac{1}{\sigma^{\text{RFF}}}), \quad b_i \sim \text{Uniform}(0, 2\pi), \quad z = \sqrt{\frac{2}{\#\text{features}}} \cos(W^T x + b),$$

1830 where z is the random features and $\#\text{features}$ is the size of z .

1832 We have extended the noise-scale experiment in Appendix H.4 with $\sigma^{\text{RFF}} = 1$ and list the results in
 1833 table Table H.36. Additionally, we run the same experiment using ELM by setting

$$1834 W_{ij} \sim \mathcal{N}(0, 1), \quad b_i \sim \text{Uniform}(-\pi, \pi),$$

1835 and list the results in Table H.37

1836 Table H.36: Results of training with noisy data using RFF are displayed. Relative l^2 and mean-
 1837 squared errors are displayed.

σ	0	1e-5	1e-4	1e-3	1e-2	1e-1	1	2
CV MSE	3.02	3.03	3.05	3.04	3.01	3.09	5.59	1.4e+1
CV rel. l^2	9.1e-1	9.14e-1	9.15e-1	9.13e-1	9.1e-1	9.17e-1	9.41e-1	9.87e-1
Test MSE	3.43	3.61	3.44	3.47	3.48	3.39	3.62	3.87
Test rel. l^2	9.74e-1	1	9.77e-1	9.82e-1	9.84e-1	9.71e-1	1	1.04

1843 Table H.37: Results of training with noisy data using ELM are displayed. Relative l^2 and mean-
 1844 squared errors are displayed.

σ	0	1e-5	1e-4	1e-3	1e-2	1e-1	1	2
CV MSE	3e-1	3.2	2.44e-1	6.78e-1	2.4e-1	4.62e-1	8.75	2.32e+2
CV rel. l^2	2.54e-1	5.22e-1	2.39e-1	3.24e-1	2.31e-1	2.87e-1	8.73e-1	1.82
Test MSE	4.7e-1	2.89e-1	2.63e-1	3.65e-1	3.04e-1	3.06e-1	5.91e+1	2.42e+6
Test rel. l^2	3.08e-1	2.76e-1	2.66e-1	3.02e-1	2.76e-1	2.76e-1	1.4	1.65e+2

1851 We note that data-agnostic methods perform better when tuned slightly towards the problem. To
 1852 demonstrate this, we experimented on the same system but without noise. In Table H.38 we list
 1853 relative l^2 errors for RFF; the parameters σ_1^{RFF} and σ_2^{RFF} are node/edge encoder and message encoder
 1854 RFF parameters, respectively. We note better approximations with larger sigmas (lower standard
 1855 deviation), similar to what we have observed with ELM. This is an important point, highlighting the
 1856 value of data-agnostic methods in certain cases, especially when their additional tunable parameters
 1857 are set appropriately. In our main paper experiments, we mainly chose the best-performing random
 1858 feature method that requires no extra tuning, enabling fast training while maintaining accuracy
 1859 comparable to gradient-descent-based approaches. However, in real-world scenarios, this fast training
 1860 could be leveraged to further tune the hyperparameters of RFF or ELM and select the best-performing
 1861 configuration.

1862 Table H.38: RFF results are displayed where σ_1^{RFF} is the node and edge encoder RFF parameter, and
 1863 σ_2^{RFF} is the message encoder RFF parameter. Relative l^2 errors are displayed.

	$\sigma_2^{\text{RFF}} = 0.1$	$\sigma_2^{\text{RFF}} = 1$	$\sigma_2^{\text{RFF}} = 10$
$\sigma_2^{\text{RFF}} = 0.1$	1.02	1.01	1.01
$\sigma_2^{\text{RFF}} = 1$	1.03	9.4e-1	6.52e-1
$\sigma_2^{\text{RFF}} = 10$	5.34e-1	7.04e-2	4.76e-2