

000 001 002 003 004 005 VFEDCD: VERTICAL FEDERATED LEARNING-BASED 006 CAUSAL DISCOVERY 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Causal discovery seeks to identify causal relationships among attributes, typically represented as directed acyclic graphs (DAGs) where vertices denote attributes and edges denote direct causal effects. Existing methods struggle in vertically federated scenarios. In these settings, data is partitioned across parties that hold disjoint attributes, and strict privacy constraints prevent centralized aggregation, leaving vertical federated causal discovery underexplored. We propose VFedCD, the first framework for causal discovery in vertical federated settings. VFedCD models causal mechanisms with a shallow-encoder, deep-decoder design. Each party uses a shallow encoder to transform its local attributes into privacy-preserving features for all parties, and then a deep decoder to aggregate received features and predict local attributes, implicitly capturing causal dependencies. To avoid cycles or overly dense graph structures, a Centralized Topology Validator (CTV) extracts partial causal structures from party encoders, aggregates them into a global graph and enforces structural constraints. In addition, a Secure Dispatch Protocol (SDP) is designed to enhance the security of feature exchange and gradient propagation by redesigning encoding and aggregation with semi-homomorphic encryption and secret sharing. Experiments on synthetic and real-world datasets with artificial vertical partitioning show that VFedCD matches the accuracy of centralized methods while guaranteeing privacy.

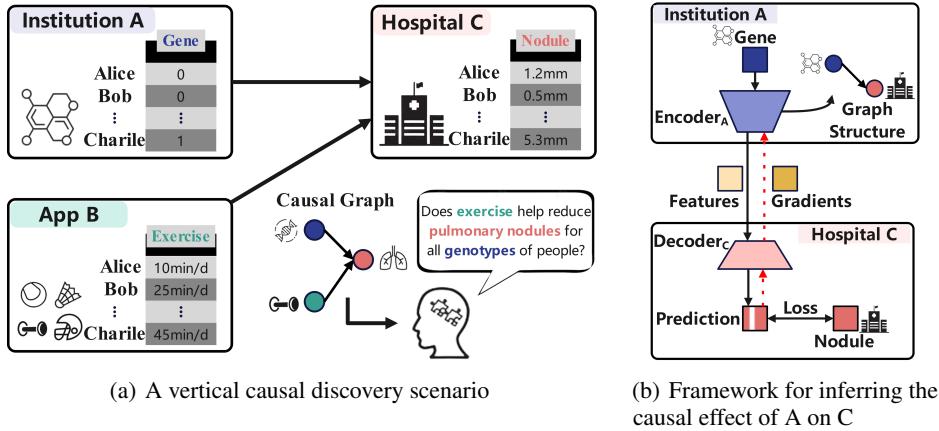
1 INTRODUCTION

Causal discovery, which aims to uncover directed cause-effect relationships among attributes, has become a cornerstone of scientific inquiry in diverse domains, including biomedical research (Imbens & Rubin, 2015), climate science (Zhang et al., 2011), and epidemiology (Greenland et al., 1999). Traditional causal discovery methods typically assume centralized access to complete data. Among them, a popular branch is *Differentiable Causal Discovery* (DCD) (Zheng et al., 2018). DCD leverages neural networks to model causal mechanisms by taking all attributes as input to predict a target attribute, approximating causal relationships through model fitting, and deriving causal graphs from the learned parameters.

However, in many real-world scenarios, attributes of the same samples are often vertically partitioned across multiple parties, with each party holding only a subset of attributes (Yang et al., 2019; Liu et al., 2020b). As illustrated in Fig. 1(a), consider a medical study aiming to infer causal relationships among basic health information, genetic data, and exercise habits of citizens, while these data are stored separately in hospitals, medical examination institutions, and fitness management Apps. Due to privacy regulations and commercial constraints, raw data sharing is prohibited, rendering centralized approaches to causal discovery infeasible.

To address this challenge, we propose VFedCD, a framework based on Vertical Federated Learning (VFL) for DCD. In VFedCD, parties collaboratively infer causal relationships without sharing raw data. VFL is a classic federated learning paradigm that enables joint model training over vertically partitioned data by transmitting encoded features and gradients between parties instead of raw data (Liu et al., 2020a; Hu et al., 2019; Wan et al., 2007). For instance, to evaluate the causal effect of Institution A’s attributes on Hospital C’s (Fig. 1(b)), Institution A encodes its local attributes into features and sends them to C. Hospital C then uses these features to predict its own attributes, and the resulting gradients are sent back to A to update its encoder. Through this iterative process of

054 exchanging privacy-preserving intermediate representations, the causal graph can be inferred from
 055 the optimized model parameters.
 056



069
 070
 071
 072 Figure 1: Vertical Federated Causal Discovery: Scenario and Basic Framework
 073

074 Unlike traditional VFL frameworks focus on discriminative tasks (e.g., classification), applying it
 075 directly to causal discovery presents unique challenges. Decisions on how to split the model structure
 076 inevitably involve a trade-off between performance and privacy. Transmitting shallow-layer features
 077 typically yields better performance but also increases the risk of privacy leakage due to their higher
 078 fidelity to raw data.

079 To address this, we adopt a shallow-encoder deep-decoder (sEdD) architecture to enhance inter-party
 080 causal mechanism modeling. To mitigate privacy risks from linear features generated by shallow
 081 encoders, we design a Secure Dispatch Protocol (SDP) that combines semi-homomorphic encryption
 082 and secret sharing to decompose feature computations into encrypted fragments, ensuring no party has
 083 access to standalone features or gradients during training (Fu et al., 2022). Additionally, differentiable
 084 causal discovery requires enforcing global acyclicity constraints on the causal graph. For this, a
 085 Centralized Topology Validator (CTV) is introduced to aggregate causal graph structures from local
 086 encoder parameters and enforce global acyclicity constraints. This effectively prevents cyclic or
 087 overly dense structures while avoiding privacy risks brought by sensitive graph structures exchange
 088 among parties.

089 Extensive experiments demonstrate VFedCD’s efficacy across synthetic and real-world datasets.
 090 VFedCD achieves causal discovery accuracy comparable to centralized methods while providing
 091 provable privacy guarantees. Our work makes three key contributions:

- 092 1. We establish a theoretical foundation for causal discovery in vertically federated learning,
 093 identifying unique challenges and opportunities in distributed attribute settings.
- 094 2. We propose VFedCD, which, to the best of our knowledge, is the first vertical federated
 095 causal discovery framework. It introduces two key components—the CTV and the SDP—to
 096 enable global constraint enforcement and privacy-preserving feature aggregation, respec-
 097 tively.
- 098 3. Extensive experiments on both synthetic and real-world datasets demonstrate that VFedCD
 099 achieves performance comparable to centralized causal discovery methods while providing
 100 privacy guarantees.

102 2 RELATED WORK

103
 104
 105 **Causal discovery** methods primarily target centralized data. Constraint-based (e.g., PC (Kalisch
 106 & Bühlman, 2007), BPC (Harris & Drton, 2013), IDA (Maathuis et al., 2009)), score-based (e.g.,
 107 Greedy Equivalence Search (GES) (Chickering, 2002), CD2 (Gu et al., 2019), SP (Raskutti & Uhler,
 2018)), and mechanism-fitting (e.g., NO-TEARS (Zheng et al., 2018), LiNGAM (Shimizu et al.,

108 2006), GES (Chickering, 2002), SDCD (Nazaret et al., 2023)) approaches all assume access to full
 109 attribute sets, which is infeasible for vertical federation where attributes are disjoint across parties.
 110

111 **Federated causal discovery (FCD)** has focused on horizontal federation, where parties share the
 112 same attributes but different samples. These methods fall into two categories: 1) *Party-driven*
 113 approaches (e.g., FedDAG (Gao et al., 2021), FedCSL (Guo et al., 2024a), Bloom (Chengbo &
 114 Kai, 2024), NOTEARS-ADMMTh (Ng & Zhang, 2022), FedACD (Guo et al., 2024b), FedGES
 115 (Torrijos et al., 2024)) enable local causal graph construction or neighborhood learning, with servers
 116 aggregating parameters or selecting optimal structures; 2) *Server-led* approaches (e.g., FedC2SL
 117 (Wang et al., 2023), PERI (Mian et al., 2023), LiNGAMs (Shimizu, 2012), DARLS (Ye et al.,
 118 2024), FedCDH (Li et al., 2024)) use parties to validate global hypotheses (e.g., topological order,
 119 graph or independence test) for centralized graph refinement. Both rely on parties having complete
 120 attribute sets, a critical assumption invalid in vertical federation—no party holds all attributes, making
 hypothesis validation and causal mechanism modeling across disjoint attributes impossible.
 121

122 3 PRELIMINARIES

124 **Assumption of causal discovery.** Our approach is based on two assumptions. The first assumption
 125 is the Additive Noise Model (ANM), where each attribute X_j is generated from its parent attributes
 126 PA_j through causal mechanism f_j with independent additive noise ϵ_j : (Peters & Bühlmann, 2014):
 127 $X_j = f_j(PA_j) + \epsilon_j$, ϵ_j representing independently distributed noise. The second is the Faithfulness
 128 assumption, which states that the conditional independencies in the data align with the d -separation
 129 properties underlying the DAG (Spirtes et al., 2001). Discussion on the impact of these assumptions
 130 on identifiability is provided in the appendix E.

131 **Homomorphic encryption (HE).** HE defines an encryption function E and decryption function
 132 D . For a plaintext message m and public key pub , encryption is given by $\|m\|_{pub} = E(m, pub)$,
 133 and decryption with the private key pri is $m = D(\|m\|_{pub}, pri)$. Additive HE (e.g., the Paillier
 134 scheme (Paillier, 2005)) supports homomorphic addition $\|m_1\| \oplus \|m_2\| = \|m_1 + m_2\|$ and scalar
 135 multiplication $c \otimes \|m_1\| = \|c \cdot m_1\|$, enabling computations on encrypted data without the need for
 136 decryption.
 137

138 **Secret sharing of homomorphic encryption ciphertexts (HE2SS).** HE2SS converts additive
 139 HE ciphertexts to Secret Shares (Du & Atallah, 2001), as illustrated in Algorithm 1. Given that
 140 party p_A holds $\|data\|_B = E(data, p_B.pub)$ (i.e., data encrypted with party p_B 's public key via
 141 homomorphic encryption (Paillier, 2005)), the procedure is as follows: 1. Party p_A generates random
 142 noise ϵ and computes $\|data - \epsilon\|_B = \|data\|_B \oplus E(-\epsilon, p_B.pub)$. 2. Party p_A sends $\|data - \epsilon\|_B$
 143 to party p_B , which decrypts it using $p_B.pri$ to obtain $data - \epsilon$. 3. The result is secret-shared as
 144 $[\epsilon, data - \epsilon]_{A,B}$, where p_A holds ϵ and p_B holds $data - \epsilon$, ensuring that neither party can reconstruct
 145 $data$ alone.
 146

147 4 PROBLEM DEFINITION

149 **Vertically Partitioned Data.** Consider K parties $\{p_k\}$ holding N samples with vertically parti-
 150 tioned features, where party k holds local data $D_k = \{x_n^k\}$. Each sample $x_n \in \mathbb{R}^d$ is split into
 151 $x_n^k \in \mathbb{R}^{d_k}$ for party k , with $\sum d_k = d$ (Yang et al., 2019).

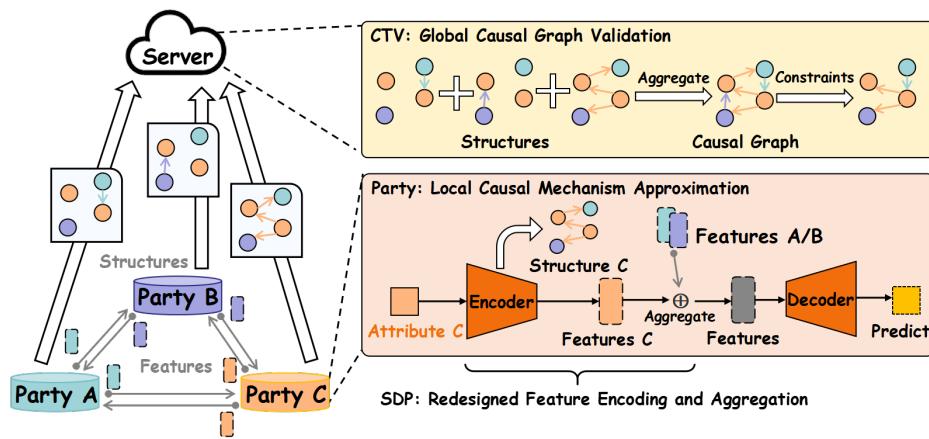
152 **Learning Objective.** The goal is to collaboratively learn a causal graph $B = \text{graph}(\Theta)$ from
 153 vertically partitioned data $D = \{D_k\}$, where the parameter set Θ includes all encoders $\{\phi_{kt}\}$ and
 154 decoders $\{\omega_k\}$ between parties, respectively responsible for encoding the attributes of party k into
 155 required features for target party t and decoding the aggregated features to predict the attributes of
 156 party k . To facilitate notation, we define the parameters of each party as $\theta_k = \{\phi_{kt}\}_{t=1}^K \cup \{\omega_k\}$, so
 157 that the complete set of parameters is $\Theta = \{\theta_k\}_{k=1}^K$. The joint objective minimizes the prediction
 158 loss l , regularizes model complexity via a penalty term α with hyperparameter λ_1 , and enforces a
 159 continuous acyclicity constraint $h(B)$ (Nazaret et al., 2023) with hyperparameter λ_2 :
 160

$$\min_{\Theta} L(\Theta, D) = \frac{1}{N} \sum_n l(\theta_1, \dots, \theta_K; x_n) + \lambda_1 \sum_k \alpha(\theta_k) + \lambda_2 h(B), \quad (1)$$

162 5 METHOD
163

164 In the Method section, we first introduce the framework of VFedCD in 5.1, including how to
165 approximate the causal mechanism through encoder-decoder. Then we introduce SDP in 5.2, which
166 is presented prior to the CTV because the redesigning of feature encoding and aggregation in SDP
167 fundamentally influences the graph extraction process in CTV. In 5.3, we explain how CTV aggregates
168 causal graphs and enforces structural constraints. The overall approach is shown in Fig. 2.

169 The pseudo-code can be found in the Appendix A. Complete proofs for the computational complexity
170 and communication overhead are provided in Appendices B and C, including detailed assumptions
171 and derivations. For identifiable details, please refer to Appendix E.



174
175
176
177
178
179
180
181
182
183
184
185
186
187
Figure 2: VFedCD approach. The left side shows the communication between parties and CTV.
The upper right is CTV. The lower right is the expansion of party C, and SDP redesigning feature
encoding and aggregation.

191 5.1 FRAMEWORK
192

193 VFedCD enables each party to collaboratively approximate causal mechanisms and learn causal
194 graph structures through encoder-decoder networks. For clarity, we decompose the method into two
195 stages: forward propagation and backward propagation, as outlined below.

196
197
198 **Forward.** The forward propagation process, mainly visualized in Party in Fig. 2, unfolds in three
199 steps:

200
201 • **Step 1: Encoding.** Each party k encodes its local attributes x_n^k into K feature vectors $\{H_{kt}\}_{t=1}^K$
202 using K sub-encoders $\{F_{kt}\}_{t=1}^K$. The sub-encoder F_{kt} , parameterized by ϕ_{kt} , generates $H_{kt} =$
203 $F_{kt}(x_n^k; \phi_{kt})$, representing the causal contribution of party k 's data to the prediction process of
204 target party t . This decomposes the encoder into specialized components for cross-party feature
205 generation.

206 • **Step 2: Cross-Party Feature Transmission.** For a target party t predicting its attributes, all parties
207 $k = 1, \dots, K$ transmit the feature H_{kt} (specifically designed for target t) to party t . This step
208 enables each party to collect the features it needs from all other parties, forming a collaborative
209 feature pool for subsequent decoding.

210 • **Step 3: Decoding.** Target party t aggregates the received features $\{H_{kt}\}_{k=1}^K$ and uses its decoder
211 G_t (parameterized by ω_t) to reconstruct its local attributes:

$$212 \hat{x}_n^t = G_t(H_{1t}, H_{2t}, \dots, H_{Kt}; \omega_t), \quad (2)$$

213 The decoder maps the aggregated features to the attribute space, approximating the causal mecha-
214 nisms that generate the target party's data from its causal parents across all parties.

216 **Backward.** During backward propagation, target party t first computes the prediction loss
 217 $l_{con}(\hat{x}_n^t, x_n^t)$ between the reconstructed attributes \hat{x}_n^t and the true data x_n^t . The gradient $\nabla_{l_{con}} \hat{x}_n^t$ of
 218 reconstruction loss l_{con} is then backpropagated through the decoder G_t to compute gradients with
 219 respect to the intermediate features $\{H_{kt}\}_{k=1}^K$:

$$221 \quad \nabla_{l_{con}} H_{kt} = \frac{\partial l_{con}}{\partial H_{kt}} \quad k = 1, \dots, K, \quad (3)$$

223 These gradients are transmitted back to the respective source parties k , which update their sub-encoder
 224 parameters ϕ_{kt} using stochastic gradient descent (SGD) in a VFL-compatible manner (Yang et al.,
 225 2019). The decoder parameters ω_t are updated locally by party t to minimize the reconstruction error.

227 5.2 SECURE DISPATCH PROTOCOL (SDP)

229 In traditional VFL with deep-encoder shallow-decoder (dEsD) architectures, feature encryption is
 230 often applied during decoding, where lightweight shallow decoders can handle the computational
 231 overhead of homomorphic operations. However, transitioning to a shallow-encoder deep-decoder
 232 (sEdD) architecture for improved inter-party causal mechanism modeling introduces a critical chal-
 233 lenge: deep decoders' complex nonlinear operations make traditional full homomorphic encryption
 234 (FHE) computationally infeasible. Additionally, using raw data as "labels" for loss computation
 235 creates dual leakage paths. Based on the features and gradients received, party can respectively
 236 inference other parties' data and "labels". Since raw data plays the role of "label", adversaries can
 237 cross - validate its inference of other parties' sensitive data from features and gradients.

238 Inspired by (Fu et al., 2022), we design a encryption strategy to align with the sEdD architecture.
 239 As shown in lower right of Fig. 2, SDP focuses on securing the encoding and feature aggregation
 240 processes rather than the decoding stage. By decomposing feature computations into encrypted
 241 fragments via semi-homomorphic encryption and secret sharing, SDP ensures that no party can
 242 reconstruct standalone features or gradients during training, while avoiding the computational burden
 243 of encrypting deep decoder operations. The detailed threat model can be found in Appendix H.

244 SDP consists of three components: initialization for key and model setup, forward propagation
 245 for secure feature aggregation, and backward propagation for privacy-preserving gradient updates.
 246 Without loss of generality, the following uses the prediction of attributes in target party p_t as an
 247 example to introduce the protocol. The prediction of attributes in other parties follows the same
 248 process.

249 **Initialization.** As shown in the Algorithm 2, each party p_k generates a key pair $\langle p_k.pub, p_k.pri \rangle$
 250 and initializes K plaintext encoders $\{p_k.f_{kt}\}$, parameterized by ϕ_{kit} . Here, $p_i.f_{kt}$ represents a
 251 fragment of the complete encoder F_{kt} (which maps x_k to features for target party t) that is distributed
 252 to party i . Specifically, the complete encoder F_{kt} is decomposed into K fragments across all parties,
 253 i.e., $F_{kt}(x_k) = \sum_{i=1}^K p_i.f_{kt}(x_k)$. Thus, the features Z_t required for predicting x_t can be formulated
 254 as:

$$256 \quad Z_t = \sum_{k=1}^K F_{kt}(x_k) = \sum_{k=1}^K \sum_{i=1}^K p_i.f_{kt}(x_k), \quad (4)$$

258 Notably, direct computation of Z_t via this formula is infeasible because x_k resides exclusively on
 259 party k , while its corresponding encoder fragments $p_i.f_{kt}$ are distributed across all parties i . The
 260 subsequent steps of SDP (forward and backward propagation) are designed to indirectly achieve the
 261 computation of Z_t on target party t without exposing raw data or complete encoder parameters.

263 Then, for $j \neq k$, party p_k encrypts $p_k.f_{jt}$ with its public key $p_k.pub$ as $\|p_k.f_{jt}\|_k$ and sends it to
 264 party j , which stores it as a encrypted $\|p_j.ef_{kt}\|_k$.

265 **Forward.** As shown in the Algorithm 3, for target party p_t , each party p_k computes: 1.
 266 **Plaintext feature:** $p_k.f_{kt}(x_k)$ (direct contribution from party k to itself). 2. **Ciphertext**
 267 **features:** $\|p_k.ef_{it}(x_k)\|_i = x_k^\top \|p_k.ef_{it}\|_i$ (for $i \neq k$), transformed via HE2SS into secret
 268 shares $[\epsilon_{kit}, \text{remaining}_{kit}]_{k,i}$. Party p_k aggregates these as $z_{kt} = p_k.f_{kt}(x_k) + \sum_{i \neq k} (\epsilon_{kit} +$
 269 $\text{remaining}_{ikt})$ and sends z_{kt} to party p_t , which sums all z_{kt} to get $Z_t = \sum_k z_{kt}$ for decoding.

270 **Backward.** As shown in the Algorithm 4, Target party p_t computes gradients ∇Z_t from the
 271 decoder, encrypts them as $\|\nabla Z_t\|_t = E(\nabla Z_t, p_t, \text{pub})$, and broadcasts to other parties. Each
 272 party $k \neq t$ first computes $\|x_k^\top \nabla Z_t\|_t = x_k^\top \|\nabla Z_t\|_t$ and applies HE2SS to divide into
 273 $[\varphi_{kt}, \text{grad_remaining}_{kt}]_{k,t}$. And then, it updates its encoder $p_k.f_{kt}$ using $\varphi_{k,t}$, while party p_t
 274 updates $p_t.f_{kt}$ using $\text{grad_remaining}_{kt}$. Finally, the updated encoders are re-encrypted and ex-
 275 changed to maintain model consistency across parties.

276

277 5.3 CENTRALIZED TOPOLOGY VALIDATOR (CTV)

278

279 In vertically partitioned settings, each party’s local subgraph structures is embedded within encoder
 280 parameters, thus no single party can verify the global graph’s topological validity. Without centralized
 281 validation, the inferred graph may contain cycles or overly dense connections, violating causal
 282 discovery’s fundamental requirements. While transmitting both features and local subgraphs between
 283 parties to enforce constraints raises significant privacy risks, thus not contributing a solution. To
 284 address this, we introduce the CTV, a server-based component that aggregates encoder parameters
 285 to validate the global graph’s acyclicity using structural constraints, as shown in CTV in Fig. 2.
 286 Verifying global topological validity without exposing raw graph structure data, CTV balances
 287 constraint enforcement and privacy preservation. We detail the forward process to obtain a subgraph
 288 with the attributes of party p_t as the effect, and the backward process to update the corresponding
 289 models.

290 **Forward.** As shown in Algorithm 5, each party p_k firstly extracts a causal graph structure from
 291 its encoders $B_t^k = \text{graph}(\{p_k.f_{it}\}_{i=1}^K)$ and secondly sends to the CTV. Thirdly, the CTV constructs
 292 the subgraph $B_t = \sum_{k=1}^K B_t^k$. Note that the structural constraints is enforced on full graph $B =$
 293 $\text{concat}(\{B_t\}_{t=1}^K)$, which is gained by repeating the process for all K target parties. To ensure the
 294 validity of the complete causal graph, these constraints typically include two types: acyclicity and
 295 sparsity.

296 To enforce acyclicity, the CTV leverages the spectral radius constraint $h(B)$ (Nazaret et al., 2023),
 297 defined as:

$$h(B) = \rho(B) = \max_{1 \leq i \leq d} |\lambda_i(B)|, \quad (5)$$

300 where $\lambda_i(B)$ denotes the i -th eigenvalue of B . This constraint ensures the graph is a directed acyclic
 301 graph (DAG). Beyond acyclicity, structural constraints may also incorporate sparsity-promoting terms
 302 (e.g., the ℓ_1 -regularization $\|B\|_1$) to penalize overly dense connections, though their implementation
 303 details are omitted here for focus. The combined structural objective (e.g., $\mathcal{L}_{\text{struct}} = \lambda_2 \|B\|_1 +$
 304 $\lambda_3 h(B)$) guides the learning process toward both valid and interpretable causal graph structures. We
 305 provide further details on acyclicity constraints in the appendix D.

306 **Backward.** As shown in the Algorithm 6, to update models for predicting attributes on target party
 307 p_t , the CTV computes and randomly splits the gradient $\nabla_h B_t = \sum_{k=1}^K \text{grad_structure}_{kt}$, where
 308 $\text{grad_structure}_{kt}$ are gradients sent to party p_k . Parties further decompose received gradients into
 309 encoder-specific updates

$$\text{grad_structure}_{kit} = \text{chunk}(\text{grad_structure}_{kt}), \quad (6)$$

310 for updating $p_k.f_{it}$, aligning local parameter adjustments with the global acyclicity constraint without
 311 exposing full graph gradients.

312

313 6 EXPERIMENTS

314

315

316 6.1 EXPERIMENTAL SETUP

317

318 **Datasets.** We evaluate VFedCD on both synthetic and real-world datasets. Synthetic datasets are
 319 generated with varying numbers of attributes (10, 15, 25) and edge densities (30 to 75 edges) to test
 320 scalability and robustness. For real-world validation, we use the Sachs (Sachs et al., 2005), SynTReN
 321 (Van den Bulcke et al., 2006), and a diabetes (Kahn) dataset. All centralized datasets are artificially
 322 partitioned to simulate the VFL setting. We use an 80/20 train/test split for all datasets.

324 **Implementation Details.** We use Stochastic Gradient Descent (SGD) with a learning rate of 0.01,
 325 a batch size of 16 and 500 training epochs. By default, we set the regularization hyperparameter
 326 λ_1 to 5×10^{-3} , and communication cycle Q to 1. The acyclicity constraints weight λ_2 starts at 0
 327 and increases by $gamma$ (0.006) per epoch, with its growth halted once the current graph becomes
 328 acyclic. All experiments are conducted on a server equipped with 8xV100 GPUs.
 329

330 **Evaluation Metrics.** For datasets with known ground-truth causal graphs, we adopt two standard
 331 evaluation metrics:

332 • **Structural Hamming Distance (SHD)** (de Jongh & Druzdzel, 2009), which measures the number
 333 of edge additions, deletions, or reversals needed to convert the inferred graph into the true directed
 334 acyclic graph (DAG).
 335 • **F1 Score**, which evaluates the accuracy of edge detection by harmonizing precision and recall.

336 To evaluate privacy protection, we implement *Unsplit attacks* (Erdoğan et al., 2022), where a semi-
 337 honest party attempts to infer other participants’ raw data. We report the **Absolute Correlation**
 338 between the inferred features and the true data, with lower values indicating stronger privacy preser-
 339 vation. For the diabetes dataset, which does not have a ground-truth causal graph, we conduct a
 340 qualitative evaluation by examining whether the inferred causal relationships align with established
 341 medical knowledge.
 342

343 **SOTA methods.** Some SOTA methods addressing causal discovery for learning causal graph with
 344 centralized data are included: NO-TEARS (Zheng et al., 2018), NO-BEARS (Lee et al., 2019),
 345 DAGMA (Bello et al., 2022), Sortnregress (Reisach et al., 2021), DCDI (Brouillard et al., 2020),
 346 DCD-FG (Lopez et al., 2022). Detailed introduction to these methods is included in Appendix F.
 347

349 6.2 PERFORMANCE COMPARISON ON SYNTHETIC DATA

351 This section demonstrates VFedCD’s competitive performance against centralized causal discovery
 352 methods under vertical partitioning. Table 1 compares SHD across synthetic datasets with different
 353 number of attributes. Despite not requiring raw data sharing, VFedCD achieves comparable results
 354 to centralized approaches. We repeat Each experiment five times and take the mean value. For
 355 seed-sensitive methods, the standard deviation of F1 is marked.

356 Table 1: Causal discovery accuracy on synthetic datasets. The red asterisk (*) indicates methods with
 357 complexity higher than $O(D^2)$. Bolded values represent the best two performances.
 358

360 Attributes	361 10 Attributes		362 15 Attributes		363 25 Attributes	
	364 Metric	365 SHD \downarrow	366 F1 \uparrow	367 SHD \downarrow	368 F1 \uparrow	369 SHD \downarrow
370 NO-TEARS*	371 29	372 0.433	373 62	374 0.110	375 84	376 0.272
377 NO-BEARS	378 36.4	379 0.205 ± 0.052	380 57.2	381 0.265 ± 0.023	382 96.8	383 0.075 ± 0.026
384 DAGMA*	385 29.4	386 0.362 ± 0.175	387 42.2	388 0.539 ± 0.023	389 77	390 0.393 ± 0.075
391 Sortnregress*	392 31	393 0.355	394 54	395 0.267	396 102	397 0.300
398 DCDI*	399 30	400 0.405 ± 0.071	401 52.4	402 0.306 ± 0.041	403 67.2	404 0.607 ± 0.037
406 DCD-FG	407 19.2	408 0.632 ± 0.082	409 61.8	410 0.446 ± 0.060	411 192.5	412 0.244 ± 0.037
414 VFedCD(Ours)	415 18.8	416 0.698 ± 0.016	417 33	418 0.711 ± 0.013	419 81.6	420 0.649 ± 0.008

371 6.3 GENERALIZATION

373 To evaluate model robustness, we test VFedCD on datasets with varying characteristics: Synthetic
 374 Dataset (15 attributes, edge counts: 30, 45, 60, 75), Real-World Dataset (Sachs protein network),
 375 Highly Realistic Synthetic Dataset (SynTReN dataset). Table 2 presents results for seven methods
 376 across these scenarios. VFedCD demonstrates consistent performance across different graph struc-
 377 tures. Unbalanced data partitioning will not have a significant impact on the results, but it will affect
 378 the training time. For details about unbalanced data partitioning, please refer to the appendix G.

Furthermore, to demonstrate the universality of VFedCD, we conduct an experiment on a practical diabetes dataset without real causal graph and presented the consistency between the predicated causal graph and clinical knowledge. Details are provided in Appendix I.

Table 2: Generalization performance across diverse datasets (SHD \downarrow F1 \uparrow).

	Synthetic Datasets(SHD)				Sachs	SynTReN
	30 Edges	45 Edges	60 Edges	75 Edges	SHD	F1
NO-TEARS	21	38	62	68	17	0.256
NO-BEARS	25	40	59	69	17	0.201
DAGMA	26	21	45	63	18	0.277
Sortnregress	39	40	54	67	16	0.257
DCDI	29	38	50	60	38	0.136
DCD-FG	73	86	64	57	40	0.168
VFedCD(Ours)	13	27	32	31	19	0.407

6.4 ABLATION STUDY

We evaluate VFedCD components on a synthetic dataset with 15 attributes. A semi-honest party conducts Unsplit attacks (Erdoğan et al., 2022) to infer others’ raw data. We compare three variants: (1) the framework, (2) the framework + CTV, and (3) the full VFedCD. Metrics include SHD, F1 - score, and the Absolute Correlation between inferred and raw features.

As Table 3 shows, CTV reduces SHD by 35.7% through global topology validation. With SDP, the correlation drops 62%, indicating strong privacy protection. Attackers obtain only weakly correlated features (0.152), proving the protocol’s effectiveness against semi-honest adversaries. The analysis of collusion attacks when the semi-honest assumption is broken and the further improvement of security policies leveraging differential privacy are presented in the appendix H.

Table 3: Ablation study (15-attribute dataset). Corr.: Absolute Correlation of Unsplit attacks.

Method	SHD \downarrow	F1 \uparrow	Corr. \downarrow
Framework	56	0.610	0.443
Framework+CTV	36	0.678	0.400
VFedCD	35	0.700	0.152

6.5 ARCHITECTURE ANALYSIS

We explore how the vertical model architecture affects edge recovery using a synthetic dataset with 15 attributes. In this context, we define two types of edges: inter-party edges and intra-party edges, classified based on whether the causes of edge’s target attribute are within a party or distributed across different parties. Fig. 3 visualizes the impact of different encoder - decoder configurations on these two types of edges. The left subfigure shows various architecture setups with different encoder/decoder depths. The right compares their F1 - scores for two edge types.

Results show that the dEsD architecture amplifies the F1 gap between intra and inter edges. This indicates that the dEsD architecture is poor at modeling inter-party dependencies, as it focuses more on intra-party edges. In contrast, VFedCD’s sEdD architecture (Split Position A) minimizes this disparity. This demonstrates that the sEdD architecture is necessary in achieving a balanced discovery of both intra-party and inter-party causal mechanisms. We provide an intuitive example in the appendix E.5 to understand this difference.

6.6 ROBUSTNESS STUDY

This section evaluates VFedCD’s stability against hyperparameters and communication cycle. We analyze the parameter γ (acyclicity constraint coefficient λ_2 , linearly increasing γ per epoch when

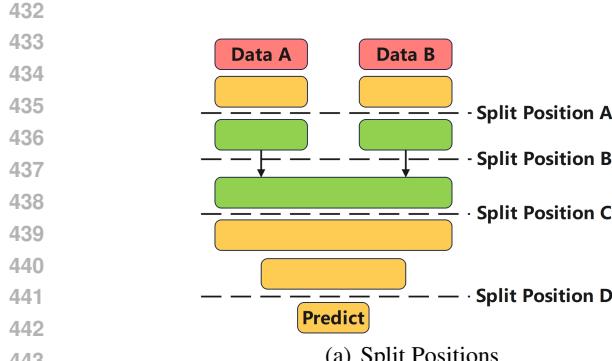


Figure 3: Splitting Strategy Analysis

current graph is not acyclic) and Q (communication cycle, following FedBCD’s design (Liu et al., 2022), where parties communicate every Q updates).

As Fig. 4 shows, varying γ between 0.004 and 0.007 causes minimal SHD/F1 fluctuations, indicating insensitivity to this constraint strength. Increasing q from 1 to 5 reduces the final F1 score from 0.72 to 0.53, yet the model remains functional, demonstrating robustness to reduced communication efficiency. These results confirm VFedCD’s practical viability in diverse settings.

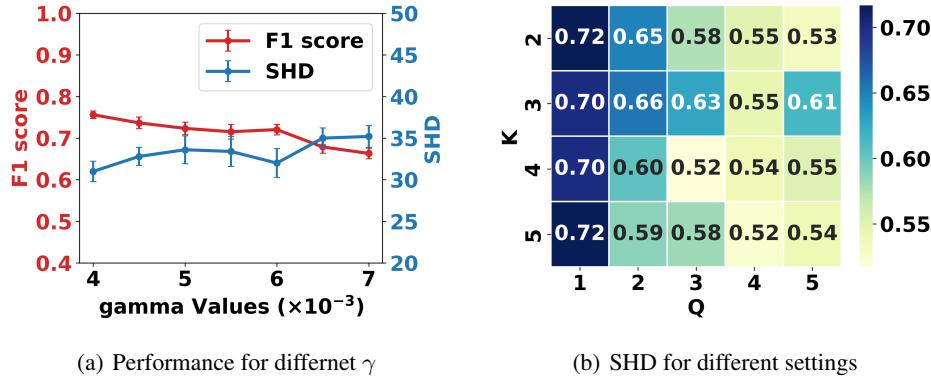


Figure 4: Robustness Analysis to Hyper Parameter

7 CONCLUSION AND LIMITATIONS

Conclusion. In this work, we establish a theoretical foundation for causal discovery in vertically federated learning. We propose VFedCD, the first framework tailored for vertical federated causal discovery, incorporating two key components: CTV, which enforces global acyclicity constraints, and SDP, which enables privacy-preserving feature interactions. Both experimental results and theoretical analyses validate the effectiveness of VFedCD in terms of causal discovery validity, privacy protection, and computational efficiency. Specifically, VFedCD ensures causal discovery validity through global acyclicity enforcement and balanced edge modeling, safeguards privacy against both data and label inference, and achieves practical computational efficiency via lightweight encryption.

Limitations. However, several limitations need further discussion. First, scalability to extremely high-dimensional data remains a challenge, requiring more efficient cryptographic optimization. Second, strategies to reduce communication overhead have not been extensively explored. Third, real federated deployments require mechanisms for fair contribution assessment and benefit distribution, ensuring parties providing valuable data receive proportional rewards. Future work may address these limitations while preserving the core strengths of the proposed framework.

486 REPRODUCIBILITY STATEMENT
487

488 We take reproducibility seriously and have provided the necessary details to facilitate replication of
489 our results. Appendix A contains detailed pseudo-code for both forward and backward propagation,
490 outlining the key steps of our proposed framework. In the supplementary materials, we include the
491 complete pipeline for implementing VFedCD, including pre-processing, model training, and evalua-
492 tion. For the synthetic datasets used in this study, we also provide the data within the supplementary
493 materials. Additionally, all hyperparameter settings and experimental configurations are explicitly
494 described in Section 6.

496 REFERENCES
497

498 Khawla Ali Abd Al-Hameed. Spearman’s correlation coefficient in statistical analysis. *International
499 Journal of Nonlinear Analysis and Applications*, 13(1):3249–3255, 2022.

500 Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. Dagma: Learning dags via m-matrices and a
501 log-determinant acyclicity characterization. *Advances in Neural Information Processing Systems*,
502 35:8226–8239, 2022.

503 Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and Alexandre
504 Drouin. Differentiable causal discovery from interventional data. *Advances in Neural Information
505 Processing Systems*, 33:21865–21877, 2020.

506 Qiu Chengbo and Yang Kai. Interventional causal structure discovery over graphical models with
507 convergence and optimality guarantees. *arXiv preprint arXiv:2408.04819*, 2024.

508 David Maxwell Chickering. Optimal structure identification with greedy search. *Journal of machine
509 learning research*, 3(Nov):507–554, 2002.

510 Martijn de Jongh and Marek J Druzdzel. A comparison of structural distance measures for causal
511 bayesian network models. *Recent advances in intelligent information systems, challenging prob-
512 lems of science, computer science series*, pp. 443–456, 2009.

513 Wenliang Du and Mikhail J Atallah. Secure multi-party computation problems and their applications:
514 a review and open problems. In *Proceedings of the 2001 workshop on New security paradigms*, pp.
515 13–22, 2001.

516 Ege Erdogan, Alptekin Küpcü, and A Ercüment Çiçek. Unsplit: Data-oblivious model inversion,
517 model stealing, and label inference attacks against split learning. In *Proceedings of the 21st
518 Workshop on Privacy in the Electronic Society*, pp. 115–124, 2022.

519 Fangcheng Fu, Huanran Xue, Yong Cheng, Yangyu Tao, and Bin Cui. Blindfl: Vertical federated
520 machine learning without peeking into your data. In *Proceedings of the 2022 International
521 Conference on Management of Data*, pp. 1316–1330, 2022.

522 Erdun Gao, Junjia Chen, Li Shen, Tongliang Liu, Mingming Gong, and Howard Bondell. Feddag:
523 Federated dag structure learning. *arXiv preprint arXiv:2112.03555*, 2021.

524 Sander Greenland, Judea Pearl, and James M Robins. Causal diagrams for epidemiologic research.
525 *Epidemiology*, 10(1):37–48, 1999.

526 Jiaying Gu, Fei Fu, and Qing Zhou. Penalized estimation of directed acyclic graphs from discrete
527 data. *Statistics and Computing*, 29:161–176, 2019.

528 Xianjie Guo, Kui Yu, Lin Liu, and Jiuyong Li. Fedcsl: A scalable and accurate approach to federated
529 causal structure learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
530 volume 38, pp. 12235–12243, 2024a.

531 Xianjie Guo, Kui Yu, Hao Wang, Lizhen Cui, Han Yu, and Xiaoxiao Li. Sample quality heterogeneity-
532 aware federated causal discovery through adaptive variable space selection. In *Proceedings of the
533 Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 4071–4079, 2024b.

540 Naftali Harris and Mathias Drton. P_c algorithm for nonparanormal graphical models. *The Journal of*
 541 *Machine Learning Research*, 14(1):3365–3383, 2013.

542

543 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown
 544 mapping and its derivatives using multilayer feedforward networks. *Neural networks*, 3(5):551–560,
 545 1990.

546 Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine learning
 547 framework for distributed features. In *Proceedings of the 25th ACM SIGKDD international*
 548 *conference on knowledge discovery & data mining*, pp. 2232–2240, 2019.

549

550 Guido W Imbens and Donald B Rubin. *Causal inference in statistics, social, and biomedical sciences*.
 551 Cambridge university press, 2015.

552 Michael Kahn. Diabetes. UCI Machine Learning Repository. DOI: <https://doi.org/10.24432/C5T59G>.

553

554 Markus Kalisch and Peter Bühlman. Estimating high-dimensional directed acyclic graphs with the
 555 pc-algorithm. *Journal of Machine Learning Research*, 8(3), 2007.

556

557 Hao-Chih Lee, Matteo Danieletto, Riccardo Miotto, Sarah T Cherng, and Joel T Dudley. Scaling
 558 structural learning with no-bears to infer causal transcriptome networks. In *Pacific Symposium on*
 559 *Biocomputing 2020*, pp. 391–402. World Scientific, 2019.

560

561 Loka Li, Ignavier Ng, Gongxu Luo, Biwei Huang, Guangyi Chen, Tongliang Liu, Bin Gu, and Kun
 562 Zhang. Federated causal discovery from heterogeneous data. *arXiv preprint arXiv:2402.13241*,
 563 2024.

564

565 Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. A secure federated transfer
 566 learning framework. *IEEE Intelligent Systems*, 35(4):70–82, 2020a.

567

568 Yang Liu, Xiong Zhang, and Libin Wang. Asymmetrical vertical federated learning. *arXiv preprint*
 569 *arXiv:2004.07427*, 2020b.

570

571 Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and Qiang Yang.
 Fedbcd: A communication-efficient collaborative learning framework for distributed features.
IEEE Transactions on Signal Processing, 70:4277–4290, 2022.

572

573 Romain Lopez, Jan-Christian Hütter, Jonathan Pritchard, and Aviv Regev. Large-scale differentiable
 574 causal discovery of factor graphs. *Advances in Neural Information Processing Systems*, 35:
 19290–19303, 2022.

575

576 Marloes H Maathuis, Markus Kalisch, and Peter Bühlmann. Estimating high-dimensional intervention
 577 effects from observational data. 2009.

578

Osman Mian, David Kaltenpoth, Michael Kamp, and Jilles Vreeken. Nothing but regrets—privacy-
 579 preserving federated causal discovery. In *International Conference on Artificial Intelligence and*
 580 *Statistics*, pp. 8263–8278. PMLR, 2023.

581

582 Achille Nazaret, Justin Hong, Elham Azizi, and David Blei. Stable differentiable causal discovery.
 583 *arXiv preprint arXiv:2311.10263*, 2023.

584

585 Ignavier Ng and Kun Zhang. Towards federated bayesian network structure learning with continuous
 586 optimization. In *International Conference on Artificial Intelligence and Statistics*, pp. 8095–8111.
 587 PMLR, 2022.

588

Pascal Paillier. Paillier encryption and signature schemes. *Encyclopedia of cryptography and security*,
 10:0–387, 2005.

589

590 Jonas Peters and Peter Bühlmann. Identifiability of gaussian structural equation models with equal
 591 error variances. *Biometrika*, 101(1):219–228, 2014.

592

593 Garvesh Raskutti and Caroline Uhler. Learning directed acyclic graph models based on sparsest
 permutations. *Stat*, 7(1):e183, 2018.

594 Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! causal
 595 discovery benchmarks may be easy to game. *Advances in Neural Information Processing Systems*,
 596 34:27772–27784, 2021.

597 Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal protein-
 598 signaling networks derived from multiparameter single-cell data. *Science*, 308(5721):523–529,
 599 2005.

600 Shohei Shimizu. Joint estimation of linear non-gaussian acyclic models. *Neurocomputing*, 81:
 601 104–107, 2012.

602 Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
 603 non-gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 7(10),
 604 2006.

605 Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, prediction, and search*. MIT press,
 606 2001.

607 Pablo Torrijos, José A Gámez, and José M Puerta. Fedges: A federated learning approach for
 608 bayesian network structure learning. In *International Conference on Discovery Science*, pp. 83–98.
 609 Springer, 2024.

610 Tim Van den Bulcke, Koenraad Van Leemput, Bart Naudts, Piet van Remortel, Hongwu Ma, Alain
 611 Verschoren, Bart De Moor, and Kathleen Marchal. Syntren: a generator of synthetic gene
 612 expression data for design and analysis of structure learning algorithms. *BMC bioinformatics*, 7:
 613 1–12, 2006.

614 Li Wan, Wee Keong Ng, Shuguo Han, and Vincent CS Lee. Privacy-preservation for gradient descent
 615 methods. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge
 616 discovery and data mining*, pp. 775–783, 2007.

617 Zhaoyu Wang, Pingchuan Ma, and Shuai Wang. Towards practical federated causal structure learning.
 618 In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp.
 619 351–367. Springer, 2023.

620 Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
 621 applications. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 10(2):1–19, 2019.

622 Qiaoling Ye, Arash A Amini, and Qing Zhou. Federated learning of generalized linear causal
 623 networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

624 David D Zhang, Harry F Lee, Cong Wang, Baosheng Li, Qing Pei, Jane Zhang, and Yulun An. The
 625 causality analysis of climate change and large-scale human crisis. *Proceedings of the National
 626 Academy of Sciences*, 108(42):17296–17301, 2011.

627 Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
 628 optimization for structure learning. *Advances in neural information processing systems*, 31, 2018.

629

630 **A PSEUDO CODE**

631

632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648
649**Algorithm 1** The algorithm to transform an HE variable $\|data\|_A$ into an SS variable $[\epsilon, data - \epsilon]_{A,B}$

1: **procedure** HE2SS($p_B, p_A.pub, \|data\|_A$)
2: $\epsilon = \text{random_noise}()$
3: $\|data + \epsilon\|_A = \|data\|_A + E(-\epsilon, p_A.pub)$
4: $\text{send_to}(p_B, \|data - \epsilon\|_A)$
5: $\text{return } \epsilon$
6: **end procedure**
7: **procedure** HE2SS($p_A, p_B.pri$)
8: $\|data - \epsilon\|_B = \text{receive_from}(p_A)$
9: $(data - \epsilon) = \text{decrypt}(\|data - \epsilon\|_B, p_B.pri)$
10: $\text{remaining} = (data - \epsilon)$
11: $\text{return } \text{remaining}$
12: **end procedure**

661
662
663**Algorithm 2** Initialization algorithm

1: **procedure** INITIALIZATION OF PARTY K
2: $(p_k.pub, p_k.pri) = \text{generate_key_pair}()$
3: **for** $i = 1$ to K **do**
4: $p_k.f_{it} = \text{initialize_plaintext_model}()$
5: **end for**
6: **for** $j = 1$ to K **do**
7: **if** $j \neq k$ **then**
8: $\|p_k.f_{jt}\|_k = E(p_k.f_{jt}, p_k.pub)$
9: $\text{send_to}(p_j, \|p_k.f_{jt}\|_k)$
10: $\|p_k.ef_{jt}\|_j = \text{receive_from}(p_j)$
11: **end if**
12: **end for**
13: **end procedure**

676
677
678**Algorithm 3** Forward algorithm for Z_t in SDP

1: **procedure** FORWARD OF PARTY K(x_k)
2: $\text{component}_{kt} = x_k^T (p_k.f_{kt})$
3: **for** $i = 1$ to K **do**
4: **if** $i \neq k$ **then**
5: $\|p_k.ef_{it}(x_k)\|_i = x_k^T \|p_k.ef_{it}\|_i$
6: **end if**
7: **end for**
8: **for** $i = 1$ to K **do**
9: **if** $i \neq k$ **then**
10: $\varepsilon_{kit} = \text{HE2SS}(p_i, p_k.pub, \|p_k.ef_{it}(x_k)\|_i)$
11: $\text{remaining}_{ikt} = \text{HE2SS}(p_i, p_k.pri)$
12: **end if**
13: **end for**
14: $z_{kt} = \text{component}_{kt} + \sum_{i=1, i \neq k}^K \varepsilon_{kit} + \sum_{i=1, i \neq k}^K \text{remaining}_{ikt}$
15: $\text{send_to}(p_t, z_{kt})$
16: **end procedure**
17: **procedure** FORWARD OF TARGET PARTY T
18: $Z_t = 0$
19: **for** $k = 1$ to K **do**
20: **if** $k \neq t$ **then**
21: $z_{kt} = \text{receive_from}(p_k)$
22: $Z_t = Z_t + z_{kt}$
23: **end if**
24: **end for**
25: **end procedure**

702

703

704

Algorithm 4 Backward algorithm from x^t in SDP

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

```

1: procedure BACKWARD OF PARTY K
2:    $\|\nabla Z_t\|_t = \text{receive\_from}(p_t)$ 
3:    $\|x_k^T \nabla Z_t\|_t = x_k^T \|\nabla Z_t\|_t$ 
4:    $\varphi_{kt} = \text{HE2SS}(p_t, p_k.\text{pub}, \|x_k^T \nabla Z\|_t)$ 
5:    $p_k.f_{kt} = \text{update\_model}(p_k.f_{kt}, \varphi_{kt})$ 
6:    $\|p_k.e_{ftt}\|_t = \text{receive\_from}(p_t)$ 
7: end procedure
8: procedure BACKWARD OF TARGET PARTY T( $\nabla Z_t$ )
9:    $\nabla F_{tt} = X_t^T \nabla Z_t$ 
10:   $p_t.f_{tt} = \text{update\_model}(p_t.f_{tt}, \nabla F_t)$ 
11:   $\|\nabla Z_t\|_t = E(\nabla Z_t, p_t.\text{pub})$ 
12:  for  $k = 1$  to  $K$  do
13:    if  $k \neq t$  then
14:       $\text{send\_to}(p_k, \|\nabla Z_t\|_t)$ 
15:    end if
16:  end for
17:  for  $k = 1$  to  $K$  do
18:    if  $k \neq t$  then
19:       $\text{remaining\_grad}_{kt} = \text{HE2SS}(p_k, p_t.\text{pri})$ 
20:       $p_t.f_{kt} = \text{update\_model}(p_t.f_k, \text{remaining\_grad}_{kt})$ 
21:       $\|p_t.f_{kt}\|_t = E(p_t.f_{kt}, p_t.\text{pub})$ 
22:       $\text{send\_to}(p_k, \|p_t.f_{kt}\|_t)$ 
23:    end if
24:  end for
25: end procedure

```

731

732

733

734

735

Algorithm 5 Forward algorithm for B_t in CTV

736

737

738

739

740

741

742

743

```

1: procedure FORWARD OF PARTY K
2:    $B_{kt} = \text{graph}(\{p_k.f_{it}\})$ 
3:    $\text{send\_to}(CTV, B_{kt})$ 
4: end procedure
5: procedure FORWARD OF CTV
6:   for  $k = 1$  to  $K$  do
7:      $B_{kt} = \text{receive\_from}(p_k)$ 
8:   end for
9:    $B_t = \text{aggregate}(\{B_{kt}\}_{k=1}^K)$ 
10: end procedure

```

744

745

746

747

748

749

Algorithm 6 Backward algorithm from B_t in CTV

750

751

752

753

754

755

```

1: procedure BACKWARD FOR PARTY K
2:    $\text{grad\_structure}_{kt} = \text{receive\_from}(CTV)$ 
3:    $\{\text{grad\_structure}_{kit}\} = \text{chunk}(\text{grad\_structure}_{kt})$ 
4:    $p_k.f_{it} = \text{update\_model}(p_k.f_{it}, \text{grad\_structure}_{kit})$ 
5: end procedure
6: procedure BACKWARD FOR CTV( $\nabla_h B_t$ )
7:    $\{\text{grad\_structure}_{kt}\}_{k=1}^K = \text{random\_split}(\nabla_h B_t)$ 
8:   for  $k = 1$  to  $K$  do
9:      $\text{send\_to}(p_k, \text{grad\_structure}_{kt})$ 
10:   end for
11: end procedure

```

756 B COMPUTATIONAL COMPLEXITY ANALYSIS OF VFEDCD 757

758 The computational complexity of the VFEDCD is dominated by homomorphically encrypted (HE)
759 matrix multiplications. We analyze the complexity by mapping operations to their corresponding
760 pseudocode steps.

762 B.1 FORWARD PROPAGATION COMPLEXITY 763

764 For a target party t , each party k computes $K - 1$ HE matrix multiplications $\{\|p_k \cdot e f_{jt}(x_k)\|\}_{j \neq k}$
765 (Algorithm 3, line 5). Each multiplication has complexity $O(d_k d_t)$, where d_k and d_t are the attribute
766 dimensions of party k and t , respectively.

767 The total complexity for target party t is:

$$768 \sum_{k=1}^K (K-1)O(d_k d_t)$$

771 Extending this to all K target parties, the overall forward-pass complexity becomes:

$$772 \sum_{t=1}^K \sum_{k=1}^K (K-1)O(d_k d_t)$$

775 B.2 BACKWARD PROPAGATION COMPLEXITY 776

777 For backward propagation from target party t , each party $k \neq t$ performs the HE matrix multiplication
778 $x_k^T \|\nabla Z_t\|_t$ (Algorithm 4, line 3) with complexity $O(d_k d_t)$. The total complexity for target party t is:

$$779 \sum_{k=1, k \neq t}^K O(d_k d_t)$$

782 Summing over all target parties, the total backward complexity is:

$$784 \sum_{t=1}^K \sum_{k=1, k \neq t}^K O(d_k d_t)$$

787 B.3 OVERALL COMPLEXITY 788

789 The dominant term combines forward and backward complexities:

$$791 \sum_{t=1}^K \sum_{k=1}^K (K-1)O(d_k d_t) + \sum_{t=1}^K \sum_{k=1, k \neq t}^K O(d_k d_t)$$

793 Assuming uniform attribute distribution ($d_k = D/K$), this simplifies to $O(KD^2)$, where D is the
794 total attribute dimension.

795 B.4 TRAINING TIME ANALYSIS 797

798 We first characterize the theoretical complexity: with synchronization constraints, the training time is
799 bounded by the party with the maximum number of attributes $d_{\max} = \max_k d_k$, with a worst-case
800 per-party complexity of $O(d_{\max} D)$. Beyond theoretical analysis, we aim to provide a *generalizable*
801 framework for practical scalability assessment, using a baseline hardware configuration to quantify
802 feasible boundaries—this framework can be easily adapted to different hardware setups (e.g., multi-
803 core CPUs, GPUs) by adjusting the benchmarked parameters.

804 **Empirical Benchmark as a Reference Baseline** To establish a foundational reference, we mea-
805 sured HE multiplication performance under a simple, non-parallelized setup: a single-core AMD
806 R9-7945HX CPU using Python’s Paillier homomorphic encryption library. This setup yields 12,500
807 HE multiplications per second. For practicality, we define a feasible iteration as one completing
808 within 30 minutes, with HE operations (the dominant cost) allocated the full 30-minute budget. This
809 gives a maximum of $30 \times 60 \times 12,500 = 22,500,000$ HE multiplications per iteration as our baseline
constraint.

810 **Scalability Calculation** For uniform attribute distribution ($d_k = d/K$) and typical hyperparameters
 811 (hidden_dim=10), we derive the total HE multiplications per iteration by combining forward and
 812 backward propagation costs (detailed in Algorithms 3 and 4): - Forward propagation: Each party
 813 performs $(K - 1) \cdot n \cdot (d/K) \cdot d \cdot 10$ HE multiplications. - Backward propagation: Each party
 814 performs $(d/K) \cdot n \cdot d \cdot 10$ HE multiplications.

815 Simplifying these, the total HE multiplications per iteration scale as $10 \cdot n \cdot d^2$, where n is the sample
 816 count and d is the total number of attributes.

818 **Feasibility Boundaries Under Baseline Setup** Using the single-core benchmark, we quantify
 819 feasible scales within the 30-minute iteration budget: - *Typical scenario*: For $n = 1000$ samples and
 820 $d = 15$ attributes, 2.25 million HE operations are required, completing in 180 seconds (well within
 821 budget). - *Moderate scale*: For $n = 800$ samples and $d = 50$ attributes, 20 million HE operations
 822 are needed, taking 1600 seconds (27 minutes, near the limit). - *Beyond feasibility*: For $n = 1000$
 823 samples and $d = 50$ attributes, 25 million HE operations exceed the budget, requiring 2000 seconds
 824 (33 minutes).

825 These boundaries ($d < 50$, $n < 1000$ under the single-core setup) cover most causal discovery
 826 datasets, but importantly, they reflect hardware constraints rather than algorithmic limitations.

828 **Extending to Other Hardware Configurations** The core advantage of our framework is its
 829 adaptability to diverse hardware. Since our matrix multiplication-based encrypted operations are
 830 inherently parallelizable, the runtime scales with the number of parallel processing units. For M
 831 parallel CPUs/GPUs, the effective runtime reduces to $O(nd^2/M)$. Readers can thus: 1. Benchmark
 832 their own hardware to determine HE multiplications per second. 2. Apply the same $10 \cdot n \cdot d^2$ formula
 833 to calculate feasible n and d for their specific 30-minute (or other) budget.

834 This design ensures our scalability analysis remains generalizable, providing a clear path for adapting
 835 VFedCD to various computational environments.

837 C COMMUNICATION OVERHEAD ANALYSIS

840 C.1 FORWARD PROPAGATION OVERHEAD

842 For a single target party t , the communication overhead is as follows: 1. **Share Collection**: Each
 843 party k collects $K - 1$ shares $remaining_{ikt}$ from other parties (Algorithm 3, lines 10–11). The
 844 per-party overhead is $(K - 1)O(d_t)$, leading to a total of $K(K - 1)O(d_t)$ across all K parties.
 845 2. **Result Transmission**: All parties $k \neq t$ send z_{kt} to t (Algorithm 3, lines 15, 21), contributing
 846 $(K - 1)O(d_t)$.

847 Extending to all K target parties, the total party-to-party overhead becomes:

$$848 \quad \sum_{t=1}^K [K(K - 1)O(d_t) + (K - 1)O(d_t)] = O(K^2D).$$

852 In addition, each party needs to send the corresponding parameters to the server. Considering the
 853 model for computing the intermediate results required by party t , the data volume of the parameters
 854 sent by party k is $O(Dd_t)$. The total communication complexity for all parties to send parameters for
 855 computing the intermediate results required by party t is $KO(Dd_t)$. When extended to all parties t
 856 (i.e., all models), the data volume of the transmitted parameters is $KO(D^2)$, which is $O(KD^2)$.

858 C.2 BACKWARD PROPAGATION OVERHEAD

860 For a single target party t : 1. **Gradient Broadcast**: Party t encrypts and broadcasts $\|\nabla Z_t\|_t$ to $K - 1$
 861 parties (Algorithm 4, lines 2, 14), incurring $(K - 1)O(d_t)$. 2. **Gradient Share Transmission**: Each
 862 party $k \neq t$ sends $remaining_{grad_{kt}}$ to t (Algorithm 4, lines 4, 19). The total overhead across all
 863 $k \neq t$ is $\sum_{k \neq t} O(d_k d_t) = O(Dd_t)$. 3. **Model Update**: Party t sends updated encrypted models
 $\|p_t \cdot f_{kt}\|_t$ to all $k \neq t$ (Algorithm 4, line 22), with total overhead $O(Dd_t)$.

864 Summing over all K target parties, the party-to-party overhead is:
 865

$$866 \quad \sum_{t=1}^K [(K-1)O(d_t) + O(Dd_t) + O(Dd_t)] = O(KD + D^2). \\ 867$$

869 The server backpropagates each parameter gradient sent during the forward propagation. So, this
 870 part of the communication overhead is the same as the communication overhead of parties sending
 871 parameters to the server during the forward propagation, which is $O(KD^2)$.
 872

873 C.3 OVERALL COMMUNICATION OVERHEAD

874 Combining all components:
 875

$$876 \quad \text{Forward: } O(K^2D) + \text{Backward: } O(K^2D + D^2) + \text{Server: } O(KD^2) = O(K^2D + KD^2). \\ 877$$

878 D GRAPH FUNCTION AND ACYCLICITY CONSTRAINT CALCULATION

880 D.1 FROM MODEL PARAMETERS TO CONTINUOUS ADJACENCY MATRIX

881 The function $\text{graph}(\Theta)$ transforms model parameters into a continuous adjacency matrix, quantifying
 882 the strength of potential causal relationships. It operates in two steps: 1. **Extracting Linear Layer**
 883 **Weights**: For each encoder-decoder pair targeting party t , the first linear layer parameters (denoted
 884 $\theta_{kt} \in \mathbb{R}^{d_k \times (d_t \cdot h)}$, where h is the hidden dimension) are extracted. These parameters directly encode
 885 the influence of local attributes (from party k) on features for the target party t . 2. **Norm Aggregation**:
 886 The hidden dimension h is aggregated using the L_2 norm, resulting in a matrix $B \in \mathbb{R}_{\geq 0}^{d_k \times d_t}$. Each
 887 entry B_{ij} represents the continuous strength of the causal edge from attribute i (party k) to attribute j
 888 (party t), with larger values indicating stronger inferred causality.
 889

890 D.2 ACYCLICITY CONSTRAINT CALCULATION

892 To enforce the acyclic property of the global causal graph, we adopt the spectral acyclicity constraint
 893 from Nazaret et al. (2023), which leverages the spectral radius of the adjacency matrix. The spectral
 894 radius is defined as:
 895

$$h_\rho(B) = |\lambda_{\max}(B)|$$

896 where $\lambda_{\max}(B)$ is the largest eigenvalue (in magnitude) of the adjacency matrix B .
 897

900 This constraint exhibits key properties that make it suitable for measuring cyclicity: - For a directed
 901 acyclic graph (DAG), its adjacency matrix B is acyclic, meaning no cycles exist in the graph. By
 902 graph theory, acyclic matrices are nilpotent (i.e., there exists a positive integer k such that $B^k = 0$)
 903 . A fundamental property of nilpotent matrices is that all their eigenvalues are zero . Thus, for a
 904 DAG, $\lambda_{\max}(B) = 0$, so $h_\rho(B) = 0$. - For cyclic graphs, the adjacency matrix B contains at least one
 905 cycle. Such matrices are not nilpotent and must have at least one non-zero eigenvalue . Consequently,
 906 $h_\rho(B) > 0$, where larger values indicate stronger cyclicity. This is because cycles with heavier edge
 907 weights or more nodes contribute to larger eigenvalue magnitudes .
 908

909 During training, the acyclicity loss is incorporated as $\mathcal{L}_{\text{acyclic}} = \gamma \cdot h_\rho(B)$, where γ is a scaling
 910 factor. Minimizing this loss encourages the model to learn adjacency matrices with $h_\rho(B) \approx 0$, thus
 911 promoting acyclic structures.
 912

913 E IDENTIFIABILITY ANALYSIS

914 Identifiability of causal graphs in vertical federated learning requires the framework to uniquely
 915 recover the true causal structure from observed data. This section provides a rigorous theoretical
 916 analysis, establishing how our framework achieves identifiability through the Additive Noise Model
 917 (ANM) and faithfulness assumptions, complemented by architectural design.
 918

919 E.1 FUNDAMENTAL DEFINITIONS AND IDENTIFIABILITY CRITERION

920 We begin by formalizing key concepts and the core requirement for identifiability.
 921

918 E.1.1 KEY SETS AND NOTATIONS
919

920 For each variable $X_i \in \mathcal{D}$ (where $\mathcal{D} = \{X_1, X_2, \dots, X_d\}$ is the set of all observed variables), define:
 921 - $C_i^{\text{true}} \subseteq \mathcal{D} \setminus \{X_i\}$: The set of *true direct causes* of X_i (i.e., $X_j \in C_i^{\text{true}} \iff X_j \rightarrow X_i$ in the true
 922 causal graph). - $E_i^{\text{true}} \subseteq \mathcal{D} \setminus \{X_i\}$: The set of *true direct effects* of X_i (i.e., $X_k \in E_i^{\text{true}} \iff X_i \rightarrow X_k$ in the true causal graph). - $I_i^{\text{true}} \subseteq \mathcal{D} \setminus \{X_i\}$: The set of variables with *no direct causal link* to
 923 X_i (neither cause nor effect).
 924

925 By definition, these sets are mutually exclusive and exhaustive:

$$926 \mathcal{D} \setminus \{X_i\} = C_i^{\text{true}} \cup E_i^{\text{true}} \cup I_i^{\text{true}}, \quad \text{and } C_i^{\text{true}} \cap E_i^{\text{true}} = C_i^{\text{true}} \cap I_i^{\text{true}} = E_i^{\text{true}} \cap I_i^{\text{true}} = \emptyset. \\ 927$$

928 Let $C_i^{\text{pred}} \subseteq \mathcal{D} \setminus \{X_i\}$ denote the set of variables *predicted as direct causes* of X_i by VFedCD.
 929

930 E.1.2 IDENTIFIABILITY CRITERION
931

932 A causal discovery framework is identifiable if and only if, for all $X_i \in \mathcal{D}$:

$$933 \quad C_i^{\text{pred}} = C_i^{\text{true}}. \\ 934$$

935 This equality requires three conditions to hold simultaneously: 1. *Inclusion of true causes*: $C_i^{\text{true}} \subseteq$
 936 C_i^{pred} (no true cause is omitted). 2. *Exclusion of true effects*: $E_i^{\text{true}} \cap C_i^{\text{pred}} = \emptyset$ (no effect is mistaken
 937 for a cause). 3. *Exclusion of irrelevant variables*: $I_i^{\text{true}} \cap C_i^{\text{pred}} = \emptyset$ (no causally unrelated variable is
 938 included).

939 The remainder of this section demonstrates how ANM and faithfulness assumptions ensure these
 940 three conditions in VFedCD.
 941

942 E.2 ROLE OF THE ADDITIVE NOISE MODEL (ANM) ASSUMPTION
943

944 The ANM assumption states that for each $X_i \in \mathcal{D}$, the true causal mechanism follows:

$$945 \quad X_i = f_i(C_i^{\text{true}}) + \epsilon_i, \quad \text{where } \epsilon_i \perp\!\!\!\perp C_i^{\text{true}}, \\ 946$$

947 where f_i is a measurable function (capturing the causal mechanism), and ϵ_i (noise) is statistically
 948 independent of C_i^{true} . This assumption enables VFedCD to distinguish C_i^{true} , E_i^{true} , and I_i^{true} through
 949 residual analysis and loss minimization.

950 E.2.1 ENSURING INCLUSION OF TRUE CAUSES ($C_i^{\text{true}} \subseteq C_i^{\text{pred}}$)
951

952 Suppose a true cause $X_j \in C_i^{\text{true}}$ is mistakenly excluded from C_i^{pred} . By ANM, X_i depends on X_j
 953 through f_i , so the residual of X_i predicted using C_i^{pred} (denoted $\epsilon_i(C_i^{\text{pred}}) = X_i - \hat{f}_i(C_i^{\text{pred}})$) will
 954 correlate with X_j :

$$955 \quad \epsilon_i(C_i^{\text{pred}}) \not\perp\!\!\!\perp X_j.$$

956 This correlation implies the reconstruction loss will be larger than if X_j were included:
 957

$$958 \quad \left\| \epsilon_i(C_i^{\text{pred}}) \right\|^2 > \left\| \epsilon_i(C_i^{\text{pred}} \cup \{X_j\}) \right\|^2. \\ 959$$

960 Since VFedCD minimizes this loss, the model is incentivized to include X_j in C_i^{pred} . For all
 961 $X_j \in C_i^{\text{true}}$, this ensures $C_i^{\text{true}} \subseteq C_i^{\text{pred}}$.
 962

963 E.2.2 ENSURING EXCLUSION OF TRUE EFFECTS ($E_i^{\text{true}} \cap C_i^{\text{pred}} = \emptyset$)
964

965 Variables $X_k \in E_i^{\text{true}}$ are correlated with X_i (due to $X_i \rightarrow X_k$) but are not causes of X_i . To avoid
 966 mistaking X_k for a cause: - VFedCD enforces acyclicity via constraints that prohibit both $X_i \rightarrow X_k$
 967 and $X_k \rightarrow X_i$ (i.e., $B_{ik} > 0 \implies B_{ki} = 0$ for adjacency matrix B). - When $C_i^{\text{true}} \subseteq C_i^{\text{pred}}$,
 968 $X_k \in E_i^{\text{true}}$ is independent of $\epsilon_i(C_i^{\text{pred}})$ (by ANM). Including X_k in C_i^{pred} reduces loss only weakly
 969 (via overfitting), while correctly modeling $X_i \rightarrow X_k$ yields a significant loss reduction (since
 970 $\epsilon_k \perp\!\!\!\perp C_k^{\text{true}}$ by ANM for X_k).
 971

972 This dynamic pushes $B_{ki} \rightarrow 0$, ensuring $E_i^{\text{true}} \cap C_i^{\text{pred}} = \emptyset$.

972 E.2.3 ENSURING EXCLUSION OF IRRELEVANT VARIABLES ($I_i^{\text{true}} \cap C_i^{\text{pred}} = \emptyset$)
973974 Variables $X_l \in I_i^{\text{true}}$ have no causal link to X_i but may coincidentally reduce reconstruction loss.
975 However: - By ANM, when $C_i^{\text{true}} \subseteq C_i^{\text{pred}}$, $\epsilon_i(C_i^{\text{pred}}) \perp\!\!\!\perp \mathcal{D} \setminus \{X_i\}$, so including X_l reduces loss
976 only through overfitting (magnitude far smaller than including a true cause). - VFedCD's L_1 sparsity
977 regularization ($\lambda_2 \|B\|_1$) penalizes non-zero entries for irrelevant variables, pushing $B_{li} \rightarrow 0$.978 Together, these ensure $I_i^{\text{true}} \cap C_i^{\text{pred}} = \emptyset$.
979980 E.3 ROLE OF THE FAITHFULNESS ASSUMPTION
981982 The faithfulness assumption ensures that *all conditional independencies in the data are exactly those*
983 *implied by d-separation in the true causal graph*. Formally:
984

985
$$X_i \perp\!\!\!\perp X_j \mid S \iff X_i \text{ and } X_j \text{ are d-separated by } S \text{ in the true graph}$$

986

987 for any $X_i, X_j \in \mathcal{D}$ and $S \subseteq \mathcal{D} \setminus \{X_i, X_j\}$.
988989 This assumption is critical because it guarantees that dependencies captured by VFedCD's loss
990 function and graph constraints *genuinely reflect causal relationships*, not spurious correlations from
991 hidden confounders. Without faithfulness: - Latent variables L (where $L \rightarrow X_i$ and $L \rightarrow X_j$) create
992 $X_i \not\perp\!\!\!\perp X_j \mid \emptyset$ even if X_i and X_j are d-separated, leading to false edges $X_i \rightarrow X_j$ or $X_j \rightarrow X_i$. -
993 Such spurious correlations corrupt the residual independence properties relied on by ANM, weakening
994 the model's ability to distinguish C_i^{true} , E_i^{true} , and I_i^{true} .
995996 In VFedCD, faithfulness ensures that the ANM-based mechanisms (Section 3.2) operate on "clean"
997 dependencies, preserving the three conditions for identifiability.
998999 E.4 EMPIRICAL VALIDATION OF ASSUMPTIONS
10001001 E.4.1 ANM VIOLATION EXPERIMENTS
10021003 We test performance under noise models that violate ANM properties (Table 4):
1004

Noise Type	Violated Property	SHD \downarrow	F1 \uparrow
Additive (ANM)	None	108	0.638
Multiplicative	Additivity	109	0.628
Poisson	Additivity	64	0.683
Non-iid Additive	Independence	123	0.612

1005 Table 4: Performance Under ANM Violations (30-attribute dataset)
10061007 Non-iid additive noise (violating independence) degrades performance most, confirming independence is critical. Multiplicative noise (violating additivity) performs comparably, aligning with our theoretical focus on independence over additivity.
10081009 E.4.2 FAITHFULNESS VIOLATION EXPERIMENTS
10101011 Testing with latent confounders (Table 5):
1012

Scenario	SHD \downarrow	F1 \uparrow
25 attributes (no latents)	53	0.654
20 attributes (5 latents)	70	0.537

1013 Table 5: Performance Under Faithfulness Violations
10141015 Latent confounders increase SHD by 32%, but partial recovery persists, demonstrating robustness to
1016 real-world violations.
1017

1026 E.5 EDGE TYPE IDENTIFIABILITY
10271028 In vertical federated settings, intra-party edges (causes and effects within one party) and inter-party
1029 edges (causes across multiple parties) exhibit different identifiability properties, largely dependent on
1030 the encoder-decoder architecture.1031 E.5.1 EXAMPLE SETUP
10321033 Consider a causal relationship $x^C = (x^A - 0.5) \cdot (x^B)^2$, where $x^A \in$ Party A, $x^B \in$ Party B, and
1034 $x^C \in$ Party C. We generate training samples:

1035
$$(x^A, x^B) = (0.0, 1.0) \implies x^C = -0.5; \quad (x^A, x^B) = (1.0, 1.0) \implies x^C = 0.5$$

1037 E.5.2 dEsD ARCHITECTURE LIMITATION
10381039 Deep encoders: $z^A = F_A(x^A) = \sigma(W_A \sigma(\phi_A x^A))$, $z^B = F_B(x^B) = \sigma(W_B \sigma(\phi_B x^B))$.1040 Shallow Decoder: $\hat{x}^C = G(z_A, z_B) = (z_A + z_B)/2$.1041 Given MSE loss $L = (\hat{x}^C - x^C)^2$, the gradient with respect to z^B is:

1042
$$\nabla_{z^B} L = (\hat{x}^C - x^C)$$

1043 Considering network initialization with near-zero parameters and activation functions centered at
1044 zero (e.g., tanh), we analyze SGD updates:1045 1. **Sample 1:** $(x^A, x^B) = (0.0, 1.0)$
1046 • Initial prediction $\hat{x}^C \approx 0$ (from near-zero z^A, z^B)
1047 • Residual error: $0 - (-0.5) = +0.5 \implies \nabla_{z^B} L = +0.5$
1048 • Update direction: $\phi_B \leftarrow \phi_B - \eta \cdot (+0.5)$
1049 2. **Sample 2:** $(x^A, x^B) = (1.0, 1.0)$
1050 • Initial prediction $\hat{x}^C \approx 0$
1051 • Residual error: $0 - 0.5 = -0.5 \implies \nabla_{z^B} L = -0.5$
1052 • Update direction: $\phi_B \leftarrow \phi_B - \eta \cdot (-0.5)$ 1053 This creates **conflicting gradients** for identical input $x^B = 1.0$:1054 • Positive gradient (+0.5) from Sample 1 pushes ϕ_B to decrease
1055 • Negative gradient (-0.5) from Sample 2 pulls ϕ_B to increase

1056 The zero-mean activation function converts this conflict into gradient cancellation:

1057
$$\mathbb{E}[\nabla_{\phi_B} L] = \frac{1}{2}(+0.5) + \frac{1}{2}(-0.5) = 0$$

1058 causing ϕ_B to converge near zero, thereby suppressing the $B \rightarrow C$ causal edge identification.

1062 E.5.3 sEdD ARCHITECTURE CORRECTNESS

1063 Encoders: $z^A = F_A(x^A) = \phi_A x^A$, $z^B = F_B(x^B) = \phi_B x^B$.1064 Decoder: $G(z_A, z_B) = \sigma(W \sigma(z^A + z^B))$.1065 The Universal Approximation Theorem (Hornik et al., 1990) guarantees existence of G such that:

1066
$$G(w_A x^A + w_B x^B) \approx (x^A - 0.5) \cdot (x^B)^2 \quad (7)$$

1067 Gradients align coherently as $\frac{\partial G}{\partial z_B}$, captures the dependency on x^B , allowing ϕ_B to remain non-zero
1068 and recover the $B \rightarrow C$ edge.

1069 E.5.4 EMPIRICAL VALIDATION

1070 sEdD achieves balanced F1 scores (0.70 for intra-party vs. 0.66 for inter-party edges), while dEsD
1071 shows a large gap (0.72 vs. 0.55), confirming sEdD's superiority for inter-party edge identifiability.

1080
1081

E.6 CONCLUSION

1082
1083
1084
1085

Identifiability in VFedCD is theoretically guaranteed by: 1. **ANM**: Enabling distinction between C_i^{true} (via residual independence), E_i^{true} (via acyclicity), and I_i^{true} (via sparsity). 2. **Faithfulness**: Ensuring data dependencies reflect true causality, so ANM-based distinctions remain valid. 3. **sEdD Architecture**: Preserving inter-party edge identifiability in federated settings.

1086
1087

Together, these components ensure $C_i^{\text{pred}} = C_i^{\text{true}}$ for all X_i , achieving causal graph identifiability.

1088
1089

F SOTA METHODS

1090
1091

F.1 INTRODUCTION TO SOTA METHODS

1093

All SOTA methods address causal discovery for learning causal graph with centralized data. NOTEARS (Zheng et al., 2018) converts DAG learning into a continuous optimization problem using matrix exponential trace constraints and augmented Lagrangian methods with L1 regularization. DAGMA (Bello et al., 2022) uses a log-determinant acyclicity constraint with M-matrices and a central path optimization to detect large cycles efficiently and improve computational speed. DCD-FG (Lopez et al., 2022) introduces factor DAGs (f-DAGs) with low-rank structures and Gaussian nonlinear models, scaling to high-dimensional interventional data via GPU acceleration. DCDI (Brouillard et al., 2020) employs differentiable frameworks with normalizing flows to handle perfect/imperfect interventions, maximizing log-likelihood to identify Markov equivalence classes. NO-BEARS (Lee et al., 2019) enhances NOTEARS by replacing matrix exponentials with spectral radius approximations and adding polynomial regression for nonlinear data, leveraging GPU speedups. Sortnregress (Reisach et al., 2021) acts as a baseline by sorting variables by marginal variance and using sparse regression, exposing how data scaling and varsorability influence benchmark performance.

1106

1107
1108

F.2 COMPARISON WITH CENTRALIZED SOTA METHODS

1109
1110
1111
1112

Our experimental results show that VFedCD, a distributed method, achieves performance comparable or even superior to some centralized SOTA methods on certain datasets. This outcome stems not from an inherent superiority in all conditions, but from the alignment of its modeling assumptions with the characteristics of the data, particularly our nonlinear synthetic datasets.

1113
1114
1115
1116

VFedCD is built upon general assumptions, namely the Additive Noise Model (ANM) and Faithfulness, which allow it to flexibly model a wide range of nonlinear causal mechanisms. In contrast, many centralized methods are designed with more specific assumptions or for particular scenarios:

1117
1118
1119
1120
1121

Methods with Linearity Assumptions: The original formulations of NOTEARS (Zheng et al., 2018) and its scalable successor NO-BEARS (Lee et al., 2019), as well as DAGMA (Bello et al., 2022), are primarily based on linear structural equation models. Consequently, their performance is naturally limited on datasets with complex nonlinear relationships, where VFedCD’s nonlinear modeling capacity provides a distinct advantage.

1122
1123
1124
1125
1126

Methods for Specific Data Types or Structures: DCDI (Brouillard et al., 2020) excels in its sophisticated handling of various interventional data types through normalizing flows. DCD-FG (Lopez et al., 2022) is specifically designed to scale to very high-dimensional settings by assuming a low-rank factor graph structure. While powerful in their respective niches, their designs are not universally optimal for general observational data.

1127
1128
1129

Baselines Revealing Methodological Artifacts: Sortnregress (Reisach et al., 2021) serves as a crucial baseline, demonstrating that many methods may inadvertently perform well by exploiting the “varsorability” of data, rather than by capturing the true causal structure.

1130
1131
1132
1133

Therefore, VFedCD’s strong performance on our synthetic data is a direct consequence of its robust, general-purpose nonlinear modeling, which is well-suited for the data generation process. It highlights that in the diverse landscape of causal discovery, there is no single best method, but rather a trade-off between generality and specialization. VFedCD’s contribution lies in successfully bringing a general and powerful modeling paradigm into the challenging, privacy-constrained vertical federated setting.

1134 **G IMPACT OF UNBALANCED DATA PARTITION**
1135

1136 To address concerns about heterogeneous vertical partitioning where parties hold imbalanced numbers
 1137 of features, we conduct supplementary experiments on a 15-attribute synthetic dataset with 3 parties,
 1138 using three specific attribute distribution configurations to systematically evaluate the impact: [1, 1,
 1139 13], [3, 3, 9], and [5, 5, 5]. These configurations exhibit different levels of imbalance, quantified by
 1140 attribute variance.

1141 For each configuration, we measure two key metrics: the Structural Hamming Distance (SHD, lower
 1142 is better) and F1 score (higher is better) of VFedCD, which reflect the accuracy of causal discovery.
 1143 The results are summarized in Table 6.

1144 Table 6: Performance of VFedCD under Different Imbalanced Attribute Distributions

Data Partition	Attribute Variance	SHD ↓	F1 ↑
[1, 1, 13]	32	36	0.68
[3, 3, 9]	8	35	0.69
[5, 5, 5]	0	35	0.70

1152 As shown in Table 6, the F1 score remains stable (ranging from 0.68 to 0.70) and SHD shows minimal
 1153 fluctuation across all imbalance levels, indicating that **imbalanced attribute distribution does**
 1154 **not introduce significant bias** in VFedCD. This robustness stems from our shallow-encoder deep-
 1155 decoder (sEdD) architecture, which is specifically designed to handle cross-party causal mechanisms.
 1156 Even when attributes are unevenly distributed, the deep decoder effectively aggregates features from
 1157 all parties, ensuring balanced modeling of both intra-party and inter-party causal relationships.

1158 We also observe that training time increases with imbalance severity: when the maximum number of
 1159 attributes held by a single party reaches 13 (in the [1, 1, 13] configuration), training time increases by
 1160 82% compared to the balanced [5, 5, 5] partitioning. This aligns with our computational complexity
 1161 analysis in Appendix B, where larger d_{\max} (maximum number of attributes per party) incur higher
 1162 costs.

1163 These results suggest that while VFedCD maintains causal discovery performance under imbalanced
 1164 partitioning, practical deployment should consider resource allocation strategies for parties with
 1165 heavy computational loads, especially in synchronous training settings.

1167 **H PRIVACY SECURITY ANALYSIS IN SDP**
1168

1169 This section formalizes the threat model for VFedCD, analyzes potential privacy vulnerabilities, and
 1170 evaluates mitigation strategies against collusion attacks.

1172 **H.1 THREAT MODEL AND VULNERABILITIES**
1173

1174 We define the adversary model and identify key privacy risks, focusing on scenarios where semi-
 1175 honest assumptions may be violated.

1177 **H.1.1 ADVERSARY MODEL**
1178

1179 We consider two primary types of adversaries: 1. **Semi-honest parties**: Parties strictly follow the
 1180 protocol but attempt to infer other parties' raw data using observed information (e.g., aggregated
 1181 features, encrypted parameters). 2. **Colluding among parties**: A subset of parties colluded, the
 1182 situation of privacy leakage has hardly intensified. 3. **Colluding with CTV**: A subset of parties
 1183 colluding with the CTV server, leveraging plaintext causal graph structures to enhance inference
 1184 capabilities.

1185 **H.1.2 VULNERABILITIES**
1186

1187 1. **Feature leakage**: Shallow encoders generate linear features that retain statistical correlations
 1188 with raw data. Unlike deep encoders, which abstract data into high-level representations, shallow

encoders' outputs may reveal patterns exploitable via inference attacks. 2. **Violation of semi-honest assumptions:** While single parties or small groups of colluding parties have limited inference power (as shown in Section 3, with correlation ≤ 0.152), collusion between a party and the CTV poses a significant risk. The CTV receives plaintext graph fragments B_t^k , which are strongly correlated with encoder parameters, providing structural insights that complement the party's local information (e.g., aggregated features, decoder parameters). This combination enables more accurate data reconstruction than single-party attacks. Gradient leakage is not a concern here, as gradients are protected via secret sharing (Section 5.2), preventing direct access to sensitive information.

H.2 SINGLE-PARTY INFERENCE ATTACKS

We analyze the feasibility of Unsplit attacks (Erdoğan et al., 2022) by a single semi-honest party, detailing inference bounds and practical limitations.

H.2.1 INFERENCE BOUND

A single party p_t attempting to infer p_k 's data ($k \neq t$) employs the Unsplit attack, which formulates data reconstruction as an optimization problem:

$$\min_{\{\bar{F}_{kt}, \bar{x}_n^k\}} \left\| \sum_{k=1}^K \bar{F}_{kt}(\bar{x}_n^k) - Z \right\|_2^2$$

where \bar{F}_{kt} is an auxiliary encoder with the same architecture as F_{kt} , and \bar{x}_n^k are the adversary's guesses for p_k 's raw data.

The optimal solution to this problem exhibits two critical properties: 1. **Proportional scaling:** For any non-zero σ , solutions satisfying $\bar{\psi}_{kt} = \sigma\psi_{kt}$, $\bar{\xi}_{kt} = \xi_{kt}$, and $\bar{x}_n^k = \sigma^{-1}x_n^k$ minimize the loss. This implies the adversary can only reconstruct data up to a scalar multiple of the true values. 2. **Non-permutability:** Permuting features (e.g., swapping elements of \bar{x}_n^k and corresponding rows of $\bar{\psi}_{kt}$) does not minimize the loss due to masked self-loop constraints in causal discovery (enforcing $\psi[i, i] = 0$).

These properties bound the maximum inferable precision, with the absolute correlation coefficient $|\text{Corr}(\bar{x}, x)|$ serving as a valid metric (upper bound = 1.0).

H.2.2 PRACTICAL VERIFICATION

The above analysis shows the maximum inferable precision is a proportional scaling of the true data, without permutations. This makes the absolute correlation coefficient $|\text{Corr}|$ (Ali Abd Al-Hameed, 2022) a valid metric to quantify inference risk, as it reaches its maximum at inference upper bound.

Complexity Barrier Let d_t be the target attribute dimension and m the decoder depth. Each training epoch provides $d_t m$ equations but requires solving for:

$$\underbrace{K(d_k m_1 d_t)}_{\text{encoder weights}} + \underbrace{K d_k}_{\text{auxiliary data}} = O(D m_1 d_t) \text{ unknowns} \quad (8)$$

where $D = \sum d_k$. The underdetermined system grows exponentially with K , rendering exact inference computationally difficult.

Empirical Validation The SDP reduces feature correlation to 0.152, far below the theoretical upper bound (1.0). This gap confirms the combinatorial explosion prevents adversaries from approaching proportional scaling solutions.

H.3 COLLUSION ATTACK: INTER-PARTY COLLUSION

H.3.1 THREAT ANALYSIS

Collusion among multiple parties poses limited risk due to two fundamental barriers: 1. **Encoder parameter opacity:** Parties lack knowledge of encoder weights $\{\psi_{kt}\}$, which are critical for reverse-engineering raw data. 2. **Encrypted feature fragmentation:** Data is distributed and encrypted,

1242 requiring colluders to solve an underdetermined system with more unknowns (encoder params +
 1243 target data) than equations. The more parties involved collude, the more unknowns there will be.
 1244

1245 H.3.2 EMPIRICAL VALIDATION

1246 We evaluate collusion between 3 parties (out of 4 total) on a 30-attribute dataset with partition
 1247 [8,8,7,7]:

1250 Scenario	1251 Inference Correlation
1251 Single-party inference	1252 0.163
1252 3-party collusion	1253 0.179

1254 Table 7: Inference Performance Under Inter-Party Collusion

1255 The marginal increase (0.179 vs. 0.163) confirms minimal benefits from collusion, as the combinatorial
 1256 complexity of solving for encoder parameters dominates over additional data fragments.
 1257

1259 H.4 COLLUSION ATTACK: PARTY + CTV

1260 Collusion between a party and the CTV is the most severe threat, as the CTV’s graph structures
 1261 complement the party’s local information. We detail this attack and its mitigation.
 1262

1264 H.4.1 THREAT OF COLLUSION

1265 The CTV aggregates local graph fragments B_t^k to enforce acyclicity, providing colluding parties
 1266 with explicit structural information about causal relationships. This allows adversaries to: 1. Fix
 1267 encoder architectures to match B_t , reducing the number of unknowns in the Unsplit optimization. 2.
 1268 Cross-validate inferred data with graph structure (e.g., ensuring edges in B_t align with correlations in
 1269 reconstructed data).

1270 Experimental validation on a $K = 2, d = 20$ dataset shows collusion enables $|\text{Corr}| = 0.804$ (far
 1271 exceeding single-party performance).

1273 H.4.2 MITIGATION WITH DIFFERENTIAL PRIVACY

1275 To counter collusion, we apply differential privacy to graph fragments B_t^k before transmission to the
 1276 CTV, using a Laplace mechanism:

$$1278 \hat{B}_t^k = B_t^k + \text{Lap}(b), \quad b = \frac{\Delta}{\epsilon}$$

1280 where $\Delta = 1$ (sensitivity) and ϵ controls the privacy-utility tradeoff.

1281 As shown in Figure 5: 1. Without noise: $|\text{Corr}| = 0.804$, SHD=42 (high leakage, optimal utility).
 1282 2. $\epsilon = 256$: $|\text{Corr}| = 0.660$, SHD=44 (moderate leakage, minimal utility loss). 3. $\epsilon = 128$:
 1283 $|\text{Corr}| = 0.458$, SHD=46 (low leakage, acceptable utility). 4. $\epsilon = 64$: $|\text{Corr}| = 0.119$, SHD=47
 1284 (negligible leakage, moderate utility loss).

1285 These results indicate $\epsilon = 64$ or 128 balances privacy and utility effectively.

1287 H.4.3 SCALING NOISE FOR MULTIPLE PARTIES

1289 VFedCD avoids the inherent limitation of local differential privacy (LDP), where noise accumulates
 1290 with the number of parties K , degrading utility. In our framework: - Graph fragments B_t^k are
 1291 meaningless in isolation; only their aggregation $B_t = \sum B_t^k$ represents the true causal structure. -
 1292 Thus, we only need to protect the aggregated B_t , not individual B_t^k .

1294 To maintain stable noise impact on B_t as K increases, we scale the Laplace parameter b proportional
 1295 to $1/\sqrt{K}$ (proof in H.6). For $K = 2$ with $b = 0.0078125$ (base case, $\epsilon = 128$), $K = 4$ uses
 $b = 0.0078125/\sqrt{2} \approx 0.0055$, ensuring consistent privacy guarantees.

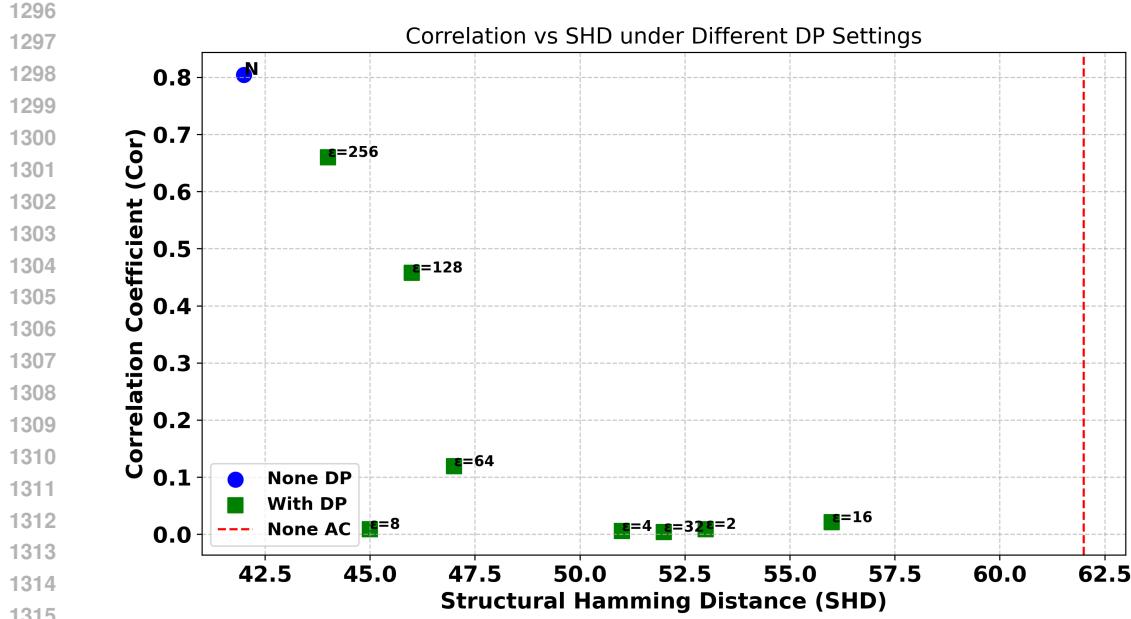


Figure 5: Privacy-utility tradeoff under party-CTV collusion with Laplace noise. Baselines: SHD=35 with no noise (None DP), SHD=62 without acyclicity constraint (None AC).

H.5 CONCLUSION

SDP thwarts single-party attacks via complexity barriers. For collusion, Laplace noise with $\epsilon = 64$ or 128 for $K = 2$, scaled by $1/\sqrt{K}$, ensures robust privacy while preserving causal discovery utility.

H.6 LAPLACE NOISE SCALING PROOF FOR MULTIPLE PARTIES

H.6.1 CONCLUSION

For k independent and identically distributed (IID) Laplace random variables with mean 0 and scale parameter b , let S denote their sum, and let $m = \mathbb{E}[|S|]$ be the expectation of the absolute value of S . To maintain the stability of m (i.e., keep m relatively unchanged) when the number of variables k changes, the scale parameter b should be adjusted proportionally to $1/\sqrt{k}$. This means $b \propto 1/\sqrt{k}$.

H.6.2 PROOF

Properties of a Single Laplace Variable A Laplace random variable X with mean 0 and scale parameter b has the probability density function (PDF):

$$f_X(x) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right), \quad x \in \mathbb{R}$$

It can be decomposed into the difference of two independent exponential variables: $X = Y - Z$, where $Y, Z \sim \text{Exp}(1/b)$ (exponential distribution with rate $1/b$) and $Y \perp\!\!\!\perp Z$.

Sum of k IID Laplace Variables Let X_1, X_2, \dots, X_k be IID Laplace variables with $X_i \sim \text{Laplace}(0, b)$. Their sum is:

$$S = X_1 + X_2 + \dots + X_k$$

Using the decomposition $X_i = Y_i - Z_i$ for each i , we rewrite S as:

$$S = \left(\sum_{i=1}^k Y_i \right) - \left(\sum_{i=1}^k Z_i \right) = U - V$$

1350 where: 1. $U = \sum_{i=1}^k Y_i \sim \text{Gamma}(k, b)$ (sum of k exponential variables), 2. $V = \sum_{i=1}^k Z_i \sim$
 1351 $\text{Gamma}(k, b)$ (sum of k exponential variables), 3. U and V are independent.
 1352

1353 **Expectation of $|S|$** The expectation $m = \mathbb{E}[|S|] = \mathbb{E}[|U - V|]$ is derived using properties of the
 1354 Gamma distribution. For independent $U, V \sim \text{Gamma}(k, b)$, the expectation simplifies to:
 1355

$$1356 \quad m = \frac{2b}{\sqrt{\pi}} \cdot \frac{\Gamma(k + \frac{1}{2})}{\Gamma(k)}$$

1358 where $\Gamma(\cdot)$ is the Gamma function.
 1359

1360 **Scaling Strategy for b** To keep m stable when k changes, we analyze the behavior of m with
 1361 respect to k . For large k , the Gamma function satisfies the Stirling approximation:
 1362

$$1363 \quad \Gamma(z) \approx \sqrt{2\pi} z^{z - \frac{1}{2}} e^{-z} \quad \text{for large } z.$$

1364 Applying this to $\Gamma(k + \frac{1}{2}) / \Gamma(k)$ gives:
 1366

$$1367 \quad \frac{\Gamma(k + \frac{1}{2})}{\Gamma(k)} \approx \sqrt{k} \quad \text{for large } k.$$

1370 Substituting into m , we get:
 1371

$$1372 \quad m \approx \frac{2b}{\sqrt{\pi}} \cdot \sqrt{k}.$$

1373 To keep m unchanged when k increases by a factor n (i.e., $k \rightarrow nk$), b must scale as:
 1374

$$1375 \quad b \propto \frac{1}{\sqrt{k}}.$$

1377 Specifically, if k is multiplied by n , b should be divided by \sqrt{n} (i.e., $b \rightarrow b/\sqrt{n}$) to maintain
 1378 $m \approx \text{constant}$.
 1379

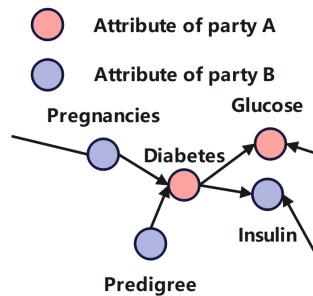
1380 **Error of the Approximation** The approximation $b \propto 1/\sqrt{k}$ improves as k increases, because
 1381 the Stirling formula becomes more accurate for large k . For small k , the error is slightly larger but
 1382 remains bounded (as shown in prior analysis, typically $\pm 15\%$ even for $k = 1$).
 1383

1384 Thus, scaling b with $1/\sqrt{k}$ ensures m remains relatively stable for multiple parties (i.e., increasing
 1385 k).
 1386

1387 I PRACTICAL IMPLEMENTATION VERIFICATION

1389 We demonstrate VFedCD’s capability on a practical dia-
 1390 betes dataset with vertical partitioning. Party A, represent-
 1391 ing a public healthcare system, has demographic and basic
 1392 health metrics such as Age, Glucose Levels, and Diabetes
 1393 Diagnosis. Party B, a specialized clinic, contributes ad-
 1394 vanced diagnostic features like Pregnancies, Insulin levels,
 1395 and Diabetes Pedigree Function.
 1396

1397 As shown in Fig. 6, a local causal graph inferred by
 1398 VFedCD. The model accurately identifies Pregnancies
 1399 and Diabetes Pedigree Function from Party B as causes of
 1400 diabetes, in line with medical knowledge on genetic and
 1401 reproductive risk factors. It also correctly determines that
 1402 blood glucose from Party A and insulin levels from Party
 1403 B are downstream effects of diabetes, consistent with islet
 cell dysfunction pathophysiology. This verifies VFedCD’s
 practicability in data-siloed scenarios.



1404 Figure 6: Local causal graph with some
 1405 key attributes related to diabetes.

1404 **J THE USE OF LARGE LANGUAGE MODELS (LLMs)**
14051406 The contributions of Large Language Models (LLMs) to this paper were limited to non-critical
1407 tasks such as language refinement, debugging portions of the code, and generating simple scripts
1408 (e.g., plotting utilities). The research ideas, theoretical development, draft preparation, and primary
1409 pipeline implementation were carried out entirely by the authors without LLM involvement. The
1410 core methodology, experimental design, and all key contributions are the sole intellectual work of the
1411 authors.
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457