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ABSTRACT

Causal discovery seeks to identify causal relationships among attributes, typically
represented as directed acyclic graphs (DAGs) where vertices denote attributes
and edges denote direct causal effects. Existing methods struggle in vertically
federated scenarios. In these settings, data is partitioned across parties that hold
disjoint attributes, and strict privacy constraints prevent centralized aggregation,
leaving vertical federated causal discovery underexplored. We propose VFedCD,
the first framework for causal discovery in vertical federated settings. VFedCD
models causal mechanisms with a shallow-encoder, deep-decoder design. Each
party uses a shallow encoder to transform its local attributes into privacy-preserving
features for all parties, and then a deep decoder to aggregate received features
and predict local attributes, implicitly capturing causal dependencies. To avoid
cycles or overly dense graph structures, a Centralized Topology Validator (CTV)
extracts partial causal structures from party encoders, aggregates them into a
global graph and enforces structural constraints. In addition, a Secure Dispatch
Protocol (SDP) is designed to enhance the security of feature exchange and gradient
propagation by redesigning encoding and aggregation with semi-homomorphic
encryption and secret sharing. Experiments on synthetic and real-world datasets
with artificial vertical partitioning show that VFedCD matches the accuracy of
centralized methods while guaranteeing privacy.

1 INTRODUCTION

Causal discovery, which aims to uncover directed cause-effect relationships among attributes, has
become a cornerstone of scientific inquiry in diverse domains, including biomedical research (Imbens
& Rubin, 2015), climate science (Zhang et al., 2011), and epidemiology (Greenland et al., 1999).
Traditional causal discovery methods typically assume centralized access to complete data. Among
them, a popular branch is Differentiable Causal Discovery (DCD) (Zheng et al., 2018). DCD
leverages neural networks to model causal mechanisms by taking all attributes as input to predict a
target attribute, approximating causal relationships through model fitting, and deriving causal graphs
from the learned parameters.

However, in many real-world scenarios, attributes of the same samples are often vertically partitioned
across multiple parties, with each party holding only a subset of attributes (Yang et al., 2019; Liu
et al., 2020b). As illustrated in Fig. 1(a), consider a medical study aiming to infer causal relationships
among basic health information, genetic data, and exercise habits of citizens, while these data are
stored separately in hospitals, medical examination institutions, and fitness management Apps. Due to
privacy regulations and commercial constraints, raw data sharing is prohibited, rendering centralized
approaches to causal discovery infeasible.

To address this challenge, we propose VFedCD, a framework based on Vertical Federated Learning
(VFL) for DCD. In VFedCD, parties collaboratively infer causal relationships without sharing raw
data. VFL is a classic federated learning paradigm that enables joint model training over vertically
partitioned data by transmitting encoded features and gradients between parties instead of raw data
(Liu et al., 2020a; Hu et al., 2019; Wan et al., 2007). For instance, to evaluate the causal effect of
Institution A’s attributes on Hospital C’s (Fig. 1(b)), Institution A encodes its local attributes into
features and sends them to C. Hospital C then uses these features to predict its own attributes, and
the resulting gradients are sent back to A to update its encoder. Through this iterative process of
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exchanging privacy-preserving intermediate representations, the causal graph can be inferred from
the optimized model parameters.

(a) A vertical causal discovery scenario (b) Framework for inferring the
causal effect of A on C

Figure 1: Vertical Federated Causal Discovery: Scenario and Basic Framework

Unlike traditional VFL frameworks focus on discriminative tasks (e.g., classification), applying it
directly to causal discovery presents unique challenges. Decisions on how to split the model structure
inevitably involve a trade-off between performance and privacy. Transmitting shallow-layer features
typically yields better performance but also increases the risk of privacy leakage due to their higher
fidelity to raw data.

To address this, we adopt a shallow-encoder deep-decoder (sEdD) architecture to enhance inter-party
causal mechanism modeling. To mitigate privacy risks from linear features generated by shallow
encoders, we design a Secure Dispatch Protocol (SDP) that combines semi-homomorphic encryption
and secret sharing to decompose feature computations into encrypted fragments, ensuring no party has
access to standalone features or gradients during training (Fu et al., 2022). Additionally, differentiable
causal discovery requires enforcing global acyclicity constraints on the causal graph. For this, a
Centralized Topology Validator (CTV) is introduced to aggregate causal graph structures from local
encoder parameters and enforce global acyclicity constraints. This effectively prevents cyclic or
overly dense structures while avoiding privacy risks brought by sensitive graph structures exchange
among parties.

Extensive experiments demonstrate VFedCD’s efficacy across synthetic and real-world datasets.
VFedCD achieves causal discovery accuracy comparable to centralized methods while providing
provable privacy guarantees. Our work makes three key contributions:

1. We establish a theoretical foundation for causal discovery in vertically federated learning,
identifying unique challenges and opportunities in distributed attribute settings.

2. We propose VFedCD, which, to the best of our knowledge, is the first vertical federated
causal discovery framework. It introduces two key components—the CTV and the SDP—to
enable global constraint enforcement and privacy-preserving feature aggregation, respec-
tively.

3. Extensive experiments on both synthetic and real-world datasets demonstrate that VFedCD
achieves performance comparable to centralized causal discovery methods while providing
privacy guarantees.

2 RELATED WORK

Causal discovery methods primarily target centralized data. Constraint-based (e.g., PC (Kalisch
& Bühlman, 2007), BPC (Harris & Drton, 2013), IDA (Maathuis et al., 2009)), score-based (e.g.,
Greedy Equivalence Search (GES) (Chickering, 2002), CD2 (Gu et al., 2019), SP (Raskutti & Uhler,
2018)), and mechanism-fitting (e.g., NO-TEARS (Zheng et al., 2018), LiNGAM (Shimizu et al.,
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2006), GES (Chickering, 2002), SDCD (Nazaret et al., 2023)) approaches all assume access to full
attribute sets, which is infeasible for vertical federation where attributes are disjoint across parties.

Federated causal discovery (FCD) has focused on horizontal federation, where parties share the
same attributes but different samples. These methods fall into two categories: 1) Party-driven
approaches (e.g., FedDAG (Gao et al., 2021), FedCSL (Guo et al., 2024a), Bloom (Chengbo &
Kai, 2024), NOTEARS-ADMMTh (Ng & Zhang, 2022), FedACD (Guo et al., 2024b), FedGES
(Torrijos et al., 2024)) enable local causal graph construction or neighborhood learning, with servers
aggregating parameters or selecting optimal structures; 2) Server-led approaches (e.g., FedC2SL
(Wang et al., 2023), PERI (Mian et al., 2023), LiNGAMs (Shimizu, 2012), DARLS (Ye et al.,
2024), FedCDH (Li et al., 2024)) use parties to validate global hypotheses (e.g., topological order,
graph or independence test) for centralized graph refinement. Both rely on parties having complete
attribute sets, a critical assumption invalid in vertical federation—no party holds all attributes, making
hypothesis validation and causal mechanism modeling across disjoint attributes impossible.

3 PRELIMINARIES

Assumption of causal discovery. Our approach is based on two assumptions. The first assumption
is the Additive Noise Model (ANM), where each attribute Xj is generated from its parent attributes
PAj through causal mechanism fj with independent additive noise ϵj : (Peters & Bühlmann, 2014):
Xj = fj(PAj) + ϵj , ϵj representing independently distributed noise. The second is the Faithfulness
assumption, which states that the conditional independencies in the data align with the d-separation
properties underlying the DAG (Spirtes et al., 2001). Discussion on the impact of these assumptions
on identifiability is provided in the appendix E.

Homomorphic encryption (HE). HE defines an encryption function E and decryption function
D. For a plaintext message m and public key pub, encryption is given by ∥m∥pub = E(m, pub),
and decryption with the private key pri is m = D(∥m∥pub, pri). Additive HE (e.g., the Paillier
scheme (Paillier, 2005)) supports homomorphic addition ∥m1∥ ⊕ ∥m2∥ = ∥m1 +m2∥ and scalar
multiplication c⊗ ∥m1∥ = ∥c ·m1∥, enabling computations on encrypted data without the need for
decryption.

Secret sharing of homomorphic encryption ciphertexts (HE2SS). HE2SS converts additive
HE ciphertexts to Secret Shares (Du & Atallah, 2001), as illustrated in Algorithm 1. Given that
party pA holds ∥data∥B = E(data, pB .pub) (i.e., data encrypted with party pB’s public key via
homomorphic encryption (Paillier, 2005)), the procedure is as follows: 1. Party pA generates random
noise ϵ and computes ∥data− ϵ∥B = ∥data∥B ⊕ E(−ϵ, pB .pub). 2. Party pA sends ∥data− ϵ∥B
to party pB , which decrypts it using pB .pri to obtain data − ϵ. 3. The result is secret-shared as
[ϵ, data− ϵ]A,B , where pA holds ϵ and pB holds data− ϵ, ensuring that neither party can reconstruct
data alone.

4 PROBLEM DEFINITION

Vertically Partitioned Data. Consider K parties {pk} holding N samples with vertically parti-
tioned features, where party k holds local data Dk = {xkn}. Each sample xn ∈ Rd is split into
xkn ∈ Rdk for party k, with

∑
dk = d (Yang et al., 2019).

Learning Objective. The goal is to collaboratively learn a causal graph B = graph(Θ) from
vertically partitioned data D = {Dk}, where the parameter set Θ includes all encoders {ϕkt} and
decoders {ωk} between parties, respectively responsible for encoding the attributes of party k into
required features for target party t and decoding the aggregated features to predict the attributes of
party k. To facilitate notation, we define the parameters of each party as θk = {ϕkt}Kt=1 ∪ {ωk}, so
that the complete set of parameters is Θ = {θk}Kk=1. The joint objective minimizes the prediction
loss l, regularizes model complexity via a penalty term α with hyperparameter λ1, and enforces a
continuous acyclicity constraint h(B) (Nazaret et al., 2023) with hyperparameter λ2:

min
Θ

L(Θ, D) =
1

N

∑
n

l(θ1, . . . , θK ;xn) + λ1
∑
k

α(θk) + λ2h(B), (1)
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5 METHOD

In the Method section, we first introduce the framework of VFedCD in 5.1, including how to
approximate the causal mechanism through encoder-decoder. Then we introduces SDP in 5.2, which
is presented prior to the CTV because the redesigning of feature encoding and aggregation in SDP
fundamentally influences the graph extraction process in CTV. In 5.3, we explain how CTV aggregates
causal graphs and enforces structural constraints. The overall approach is shown in Fig. 2.

The pseudo-code can be found in the Appendix A. Complete proofs for the computational complexity
and communication overhead are provided in Appendices B and C, including detailed assumptions
and derivations. For identifiable details, please refer to Appendix E.

Figure 2: VFedCD approach. The left side shows the communication between parties and CTV.
The upper right is CTV. The lower right is the expansion of party C, and SDP redesigning feature
encoding and aggregation.

5.1 FRAMEWORK

VFedCD enables each party to collaboratively approximate causal mechanisms and learn causal
graph structures through encoder–decoder networks. For clarity, we decompose the method into two
stages: forward propagation and backward propagation, as outlined below.

Forward. The forward propagation process, mainly visualized in Party in Fig. 2, unfolds in three
steps:

• Step1: Encoding. Each party k encodes its local attributes xkn into K feature vectors {Hkt}Kt=1
using K sub-encoders {Fkt}Kt=1. The sub-encoder Fkt, parameterized by ϕkt, generates Hkt =
Fkt(x

k
n;ϕkt), representing the causal contribution of party k’s data to the prediction process of

target party t. This decomposes the encoder into specialized components for cross-party feature
generation.

• Step 2: Cross-Party Feature Transmission. For a target party t predicting its attributes, all parties
k = 1, . . . ,K transmit the feature Hkt (specifically designed for target t) to party t. This step
enables each party to collect the features it needs from all other parties, forming a collaborative
feature pool for subsequent decoding.

• Step 3: Decoding. Target party t aggregates the received features {Hkt}Kk=1 and uses its decoder
Gt (parameterized by ωt) to reconstruct its local attributes:

x̂tn = Gt(H1t, H2t, . . . ,HKt;ωt), (2)

The decoder maps the aggregated features to the attribute space, approximating the causal mecha-
nisms that generate the target party’s data from its causal parents across all parties.
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Backward. During backward propagation, target party t first computes the prediction loss
lcon(x̂

t
n, x

t
n) between the reconstructed attributes x̂tn and the true data xtn. The gradient∇lcon x̂

t
n of

reconstruction loss lcon is then backpropagated through the decoder Gt to compute gradients with
respect to the intermediate features {Hkt}Kk=1:

∇lconHkt =
∂lcon
∂Hkt

k = 1, . . . ,K, (3)

These gradients are transmitted back to the respective source parties k, which update their sub-encoder
parameters ϕkt using stochastic gradient descent (SGD) in a VFL-compatible manner (Yang et al.,
2019). The decoder parameters ωt are updated locally by party t to minimize the reconstruction error.

5.2 SECURE DISPATCH PROTOCOL (SDP)

In traditional VFL with deep-encoder shallow-decoder (dEsD) architectures, feature encryption is
often applied during decoding, where lightweight shallow decoders can handle the computational
overhead of homomorphic operations. However, transitioning to a shallow-encoder deep-decoder
(sEdD) architecture for improved inter-party causal mechanism modeling introduces a critical chal-
lenge: deep decoders’ complex nonlinear operations make traditional full homomorphic encryption
(FHE) computationally infeasible. Additionally, using raw data as ”labels” for loss computation
creates dual leakage paths. Based on the features and gradients received, party can respectively
inference other parties’ data and ”labels”. Since raw data plays the role of ”label”, adversaries can
cross - validate its inference of other parties’ sensitive data from features and gradients.

Inspired by (Fu et al., 2022), we design a encryption strategy to align with the sEdD architecture.
As shown in lower right of Fig. 2, SDP focuses on securing the encoding and feature aggregation
processes rather than the decoding stage. By decomposing feature computations into encrypted
fragments via semi-homomorphic encryption and secret sharing, SDP ensures that no party can
reconstruct standalone features or gradients during training, while avoiding the computational burden
of encrypting deep decoder operations. The detailed threat model can be found in Appendix H.

SDP consists of three components: initialization for key and model setup, forward propagation
for secure feature aggregation, and backward propagation for privacy-preserving gradient updates.
Without loss of generality, the following uses the prediction of attributes in target party pt as an
example to introduce the protocol. The prediction of attributes in other parties follows the same
process.

Initialization. As shown in the Algorithm 2, each party pk generates a key pair ⟨pk.pub, pk.pri⟩
and initializes K plaintext encoders {pk.fit}, parameterized by ϕkit. Here, pi.fkt represents a
fragment of the complete encoder Fkt (which maps xk to features for target party t) that is distributed
to party i. Specifically, the complete encoder Fkt is decomposed into K fragments across all parties,
i.e., Fkt(xk) =

∑K
i=1 pi.fkt(xk). Thus, the features Zt required for predicting xt can be formulated

as:

Zt =

K∑
k=1

Fkt(xk) =

K∑
k=1

K∑
i=1

pi.fkt(xk), (4)

Notably, direct computation of Zt via this formula is infeasible because xk resides exclusively on
party k, while its corresponding encoder fragments pi.fkt are distributed across all parties i. The
subsequent steps of SDP (forward and backward propagation) are designed to indirectly achieve the
computation of Zt on target party t without exposing raw data or complete encoder parameters.

Then, for j ̸= k, party pk encrypts pk.fjt with its public key pk.pub as ∥pk.fjt∥k and sends it to
party j, which stores it as a encrypted ∥pj .efkt∥k.

Forward. As shown in the Algorithm 3, for target party pt, each party pk computes: 1.
Plaintext feature: pk.fkt(xk) (direct contribution from party k to itself). 2. Ciphertext
features: ∥pk.efit(xk)∥i = x⊤k ∥pk.efit∥i (for i ̸= k), transformed via HE2SS into secret
shares [ϵkit, remainingkit]k,i. Party pk aggregates these as zkt = pk.fkt(xk) +

∑
i̸=k(ϵkit +

remainingikt) and sends zkt to party pt, which sums all zkt to get Zt =
∑

k zkt for decoding.
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Backward. As shown in the Algorithm 4, Target party pt computes gradients ∇Zt from the
decoder, encrypts them as ∥∇Zt∥t = E(∇Zt, pt.pub), and broadcasts to other parties. Each
party k ̸= t first computes ∥x⊤k∇Zt∥t = x⊤k ∥∇Zt∥t and applies HE2SS to divide into
[φkt, grad remainingkt]k,t. And then, it updates its encoder pk.fkt using φk,t, while party pt
updates pt.fkt using grad remainingkt. Finally, the updated encoders are re-encrypted and ex-
changed to maintain model consistency across parties.

5.3 CENTRALIZED TOPOLOGY VALIDATOR (CTV)

In vertically partitioned settings, each party’s local subgraph structures is embedded within encoder
parameters, thus no single party can verify the global graph’s topological validity. Without centralized
validation, the inferred graph may contain cycles or overly dense connections, violating causal
discovery’s fundamental requirements. While transmitting both features and local subgraphs between
parties to enforce constraints raises significant privacy risks, thus not contributing a solution. To
address this, we introduce the CTV, a server-based component that aggregates encoder parameters
to validate the global graph’s acyclicity using structural constraints, as shown in CTV in Fig. 2.
Verifying global topological validity without exposing raw graph structure data, CTV balances
constraint enforcement and privacy preservation. We detail the forward process to obtain a subgraph
with the attributes of party pt as the effect, and the backward process to update the corresponding
models.

Forward. As shown in Algorithm 5, each party pk firstly extracts a causal graph structure from
its encoders Bk

t = graph({pk.fit}Ki=1) and secondly sends to the CTV. Thirdly, the CTV constructs
the subgraph Bt =

∑K
k=1B

k
t . Note that the structural constraints is enforced on full graph B =

concat({Bt}Kt=1), which is gained by repeating the process for all K target parties. To ensure the
validity of the complete causal graph, these constraints typically include two types: acyclicity and
sparsity.

To enforce acyclicity, the CTV leverages the spectral radius constraint h(B) (Nazaret et al., 2023),
defined as:

h(B) = ρ(B) = max
1≤i≤d

|λi(B)|, (5)

where λi(B) denotes the i-th eigenvalue of B. This constraint ensures the graph is a directed acyclic
graph (DAG). Beyond acyclicity, structural constraints may also incorporate sparsity-promoting terms
(e.g., the ℓ1-regularization ∥B∥1) to penalize overly dense connections, though their implementation
details are omitted here for focus. The combined structural objective (e.g., Lstruct = λ2∥B∥1 +
λ3h(B)) guides the learning process toward both valid and interpretable causal graph structures. We
provide further details on acyclicity constraints in the appendix D.

Backward. As shown in the Algorithm 6, to update models for predicting attributes on target party
pt, the CTV computes and randomly splits the gradient ∇hBt =

∑K
k=1 grad structurekt, where

grad structurekt are gradients sent to party pk. Parties further decompose received gradients into
encoder-specific updates

grad structurekit = chunk(grad structurekt), (6)

for updating pk.fit, aligning local parameter adjustments with the global acyclicity constraint without
exposing full graph gradients.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate VFedCD on both synthetic and real-world datasets. Synthetic datasets are
generated with varying numbers of attributes (10, 15, 25) and edge densities (30 to 75 edges) to test
scalability and robustness. For real-world validation, we use the Sachs (Sachs et al., 2005), SynTReN
(Van den Bulcke et al., 2006), and a diabetes (Kahn) dataset. All centralized datasets are artificially
partitioned to simulate the VFL setting. We use an 80/20 train/test split for all datasets.
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Implementation Details. We use Stochastic Gradient Descent (SGD) with a learning rate of 0.01,
a batch size of 16 and 500 training epochs. By default, we set the regularization hyperparameter
λ1 to 5 × 10−3, and communication cycle Q to 1. The acyclicity constraints weight λ2 starts at 0
and increases by gamma (0.006) per epoch, with its growth halted once the current graph becomes
acyclic. All experiments are conducted on a server equipped with 8×V100 GPUs.

Evaluation Metrics. For datasets with known ground-truth causal graphs, we adopt two standard
evaluation metrics:

• Structural Hamming Distance (SHD) (de Jongh & Druzdzel, 2009), which measures the number
of edge additions, deletions, or reversals needed to convert the inferred graph into the true directed
acyclic graph (DAG).

• F1 Score, which evaluates the accuracy of edge detection by harmonizing precision and recall.

To evaluate privacy protection, we implement Unsplit attacks (Erdoğan et al., 2022), where a semi-
honest party attempts to infer other participants’ raw data. We report the Absolute Correlation
between the inferred features and the true data, with lower values indicating stronger privacy preser-
vation. For the diabetes dataset, which does not have a ground-truth causal graph, we conduct a
qualitative evaluation by examining whether the inferred causal relationships align with established
medical knowledge.

SOTA methods. Some SOTA methods addressing causal discovery for learning causal graph with
centralized data are included: NO-TEARS (Zheng et al., 2018), NO-BEARS (Lee et al., 2019),
DAGMA (Bello et al., 2022) , Sortnregress (Reisach et al., 2021), DCDI (Brouillard et al., 2020),
DCD-FG (Lopez et al., 2022). Detailed introduction to these methods is included in Appendix F.

6.2 PERFORMANCE COMPARISON ON SYNTHETIC DATA

This section demonstrates VFedCD’s competitive performance against centralized causal discovery
methods under vertical partitioning. Table 1 compares SHD across synthetic datasets with different
number of attributes. Despite not requiring raw data sharing, VFedCD achieves comparable results
to centralized approaches. We repeat Each experiment five times and take the mean value. For
seed-sensitive methods, the standard deviation of F1 is marked.

Table 1: Causal discovery accuracy on synthetic datasets. The red asterisk (*) indicates methods with
complexity higher than O(D2). Bolded values represent the best two performances.

Attributes 10 Attributes 15 Attributes 25 Attributes
Metric SHD ↓ F1 ↑ SHD ↓ F1 ↑ SHD ↓ F1 ↑
NO-TEARS* 29 0.433 62 0.110 84 0.272
NO-BEARS 36.4 0.205±0.052 57.2 0.265±0.023 96.8 0.075±0.026

DAGMA* 29.4 0.362±0.175 42.2 0.539±0.023 77 0.393±0.075

Sortnregress* 31 0.355 54 0.267 102 0.300
DCDI* 30 0.405±0.071 52.4 0.306±0.041 67.2 0.607±0.037

DCD-FG 19.2 0.632±0.082 61.8 0.446±0.060 192.5 0.244±0.037

VFedCD(Ours) 18.8 0.698±0.016 33 0.711±0.013 81.6 0.649±0.008

6.3 GENERALIZATION

To evaluate model robustness, we test VFedCD on datasets with varying characteristics: Synthetic
Dataset (15 attributes, edge counts: 30, 45, 60, 75), Real-World Dataset (Sachs protein network),
Highly Realistic Synthetic Dataset (SynTReN dataset). Table 2 presents results for seven methods
across these scenarios. VFedCD demonstrates consistent performance across different graph struc-
tures. Unbalanced data partitioning will not have a significant impact on the results, but it will affect
the training time. For details about unbalanced data partitioning, please refer to the appendix G.
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Furthermore, to demonstrate the universality of VFedCD, we conduct an experiment on a practical
diabetes dataset without real causal graph and presented the consistency between the predicuted
causal graph and clinical knowledge. Details are provided in Appendix I.

Table 2: Generalization performance across diverse datasets (SHD ↓ F1 ↑).

Synthetic Datasets(SHD) Sachs SynTReN
30 Edges 45 Edges 60 Edges 75 Edges SHD F1

NO-TEARS 21 38 62 68 17 0.256
NO-BEARS 25 40 59 69 17 0.201
DAGMA 26 21 45 63 18 0.277
Sortnregress 39 40 54 67 16 0.257
DCDI 29 38 50 60 38 0.136
DCD-FG 73 86 64 57 40 0.168
VFedCD(Ours) 13 27 32 31 19 0.407

6.4 ABLATION STUDY

We evaluate VFedCD components on a synthetic dataset with 15 attributes. A semi-honest party
conducts Unsplit attacks (Erdoğan et al., 2022) to infer others’ raw data. We compare three variants:
(1) the framework, (2) the framework + CTV, and (3) the full VFedCD. Metrics include SHD, F1 -
score, and the Absolute Correlation between inferred and raw features.

As Table 3 shows, CTV reduces SHD by 35.7% through global topology validation. With SDP, the
correlation drops 62%, indicating strong privacy protection. Attackers obtain only weakly correlated
features (0.152), proving the protocol’s effectiveness against semi-honest adversaries. The analysis of
collusion attacks when the semi-honest assumption is broken and the further improvement of security
policies leveraging differential privacy are presented in the appendix H.

Table 3: Ablation study (15-attribute dataset). Corr.: Absolute Correlation of Unsplit attacks.

Method SHD ↓ F1 ↑ Corr. ↓
Framework 56 0.610 0.443
Framework+CTV 36 0.678 0.400
VFedCD 35 0.700 0.152

6.5 ARCHITECTURE ANALYSIS

We explore how the vertical model architecture affects edge recovery using a synthetic dataset with
15 attributes. In this context, we define two types of edges: inter-party edges and intra-party edges,
classified based on whether the causes of edge’s target attribute are within a party or distributed
across different parties. Fig. 3 visualizes the impact of different encoder - decoder configurations
on these two types of edges. The left subfigure shows various architecture setups with different
encoder/decoder depths. The right compares their F1 - scores for two edge types.

Results show that the dEsD architecture amplifies the F1 gap between intra and inter edges. This
indicates that the dEsD architecture is poor at modeling inter-party dependencies, as it focuses
more on intra-party edges. In contrast, VFedCD’s sEdD architecture (Split Position A) minimizes
this disparity. This demonstrates that the sEdD architecture is necessary in achieving a balanced
discovery of both intra-party and inter-party causal mechanisms. We provide an intuitive example in
the appendix E.5 to understand this difference.

6.6 ROBUSTNESS STUDY

This section evaluates VFedCD’s stability against hyperparameters and communication cycle. We
analyze the parameter γ (acyclicity constraint coefficient λ2, linearly increasing γ per epoch when
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(a) Split Positions (b) Performance for split positions

Figure 3: Splitting Strategy Analysis

current graph is not acyclic) and Q (communication cycle, following FedBCD’s design (Liu et al.,
2022), where parties communicate every Q updates).

As Fig. 4 shows, varying γ between 0.004 and 0.007 causes minimal SHD/F1 fluctuations, indicating
insensitivity to this constraint strength. Increasing q from 1 to 5 reduces the final F1 score from
0.72 to 0.53, yet the model remains functional, demonstrating robustness to reduced communication
efficiency. These results confirm VFedCD’s practical viability in diverse settings.

(a) Performance for differnet γ (b) SHD for different settings

Figure 4: Robustness Analysis to Hyper Parameter

7 CONCLUSION AND LIMITATIONS

Conclusion. In this work, we establish a theoretical foundation for causal discovery in vertically
federated learning. We propose VFedCD, the first framework tailored for vertical federated causal
discovery, incorporating two key components: CTV, which enforces global acyclicity constraints, and
SDP, which enables privacy-preserving feature interactions. Both experimental results and theoretical
analyses validate the effectiveness of VFedCD in terms of causal discovery validity, privacy protection,
and computational efficiency. Specifically, VFedCD ensures causal discovery validity through global
acyclicity enforcement and balanced edge modeling, safeguards privacy against both data and label
inference, and achieves practical computational efficiency via lightweight encryption.

Limitations. However, several limitations need further discussion. First, scalability to extremely
high-dimensional data remains a challenge, requiring more efficient cryptographic optimization.
Second, strategies to reduce communication overhead have not been extensively explored. Third, real
federated deployments require mechanisms for fair contribution assessment and benefit distribution,
ensuring parties providing valuable data receive proportional rewards. Future work may address these
limitations while preserving the core strengths of the proposed framework.
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REPRODUCIBILITY STATEMENT

We take reproducibility seriously and have provided the necessary details to facilitate replication of
our results. Appendix A contains detailed pseudo-code for both forward and backward propagation,
outlining the key steps of our proposed framework. In the supplementary materials, we include the
complete pipeline for implementing VFedCD, including pre-processing, model training, and evalua-
tion. For the synthetic datasets used in this study, we also provide the data within the supplementary
materials. Additionally, all hyperparameter settings and experimental configurations are explicitly
described in Section 6.
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Algorithm 1 The algorithm to transform an HE variable ∥data∥A into an SS variable [ϵ, data−ϵ]A,B

1: procedure HE2SS(pB , pA.pub, ∥data∥A)
2: ϵ = random noise()
3: ∥data+ ϵ∥A = ∥data∥A + E(−ϵ, pA.pub)
4: send to(pB , ∥data− ϵ∥A)
5: return ϵ
6: end procedure
7: procedure HE2SS(pA, pB .pri)
8: ∥data− ϵ∥B = receive from(p A)
9: (data− ϵ) = decrypt(∥data− ϵ∥B , pB .pri)

10: remaining = (data− ϵ)
11: return remaining
12: end procedure

Algorithm 2 Initialization algorithm

1: procedure INITIALIZATION OF PARTY K
2: (pk.pub, pk.pri) = generate key pair()
3: for i = 1 to K do
4: pk.fit = initialize plaintext model()
5: end for
6: for j = 1 to K do
7: if j ̸= k then
8: ∥pk.fjt∥k = E(pk.fjt, pk.pub)
9: send to(pj , ∥pk.fjt∥k)

10: ∥pk.efjt∥j = receive from(pj)
11: end if
12: end for
13: end procedure

Algorithm 3 Forward algorithm for Zt in SDP

1: procedure FORWARD OF PARTY K(xk)
2: componentkt = xTk (pk.fkt)
3: for i = 1 to K do
4: if i ̸= k then
5: ∥pk.efit(xk)∥i = xTk ∥pk.efit∥i
6: end if
7: end for
8: for i = 1 to K do
9: if i ̸= k then

10: εkit = HE2SS(pi, pk.pub, ∥pk.efit(xk)∥i)
11: remainingikt = HE2SS(pi, pk.pri)
12: end if
13: end for
14: zkt = componentkt +

∑K
i=1,i̸=k εkit +

∑K
i=1,i̸=k remainingikt

15: send to(pt, zkt)
16: end procedure
17: procedure FORWARD OF TARGET PARTY T
18: Zt = 0
19: for k = 1 to K do
20: if k ̸= t then
21: zkt = receive from(pk)
22: Zt = Zt + zkt
23: end if
24: end for
25: end procedure
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Algorithm 4 Backward algorithm from xt in SDP

1: procedure BACKWARD OF PARTY K
2: ∥∇Zt∥t = receive from(pt)
3: ∥xTk∇Zt∥t = xTk ∥∇Zt∥t
4: φkt = HE2SS(pt, pk.pub, ∥xTk∇Z∥t)
5: pk.fkt = update model(pk.fkt, φkt)
6: ∥pk.eftt∥t = receive from(pt)
7: end procedure
8: procedure BACKWARD OF TARGET PARTY T(∇Zt)
9: ∇Ftt = XT

t ∇Zt

10: pt.ftt = update model(pt.ftt,∇Ft)
11: ∥∇Zt∥t = E(∇Zt, pt.pub)
12: for k = 1 to K do
13: if k ̸= t then
14: send to(pk, ∥∇Zt∥t)
15: end if
16: end for
17: for k = 1 to K do
18: if k ̸= t then
19: remaining gradkt = HE2SS(pk, pt.pri)
20: pt.fkt = update model(pt.fk, remaining gradkt)
21: ∥pt.fkt∥t = E(pt.fkt, pt.pub)
22: send to(pk, ∥pt.fkt∥t)
23: end if
24: end for
25: end procedure

Algorithm 5 Forward algorithm for Bt in CTV

1: procedure FORWARD OF PARTY K
2: Bkt = graph({pk.fit})
3: send to(CTV,Bkt)
4: end procedure
5: procedure FORWARD OF CTV
6: for k = 1 to K do
7: Bkt = receive from(pk)
8: end for
9: Bt = aggregate({Bkt}Kk=1)

10: end procedure

Algorithm 6 Backward algorithm from Bt in CTV

1: procedure BACKWARD FOR PARTY K
2: grad structurekt = receive from(CTV )
3: {grad structurekit} = chunk(grad structurekt)
4: pk.fit = update model(pk.fit, grad structurekit)
5: end procedure
6: procedure BACKWARD FOR CTV(∇hB

t)
7: {grad structurekt}Kk=1 = random split(∇hBt)
8: for k = 1 to K do
9: send to(pk, grad structurekt)

10: end for
11: end procedure
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B COMPUTATIONAL COMPLEXITY ANALYSIS OF VFEDCD

The computational complexity of the VFedCD is dominated by homomorphically encrypted (HE)
matrix multiplications. We analyze the complexity by mapping operations to their corresponding
pseudocode steps.

B.1 FORWARD PROPAGATION COMPLEXITY

For a target party t, each party k computes K − 1 HE matrix multiplications {∥pk.efjt(xk)∥}j ̸=k

(Algorithm 3, line 5). Each multiplication has complexity O(dkdt), where dk and dt are the attribute
dimensions of party k and t, respectively.

The total complexity for target party t is:
K∑

k=1

(K − 1)O(dkdt)

Extending this to all K target parties, the overall forward-pass complexity becomes:
K∑
t=1

K∑
k=1

(K − 1)O(dkdt)

B.2 BACKWARD PROPAGATION COMPLEXITY

For backward propagation from target party t, each party k ̸= t performs the HE matrix multiplication
xTk ∥∇Zt∥t (Algorithm 4, line 3) with complexity O(dkdt). The total complexity for target party t is:

K∑
k=1,k ̸=t

O(dkdt)

Summing over all target parties, the total backward complexity is:
K∑
t=1

K∑
k=1,k ̸=t

O(dkdt)

B.3 OVERALL COMPLEXITY

The dominant term combines forward and backward complexities:
K∑
t=1

K∑
k=1

(K − 1)O(dkdt) +

K∑
t=1

K∑
k=1,k ̸=t

O(dkdt)

Assuming uniform attribute distribution (dk = D/K), this simplifies to O(KD2), where D is the
total attribute dimension.

B.4 TRAINING TIME ANALYSIS

We first characterize the theoretical complexity: with synchronization constraints, the training time is
bounded by the party with the maximum number of attributes dmax = maxk dk, with a worst-case
per-party complexity of O(dmaxD). Beyond theoretical analysis, we aim to provide a generalizable
framework for practical scalability assessment, using a baseline hardware configuration to quantify
feasible boundaries—this framework can be easily adapted to different hardware setups (e.g., multi-
core CPUs, GPUs) by adjusting the benchmarked parameters.

Empirical Benchmark as a Reference Baseline To establish a foundational reference, we mea-
sured HE multiplication performance under a simple, non-parallelized setup: a single-core AMD
R9-7945HX CPU using Python’s Paillier homomorphic encryption library. This setup yields 12,500
HE multiplications per second. For practicality, we define a feasible iteration as one completing
within 30 minutes, with HE operations (the dominant cost) allocated the full 30-minute budget. This
gives a maximum of 30×60×12, 500 = 22, 500, 000 HE multiplications per iteration as our baseline
constraint.
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Scalability Calculation For uniform attribute distribution (dk = d/K) and typical hyperparameters
(hidden dim=10), we derive the total HE multiplications per iteration by combining forward and
backward propagation costs (detailed in Algorithms 3 and 4): - Forward propagation: Each party
performs (K − 1) · n · (d/K) · d · 10 HE multiplications. - Backward propagation: Each party
performs (d/K) · n · d · 10 HE multiplications.

Simplifying these, the total HE multiplications per iteration scale as 10 · n · d2, where n is the sample
count and d is the total number of attributes.

Feasibility Boundaries Under Baseline Setup Using the single-core benchmark, we quantify
feasible scales within the 30-minute iteration budget: - Typical scenario: For n = 1000 samples and
d = 15 attributes, 2.25 million HE operations are required, completing in 180 seconds (well within
budget). - Moderate scale: For n = 800 samples and d = 50 attributes, 20 million HE operations
are needed, taking 1600 seconds ( 27 minutes, near the limit). - Beyond feasibility: For n = 1000
samples and d = 50 attributes, 25 million HE operations exceed the budget, requiring 2000 seconds
( 33 minutes).

These boundaries (d < 50, n < 1000 under the single-core setup) cover most causal discovery
datasets, but importantly, they reflect hardware constraints rather than algorithmic limitations.

Extending to Other Hardware Configurations The core advantage of our framework is its
adaptability to diverse hardware. Since our matrix multiplication-based encrypted operations are
inherently parallelizable, the runtime scales with the number of parallel processing units. For M
parallel CPUs/GPUs, the effective runtime reduces to O(nd2/M). Readers can thus: 1. Benchmark
their own hardware to determine HE multiplications per second. 2. Apply the same 10 ·n ·d2 formula
to calculate feasible n and d for their specific 30-minute (or other) budget.

This design ensures our scalability analysis remains generalizable, providing a clear path for adapting
VFedCD to various computational environments.

C COMMUNICATION OVERHEAD ANALYSIS

C.1 FORWARD PROPAGATION OVERHEAD

For a single target party t, the communication overhead is as follows: 1. Share Collection: Each
party k collects K − 1 shares remainingikt from other parties (Algorithm 3, lines 10–11). The
per-party overhead is (K − 1)O(dt), leading to a total of K(K − 1)O(dt) across all K parties.
2. Result Transmission: All parties k ̸= t send zkt to t (Algorithm 3, lines 15, 21), contributing
(K − 1)O(dt).

Extending to all K target parties, the total party-to-party overhead becomes:

K∑
t=1

[K(K − 1)O(dt) + (K − 1)O(dt)] = O(K2D).

In addition, each party needs to send the corresponding parameters to the server. Considering the
model for computing the intermediate results required by party t, the data volume of the parameters
sent by party k is O(Ddt). The total communication complexity for all parties to send parameters for
computing the intermediate results required by party t is KO(Ddt). When extended to all parties t
(i.e., all models), the data volume of the transmitted parameters is KO(D2), which is O(KD2).

C.2 BACKWARD PROPAGATION OVERHEAD

For a single target party t: 1. Gradient Broadcast: Party t encrypts and broadcasts ∥∇Zt∥t to K − 1
parties (Algorithm 4, lines 2, 14), incurring (K − 1)O(dt). 2. Gradient Share Transmission: Each
party k ̸= t sends remaining gradkt to t (Algorithm 4, lines 4, 19). The total overhead across all
k ̸= t is

∑
k ̸=tO(dkdt) = O(Ddt). 3. Model Update: Party t sends updated encrypted models

∥pt.fkt∥t to all k ̸= t (Algorithm 4, line 22), with total overhead O(Ddt).
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Summing over all K target parties, the party-to-party overhead is:
K∑
t=1

[(K − 1)O(dt) +O(Ddt) +O(Ddt)] = O(KD +D2).

The server backpropagates each parameter gradient sent during the forward propagation. So, this
part of the communication overhead is the same as the communication overhead of parties sending
parameters to the server during the forward propagation, which is O(KD2).

C.3 OVERALL COMMUNICATION OVERHEAD

Combining all components:
Forward: O(K2D) + Backward: O(K2D +D2) + Server: O(KD2) = O(K2D +KD2).

D GRAPH FUNCTION AND ACYCLICITY CONSTRAINT CALCULATION

D.1 FROM MODEL PARAMETERS TO CONTINUOUS ADJACENCY MATRIX

The function graph(Θ) transforms model parameters into a continuous adjacency matrix, quantifying
the strength of potential causal relationships. It operates in two steps: 1. Extracting Linear Layer
Weights: For each encoder-decoder pair targeting party t, the first linear layer parameters (denoted
θkt ∈ Rdk×(dt·h), where h is the hidden dimension) are extracted. These parameters directly encode
the influence of local attributes (from party k) on features for the target party t. 2. Norm Aggregation:
The hidden dimension h is aggregated using the L2 norm, resulting in a matrix B ∈ Rdk×dt

≥0 . Each
entry Bij represents the continuous strength of the causal edge from attribute i (party k) to attribute j
(party t), with larger values indicating stronger inferred causality.

D.2 ACYCLICITY CONSTRAINT CALCULATION

To enforce the acyclic property of the global causal graph, we adopt the spectral acyclicity constraint
from Nazaret et al. (2023), which leverages the spectral radius of the adjacency matrix. The spectral
radius is defined as:

hρ(B) = |λmax(B)|
where λmax(B) is the largest eigenvalue (in magnitude) of the adjacency matrix B.

This constraint exhibits key properties that make it suitable for measuring cyclicity: - For a directed
acyclic graph (DAG), its adjacency matrix B is acyclic, meaning no cycles exist in the graph. By
graph theory, acyclic matrices are nilpotent (i.e., there exists a positive integer k such that Bk = 0)
. A fundamental property of nilpotent matrices is that all their eigenvalues are zero . Thus, for a
DAG, λmax(B) = 0, so hρ(B) = 0. - For cyclic graphs, the adjacency matrix B contains at least one
cycle. Such matrices are not nilpotent and must have at least one non-zero eigenvalue . Consequently,
hρ(B) > 0, where larger values indicate stronger cyclicity. This is because cycles with heavier edge
weights or more nodes contribute to larger eigenvalue magnitudes .

During training, the acyclicity loss is incorporated as Lacyclic = γ · hρ(B), where γ is a scaling
factor. Minimizing this loss encourages the model to learn adjacency matrices with hρ(B) ≈ 0, thus
promoting acyclic structures.

E IDENTIFIABILITY ANALYSIS

Identifiability of causal graphs in vertical federated learning requires the framework to uniquely
recover the true causal structure from observed data. This section provides a rigorous theoretical
analysis, establishing how our framework achieves identifiability through the Additive Noise Model
(ANM) and faithfulness assumptions, complemented by architectural design.

E.1 FUNDAMENTAL DEFINITIONS AND IDENTIFIABILITY CRITERION

We begin by formalizing key concepts and the core requirement for identifiability.
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E.1.1 KEY SETS AND NOTATIONS

For each variable Xi ∈ D (where D = {X1, X2, . . . , Xd} is the set of all observed variables), define:
- C true

i ⊆ D \ {Xi}: The set of true direct causes of Xi (i.e., Xj ∈ C true
i ⇐⇒ Xj → Xi in the true

causal graph). - Etrue
i ⊆ D \ {Xi}: The set of true direct effects of Xi (i.e., Xk ∈ Etrue

i ⇐⇒ Xi →
Xk in the true causal graph). - I true

i ⊆ D \ {Xi}: The set of variables with no direct causal link to
Xi (neither cause nor effect).

By definition, these sets are mutually exclusive and exhaustive:

D \ {Xi} = C true
i ∪ Etrue

i ∪ I true
i , and C true

i ∩ Etrue
i = C true

i ∩ I true
i = Etrue

i ∩ I true
i = ∅.

Let Cpred
i ⊆ D \ {Xi} denote the set of variables predicted as direct causes of Xi by VFedCD.

E.1.2 IDENTIFIABILITY CRITERION

A causal discovery framework is identifiable if and only if, for all Xi ∈ D:

Cpred
i = C true

i .

This equality requires three conditions to hold simultaneously: 1. Inclusion of true causes: C true
i ⊆

Cpred
i (no true cause is omitted). 2. Exclusion of true effects: Etrue

i ∩ Cpred
i = ∅ (no effect is mistaken

for a cause). 3. Exclusion of irrelevant variables: I true
i ∩ Cpred

i = ∅ (no causally unrelated variable is
included).

The remainder of this section demonstrates how ANM and faithfulness assumptions ensure these
three conditions in VFedCD.

E.2 ROLE OF THE ADDITIVE NOISE MODEL (ANM) ASSUMPTION

The ANM assumption states that for each Xi ∈ D, the true causal mechanism follows:

Xi = fi
(
C true

i

)
+ ϵi, where ϵi ⊥⊥ C true

i ,

where fi is a measurable function (capturing the causal mechanism), and ϵi (noise) is statistically
independent of C true

i . This assumption enables VFedCD to distinguish C true
i , Etrue

i , and I true
i through

residual analysis and loss minimization.

E.2.1 ENSURING INCLUSION OF TRUE CAUSES (CTRUE
i ⊆ CPRED

i )

Suppose a true cause Xj ∈ C true
i is mistakenly excluded from Cpred

i . By ANM, Xi depends on Xj

through fi, so the residual of Xi predicted using Cpred
i (denoted ϵi(C

pred
i ) = Xi − f̂i(Cpred

i )) will
correlate with Xj :

ϵi(C
pred
i ) ̸⊥⊥ Xj .

This correlation implies the reconstruction loss will be larger than if Xj were included:∥∥∥ϵi(Cpred
i )

∥∥∥2 > ∥∥∥ϵi(Cpred
i ∪ {Xj})

∥∥∥2 .
Since VFedCD minimizes this loss, the model is incentivized to include Xj in Cpred

i . For all
Xj ∈ C true

i , this ensures C true
i ⊆ Cpred

i .

E.2.2 ENSURING EXCLUSION OF TRUE EFFECTS (ETRUE
i ∩ CPRED

i = ∅)

Variables Xk ∈ Etrue
i are correlated with Xi (due to Xi → Xk) but are not causes of Xi. To avoid

mistaking Xk for a cause: - VFedCD enforces acyclicity via constraints that prohibit both Xi → Xk

and Xk → Xi (i.e., Bik > 0 =⇒ Bki = 0 for adjacency matrix B). - When C true
i ⊆ Cpred

i ,
Xk ∈ Etrue

i is independent of ϵi(C
pred
i ) (by ANM). Including Xk in Cpred

i reduces loss only weakly
(via overfitting), while correctly modeling Xi → Xk yields a significant loss reduction (since
ϵk ⊥⊥ C true

k by ANM for Xk).

This dynamic pushes Bki → 0, ensuring Etrue
i ∩ Cpred

i = ∅.
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E.2.3 ENSURING EXCLUSION OF IRRELEVANT VARIABLES (ITRUE
i ∩ CPRED

i = ∅)

Variables Xl ∈ I true
i have no causal link to Xi but may coincidentally reduce reconstruction loss.

However: - By ANM, when C true
i ⊆ Cpred

i , ϵi(C
pred
i ) ⊥⊥ D \ {Xi}, so including Xl reduces loss

only through overfitting (magnitude far smaller than including a true cause). - VFedCD’s L1 sparsity
regularization (λ2∥B∥1) penalizes non-zero entries for irrelevant variables, pushing Bli → 0.

Together, these ensure I true
i ∩ Cpred

i = ∅.

E.3 ROLE OF THE FAITHFULNESS ASSUMPTION

The faithfulness assumption ensures that all conditional independencies in the data are exactly those
implied by d-separation in the true causal graph. Formally:

Xi ⊥⊥ Xj | S ⇐⇒ Xi and Xj are d-separated by S in the true graph

for any Xi, Xj ∈ D and S ⊆ D \ {Xi, Xj}.
This assumption is critical because it guarantees that dependencies captured by VFedCD’s loss
function and graph constraints genuinely reflect causal relationships, not spurious correlations from
hidden confounders. Without faithfulness: - Latent variables L (where L→ Xi and L→ Xj) create
Xi ̸⊥⊥ Xj | ∅ even if Xi and Xj are d-separated, leading to false edges Xi → Xj or Xj → Xi. -
Such spurious correlations corrupt the residual independence properties relied on by ANM, weakening
the model’s ability to distinguish C true

i , Etrue
i , and I true

i .

In VFedCD, faithfulness ensures that the ANM-based mechanisms (Section 3.2) operate on ”clean”
dependencies, preserving the three conditions for identifiability.

E.4 EMPIRICAL VALIDATION OF ASSUMPTIONS

E.4.1 ANM VIOLATION EXPERIMENTS

We test performance under noise models that violate ANM properties (Table 4):

Noise Type Violated Property SHD ↓ F1 ↑

Additive (ANM) None 108 0.638
Multiplicative Additivity 109 0.628
Poisson Additivity 64 0.683
Non-iid Additive Independence 123 0.612

Table 4: Performance Under ANM Violations (30-attribute dataset)

Non-iid additive noise (violating independence) degrades performance most, confirming indepen-
dence is critical. Multiplicative noise (violating additivity) performs comparably, aligning with our
theoretical focus on independence over additivity.

E.4.2 FAITHFULNESS VIOLATION EXPERIMENTS

Testing with latent confounders (Table 5):

Scenario SHD ↓ F1 ↑

25 attributes (no latents) 53 0.654
20 attributes (5 latents) 70 0.537

Table 5: Performance Under Faithfulness Violations

Latent confounders increase SHD by 32%, but partial recovery persists, demonstrating robustness to
real-world violations.
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E.5 EDGE TYPE IDENTIFIABILITY

In vertical federated settings, intra-party edges (causes and effects within one party) and inter-party
edges (causes across multiple parties) exhibit different identifiability properties, largely dependent on
the encoder-decoder architecture.

E.5.1 EXAMPLE SETUP

Consider a causal relationship xC = (xA − 0.5) · (xB)2, where xA ∈ Party A, xB ∈ Party B, and
xC ∈ Party C. We generate training samples:

(xA, xB) = (0.0, 1.0) =⇒ xC = −0.5; (xA, xB) = (1.0, 1.0) =⇒ xC = 0.5

E.5.2 DESD ARCHITECTURE LIMITATION

Deep encoders: zA = FA(x
A) = σ(WAσ(ϕAx

A)), zB = FB(x
B) = σ(WBσ(ϕBx

B)).

Shallow Decoder: x̂C = G(zA, zB) = (zA + zB)/2.

Given MSE loss L = (x̂C − xC)2, the gradient with respect to zB is:

∇zBL = (x̂C − xC)

Considering network initialization with near-zero parameters and activation functions centered at
zero (e.g., tanh), we analyze SGD updates:

1. Sample 1: (xA, xB) = (0.0, 1.0)

• Initial prediction x̂C ≈ 0 (from near-zero zA, zB)
• Residual error: 0− (−0.5) = +0.5 =⇒ ∇zBL = +0.5
• Update direction: ϕB ← ϕB − η · (+0.5)

2. Sample 2: (xA, xB) = (1.0, 1.0)

• Initial prediction x̂C ≈ 0
• Residual error: 0− 0.5 = −0.5 =⇒ ∇zBL = −0.5
• Update direction: ϕB ← ϕB − η · (−0.5)

This creates conflicting gradients for identical input xB = 1.0:

• Positive gradient (+0.5) from Sample 1 pushes ϕB to decrease
• Negative gradient (-0.5) from Sample 2 pulls ϕB to increase

The zero-mean activation function converts this conflict into gradient cancellation:

E[∇ϕB
L] =

1

2
(+0.5) +

1

2
(−0.5) = 0

causing ϕB to converge near zero, thereby suppressing the B → C causal edge identification.

E.5.3 SEDD ARCHITECTURE CORRECTNESS

Encoders: zA = FA(x
A) = ϕAx

A, zB = FB(x
B) = ϕBx

B .

Decoder: G(zA, zB) = σ(Wσ(zA + zB)).

The Universal Approximation Theorem (Hornik et al., 1990) guarantees existence of G such that:

G(wAx
A + wBx

B) ≈ (xA − 0.5) · (xB)2 (7)

Gradients align coherently as ∂G
∂zB

, captures the dependency on xB , allowing ϕB to remain non-zero
and recover the B → C edge.

E.5.4 EMPIRICAL VALIDATION

sEdD achieves balanced F1 scores (0.70 for intra-party vs. 0.66 for inter-party edges), while dEsD
shows a large gap (0.72 vs. 0.55), confirming sEdD’s superiority for inter-party edge identifiability.
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E.6 CONCLUSION

Identifiability in VFedCD is theoretically guaranteed by: 1. ANM: Enabling distinction between
C true

i (via residual independence), Etrue
i (via acyclicity), and I true

i (via sparsity). 2. Faithfulness:
Ensuring data dependencies reflect true causality, so ANM-based distinctions remain valid. 3. sEdD
Architecture: Preserving inter-party edge identifiability in federated settings.

Together, these components ensure Cpred
i = C true

i for all Xi, achieving causal graph identifiability.

F SOTA METHODS

F.1 INTRODUCTION TO SOTA METHODS

All SOTA methods address causal discovery for learning causal graph with centralized data.
NOTEARS (Zheng et al., 2018) converts DAG learning into a continuous optimization problem using
matrix exponential trace constraints and augmented Lagrangian methods with L1 regularization.
DAGMA (Bello et al., 2022) uses a log-determinant acyclicity constraint with M-matrices and a
central path optimization to detect large cycles efficiently and improve computational speed. DCD-FG
(Lopez et al., 2022) introduces factor DAGs (f-DAGs) with low-rank structures and Gaussian nonlin-
ear models, scaling to high-dimensional interventional data via GPU acceleration. DCDI (Brouillard
et al., 2020) employs differentiable frameworks with normalizing flows to handle perfect/imperfect
interventions, maximizing log-likelihood to identify Markov equivalence classes. NO-BEARS (Lee
et al., 2019) enhances NOTEARS by replacing matrix exponentials with spectral radius approxima-
tions and adding polynomial regression for nonlinear data, leveraging GPU speedups. Sortnregress
(Reisach et al., 2021) acts as a baseline by sorting variables by marginal variance and using sparse
regression, exposing how data scaling and varsortability influence benchmark performance.

F.2 COMPARISON WITH CENTRALIZED SOTA METHODS

Our experimental results show that VFedCD, a distributed method, achieves performance comparable
or even superior to some centralized SOTA methods on certain datasets. This outcome stems not
from an inherent superiority in all conditions, but from the alignment of its modeling assumptions
with the characteristics of the data, particularly our nonlinear synthetic datasets.

VFedCD is built upon general assumptions, namely the Additive Noise Model (ANM) and Faith-
fulness, which allow it to flexibly model a wide range of nonlinear causal mechanisms. In contrast,
many centralized methods are designed with more specific assumptions or for particular scenarios:

Methods with Linearity Assumptions: The original formulations of NOTEARS (Zheng et al., 2018)
and its scalable successor NO-BEARS (Lee et al., 2019), as well as DAGMA (Bello et al., 2022), are
primarily based on linear structural equation models. Consequently, their performance is naturally
limited on datasets with complex nonlinear relationships, where VFedCD’s nonlinear modeling
capacity provides a distinct advantage.

Methods for Specific Data Types or Structures: DCDI (Brouillard et al., 2020) excels in its sophisti-
cated handling of various interventional data types through normalizing flows. DCD-FG (Lopez et al.,
2022) is specifically designed to scale to very high-dimensional settings by assuming a low-rank
factor graph structure. While powerful in their respective niches, their designs are not universally
optimal for general observational data.

Baselines Revealing Methodological Artifacts: Sortnregress (Reisach et al., 2021) serves as a
crucial baseline, demonstrating that many methods may inadvertently perform well by exploiting the
”varsortability” of data, rather than by capturing the true causal structure.

Therefore, VFedCD’s strong performance on our synthetic data is a direct consequence of its robust,
general-purpose nonlinear modeling, which is well-suited for the data generation process. It highlights
that in the diverse landscape of causal discovery, there is no single best method, but rather a trade-off
between generality and specialization. VFedCD’s contribution lies in successfully bringing a general
and powerful modeling paradigm into the challenging, privacy-constrained vertical federated setting.
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G IMPACT OF UNBALANCED DATA PARTITION

To address concerns about heterogeneous vertical partitioning where parties hold imbalanced numbers
of features, we conduct supplementary experiments on a 15-attribute synthetic dataset with 3 parties,
using three specific attribute distribution configurations to systematically evaluate the impact: [1, 1,
13], [3, 3, 9], and [5, 5, 5]. These configurations exhibit different levels of imbalance, quantified by
attribute variance.

For each configuration, we measure two key metrics: the Structural Hamming Distance (SHD, lower
is better) and F1 score (higher is better) of VFedCD, which reflect the accuracy of causal discovery.
The results are summarized in Table 6.

Table 6: Performance of VFedCD under Different Imbalanced Attribute Distributions

Data Partition Attribute Variance SHD ↓ F1 ↑
[1, 1, 13] 32 36 0.68
[3, 3, 9] 8 35 0.69
[5, 5, 5] 0 35 0.70

As shown in Table 6, the F1 score remains stable (ranging from 0.68 to 0.70) and SHD shows minimal
fluctuation across all imbalance levels, indicating that imbalanced attribute distribution does
not introduce significant bias in VFedCD. This robustness stems from our shallow-encoder deep-
decoder (sEdD) architecture, which is specifically designed to handle cross-party causal mechanisms.
Even when attributes are unevenly distributed, the deep decoder effectively aggregates features from
all parties, ensuring balanced modeling of both intra-party and inter-party causal relationships.

We also observe that training time increases with imbalance severity: when the maximum number of
attributes held by a single party reaches 13 (in the [1, 1, 13] configuration), training time increases by
82% compared to the balanced [5, 5, 5] partitioning. This aligns with our computational complexity
analysis in Appendix B, where larger dmax (maximum number of attributes per party) incur higher
costs.

These results suggest that while VFedCD maintains causal discovery performance under imbalanced
partitioning, practical deployment should consider resource allocation strategies for parties with
heavy computational loads, especially in synchronous training settings.

H PRIVACY SECURITY ANALYSIS IN SDP

This section formalizes the threat model for VFedCD, analyzes potential privacy vulnerabilities, and
evaluates mitigation strategies against collusion attacks.

H.1 THREAT MODEL AND VULNERABILITIES

We define the adversary model and identify key privacy risks, focusing on scenarios where semi-
honest assumptions may be violated.

H.1.1 ADVERSARY MODEL

We consider two primary types of adversaries: 1. Semi-honest parties: Parties strictly follow the
protocol but attempt to infer other parties’ raw data using observed information (e.g., aggregated
features, encrypted parameters). 2. Colluding among parties: A subset of parties colluded, the
situation of privacy leakage has hardly intensified. 3. Colluding with CTV: A subset of parties
colluding with the CTV server, leveraging plaintext causal graph structures to enhance inference
capabilities.

H.1.2 VULNERABILITIES

1. Feature leakage: Shallow encoders generate linear features that retain statistical correlations
with raw data. Unlike deep encoders, which abstract data into high-level representations, shallow
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encoders’ outputs may reveal patterns exploitable via inference attacks. 2. Violation of semi-honest
assumptions: While single parties or small groups of colluding parties have limited inference power
(as shown in Section 3, with correlation ≤ 0.152), collusion between a party and the CTV poses a
significant risk. The CTV receives plaintext graph fragments Bk

t , which are strongly correlated with
encoder parameters, providing structural insights that complement the party’s local information (e.g.,
aggregated features, decoder parameters). This combination enables more accurate data reconstruction
than single-party attacks. Gradient leakage is not a concern here, as gradients are protected via secret
sharing (Section 5.2), preventing direct access to sensitive information.

H.2 SINGLE-PARTY INFERENCE ATTACKS

We analyze the feasibility of Unsplit attacks (Erdoğan et al., 2022) by a single semi-honest party,
detailing inference bounds and practical limitations.

H.2.1 INFERENCE BOUND

A single party pt attempting to infer pk’s data (k ̸= t) employs the Unsplit attack, which formulates
data reconstruction as an optimization problem:

min
{F̄kt,x̄k

n}

∥∥∥∥∥
K∑

k=1

F̄kt(x̄
k
n)− Z

∥∥∥∥∥
2

2

where F̄kt is an auxiliary encoder with the same architecture as Fkt, and x̄kn are the adversary’s
guesses for pk’s raw data.

The optimal solution to this problem exhibits two critical properties: 1. Proportional scaling: For
any non-zero σ, solutions satisfying ψ̄kt = σψkt, ξ̄kt = ξkt, and x̄kn = σ−1xkn minimize the loss.
This implies the adversary can only reconstruct data up to a scalar multiple of the true values. 2.
Non-permutability: Permuting features (e.g., swapping elements of x̄kn and corresponding rows of
ψ̄kt) does not minimize the loss due to masked self-loop constraints in causal discovery (enforcing
ψ[i, i] = 0).

These properties bound the maximum inferable precision, with the absolute correlation coefficient
|Corr(x̄, x)| serving as a valid metric (upper bound = 1.0).

H.2.2 PRACTICAL VERIFICATION

The above analysis shows the maximum inferable precision is a proportional scaling of the true data,
without permutations. This makes the absolute correlation coefficient |Corr.| (Ali Abd Al-Hameed,
2022) a valid metric to quantify inference risk, as it reaches its maximum at inference upper bound.

Complexity Barrier Let dt be the target attribute dimension and m the decoder depth. Each
training epoch provides dtm equations but requires solving for:

K(dkm1dt)︸ ︷︷ ︸
encoder weights

+ Kdk︸︷︷︸
auxiliary data

= O(Dm1dt) unknowns (8)

where D =
∑
dk. The underdetermined system grows exponentially with K, rendering exact

inference computationally difficult.

Empirical Validation The SDP reduces feature correlation to 0.152, far below the theoretical upper
bound (1.0). This gap confirms the combinatorial explosion prevents adversaries from approaching
proportional scaling solutions.

H.3 COLLUSION ATTACK: INTER-PARTY COLLUSION

H.3.1 THREAT ANALYSIS

Collusion among multiple parties poses limited risk due to two fundamental barriers: 1. Encoder
parameter opacity: Parties lack knowledge of encoder weights {ψkt}, which are critical for reverse-
engineering raw data. 2. Encrypted feature fragmentation: Data is distributed and encrypted,
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requiring colluders to solve an underdetermined system with more unknowns (encoder params +
target data) than equations. The more parties involved collude, the more unknowns there will be.

H.3.2 EMPIRICAL VALIDATION

We evaluate collusion between 3 parties (out of 4 total) on a 30-attribute dataset with partition
[8,8,7,7]:

Scenario Inference Correlation

Single-party inference 0.163
3-party collusion 0.179

Table 7: Inference Performance Under Inter-Party Collusion

The marginal increase (0.179 vs. 0.163) confirms minimal benefits from collusion, as the combinato-
rial complexity of solving for encoder parameters dominates over additional data fragments.

H.4 COLLUSION ATTACK: PARTY + CTV

Collusion between a party and the CTV is the most severe threat, as the CTV’s graph structures
complement the party’s local information. We detail this attack and its mitigation.

H.4.1 THREAT OF COLLUSION

The CTV aggregates local graph fragments Bk
t to enforce acyclicity, providing colluding parties

with explicit structural information about causal relationships. This allows adversaries to: 1. Fix
encoder architectures to match Bt, reducing the number of unknowns in the Unsplit optimization. 2.
Cross-validate inferred data with graph structure (e.g., ensuring edges in Bt align with correlations in
reconstructed data).

Experimental validation on a K = 2, d = 20 dataset shows collusion enables |Corr| = 0.804 (far
exceeding single-party performance).

H.4.2 MITIGATION WITH DIFFERENTIAL PRIVACY

To counter collusion, we apply differential privacy to graph fragments Bk
t before transmission to the

CTV, using a Laplace mechanism:

B̂k
t = Bk

t + Lap(b), b =
∆

ϵ

where ∆ = 1 (sensitivity) and ϵ controls the privacy-utility tradeoff.

As shown in Figure 5: 1. Without noise: |Corr| = 0.804, SHD=42 (high leakage, optimal utility).
2. ϵ = 256: |Corr| = 0.660, SHD=44 (moderate leakage, minimal utility loss). 3. ϵ = 128:
|Corr| = 0.458, SHD=46 (low leakage, acceptable utility). 4. ϵ = 64: |Corr| = 0.119, SHD=47
(negligible leakage, moderate utility loss).

These results indicate ϵ = 64 or 128 balances privacy and utility effectively.

H.4.3 SCALING NOISE FOR MULTIPLE PARTIES

VFedCD avoids the inherent limitation of local differential privacy (LDP), where noise accumulates
with the number of parties K, degrading utility. In our framework: - Graph fragments Bk

t are
meaningless in isolation; only their aggregation Bt =

∑
Bk

t represents the true causal structure. -
Thus, we only need to protect the aggregated Bt, not individual Bk

t .

To maintain stable noise impact on Bt as K increases, we scale the Laplace parameter b proportional
to 1/

√
K (proof in H.6). For K = 2 with b = 0.0078125 (base case, ϵ = 128), K = 4 uses

b = 0.0078125/
√
2 ≈ 0.0055, ensuring consistent privacy guarantees.
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Figure 5: Privacy-utility tradeoff under party-CTV collusion with Laplace noise. Baselines: SHD=35
with no noise (None DP), SHD=62 without acyclicity constraint (None AC).

H.5 CONCLUSION

SDP thwarts single-party attacks via complexity barriers. For collusion, Laplace noise with ϵ = 64 or
128 for K = 2, scaled by 1/

√
K, ensures robust privacy while preserving causal discovery utility.

H.6 LAPLACE NOISE SCALING PROOF FOR MULTIPLE PARTIES

H.6.1 CONCLUSION

For k independent and identically distributed (IID) Laplace random variables with mean 0 and scale
parameter b, let S denote their sum, and let m = E[|S|] be the expectation of the absolute value of S.
To maintain the stability of m (i.e., keep m relatively unchanged) when the number of variables k
changes, the scale parameter b should be adjusted proportionally to 1/

√
k. This means b ∝ 1/

√
k.

H.6.2 PROOF

Properties of a Single Laplace Variable A Laplace random variable X with mean 0 and scale
parameter b has the probability density function (PDF):

fX(x) =
1

2b
exp

(
−|x|
b

)
, x ∈ R

It can be decomposed into the difference of two independent exponential variables: X = Y − Z,
where Y,Z ∼ Exp(1/b) (exponential distribution with rate 1/b) and Y ⊥⊥ Z.

Sum of k IID Laplace Variables Let X1, X2, . . . , Xk be IID Laplace variables with Xi ∼
Laplace(0, b). Their sum is:

S = X1 +X2 + · · ·+Xk

Using the decomposition Xi = Yi − Zi for each i, we rewrite S as:

S =

(
k∑

i=1

Yi

)
−

(
k∑

i=1

Zi

)
= U − V
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where: 1. U =
∑k

i=1 Yi ∼ Gamma(k, b) (sum of k exponential variables), 2. V =
∑k

i=1 Zi ∼
Gamma(k, b) (sum of k exponential variables), 3. U and V are independent.

Expectation of |S| The expectation m = E[|S|] = E[|U − V |] is derived using properties of the
Gamma distribution. For independent U, V ∼ Gamma(k, b), the expectation simplifies to:

m =
2b√
π
·
Γ
(
k + 1

2

)
Γ(k)

where Γ(·) is the Gamma function.

Scaling Strategy for b To keep m stable when k changes, we analyze the behavior of m with
respect to k. For large k, the Gamma function satisfies the Stirling approximation:

Γ(z) ≈
√
2πzz−

1
2 e−z for large z.

Applying this to Γ
(
k + 1

2

)
/Γ(k) gives:

Γ
(
k + 1

2

)
Γ(k)

≈
√
k for large k.

Substituting into m, we get:

m ≈ 2b√
π
·
√
k.

To keep m unchanged when k increases by a factor n (i.e., k → nk), b must scale as:

b ∝ 1√
k
.

Specifically, if k is multiplied by n, b should be divided by
√
n (i.e., b → b/

√
n) to maintain

m ≈ constant.

Error of the Approximation The approximation b ∝ 1/
√
k improves as k increases, because

the Stirling formula becomes more accurate for large k. For small k, the error is slightly larger but
remains bounded (as shown in prior analysis, typically ¡ 15% even for k = 1).

Thus, scaling b with 1/
√
k ensures m remains relatively stable for multiple parties (i.e., increasing

k).

I PRACTICAL IMPLEMENTATION VERIFICATION

Figure 6: Local causal graph with some
key attributes related to diabetes.

We demonstrate VFedCD’s capability on a practical dia-
betes dataset with vertical partitioning. Party A, represent-
ing a public healthcare system, has demographic and basic
health metrics such as Age, Glucose Levels, and Diabetes
Diagnosis. Party B, a specialized clinic, contributes ad-
vanced diagnostic features like Pregnancies, Insulin levels,
and Diabetes Pedigree Function.

As shown in Fig. 6, a local causal graph inferred by
VFedCD. The model accurately identifies Pregnancies
and Diabetes Pedigree Function from Party B as causes of
diabetes, in line with medical knowledge on genetic and
reproductive risk factors. It also correctly determines that
blood glucose from Party A and insulin levels from Party
B are downstream effects of diabetes, consistent with islet
cell dysfunction pathophysiology. This verifies VFedCD’s
practicability in data-siloed scenarios.
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J THE USE OF LARGE LANGUAGE MODELS (LLMS)

The contributions of Large Language Models (LLMs) to this paper were limited to non-critical
tasks such as language refinement, debugging portions of the code, and generating simple scripts
(e.g., plotting utilities). The research ideas, theoretical development, draft preparation, and primary
pipeline implementation were carried out entirely by the authors without LLM involvement. The
core methodology, experimental design, and all key contributions are the sole intellectual work of the
authors.
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