
Beyond Single-Task: Robust Multi-Task Length
Generalization for LLMs

Yi Hu1,* Shijia Kang1,* Haotong Yang1 Haotian Xu2 Muhan Zhang1,†

1Institute for Artificial Intelligence, Peking University
2Xiaohongshu Inc.

Abstract

Length generalization—the ability to solve problems longer than those seen during
training—remains a critical challenge for large language models (LLMs). Previous
work modifies positional encodings (PEs) and data formats to improve length
generalization on specific symbolic tasks such as addition and sorting. However,
these approaches are fundamentally limited to special tasks, often degrading gen-
eral language performance. Furthermore, they are typically evaluated on small
transformers trained from scratch on single tasks and can cause performance drop
when applied during post-training stage of practical LLMs with general capabilities.
Hu et al. [19] proposed Rule-Following Fine-Tuning (RFFT) to improve length
generalization in the post-training stage of LLMs. Despite its compatibility with
practical models and strong performance, RFFT is proposed for single tasks too,
requiring re-training for each individual task with extensive examples. In this
paper, we study length generalization in multi-task settings and propose Meta
Rule-Following Fine-Tuning (Meta-RFFT), the first framework enabling robust
cross-task length generalization. As our first contribution, we construct a large
length generalization dataset containing 86 tasks spanning code execution, num-
ber processing, symbolic and logical reasoning, beyond the common addition or
multiplication tasks. Secondly, we show that cross-task length generalization is
possible with Meta-RFFT—after training on a large number of tasks and instances,
the models achieve remarkable length generalization ability on unseen tasks with
minimal fine-tuning or one-shot prompting. For example, after fine-tuning on 1
to 5 digit addition, our 32B model achieves 95% accuracy on 30 digit addition,
significantly outperforming the state-of-the-art reasoning models (DeepSeek-R1-
671B: 72%; QwQ-32B: 32%), despite never seeing this task during RF-pretraining.
Our code is available at https://github.com/MuLabPKU/Meta-RFFT.

.

1 Introduction

Large language models (LLMs) have achieved revolutionary performance in a wide range of tasks,
from natural language understanding and generation to complex reasoning [33, 34, 16, 38, 9, 8].
However, they still face challenges when processing some basic tasks seemingly intuitive to humans.
One of the challenging problems is the length generalization, where Nogueira et al. [31], Zhou et al.
[58, 60], Anil et al. [1] reveal that transformers suffer from a significant performance drop when
solution steps exceed the training range, suggesting that models fail to capture the inner mechanism
in these reasoning problems. A classic example is long-integer addition: models trained on addition
problems with fewer digits often fail to generalize to higher-digit cases.

* Equal contribution. † Corresponding author. Muhan Zhang <muhan@pku.edu.cn>

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/MuLabPKU/Meta-RFFT
mailto:muhan@pku.edu.cn

Follow the given rule to solve the question.

Q: Given an integer num, repeatedly add up
all its digits until the result has only one
digit, and return it.
The given integer 'num' is 248.

def add_digits(self, num: int) -> int:
while num > 9:

sum = 0
while num:

sum += num % 10
num //= 10

num = sum
return num

1. Initialize
num = 248

2. Outer loop

```while num > 9:```

num = 248
enter the loop

2.1 One iteration
sum = 0

3. Inner loop

```while num: ```

num = 248
enter the loop

3.1 One iteration

```
sum += num % 10
num //= 10
```

num = 248
num % 10 = 8
sum = 0
now,
sum = 0 + 8 = 8
num = 248 // 10 = 24

```while num: ```

num = 24
enter the loop

3.1 One iteration
···

```while num > 9:```

num = 5
do not enter

4. Return

```return num```

num = 5
So the answer is 5

Q: Given an integer num, repeatedly add up all its 
digits until the result has only one digit, and 
return it. 
The given integer 'num' is 248.

num = 248

Calculate the sum of digits of 248: 2 + 4 + 8 = 14

Calculate the sum of digits of 14: 1 + 4 = 5

So the answer is 5.

Rule-Following Fine-Tuning

RFFT Input

RFFT Output

Scratchpad & Direct Answer Input

Scratchpad Output

5
Direct Answer Output

Vanilla RFFT Results (from Hu et al., 2024)

Length generalization performance of models fine-tuned on 1- to 
5- digit addition tested on addition of operands with more digits.

Llama-2-7B GPT-3.5-Turbo

Figure 1: Comparison of input-output sequences across three methods: direct answer, scratchpad
(top left), and RFFT (right), with single-task performance results shown at the bottom left.

Although long chain-of-thought (CoT) models seem to learn a plausible reasoning process for some
complex tasks such as math / code [35, 10, 44, 45, 56, 51], length generalization is still a challenge for
them. Even advanced long-CoT models like DeepSeek-R1-671B and QwQ-32B exhibit unsatisfactory
performance in long integer addition, achieving only 72% and 32% accuracy, respectively, on 30-digit
problems.

Some prior work improves length generalization by designing specialized positional encodings (PEs)
or data formats. [58, 41, 21, 23, 60, 4, 28, 5, 2]. However, these approaches are heavily dependent on
specific properties of the objects (like numbers) and thus limited to specialized domains. Besides,
these methods are shown to be effective through training small transformers from scratch on a single
task, yet proven ineffective for fine-tuning on top of pretrained LLMs [52], fundamentally due to
their incompatibility with the PEs / number formats used for the general corpus. This greatly limits
their practical applicability.

Regarding enhancing length generalization in the post-training stage of LLMs, Anil et al. [1] states
that direct answer and scratchpad fine-tuning [32] (examples are shown in Figure 1) are not enough to
enable robust length generalization. Recently, Hu et al. [19] found that the issue stems from the case-
based mechanism of LLM reasoning and proposed Rule-Following Fine-Tuning (RFFT) to teach
models to follow rules step by step. RFFT represents the first successful effort to solve diverse length
generalization tasks using a unified approach. As illustrated in Figure 1, RFFT explicitly incorporates
rules into the input, guiding the model to follow them strictly. In contrast, the baseline scratchpad
fine-tuning method only provides intermediate computations without conveying the underlying rules,
similar to teaching children addition solely through examples, without explaining the principles.
By explicitly instructing the model in both the rules and their execution traces, RFFT significantly
improves length generalization: GPT-3.5-Turbo fine-tuned on 1-5 digit addition achieves over 95%
accuracy on 12-digit addition, surpassing scratchpad fine-tuning by 40%.

Despite the compatibility with general tasks and pretrained LLMs, RFFT [19] is proposed for single-
task settings, where they prepare data and fine-tune the models on three tasks separately: addition,
base-9 addition and last letter concatenation. This setting is impractical for users and limits model
generalizability. Users must prepare task-specific rule-following datasets and perform extensive
fine-tuning, which is a costly process that requires separate models for each task. More critically,
single-task RFFT only models the relationship between one specific rule and its instances, failing to
leverage the shared structures and generalization potential across different rules.

In this paper, we investigate the task transferability and generalization of the rule following capacity
of models, and propose Meta Rule-Following Fine-Tuning (Meta-RFFT). We find that through fine-

2



tuning on a large-scale rule-following dataset with diverse tasks, a model shows positive transferability
on unseen tasks with minimal adaptation.

As our first contribution, we collect 86 different length generalization tasks with 310k training
samples from four task domains including code execution, number processing, logic and symbolic
reasoning, which significantly broadens the previous length generalization tasks which mainly focus
on addition, sorting or other basic operations. For each task, we manually annotate the code (or
pseudo-code) for each task as its rule, as well as a template script that can generate a detailed
trajectory process for rule-following for each question. Based on these template scripts, by simply
providing the problem variables, the corresponding rule-following trajectory at any desired length
can be automatically generated, which can then be used to train models. Finally, we collect 310k
training samples on 74 tasks while the other 12 tasks are reserved as test sets.

In the experiments, the models are first fine-tuned on 74 RFFT tasks (we call it as rule-following
“pretraining”), leading to a rule-following foundation model. Then, the models are further adapted to
the downstream task with minimal fine-tuning. These two-stage models show significantly better
performance than both baseline models (like direct answer or CoT of reasoning models) and the
single-task RFFT models. Specifically, a 32B model fine-tuned on 1-5-digit addition achieves 95%
accuracy on 30-digit addition, vastly outperforming reasoning models of comparable or much larger
parameter size (DeepSeek-R1-671B: 72%; QwQ-32B: 32%) and vanilla RFFT (40%).

Notably, these models with rule-following pretraining can solve unseen tasks with high accuracy
with the help of only one example, suggesting these models learn a task-generalized in-context
rule-following ability. This capacity means these models can be directly used by users who cannot
modify model parameters, as long as one example to exemplify the rules is provided in the context.
At the same time, the model can also generalize to rules written in natural language style.

We further demonstrate that the foundation model robustly acquires shared computational prim-
itives (e.g., loop maintenance), which are critical for cross-task generalization. Our experiments
reveal that in vanilla RFFT, where models are trained separately for each task, loop maintenance
is a primary error source. In contrast, Meta-RFFT, where models are enhanced by rule-following
pretraining on tasks with shared computational structures, exhibits significantly more precise loop
maintenance in downstream tasks. These findings confirm that meta-rule-following capability stems
from mastering transferable computational patterns rather than task-specific ones.

In summary, we construct a large-scale length generalization dataset comprising 86 diverse tasks
spanning diverse domains, enabling systematic study of rule-following transferability (§3.2). Our pro-
posed Meta-RFFT framework demonstrates that multi-task post-training on 74 tasks facilitates strong
length generalization on unseen tasks with minimal downstream fine-tuning (§4.2) or even 1-shot
prompting (§4.3). Crucially, we identify that this transferability stems from models learning shared
computational primitives that underlie diverse tasks (§4.2), while maintaining robust performance
when rule formats transition from formal code to natural language (§5).

2 Related Work

Length generalization. A series of studies have attempted to tackle this issue by modifying
positional encodings (PEs) and data formats [58, 41, 21, 23, 60, 4, 28, 5]. However, these efforts face
several key limitations. First, the proposed PEs and data formats are often specifically tailored to
symbolic tasks, making them difficult to generalize to broader tasks. Second, the methods are typically
tested on small-scale models trained from scratch and do not scale well to practical-scale LLMs.
Another research direction, including single-task RFFT [19, 17, 52], addresses length generalization
by training models on explicit rules and more elaborate reasoning processes.

Case-based reasoning or rule-based reasoning. A central question in understanding LLM rea-
soning is whether their strong performance stems from pattern matching or mere memorization (or
“case-based reasoning” in Hu et al. [19]), or genuine rule acquisition. Recent studies reveal that LLMs
often rely on memorized examples and shortcuts rather than systematic reasoning. Studies show
they struggle with counterfactual reasoning [49, 54], reason via subgraph matching [13], and depend
on nearby examples for math tasks rather than general rules [19]. On the other hand, research on
“grokking” [37, 26, 30, 57] suggests that models can learn interpretable rules of arithmetic reasoning
long after overfitting the training set. Yet this phenomenon remains limited to single-task settings. It

3



is unclear whether rule-based reasoning scales to multitask LLMs. To bridge this gap, we propose
Meta-RFFT, which trains models to follow explicit rules across diverse tasks.

Instruction following. Following natural language instructions is a fundamental capability of
LLMs. Prior work has introduced numerous datasets to enhance this ability [22, 43, 50, 47], enabling
models to leverage their underlying knowledge, interact naturally with users [36], and handle diverse
tasks [55]. However, existing models trained on these datasets still struggle to accurately execute
complex instructions, primarily due to limited high-quality training data [11]. Consequently, ensuring
strict adherence to complex instructions—or in this paper, precisely following rules to achieve robust
length generalization—remains an open challenge. In our experiments, we use instruction-tuned
LLMs (e.g., Qwen-2.5-7B-Instruct and Qwen-2.5-32B-Instruct [39]) as baselines. We further compare
Meta-RFFT with standard instruction-following fine-tuning on downstream tasks, demonstrating
Meta-RFFT’s superior performance.

LLMs with programs. Numerous efforts have been made to integrate programs with LLMs to
enhance the capabilities of both. LLMs can help with code execution [24] and help developers write
code and debug more efficiently [20, 53, 46]. Besides, the formal structure of code helps with task
decomposition and enhances LLM reasoning [15, 3, 18, 24, 32].

3 Methods

3.1 Meta Rule-Following Fine-Tuning (Meta-RFFT)

In this section, we first review vanilla RFFT proposed by Hu et al. [19], and introduce Meta-RFFT.

Vanilla RFFT Hu et al. [19] proposes RFFT, which, as shown in Figure 1, includes the rules to
solve the task in the input and detailed rule-execution process in the output. We refer to the method
from Hu et al. [19] as vanilla RFFT in this paper and identify three key components as follows: (1) the
rules required to solve a task must be explicitly provided in the input; (2) before executing an action,
the model is required to recite the corresponding rule to ensure precise adherence; and (3) the model
must describe the variables modified by the action, detailing their states before and after execution.
While we primarily use programmatic representations of rules to ensure clarity and precision, the
rules discussed in this paper are not limited to code. In Section 5, we also explore natural language
rules and investigate the model’s ability to transfer rule formats from code to natural language.

RF Foundation Model

Task1: from LC

Task74

Base Model

Q: Given an integer 
array: [0, 16], 
move all zeros to 
the end while 
preserving the 
relative order of
the non-zero 
elements.

Task3: from SR
Q: A coin is heads up. 
Alice does not flip the 
coin. Bob flips the coin. 
Is the coin still heads up? 
In short, the situation of 
2 people flipping coins 
is as follows: 
[False, True].

Task2: from BBH
Q: If you follow these 
instructions, do you return to 
the starting point? Always 
face forward. Take 2 steps 
left. Take 2 steps forward. In 
short, the moves are as 
follows: 
[(‘left’, 2), (‘forward’, 2)].

Downstream Task: from NUPA
Q: Add two numbers: 123 + 4567.

Downstream Task: from LC
Q: Given an integer number 12345, 
repeatedly add up all its digits 
until the result has only one digit.

66 LC tasks 2 SR tasks6 BBH tasks

Meta-RFFT Process

... ......

RF-Pretraining: RFFT on 74 tasks of length 1-15

Downstream Adaptation: RFFT / 1-shot ICL on the target 
task of length 1-5

No task overlap with RF-Learning!

Target Model

Figure 2: The pipeline of Meta-RFFT. LC, BBH,
SR and NUPA stands for LeetCode, Big-Bench
Hard [42], Symbolic Reasoning [48] and the
NUPA Benchmark [52] respectively.

Meta-RFFT As illustrated in Figure 2, Meta-
RFFT adopts a two-stage pipeline:

1) RF-Pretraining: We first fine-tune the model
on a diverse set of rule-following tasks of
lengths of 1-15. The tasks span code execution,
number processing, symbolic and logic reason-
ing, which are detailed in Section 3.2. It should
be noted that RF-pretraining is a supervised fine-
tuning process on a large-scale dataset.

2) Downstream Adaptation: The model is then
adapted to target tasks via either (i) minimal
fine-tuning on 1-5-length samples or (ii) 1-shot
prompting using exemplars of fewer than 5 steps.
Crucially, evaluation is performed on tasks un-
seen during RF-pretraining to assess cross-task
and even cross-domain transferability.

During RF-pretraining, the model is expected
to grasp the shared commonalities and funda-
mental rule concepts, such as loop. By leverag-
ing these shared structures, Meta-RFFT enables
models to adapt to new target tasks with minimal
fine-tuning or even solve them through few-shot

4



prompts. Additionally, training across multiple tasks relieves overfitting the task-specific patterns,
encouraging the model to transform from case-based reasoning to more robust rule-based reasoning.

3.2 Data Construction

Table 1: The statistics of our dataset. We list the
number of tasks collected from each data source
and their corresponding split in the RF-pretraining
stage or the downstream adaptation stage.

Data Source RF-Pretrain Adaptation Total
LeetCode 66 8 74

NUPA 0 4 4
Big-Bench Hard 6 0 6

Symbolic Reasoning 2 0 2

All Sources 74 12 86

To extend the horizon of length generalization,
and to facilitate large-scale multi-task training
as well as comprehensive evaluation, we find it
essential to construct a large-scale length gen-
eralization dataset. When selecting these tasks,
we follow these guiding principles:

1) Tasks must inherently require length gener-
alization. Specifically, solving the tasks should
depend on iterative reasoning. For example, the
coin flip task shown in Figure 2 necessitates enu-
merating each participant’s actions to determine
the final state of the coin. Here, we use the number of participants to denote “length”.

2) Tasks should avoid excessive complexity within a single iteration. Each iteration should be
manageable for the LLM, as our goal is to isolate errors caused by length generalization failures rather
than by inherent task complexity. Therefore, we exclude tasks with complex inputs (e.g., graphs,
multi-dimensional data) or advanced math operations, which remain challenging for current LLMs.

Following these principles, we construct a dataset covering diverse domains, including code execution,
number processing, logical and symbolic reasoning. Our data sources are as follows:

• LeetCode Problems.1 Since most problems on LeetCode can be scaled with varying input sizes—
primarily in terms of length—many of them are naturally suited for evaluating length generalization.
For instance, in the task LC Add Digits (“repeatedly sum all digits in an integer until the result is a
single digit”), we use the number of digits in the input to denote the inherent “length” of the task.
Based on this criterion, we selected 74 tasks from the LeetCode platform.

• NUPA. NUPA is a benchmark designed to assess the basic number processing capabilities of
LLMs [52]. While many tasks in NUPA are still overly challenging for current LLMs, we select
four practical tasks feasible within the context length in terms of RFFT.

• Big-Bench Hard. The benchmark includes reasoning tasks considered challenging for LLMs [42].
We select 6 tasks that are suitable for length generalization evaluation.

• Symbolic Reasoning. We select “coin flip” and “last letter concatenation” from Wei et al. [48].

For data annotation, we engaged skilled human annotators, undergraduates majoring in Computer
Science from top-tier universities in the nation, to write Python scripts that generate input-output
traces for each task as shown in Figure 1. More detailed traces are shown in Appendix G.1. Each task
is implemented as a Python class to automatically generate samples of any given length. All scripts
underwent rigorous code reviews and filtering.

As shown in Table 1, our dataset includes 86 tasks in total, with examples of each domain presented
in Appendix C.2, and the detailed description and length definition of each task in Appendix H.

4 Main Results

4.1 Experimental Setup

As introduced in Section 3.1, our Meta-RFFT involves RF-pretraining and downstream adaptation.

As shown in Table 1, in the RF-pretraining stage, we fine-tune the model on 74 tasks, aiming to
develop a model that can strictly follow rules across multiple tasks and potentially transfer this
capability to new tasks. For each task, 300 rule-following samples are generated for each length
from 1 to 15, resulting in approximately 310k samples in total. We experiment on models of two
different sizes: Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct [39]. The 7B model is fine-tuned
with full-parameter training, while the 32B model is fine-tuned with PiSSA [29].

1https://leetcode.com/problemset

5

https://leetcode.com/problemset


0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Vanilla RFFT
Direct Answer
Scratchpad

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 3: Length generalization performance of direct answer, scratchpad, vanilla RFFT and Meta-
RFFT on LeetCode and NUPA tasks. The shaded region represents the in-distribution test results
(length ≤ 5), while the unshaded background corresponds to out-of-distribution lengths (length ≥ 6).
Here the base model is Qwen2.5-7B-Instruct.

In the downstream adaptation stage, we evaluate the models on 4 NUPA tasks and 8 LeetCode tasks
of appropriate difficulty and practical significance respectively. The description of each downstream
task is provided in Appendix C.3. We first train the models on data of lengths from 1 to 5 and
then test their performance on out-of-distribution (OOD) lengths from 6 to 30 to evaluate the length
generalization performance. For each task, we generate 1,000 samples for each length from 1 to 5,
resulting in a total of 5k training samples. Both the 7B and 32B models are fine-tuned through PiSSA
in the downstream adaptation stage. We evaluate models on 100 samples per length per task. Detailed
training hyperparameters are provided in Appendix D.

Baselines We use three baseline fine-tuning methods for comparison: direct answer, scratchpad,
and vanilla RFFT. The input-output sequences are shown in Figure 1. The base model is fine-tuned
directly on the target task on lengths from 1 to 5. To ensure fairness, all baseline methods use the
identical downstream adaptation settings of Meta-RFFT, including training samples and steps. For
long-CoT models, we evaluate using the same input prompts as the direct answer and scratchpad
baselines in Figure 1, with temperature=0 and max_token=24,000.

4.2 Meta-RFFT Enhances Task-Transferable Length Generalization

Table 2: Overall metrics of performance of different methods
across all 12 test tasks. Here, ACC_Len30 measures average
accuracy at length 30; Max_Len_90% represents maximum
length sustaining ≥90% accuracy averaged across tasks.

ACC_Len30 (↑) Max_Len_90% (↑)

DeepSeek-R1-671B 0.84 19.17
QwQ-32B 0.79 19.33

Fine-Tuned Models 7B model 32B model 7B model 32B model
Direct Answer 0.16 0.30 6.00 12.67
Scratchpad 0.30 0.41 7.50 11.17
Vanilla RFFT 0.40 0.67 9.33 18.17
Meta-RFFT 0.77 0.98 21.17 30.00

The length generalization perfor-
mance of Qwen-2.5-7B-Instruct
trained with direct answer, scratchpad,
vanilla RFFT and Meta-RFFT is
shown in Figure 3; the results of
Qwen-2.5-32B-Instruct are shown in
Figure 9 in Appendix E.1. Besides,
we provide two unified metrics to
give an overall performance compar-
ison across all tasks: ACC_Len30,
which measures the average accu-
racy at length 30 across tasks; and
Max_Len_90%, which represents the maximum length (averaged across tasks) where the model
maintains ≥ 90% accuracy. The overall performance is summarized in Table 2.

Overall, Meta-RFFT consistently outperforms other methods in length generalization for both 7B and
32B models. The 7B Meta-RFFT model exhibits a slower performance decline as sequence length
increases, whereas direct answer, scratchpad, and vanilla RFFT suffer sharper drops when extrap-

6



Ad
d D

igit
s

Mov
e Z

ero
es

Ham
ming

 Dista
nce

Craw
ler

 Lo
g F

old
er

Alte
rna

te 
Digit

 Su
m

Chu
nk

 Arra
y

Str
ing

 Se
qu

en
ce

Va
lid 

Pal
ind

rom
e

0

10

20

30

40

50

60

Er
ro

r P
er

ce
nt

ag
e 

(%
)

Meta-RFFT (Loop Errors)
Meta-RFFT (Non-loop Errors)
Vanilla RFFT (Loop Errors)
Vanilla RFFT (Non-loop Errors)

(a) Error distribution in downstream tasks.

Ad
d D

igit
s

Mov
e Z

ero
es

Ham
ming

 Dista
nce

Craw
ler

 Lo
g F

old
er

Alte
rna

te 
Digit

 Su
m

Chu
nk

 Arra
y

Str
ing

 Se
qu

en
ce

Va
lid 

Pal
ind

rom
e

0.0

0.5

1.0

1.5

Re
la

tiv
e 

#I
te

ra
tio

n 
Er

ro
r

Meta-RFFT
Vanilla RFFT

(b) Relative error of the loop count.

Figure 4: Error analysis of vanilla RFFT and Meta-RFFT models.

olating to longer sequences. Notably, the 32B model with Meta-RFFT achieves a Max_Len_90%
of 30.00, as shown in Table 2, demonstrating stable performance up to 6× the training length. This
suggests that the advantages of Meta-RFFT can be further developed with stronger base models.

Against cutting-edge long-CoT models, the 32B Meta-RFFT model improves ACC_Len30 by 14%
over DeepSeek-R1-671B (84%) and 19% over QwQ-32B (79%). In Max_Len_90%, it surpasses both
by over 10 lengths, underscoring superior robustness in length generalization. To provide insights
for why cutting-edge long-CoT models fail in such seemingly intuitive tasks, such as long-integer
addition, we provide an example error case of DeepSeek-R1-671B in Table 13 in Appendix F. More
detailed results of long-CoT models are shown in Figure 11 in Appendix E.2.

Error analysis: how does Meta-RFFT help length generalization? We analyze the errors of both
vanilla RFFT and Meta-RFFT models and identify a primary cause of failure in length generalization:
incorrect loop maintenance. Specifically, models often either terminate loops too early or fail to exit
them, leading to repeated outputs until the context window limit is reached. As shown in Figure 4(a),
errors due to incorrect loop counts form a substantial portion of total errors.

We hypothesize that RF-pretraining exposes the model to numerous rule-following examples involving
loop control, enabling it to learn this sub-skill effectively. To test this, we measure the relative error
between predicted and true iteration counts (Figure 4(b)). Meta-RFFT models exhibit significantly
lower loop count errors than vanilla RFFT across tasks, confirming our hypothesis.

This reduction demonstrates that RF-pretraining improves the model’s ability to manage iterative
reasoning, which directly contributes to enhanced length generalization. Overall, the results indicate
that length generalization transferability arises from mastering transferable computational patterns
rather than task-specific ones.

Analysis of Meta-RFFT’s performance advantage over vanilla RFFT To understand why Meta-
RFFT outperforms vanilla RFFT, we analyze their performance and training dynamics. Training
curves during the downstream adaptation stage for both 7B and 32B models are shown in Figures 13
and 14 (Appendix E.4). Meta-RFFT models start with lower initial training loss, as their first-
stage pretraining familiarizes them with the rule-following paradigm, which aids faster adaptation.
Notably, while both methods eventually reach similar training loss levels in most tasks, Meta-RFFT
consistently achieves better length generalization. This suggests that vanilla RFFT’s limitations
are not due to insufficient training. We further validate this by evaluating an intermediate Meta-
RFFT checkpoint (Meta-RFFT-ckpt60), which has higher training loss than the converged vanilla
RFFT. Even so, Meta-RFFT-ckpt60 outperforms vanilla RFFT (Figures 13, 17), confirming that
Meta-RFFT’s advantage arises from improved systematic generalization, rather than simply better
fitting to training data.

7



0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

RF-Pretrained 1-shot
Base 1-shot

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 5: The 1-shot performance of the base model (Qwen-2.5-7B-Instruct), and the RF-pretrained
model (RF-pretrained Qwen-2.5-7B-Instruct).

4.3 In-Context Learning

To enhance Meta-RFFT to be more user-friendly, we explore ICL settings in the downstream
adaptation stage, as shown in Figure 2.

Experimental Settings To enable the model to adapt to the in-context learning (ICL) paradigm,
where few-shot exemplars are provided within the input, we include a 1-shot exemplar in each training
sample. In-context learning requires the model to establish stronger correspondences between rules
and execution traces, as it must learn to robustly follow a new rule from just a single exemplar. To
improve this, we augment the training data with synthetic tasks, each assigned a unique rule. This
approach increases task diversity and encourages the model to rely on the provided rules during
training. Specifically, we manually design 22 code snippets and their corresponding rule-following
outputs (details in Appendix G.2). For each sample, rules are dynamically composed by randomly
selecting snippets, which enables arbitrary task generation with varied rules and outputs. Using this
method, we create 100k synthetic samples and combine them with 310k samples from 74 tasks in
Figure 2 to form the final ICL training dataset in the RF-pretraining stage.

Results The ICL performance of 7B models is shown in Figure 5, with results of 32B models in
Figure 10 in Appendix E.1. For both model sizes, the RF-pretrained model significantly outperforms
the base model on downstream tasks in the 1-shot setting. Notably, the 32B model achieves a
Max_Len_90% of 28.5, an improvement of 14.5 over the base model and even 10.3 over the vanilla
RFFT model which is fine-tuned on downstream tasks. Crucially, this means an RF-pretrained
model can achieve robust length generalization on unseen tasks with only one exemplar, which is a
particularly valuable property for real-world deployment where task-specific fine-tuning is too costly.

5 Analysis

What about following natural language rules? We use rules represented by Python programs
in the previous sections due to their clarity, conciseness, and low ambiguity. However, rules can be
expressed in various forms, and in everyday life, natural language is another primary medium for
representing rules. We further investigate whether models trained on code-based rules during RF-
pretraining can adapt to downstream tasks involving natural language-based rules. More specifically,
to investigate whether the superior performance of Meta-RFFT on target tasks truly stems from a
genuine understanding of general rules rather than overfitting to specific code statements like pop()
and insert() during the RF-pretraining stage, we evaluate its adaptation to natural language rules
in downstream tasks. Crucially, while Meta-RFFT is pretrained on code-based rules, we use natural
language rules for fine-tuning in the downstream adaptation stage, ensuring no overlap in specific
statements. An example of natural language rule is provided in Appendix G.3.

8



0 10 20 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Add Digits (NL Rules)

Meta-RFFT
Vanilla RFFT

Figure 6: Vanilla RFFT and Meta-RFFT re-
sults on LC Add Digits. Here the model is
Qwen2.5-7B-Instruct.

0 10 20 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

NUPA Add Integer

Meta-RFFT
RL

Figure 7: The performance of the Qwen2.5-
7B after Meta-RFFT and RL on integer addi-
tion.

As shown in Figure 6, Meta-RFFT still significantly outperforms vanilla RFFT on LC Add Digits
across lengths 12-30. This confirms that Meta-RFFT’s advantage arises not from memorizing code
syntax but from acquiring a meta rule-following capability that enhances length generalization.

What about reinforcement learning for rule following? While reinforcement learning (RL)
has shown success in general reasoning, we argue that SFT is better suited for enforcing strict
rule-following behavior. Unlike RL with outcome reward, which only optimizes for final-answer
correctness, SFT directly maximizes the likelihood of the model generating rule-compliant intermedi-
ate reasoning steps, which is crucial for strict rule adherence. To validate this, we optimize the base
model using Proximal Policy Optimization (PPO) [40]. We provide training details in Appendix D.3.
The RL variant achieves lower accuracy, confirming that pure outcome supervision fails to ensure
rule compliance, as shown in Figure 7. Instead of learning rule-following behavior, the model tends
to shortcut to direct answers, impairing generalization to longer reasoning chains (see Table 14 in
Appendix F for example error traces). Moreover, while RL training requires 64 H800 GPU hours per
task, our Meta-RFFT method achieves better performance in just 2.4-4.4 GPU hours, demonstrating
significantly higher efficiency. The detailed training compute are listed in Table 8 in Appendix D.2.

Table 3: Overall comparison between Meta-RFFT
and Tulu3. The base model is Llama3.1-8B.

ACC_Len30 (↑) Max_Len_90% (↑)

Tulu3 0.16 0.67
Meta-RFFT 0.38 11.67

Comparison to instruction following Pre-
vious studies have focused on enhancing the
instruction-following capabilities of LLMs [22,
43, 50, 47], a fundamental ability for their prac-
tical application. However, existing instruction-
following models still struggle to adhere to com-
plex rules. In the length generalization scenarios,
as the inherent “length” of a problem increases, the corresponding rules grow more complex, and
current instruction-tuned models often fail to strictly follow these rules strictly. We compare current
instruction-following methods and Meta-RFFT from two perspectives.

First, in our previous experiments, including fine-tuning (7B: Figure 3, 32B: Figure 9) and ICL
(7B: Figure 5, 32B: Figure 10), our baselines are advanced instruction-tuned models (Qwen2.5-7B-
Instruct and Qwen2.5-32B-Instruct). However, they exhibit poor length generalization performance,
especially when provided with 1-shot rule-following exemplar, they fail to strictly adhere to the given
rules. In contrast, after Meta-RFFT, these models demonstrate significant improvements.

Second, we compare Meta-RFFT and instruction tuning with Llama-3.1-8B [16] as the base model.
For instruction tuning, we evaluate Llama-3.1-Tulu-3.1-8B [22], a version fine-tuned on the Tulu3
dataset to enhance instruction following, with 1-shot prompting to provide a rule-following exemplar.
As Table 3 shows, the instruction-tuned model fails to consistently follow rules during reasoning, while
Meta-RFFT achieves significantly better performance. Full results are in Figure 12 (Appendix E.3).

Generalization to practical tasks To validate the practical value of Meta-RFFT beyond sym-
bolic tasks, we evaluate our method on a real-world scenario: the Airline Baggage Cost Es-
timation task from Zhou et al. [59]. This task requires models to interpret and apply natu-
ral language regulations—a capability that cannot be fully reduced to formal code execution.

9



0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RuleArena Airline
Meta-RFFT
Vanilla RFFT
o1-preview
Claude-3.5 Sonnet
Qwen-2.5-72B

Figure 8: Length generalization perfor-
mance on the airline task.

We train models on samples with length 1–8, and report
test accuracy on both in-distribution lengths (2–8) and
OOD lengths (10–16). As shown in Figure 8, Meta-RFFT
significantly outperforms vanilla RFFT in the practical do-
main, while current LLMs perform poorly on it, and even
strong models like Claude-3.5 and o1-preview degrade
rapidly with task length growing.

Impact of Meta-RFFT on general model capabilities
The extensive RF-pretraining involved in Meta-RFFT in-
troduces a potential risk of distribution shift, which can
lead to catastrophic forgetting [14, 27] of the model’s gen-
eral capabilities.. But typically this is easily addressed by
mixing some pretraining corpus during fine-tuning.

To empirically verify that general capabilities are preserved, we augmented the meta-rule-following
fine-tuning data with training samples from the GSM8K mathematical reasoning dataset [7]. Specifi-
cally, for each training example in GSM8K, we use the base model Qwen2.5-7B-Instruct to generate
10 candidate answers and filter the correct traces as the training set, forming a filtered dataset of 7182
samples.

The results on length generalization (averaged across 8 LeetCode tasks) are shown in Table 4, and the
performance on GSM8K test set are shown in Table 5. We observe that merely mixing 7k samples
(compared to 310k Meta-RFFT data) effectively recovers the model’s reasoning performance on
GSM8K, while maintaining the strong multi-task length generalization ability. Notably, Meta-RFFT
still significantly outperforms vanilla RFFT, demonstrating that general capabilities can be preserved
with minimal additional data.

We extend this analysis to other domains, including common-sense reasoning (ARC [6]) and
instruction-following alignment (Alpaca-Eval [25]). The results, presented in Appendix E.8 (Ta-
bles 12 and 11), consistently show that all evaluated general capabilities can be recovered with
minimal fine-tuning data while the model retains robust length generalization.

Table 4: Length generalization performance of Meta-
RFFT trained with mixed data.

ACC_Len30 (↑) Max_Len_90% (↑)

Vanilla RFFT 0.34 7.00

Meta-RFFT 0.82 22.75
w/ GSM8K 0.79 21.25

Table 5: Performance on GSM8K
test set of Meta-RFFT trained with
mixed data.

GSM8K ACC

Base Model 87.95
Meta-RFFT 87.80

6 Conclusion

We make an initial attempt to enhance cross-task length generalization in the post-training stage of
LLMs. To this end, we construct a large-scale length generalization dataset comprising 86 diverse
tasks spanning diverse domains, which significantly expands length generalization research beyond
traditional tasks like addition and sorting. Our experiments show that Meta-RFFT on 74 of these
tasks facilitates strong length generalization on unseen tasks with minimal downstream fine-tuning or
1-shot prompting, even surpassing advanced long-CoT models. Through extensive analysis, we show
that this transferability arises from the model’s ability to learn shared computational primitives rather
than relying on task-specific patterns. Additionally, we verify that models pretrained on code-based
rules can successfully adapt to natural language rules in downstream tasks.

Acknowledgment

This work is supported by the National Key R&D Program of China (2022ZD0160300), Center of
Excellence, Peking University, and CCF-Tencent Rhino-Bird Open Research Fund.

10



References
[1] Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,

Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length gener-
alization in large language models. Advances in Neural Information Processing Systems, 35:
38546–38556, 2022.

[2] Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task
hinting, 2023. URL https://arxiv.org/abs/2310.00726.

[3] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023.

[4] Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and
Chulhee Yun. Position coupling: Improving length generalization of arithmetic transformers
using task structure. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

[5] Hanseul Cho, Jaeyoung Cha, Srinadh Bhojanapalli, and Chulhee Yun. Arithmetic transformers
can length-generalize in both operand length and count. In The Thirteenth International
Conference on Learning Representations, 2024.

[6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[8] DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism, 2024.
URL https://arxiv.org/abs/2401.02954.

[9] DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.1
9437.

[10] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

[11] Guanting Dong, Keming Lu, Chengpeng Li, Tingyu Xia, Bowen Yu, Chang Zhou, and Jingren
Zhou. Self-play with execution feedback: Improving instruction-following capabilities of large
language models. arXiv preprint arXiv:2406.13542, 2024.

[12] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

[13] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36:
70293–70332, 2023.

[14] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[15] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764–10799. PMLR, 2023.

[16] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

11

https://arxiv.org/abs/2310.00726
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783


[17] Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy Jelassi, and Eran Malach. Universal
length generalization with turing programs, 2024. URL https://arxiv.org/abs/2407.0
3310.

[18] Yi Hu, Haotong Yang, Zhouchen Lin, and Muhan Zhang. Code prompting: a neural symbolic
method for complex reasoning in large language models, 2023. URL https://arxiv.org/
abs/2305.18507.

[19] Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan Zhang. Case-based or rule-based: How do
transformers do the math? In Forty-first International Conference on Machine Learning, 2024.

[20] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In 12th
International Conference on Learning Representations, ICLR 2024, 2024.

[21] Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36:24892–24928, 2023.

[22] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

[23] Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and DImitris Papailiopou-
los. Teaching arithmetic to small transformers. In International Conference on Learning
Representations. ICLR 2024, 2024.

[24] Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language
model-augmented code emulator. In International Conference on Machine Learning, pages
28259–28277. PMLR, 2024.

[25] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

[26] Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022.

[27] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[28] Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can
do arithmetic with the right embeddings. Advances in Neural Information Processing Systems,
37:108012–108041, 2024.

[29] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing
Systems, 37:121038–121072, 2024.

[30] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International Conference
on Learning Representations.

[31] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers
with simple arithmetic tasks, 2021. URL https://arxiv.org/abs/2102.13019.

[32] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your
work: Scratchpads for intermediate computation with language models. In Deep Learning for
Code Workshop, 2021.

12

https://arxiv.org/abs/2407.03310
https://arxiv.org/abs/2407.03310
https://arxiv.org/abs/2305.18507
https://arxiv.org/abs/2305.18507
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2102.13019


[33] OpenAI. Introducing chatgpt, 2022. https://openai.com/blog/chatgpt.

[34] OpenAI. Gpt-4 technical report, 2023.

[35] OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/learnin
g-to-reason-with-llms/.

[36] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[37] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

[38] Qwen Team. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

[39] Qwen Team. Qwen2.5 technical report, January 2025.

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[41] Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic, 2023.

[42] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging
big-bench tasks and whether chain-of-thought can solve them. In ACL (Findings), 2023.

[43] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpaca: A strong, replicable instruction-following model,
2023. URL https://crfm.stanford.edu/2023/03/13/alpaca.html.

[44] Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025. URL https:
//arxiv.org/abs/2501.12599.

[45] Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen Zhu, Anjie Liu, Ziqin Gong, Yan
Song, Lei Chen, Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan Zhang. Openr: An
open source framework for advanced reasoning with large language models, 2024. URL
https://arxiv.org/abs/2410.09671.

[46] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2024.

[47] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 5085–5109, 2022.

[48] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[49] Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations
of language models through counterfactual tasks. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 1819–1862, 2024.

13

https://openai.com/blog/chatgpt
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2412.15115
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2410.09671


[50] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

[51] Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia
Kang, Jiaming Ji, Yingying Zhang, et al. Redstar: Does scaling long-cot data unlock better
slow-reasoning systems?, 2025. URL https://arxiv.org/abs/2501.11284.

[52] Haotong Yang, Yi Hu, Shijia Kang, Zhouchen Lin, and Muhan Zhang. Number cookbook:
Number understanding of language models and how to improve it. ArXiv, abs/2411.03766,
2024. URL https://api.semanticscholar.org/CorpusID:273850412.

[53] John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal:
Do ai systems generalize to visual software domains? In The Thirteenth International Confer-
ence on Learning Representations, 2024.

[54] Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and
Nicholas Carlini. Counterfactual memorization in neural language models. Advances in Neural
Information Processing Systems, 36:39321–39362, 2023.

[55] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li,
Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792, 2023.

[56] Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua
Luo, and Kaifu Zhang. Marco-o1: Towards open reasoning models for open-ended solutions,
2024. URL https://arxiv.org/abs/2411.14405.

[57] Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza:
Two stories in mechanistic explanation of neural networks. Advances in neural information
processing systems, 36:27223–27250, 2023.

[58] Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M Susskind,
Samy Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in
length generalization. In The Twelfth International Conference on Learning Representations,
2023.

[59] Ruiwen Zhou, Wenyue Hua, Liangming Pan, Sitao Cheng, Xiaobao Wu, En Yu, and
William Yang Wang. Rulearena: A benchmark for rule-guided reasoning with llms in real-world
scenarios. arXiv preprint arXiv:2412.08972, 2024.

[60] Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou.
Transformers can achieve length generalization but not robustly. In ICLR 2024 Workshop on
Mathematical and Empirical Understanding of Foundation Models.

14

https://arxiv.org/abs/2501.11284
https://api.semanticscholar.org/CorpusID:273850412
https://arxiv.org/abs/2411.14405


List of appendices

A Limitations 16

B Impact Statements 16

C Dataset Overview 16

C.1 Data Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.2 Rule-Following Input Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.3 Downstream Tasks Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

D Training Details 18

D.1 Training Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D.2 Compute Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D.3 Reinforcement Learning Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E Additional Results 19

E.1 Results of 32B Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E.2 Length Generalization of Long-CoT Models . . . . . . . . . . . . . . . . . . . . . 20

E.3 Comparison between Meta-RFFT and Instruction Following . . . . . . . . . . . . 21

E.4 Training Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E.5 Effects of Data Dize on RF-pretraining and Downstream Adaptation . . . . . . . . 23

E.6 Effects of Number of Tasks in RF-Pretraining Stage . . . . . . . . . . . . . . . . . 24

E.7 Effects of RF-pretraining Tasks on Downstream Performance . . . . . . . . . . . . 24

E.8 Effects of Meta-RFFT on General Model Capabilities . . . . . . . . . . . . . . . . 24

F Error Cases 25

F.1 Error Case of DeepSeek-R1 on Addition . . . . . . . . . . . . . . . . . . . . . . . 25

F.2 Error Case of Models Trained with RL . . . . . . . . . . . . . . . . . . . . . . . . 25

G Dataset Construction 27

G.1 Rule-following Dataset Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

G.2 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

G.3 Natural Language Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

H Details of All 86 Tasks 34

15



Appendices
A Limitations

In this work, we construct a large-scale length generalization dataset spanning diverse tasks and
propose Meta-RFFT to enhance cross-task length generalization in LLMs. While this serves as an
initial step toward understanding multi-task length generalization in LLMs, our current study has
several limitations. First, to isolate errors attributable to length generalization failures (rather than
inherent task complexity), we restrict our experiments to controlled settings involving code execution,
numerical processing, and symbolic / logical reasoning tasks. Consequently, our framework does
not yet address more complex, real-world long-horizon reasoning domains, such as legal judgment
generation or multi-step workflow execution. Furthermore, defining “length” as a metric for problem
complexity in such practical scenarios remains an open challenge. Extending length generalization
to these domains, where models trained on simpler instances must generalize to harder problems,
presents a promising direction for future research.

B Impact Statements

Our work focuses on establishing a relationship between rules and their corresponding instances
within LLMs. We aim to enhance model performance on downstream tasks by training the base
model on a wide range of rule-following tasks. Current training strategies fall short in enabling
models to fully grasp the rules that humans have summarized or proposed that exist in the pre-training
corpus. As a result, while LLMs can easily recall rules, they often struggle to apply these rules strictly
to specific instances. Our proposed Meta-RFFT takes an initial step towards strengthening models
into meta rule followers, a development that is crucial for improving both the reasoning capabilities
and learning efficiency of these models.

Teaching LLMs to follow rules also aligns with societal demands. By ensuring that LLMs can reliably
adhere to rules, we contribute to the development of AI systems that are more aligned with human
values, ethical standards, and practical applications, ultimately fostering trust and safety in their
deployment.

C Dataset Overview

C.1 Data Annotations

We engaged skilled human annotators (undergraduate students majoring in Computer Science from
top-tier universities) to write Python scripts generating input-output traces for each task. Each task
was implemented as a Python class to enable automated sample generation at specified lengths.

Prior to annotation, we conducted a detailed training session using 12 exemplar tasks to ensure
consistency and quality. Annotators received step-by-step tutoring and were required to pass a
qualifying test on a sample task before proceeding.

Following annotation, all scripts underwent rigorous validation, including manual code review and
automated filtering, to eliminate errors. All annotators were compensated fairly for their work.

C.2 Rule-Following Input Examples

We present a question example for each reasoning domain in Table 6.

C.3 Downstream Tasks Description

The descriptions of 12 selected downstream tasks are listed as follows:

• LC Add Digits: Given an integer, repeatedly sum its digits until the result is a single digit.
• LC Move Zeroes: Given a list of integers, move all zeros to the end while preserving the relative

order of the non-zero elements.

16



Table 6: Input example in rule-following format for each category.

LeetCode NUPA
Follow the given rule to solve the question.
rule:

def moveZeros(nums):
num_zero = 0
result = []
while nums:

number = nums.pop (0)
if number != 0:

result.append(number)
else:

num_zero += 1
i = 0
while i < num_zero:

result.append (0)
i += 1

return result

Q: Given an integer array [0, 16], move all zeros to the
end while preserving the relative order of the non-zero
elements.

Follow the given rule to solve the question.
rule:

def add(num1 , num2):
result = ''
carry = 0
# Main Loop
while num1 or num2:

digit1 = int(num1 [-1]) if num1
↪→ else 0

digit2 = int(num2 [-1]) if num2
↪→ else 0

total = digit1 + digit2 +
↪→ carry

result = str(total %10) +
↪→ result

carry = total //10
num1 = num1 [:-1] if num1 else

↪→ num1
num2 = num2 [:-1] if num2 else

↪→ num2
if carry:

result = str(carry) + result
result = result.lstrip('0') or '0'
return result

Q: Add two numbers: 123 + 4567.

Big-Bench Hard Symbolic Reasoning
Follow the given rule to solve the question.
rule:

def navigate(moves):
# Initialize Location
loc = [0, 0]
# Main Loop
while moves:

move = moves.pop (0)
if move [0] == "left":

loc [0] -= move [1]
elif move [0] == "right ":

loc [0] += move [1]
elif move [0] == "forward ":

loc [1] += move [1]
elif move [0] == "backward ":

loc [1] -= move [1]
return loc == [0, 0]

Q: If you follow these instructions, do you return to the
starting point? Always face forward. Take 2 steps left.
Take 2 steps forward. In short, the moves are as
follows: [(‘left’, 2), (‘forward’, 2)].

Follow the given rule to solve the question.
rule:

def coin_flip(flips):
# Initialize Coin State
heads_up = True
# Main Loop
while flips:

flip = flips.pop (0)
if flip:

heads_up = not heads_up
else:

pass
return heads_up

Q: A coin is heads up. Carrillo does not flip the coin.
Cunningham flips the coin. Is the coin still heads up?
In short, the situation of 2 people flipping coins is as
follows: [False, True].

17



• LC Hamming Distance: The Hamming distance between two integers is the number of positions
at which the corresponding bits are different. Given two integers in binary representation, return
their Hamming distance.

• LC Crawler Log Folder: Determine the final folder after performing the operations in the given
list, where ../ moves up one level, ./ stays in the current folder, and x/ moves into folder x.

• LC Alternate Digit Sum: Given a positive integer where the most significant digit has a positive
sign, and each subsequent digit has the opposite sign of its adjacent digit, return the sum of these
signed digits.

• LC Chunk Array: Given array and chunk size, split the array into subarrays of a given size.
• LC String Sequence: Given a target string, return a list of all strings that appear on the screen in

order, using the minimum key presses. Key 1 appends "a" to the string, and Key 2 changes the last
character to its next letter in the alphabet.

• LC Valid Palindrome: Given a string s, return true if it is a palindrome after removing all
non-alphanumeric characters and converting it to lowercase; otherwise, return false.

• NUPA Get Digit Integer: Get the digit at the given position (from left to right, starting from 0).
• NUPA Add Integer: Add two integers.
• NUPA Digit Max Integer: Compare two numbers digit by digit and return the larger digit at each

position, treating any missing digits as 0.
• NUPA Length Integer: Find total number of digits of the given integer.

D Training Details

D.1 Training Hyperparameters

Table 7 shows the training parameters for the RF-pretraining stage and the adaptation stage of the
Qwen-7B and Qwen-32B models. In the RF-pretraining stage, we use data samples with a length
of 31 from the training set as the validation set and the early stop strategy is applied based on the
validation loss, which results in different training steps. Considering early stopping, the number
of training data samples for the 7B and 32B models in the RF-pretraining stage is 179k and 205k,
respectively.

Since the RF-pretraining stage involves fine-tuning across numerous tasks, we train more model pa-
rameters during this stage. The 7B model uses full parameter fine-tuning, while due to computational
resource constraints, the 32B model employs PiSSA with a large rank of 32. In the adaptation stage,
where fine-tuning is performed on different target tasks, we use PiSSA with a relatively small rank 8.

Table 7: The training hyperparameters for the RF-pretraining stage and the adaptation stage.

Hyperparameters RF-Pretrain Adaptation
Qwen-7B Qwen-32B Qwen-7B Qwen-32B

Training Steps 800 700 156 156

Num of Epoch 1

Learning Rate 1e-5

Batch Size 256 32

Fine-Tuning Method full fine-tune PiSSA

PiSSA Rank / 32 8

D.2 Compute Resources

We list the training compute of RF-pretraining and downstream fine-tuning in Table 8. We conduct
all the experiments on NVIDIA H800 Tensor Core GPUs.

While Meta-RFFT does require initial pretraining, our analysis shows it becomes significantly more
efficient than vanilla RFFT when deployed across multiple tasks.

18



• Computation Efficiency: For the 7B model, the pretraining cost becomes justified after just 42
downstream tasks—a threshold quickly exceeded in practice. For 32B model, the number is 72.

• Data Efficiency: Meta-RFFT eliminates the need for task-specific fine-tuning data. Meta-RFFT
works in the context of in-context learning with just the rule and one demonstration.

Table 8: Training compute of RF-pretraining and downstream fine-tuning of both 7B and 32B models.

Model Training Stage Training hours GPU Num GPU Memory GPU hours
7B RF-pretrain 18 8 80G 144.0
7B downstream 0.6∼1.1 4 80G 2.4∼4.4

32B RF-pretrain 22.3 32 80G 713.6
32B downstream 2.0∼3.0 4 80G 8.0∼12.0

D.3 Reinforcement Learning Settings

We utilize Proximal Policy Optimization (PPO) without KL-regularization as our reinforcement
learning algorithm. PPO updates the policy parameters θ to maximize the expected cumulative
reward, while simultaneously updating the value function parameters ϕ by minimizing the value loss.
This is achieved by optimizing the following objective functions:

JPPO(θ) = Et,st,at∼πθold

[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
, (1)

Jvalue(ϕ) =
1

2
Et,st,at∼πθold

[
(Vϕ(st)−Rt)

2
]
, (2)

We provide an outcome reward, where the model receives a reward of 1 only when its output answer
is completely correct, and 0 otherwise. Key hyperparameters used in our implementation are listed in
Table 9.

Table 9: Training Hyperparameters for PPO.

Hyperparameter Value
Actor Learning Rate 1e-6
Critic Learning Rate 9e-6
Train Batch Size 1024
Rollout Batch Size 256
GAE parameter λ 1.0
Discount Factor γ 1.0
Clipping Parameter ϵ 0.2
KL Coefficient 0.0

E Additional Results

E.1 Results of 32B Models

Fine-tuning results. In Figure 9, we list the length generalization performance of Qwen-2.5-
32B-Instruct fine-tuned through the following methods: direct answer, scratchpad, vanilla RFFT
and Meta-RFFT. Meta-RFFT significantly outperforms the rest of the methods, showing that rule-
following is a meta ability that can be mastered by large-scale RF-pretrain and can benefit length
generalization greatly.

19



0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Vanilla RFFT
Direct Answer
Scratchpad

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 9: Length generalization performance of direct answer, scratchpad, vanilla RFFT and
Meta-RFFT on LeetCode and NUPA tasks. Here the experiments are all conducted on Qwen-2.5-
32B-Instruct.

In-context learning results. In Figure 10, we show the in-context learning performance of both the
base model and the RF-pretrained model. Here, the base model we use is Qwen-2.5-32B-Instruct. The
RF-pretrained model outperforms the base model by a large margin in the context of 1-shot learning
on downstream tasks. RF-pretraining shows a positive transfer to the in-context rule-following
capabilities in downstream tasks.

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

RF-Pretrained 1-shot
Base 1-shot

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 10: The figure shows the 1-shot performance of the base model (Qwen-2.5-32B-Instruct), and
the RF-pretrained model (RF-pretrained Qwen-2.5-32B-Instruct).

E.2 Length Generalization of Long-CoT Models

In Figure 11, we show the length generalization performance of long-CoT models, including
DeepSeek-R1-671B, DeepSeek-R1-Distill-7B and QwQ-32B. Meta-RFFT-enhanced Qwen-32B
shows superior performance regarding length generalization with comparable or even much smaller
parameter size.

20



0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT-32B
QwQ-32B
R1-671B
R1-7B-Distill

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 11: Length generalization performance of long-CoT models, including DeepSeek-R1-671B,
DeepSeek-R1-Distill-7B and QwQ-32B.

E.3 Comparison between Meta-RFFT and Instruction Following

We show the performance of Meta-RFFT-enhanced Llama-3.1-8B and the same model after
instruction-tuning on Tulu3 in Figure 12. For Meta-RFFT, we fine-tune the model on samples
of lengths from 1 to 5.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Tulu3

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 5 10 15 20 25 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 12: Comparison between Meta-RFFT and instruction following method Tulu3, using Llama-
3.1-8B as the base model.

E.4 Training Curves

We show the training loss curves of the downstream adaptation stage of the 7B base model and the
32B base model respectively in Figure 13, Figure 14. The figures show that models trained with
Meta-RFFT exhibit lower initial training loss compared to vanilla RFFT, as the former is already
familiar with the rule-following paradigm due to the first-stage pretraining. This allows Meta-RFFT
models to fit the training samples more quickly during the adaptation stage. As training progresses,
the training loss of vanilla RFFT and Meta-RFFT models converges to similar levels in most tasks.
This indicates that the gap in length generalization performance between Meta-RFFT and vanilla

21



RFFT is not due to the latter’s in- ability to fit the training data. More detailed discussions are put in
Section 4.2.

0 25 50 75 100 125 150

1

2

3

Tr
ai

ni
ng

 L
os

s

LC Add Digits

0 25 50 75 100 125 150

1

2

3

LC Move Zeroes

0 25 50 75 100 125 150

1

2

LC Hamming Distance

0 25 50 75 100 125 150

1

2

3

4
LC Crawler Log Folder

Vanilla-RFFT
Meta-RFFT

0 25 50 75 100 125 150

1

2

3

Tr
ai

ni
ng

 L
os

s

LC Alternate Digit Sum

0 25 50 75 100 125 150

1

2

LC Chunk Array

0 25 50 75 100 125 150

1

2

3
LC String Sequence

0 25 50 75 100 125 150
0

1

2

3

LC Valid Palindrome

0 25 50 75 100 125 150
Num of Steps

1

2

3

4

Tr
ai

ni
ng

 L
os

s

NUPA Get Digit Integer

0 25 50 75 100 125 150
Num of Steps

0.5

1.0

1.5

2.0

2.5
NUPA Add Integer

0 25 50 75 100 125 150
Num of Steps

0

1

2

3
NUPA Digit Max Integer

0 25 50 75 100 125 150
Num of Steps

1

2

3

4
NUPA Length Integer

Figure 13: Training curves of Qwen2.5-7B-Instruct in the downstream adaptation stage on LeetCode
tasks and NUPA tasks. The figure shows both the training curves of vanilla RFFT and the second
training stage of Meta-RFFT.

0 50 100 150
0.0

0.5

1.0

Tr
ai

ni
ng

 L
os

s

LC Add Digits

0 50 100 150
0.00

0.25

0.50

0.75

1.00
LC Move Zeroes

0 50 100 150
0.0

0.2

0.4

0.6

0.8
LC Hamming Distance

0 50 100 150
0.0

0.2

0.4

0.6

0.8

LC Crawler Log Folder
Vanilla-RFFT
Meta-RFFT

0 50 100 150
0.00

0.25

0.50

0.75

1.00

Tr
ai

ni
ng

 L
os

s

LC Alternate Digit Sum

0 50 100 150
0.0

0.2

0.4

0.6

LC Chunk Array

0 50 100 150
0.0

0.2

0.4

0.6

LC String Sequence

0 50 100 150
0.0

0.2

0.4

0.6

0.8

LC Valid Palindrome

0 50 100 150
Num of Steps

0.0

0.5

1.0

1.5

Tr
ai

ni
ng

 L
os

s

NUPA Get Digit Integer

0 50 100 150
Num of Steps

0.0

0.2

0.4

NUPA Add Integer

0 50 100 150
Num of Steps

0.0

0.2

0.4

0.6
NUPA Digit Max Integer

0 50 100 150
Num of Steps

0.0

0.5

1.0

NUPA Length Integer

Figure 14: Training curves of Qwen2.5-32B-Instruct in the downstream adaptation stage on LeetCode
tasks and NUPA tasks. The figure shows both the training curves of vanilla RFFT and the second
training stage of Meta-RFFT.

Besides, we conduct repeated experiments in the stage of downstream fine-tuning. We show the
training curves of different random seeds of 7B RF-pretrained models in the adaptation stage training
in Figure 15, indicating that the adaptation stage training is stable across different seeds.

22



0 25 50 75 100 125 150
0

1

2

Tr
ai

ni
ng

 L
os

s

LC Add Digits

0 25 50 75 100 125 150

1

2

3

LC Move Zeroes

0 25 50 75 100 125 150

0.5

1.0

1.5

2.0

LC Hamming Distance

0 25 50 75 100 125 150
0

1

2

3

LC Crawler Log Folder
seed=42
seed=250119
seed=250120

0 25 50 75 100 125 150

1

2

Tr
ai

ni
ng

 L
os

s

LC Alternate Digit Sum

0 25 50 75 100 125 150
0

1

2

3
LC Chunk Array

0 25 50 75 100 125 150
0

1

2

LC String Sequence

0 25 50 75 100 125 150

1

2

3
LC Valid Palindrome

0 25 50 75 100 125 150
Num of Steps

1

2

3

Tr
ai

ni
ng

 L
os

s

NUPA Get Digit Integer

0 25 50 75 100 125 150
Num of Steps

0.0

0.5

1.0

1.5

2.0

NUPA Add Integer

0 25 50 75 100 125 150
Num of Steps

0

1

2

3
NUPA Digit Max Integer

0 25 50 75 100 125 150
Num of Steps

1

2

3

NUPA Length Integer

Figure 15: Training curves of the adaptation stage of Meta-RFFT using different random seeds. Here
we show the results of Qwen2.5-7B-Instruct.

E.5 Effects of Data Dize on RF-pretraining and Downstream Adaptation

The effect of the data size in RF-pretraining. We select several checkpoints from the RF-
pretraining stage after the training loss has converged and perform downstream adaptation on these
checkpoints. The performance of these checkpoints on the corresponding tasks after fine-tuning is
presented in Figure 16. In the early stages, as training progresses, the model’s final performance
gradually improves. However, after reaching a certain number of steps, the model’s performance
stabilizes and no longer shows significant improvement. The models do not show signs of “grokking”
during the RF-pretraining stage.

The effect of the data size in downstream adaptation For the downstream adaptation stage, we
also analyze the effects of data size on performance. We select several checkpoints after the training
loss has converged. The results of these checkpoints are presented in Figure 16. Similar to the
RF-pretraining stage, in the early phases, the model’s performance improves as the data size increases.
However, after reaching a certain number of steps, the model’s performance stabilizes and no longer
shows significant improvement, with no evidence of grokking observed.

For RF-pretraining stage, we select several checkpoints after the training loss has converged and
perform downstream adaptation on these checkpoints. The length generalization performance of
these checkpoints on

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Move Zeroes

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Hamming Distance

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Crawler Log Folder

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Alternate Digit Sum

# Steps = 200
# Steps = 400
# Steps = 600
# Steps = 800

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Chunk Array

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC String Sequence

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Valid Palindrome

Figure 16: Effects of training steps in the RF-pretraining stage.

23



0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Add Digits

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Move Zeroes

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Hamming Distance

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
LC Crawler Log Folder

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

LC Alternate Digit Sum

# Steps = 60
# Steps = 100
# Steps = 140
# Steps = 156

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Chunk Array

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC String Sequence

0 5 10 15 20 25 30
Length

0.00

0.25

0.50

0.75

1.00
LC Valid Palindrome

Figure 17: Effects of training steps in the downstream adaptation stage of Meta-RFFT.

E.6 Effects of Number of Tasks in RF-Pretraining Stage

We show in Figure 18 that when fine-tuned with only 1 task in RF-pretraining stage, the model does
not perform as well as Meta-RFFT-ed on 74 diverse tasks. This demonstrates that to enable robust
multi-task length generalization, a large-scale length generalization dataset is necessary.

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Add Digits

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Move Zeroes

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Hamming Distance

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Crawler Log Folder

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LC Alternate Digit Sum

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Chunk Array

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC String Sequence

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
LC Valid Palindrome

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NUPA Get Digit Integer

Meta-RFFT
Single-task RF-pretrain

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Add Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Digit Max Integer

0 10 20 30
Length

0.0

0.2

0.4

0.6

0.8

1.0
NUPA Length Integer

Figure 18: Performance when RF-pretrained on a single task versus 74 diverse tasks, showing the
benefit of large-scale multi-task pretraining for length generalization.

E.7 Effects of RF-pretraining Tasks on Downstream Performance

The RF-pretraining stage originally includes tasks from three datasets: LeetCode, Big-Bench Hard,
and Symbolic Reasoning. To assess the impact of RF-pretraining tasks on downstream performance,
we conduct an ablation where the model is RF-pretrained only on the LeetCode subset.

Here we evaluate on 4 downstream tasks, including 2 LeetCode tasks (Move Zeros & Valid Palin-
drome) and 2 NUPA tasks (Add Integer & Digit Max Integer), all of which are unseen during
RF-pretraining.

The results are shown in Table 10. We observe a slight performance drop when excluding Big-Bench
Hard and Symbolic Reasoning, likely due to reduced task diversity during pretraining.

E.8 Effects of Meta-RFFT on General Model Capabilities

Similar to our experiments on GSM8K introduced in Section 5, we mix general data into the
downstream fine-tuning alongside the original rule-following data to show that general ability

24



Table 10: Results of Meta-RFFT with LeetCode-only pretraining on multiple downstream bench-
marks.

Model ACC_Len30 (%) Max_Len_90%
Results on LC and NUPA

Meta-RFFT (complete pretrain dataset) 56.0 16.0
Meta-RFFT (LeetCode only) 51.0 12.5
Vanilla RFFT 19.0 5.5

Results on SR and BBH
Meta-RFFT (LeetCode only) 68.0 20.7
Vanilla RFFT 37.0 9.3

is preserved. The results of the model’s general ability are shown in Table 11, and the length
generalization results are shown in Table 12.

Regarding length generalization results, we test on 2 downstream task: LC Valid Palindrome and
NUPA Add Integer. Our findings indicate that incorporating 6,872 samples from ARC [6] and
8,000 samples from Alpaca-Eval [25] effectively restored the model’s performance on these general
benchmarks while maintaining robust multi-task length generalization.

On Alpaca-Eval, we observed a significant increase in the standard win rate. However, this improve-
ment is partially attributable to the model producing longer outputs, which are favored by this metric.
To provide a more balanced assessment, we also report the length-controlled win rate introduced by
Dubois et al. [12].

Table 11: Evaluation of the general capabilities
of Meta-RFFT with mixed training on ARC and
Alpaca-Eval.

Model ARC Alpaca-Eval

Acc Win Rate Length
Controlled Win Rate

Base Model 87.88 16.77 25.61
Meta-RFFT 88.92 23.54 23.90

Table 12: Length generalization performance of
Meta-RFFT with mixed pretraining that incorpo-
rates general data.

ACC_Len30 (↑) Max_Len_90% (↑)

Vanilla RFFT 0.20 1.0

Meta-RFFT 0.58 8.0
w/ ARC 0.63 8.0
w/ Alpaca 0.60 8.0

F Error Cases

F.1 Error Case of DeepSeek-R1 on Addition

In Table 13, we present an error case where DeepSeek-R1 fails to correctly solve a 30-digit integer
addition problem. In this case, R1 makes two mistakes: (1) incorrect splitting: R1 attempts to split
the 30-digit integer into two parts, including a 17-digit segment and a 13-digit segment. However, the
first segment actually contains 18 digits, and the two parts overlap by one digit. Despite this mistake
in the reasoning trace, R1 miraculously corrects the error in the final answer; (2) copying error: R1
makes an copy error in the final answer, copying “7711” to “7771”.

F.2 Error Case of Models Trained with RL

While RL has shown success in general reasoning, we argue that SFT is better suited for enforcing
strict rule-following behavior. Unlike RL with outcome reward, which only optimizes for final-
answer correctness, SFT directly maximizes the likelihood of the model generating rule-compliant
intermediate reasoning steps, which is crucial for strict adherence to structured rules.

We use RL (PPO) to optimize rule-following. The model does not learn rule-following behavior and
instead exhibit tendencies to answer directly, thus fails to generalize to longer answers, as shown in
Table 14.

25



Table 13: An error example of DeepSeek-R1 on long integer addition. We only show the summariza-
tion part as the thinking part is too long. R1 tricks itself during splitting the 30-digit number.

Input Output
Q: Add two numbers:
8898509165985 +
897653763194685878813426157006 To add the numbers 8898509165985 and

897653763194685878813426157006, we need to align them properly
and perform the addition step by step, considering carryovers.

1. Identify the digits of each number:
- The first number is 13 digits:

↪→ 8 ,898 ,509 ,165 ,985
- The second number is 30 digits:

↪→ 897 ,653 ,763 ,194 ,685 ,878 ,813 ,426 ,157 ,006

2. Split the second number into two parts:
- The first 17 digits:

897 ,653 ,763 ,194 ,685 ,878 (here R1 list 18 digits)
- The last 13 digits: 8 ,813 ,426 ,157 ,006

3. Add the first number to the last 13 digits of
↪→ the second number:
- Last 13 digits of the second number:

↪→ 8 ,813 ,426 ,157 ,006
- First number: 8 ,898 ,509 ,165 ,985

4. Perform the addition of the last 13 digits:
- Align and add the digits from right to left ,

↪→ considering carryovers:
```

8 ,898 ,509 ,165 ,985
+ 8 ,813 ,426 ,157 ,006

17 ,711 ,935 ,322 ,991

```
- The result of adding these 13-digit numbers

↪→ is 17 ,711 ,935 ,322 ,991 , which is a 14-
↪→ digit number. This results in a
↪→ carryover of 1 to the higher digits.

5. Adjust the first part of the second number:
- The first 17 digits of the second number:

↪→ 897 ,653 ,763 ,194 ,685 ,878 (still 18 digits)
- Add the carryover 1: 897 ,653 ,763 ,194 ,685 ,878

↪→ + 1 = 897 ,653 ,763 ,194 ,685 ,879

6. Combine the adjusted first part with the
↪→ result of the addition:
- The adjusted first part:

↪→ 897 ,653 ,763 ,194 ,685 ,879
- The last 13 digits of the sum (after

↪→ removing the carryover):
↪→ 7 ,711 ,935 ,322 ,991

7. Concatenate the results:
- The final result is 897 ,653 ,763 ,194 ,685 ,879

↪→ followed by 7,711 ,935,322 ,991, which
↪→ gives the 30-digit number.

The result of the addition is: 897653763194685887771935322991

Correct answer should be: 897653763194685887711935322991

26



Table 14: An error example of Qwen2.5-7B-RL, which is Qwen2.5-7B trained by RL on rule-
following samples.

Input Output
Follow the given rule to solve the question.
rule:

def add(num1 , num2):
result = ''
carry = 0
# Main Loop
while num1 or num2:

digit1 = int(num1 [-1]) if num1
↪→ else 0

digit2 = int(num2 [-1]) if num2
↪→ else 0

total = digit1 + digit2 + carry
result = str(total %10) + result
carry = total //10
num1 = num1 [:-1] if num1 else num1
num2 = num2 [:-1] if num2 else num2

if carry:
result = str(carry) + result

result = result.lstrip('0') or '0'
return result

Q: Add two numbers:
959247367543417212187562571510 + 440884190197.

The given rule defines a function add(num1,
num2) that adds two numbers represented as
strings. I will use this function to add the two
given numbers:
959247367543417212187562571510 and
440884190197.
959247367543417212187562615607

Correct answer should be:
959247367543417212628446761707

G Dataset Construction

G.1 Rule-following Dataset Annotation

To generate the rule-following output for each task, the rules necessary to accomplish the task first
need to be provided in the input (examples are shown in Table 6), which can be generated by an LLM.
Subsequently, a data generation script is manually written for each task to produce the intermediate
execution steps of the rule for any given input. With the rule-following output generation script and
the input data generator, an arbitrary number of data samples can be generated. Here is an example of
one data sample in the rule-following format.

Prompt:

Follow the given rule to solve the question.
Rule:
def add_digits(self, num: int) -> int:

while num > 9:
sum = 0
while num:

sum += num % 10
num //= 10

num = sum
return num

Q: Given an integer number 15, repeatedly add up all its digits until the result has only one
digit.

Response:

27



1. Initialize
num = 15
2. Outer loop

while num > 9:

num = 15
enter the loop
2.1 One iteration
sum = 0
3. Inner loop

while num:

num = 15
enter the loop
3.1 One iteration

sum += num % 10
num //= 10

num = 15
num % 10 = 5
sum = 0
now,
sum = 0 + 5 = 5
num = 15 // 10 = 1

while num:

num = 1
enter the loop
3.1 One iteration

sum += num % 10
num //= 10

num = 1
num % 10 = 1
sum = 5
now,
sum = 5 + 1 = 6
num = 1 // 10 = 0

while num:

num = 0
do not enter

num = sum

sum = 6
now,
num = 6

while num > 9:

num = 6
do not enter
4. Return

return num

num = 6
So the answer is 6

28



G.2 Synthetic Data Generation

22 manually-written code snippets are as below:

0: "if list1:\n list1[-1] += {}",
1: "if list1:\n list1[0] += {}",
2: "if list1:\n var = list1.pop(0)\n list2.append(var)",
3: "if list1:\n var = list1.pop()\n list2.append(var)",
4: "list1.insert(0, {})",
5: "list1.sort()",
6: "list1.reverse()",
7: "list1 = list1[1:] if list1 else list1",
8: "if list2:\n list1.insert(0, list2[0])\nelse:\n list1.insert(0, {})",
9: "val = list2[-1] if list2 else {}\nlist1.append(val)",
10: "if list1 and list2 and list1[0] > list2[0]:\n list1.pop(0)",
11: "if list1 and list2 and list1[-1] < list2[-1]:\n list1.pop()",
12: "if list1:\n list1.pop(0)",
13: "if list1 and list2:\n list1.append(list2.pop())",
14: "if list1 and list1[0] % 2 == 0:\n list1.pop(0)",
15: "if list1 and list1[0] % 2 == 1:\n list1.pop(0)",
16: "if len(list1) > len(list2):\n list2.insert(0, list1.pop())",
17: "if list1 and list1[0] > {}:\n list1.pop(0)",
18: "if list1 and list1[0] < {}:\n list1.pop(0)",
19: "if list2:\n list1.append(list2.pop(0))",
20: "if list1:\n list1.pop()",
21: "if list2:\n list2.pop()"

To further enhance rule diversity, we replace list1 and list2 with meaningless random strings in
each sampled snippet. Here is a prompt of synthetic data sample with one-shot example:

Here is 1 example:
Follow the given rule to solve the question.
rule:
def process_list(ywhm, erep):

while ywhm and erep:
if ywhm:

ywhm.pop()
erep = erep[1:] if erep else erep
if erep and erep[0] % 2 == 0:

erep.pop(0)
if erep and erep[0] % 2 == 1:

erep.pop(0)
if erep:

erep.pop(0)
if ywhm:

ywhm.pop()
val = erep[-1] if erep else 53
ywhm.append(val)
if erep:

var = erep.pop(0)
ywhm.append(var)

return ywhm
Q: Given two lists, ywhm = [3] and erep = [50, 31], what is the final value of ywhm?

1 Initialize
ywhm = [3]

29



erep = [50, 31]
2 Main loop

while ywhm and erep:

ywhm = [3]
erep = [50, 31]
enter the loop
2.1 One iteration:

if ywhm:
ywhm.pop()

ywhm = [3]
enter if
now,
ywhm = []

erep = erep[1:] if erep else erep

erep = [50, 31]
now,
erep = [31]

if erep and erep[0] % 2 == 0:
erep.pop(0)

erep = [31]
erep[0] % 2 = 31 % 2 != 0
do not enter if

if erep and erep[0] % 2 == 1:
erep.pop(0)

erep = [31]
erep[0] % 2 = 31 % 2 == 1
enter if
now,
erep = []

if erep:
erep.pop(0)

erep = []
do not enter if

if ywhm:
ywhm.pop()

ywhm = []
do not enter if

val = erep[-1] if erep else 53
ywhm.append(val)

erep = []
val = 53
ywhm = []
now,
ywhm = [53]

if erep:
var = erep.pop(0)
ywhm.append(var)

erep = []
do not enter if

30



while ywhm and erep:

ywhm = [53]
erep = []
do not enter

return ywhm

So the answer is [53]

Follow the above examples to answer the following question:
rule:

def process_list(cybez, eonx):
while cybez and eonx:

eonx.reverse()
if eonx:

cybez.insert(0, eonx[0])
else:

cybez.insert(0, 63)
if cybez and cybez[0] < 9:

cybez.pop(0)
if eonx:

eonx[-1] += 9
if cybez and cybez[0] % 2 == 1:

cybez.pop(0)
if eonx:

eonx[0] += 96
if cybez and cybez[0] % 2 == 0:

cybez.pop(0)
if cybez:

cybez.pop()
return cybez

Q: Given two lists, cybez = [31, 22, 95, 74, 70, 55, 39, 22, 77] and eonx = [53, 70, 50, 28, 15,
81, 92, 6], what is the final value of cybez?

G.3 Natural Language Rules

To generate rule-following output in natural language, we first convert code-formatted rules into
natural language descriptions. The remaining process is the same as generating the output for the
code rule. To ensure clarity and avoid ambiguity, each line is prefixed with a number. An example of
a rule-following output in natural language is provided below.

Prompt:

Follow the given rule to solve the question.
Rule:
1. Begin outer loop:

1.1 Check whether the number is a single-digit number. If it is
not, enter the outer loop; otherwise, the loop is over, go to
step (2).

↪→

↪→

1.2 One iteration:
1.2.1 Initialize the sum of the digits of the number in this

iteration as sum equals 0.↪→

1.2.2 Begin inner loop to calculate the digit sum:

31



1.2.2.1 Check whether the number is 0. If the number is
not 0, enter the inner loop; otherwise, the loop is
over, go to step (1.2.3).

↪→

↪→

1.2.2.2 One iteration:
1.2.2.2.1 Find the last digit of the number and add it

to sum.↪→

1.2.2.2.2 Remove the last digit from the number.
1.2.2.3 Return to the start of the inner loop.

1.2.3 After calculating the sum of all digits, update the
number with the value of sum.↪→

1.3 Return to the start of the outer loop.
2. Return the remaining single-digit number.
Q: Given an integer number 32, repeatedly add up all its digits until the result has only one
digit.

Response:

The number is 32. Begin the process.

1. Begin outer loop:
1.1 Check whether the number is a single-digit number. If it is not,

enter the outer loop; otherwise, the loop is over, go to step (2).↪→

The number is 32, which is not a single-digit number. Enter the outer loop.

1.2 One iteration:
1.2.1 Initialize the sum of the digits of the number in this iteration

as sum equals 0.↪→

Initialize sum = 0.

1.2.2 Begin inner loop to calculate the digit sum:
1.2.2.1 Check whether the number is 0. If the number is not 0, enter

the inner loop; otherwise, the loop is over, go to step (1.2.3).↪→

The number is 32, which is not 0. Enter the inner loop.

1.2.2.2 One iteration:
1.2.2.2.1 Find the last digit of the number and add it to sum.

number = 32, the last digit of the number is 2. Add it to sum, sum = 0 + 2 = 2.

1.2.2.2.2 Remove the last digit from the number.

Remove the last digit from the number, number = 32 // 10 = 3.

1.2.2.3 Return to the start of the inner loop.

Back to the start of the inner loop.

1.2.2 Begin inner loop to calculate the digit sum:
1.2.2.1 Check whether the number is 0. If the number is not 0, enter

the inner loop; otherwise, the loop is over, go to step (1.2.3).↪→

The number is 3, which is not 0. Enter the inner loop.

1.2.2.2 One iteration:
1.2.2.2.1 Find the last digit of the number and add it to sum.

number = 3, the last digit of the number is 3. Add it to sum, sum = 2 + 3 = 5.

1.2.2.2.2 Remove the last digit from the number.

Remove the last digit from the number, number = 3 // 10 = 0.

1.2.2.3 Return to the start of the inner loop.

32



Back to the start of the inner loop.

1.2.2 Begin inner loop to calculate the digit sum:
1.2.2.1 Check whether the number is 0. If the number is not 0, enter

the inner loop; otherwise, the loop is over, go to step (1.2.3).↪→

The number is 0. The loop is over. Go to step (1.2.3).

1.2.3 After calculating the sum of all digits, update the number with
the value of sum.↪→

sum = 5. Update the number with the value of sum, so number is 5 now.

1.3 Return to the start of the outer loop.

Back to the start of the outer loop.

1. Begin outer loop:
1.1 Check whether the number is a single-digit number. If it is not,

enter the outer loop; otherwise, the loop is over, go to step (2).↪→

The number is 5, which is a single-digit number. The loop is over. Go to step (2).

2. Return the remaining single-digit number.

The number is 5. So the answer is 5.

33



H Details of All 86 Tasks

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_2582 We are passing a pillow back and forth
along a line of n people for certain time,
returning the final holder’s position
after directional changes at each end.

the number of
people

https://leet
code.com/pro
blems/pass-t
he-pillow/de
scription/

RF-
pretrain

LeetCode lc_2129 If the length of the word is 1 or 2
letters, change all letters to lowercase.
If the length of the word is 3 or more
letters, change the first letter to
uppercase and the rest to lowercase.

the number of
characters in
the word

https:
//leetcode.c
om/problems/
capitalize-t
he-title/des
cription/

RF-
pretrain

LeetCode lc_2210 Given a 0-indexed integer array
`nums`, find out the number of hills
and valleys in the array. An index i is
part of a hill in nums if the closest
non-equal neighbors of i are smaller
than nums[i]. Similarly, an index i is
part of a valley in nums if the closest
non-equal neighbors of i are larger than
nums[i]

the length of
the array

https:
//leetcode.c
om/problems/
count-hills-a
nd-valleys-i
n-an-array/d
escription/

RF-
pretrain

LeetCode lc_824 If a word begins with a vowel, append
"ma" to the end of the word.If a word
begins with a consonant (i.e., not a
vowel), remove the first letter and
append it to the end, then add "ma".
Add one letter "a" to the end of each
word per its word index in the sentence,
starting with 1. What’s the final
sentence representing the conversion
from sentence to Goat Latin?

the number of
words

https:
//leetcode.c
om/problems/
goat-latin/d
escription/

RF-
pretrain

LeetCode lc_2103 Given a string rings of length 2n that
describes the n rings that are placed
onto the rods. Every two characters in
rings forms a color-position pair that is
used to describe each ring. How many
are the number of rods that have all
three colors of rings on them?

the number of
rings

https://leet
code.com/pro
blems/rings-a
nd-rods/desc
ription/

Continue on next page...

34

https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/pass-the-pillow/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/capitalize-the-title/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/count-hills-and-valleys-in-an-array/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/goat-latin/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/
https://leetcode.com/problems/rings-and-rods/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_2899 Given an integer array nums where
nums[i] is either a positive integer or
-1. We need to find for each -1 the
respective positive integer, which we
call the last visited integer. To achieve
this goal, let’s define two empty arrays:
seen and ans. Start iterating from the
beginning of the array nums.
• If a positive integer is encountered,

prepend it to the front of seen.
• If -1 is encountered, let k be the

number of consecutive -1s seen so far
(including the current -1),
– If k ≤ length of seen, append the

k-th element of seen to ans.
– If k > length of seen, append -1

to ans.
Return the array ans.

the length of
the array

https:
//leetcode.c
om/problems/
last-visited
-integers/de
scription/

RF-
pretrain

LeetCode lc_2833 Find the furthest point from origin after
given moves.

the number of
moves

https://leet
code.com/pro
blems/furthe
st-point-fro
m-origin/desc
ription/

RF-
pretrain

LeetCode lc_2057 Given a 0-indexed integer array nums,
What’s the smallest index i of nums
such that i mod 10 == nums[i]?

the length of
the array

https:
//leetcode.c
om/problems/
smallest-ind
ex-with-equal
-value/

RF-
pretrain

LeetCode lc_953 Given a sequence of words written in
the alien language, and the order of the
alphabet, return true if and only if the
given words are sorted
lexicographically in this alien language.

the number of
words

https://leet
code.com/pro
blems/verify
ing-an-alien
-dictionary/
description/

RF-
pretrain

LeetCode lc_2785 Given a 0-indexed string s, permute s to
get a new string t such that: All
consonants remain in their original
places. The vowels must be sorted in
the nondecreasing order of their ASCII
values.

the length of
the string

https:
//leetcode.c
om/problems/
sort-vowels-i
n-a-string/

RF-
pretrain

LeetCode lc_2460 Conduct specific operations to an array:
perform sequential operations on the
array to merge adjacent equal elements
by doubling one and zeroing the other,
then moving all zeros to the end.

the length of
the array

https://leet
code.com/pro
blems/apply-o
perations-t
o-an-array/d
escription/

Continue on next page...

35

https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/last-visited-integers/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/furthest-point-from-origin/description/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/smallest-index-with-equal-value/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/verifying-an-alien-dictionary/description/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/sort-vowels-in-a-string/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/
https://leetcode.com/problems/apply-operations-to-an-array/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_2682 There are n friends, sitting in a circle
and numbered from 1 to n in clockwise
order, playing the sircular game. Start
at 1st friend and end at 1st friend
receive the ball again. What is the
serial number of the friend who hasn’t
caught the ball?

the number of
people is
given by:
```
n = ran-
dom.choice(
range(1,length))
```

https:
//leetcode.c
om/problems/
find-the-los
ers-of-the-c
ircular-game/
description/

RF-
pretrain

LeetCode lc_1694 Reformat the given phone number into
right format.

the number of
characters of
the phone
number string

https:
//leetcode.c
om/problems/
reformat-pho
ne-number/de
scription/

RF-
pretrain

LeetCode lc_890 Given a list of strings words and a
string pattern, return a list of words[i]
that match pattern. You may return the
answer in any order.

the number of
words

https:
//leetcode.c
om/problems/
find-and-rep
lace-pattern
/description/

RF-
pretrain

LeetCode lc_2390 Given a string s containing lowercase
English letters and "*", return the string
obtained by removing all "*" and the
character that comes before "*".

the length of
the string

https://leet
code.com/pro
blems/removi
ng-stars-fro
m-a-string/

RF-
pretrain

LeetCode lc_2418 A list of names and heights are
given.Figure out the order of names by
their heights.

the number of
people

https://leet
code.com/pro
blems/sort-t
he-people/de
scription/

RF-
pretrain

LeetCode lc_1909 Given an array nums. Can we remove
one element to make it increasing?

the length of
the array

https:
//leetcode.c
om/problems/
remove-one-e
lement-to-mak
e-the-array-s
trictly-incre
asing/descri
ption/

RF-
pretrain

LeetCode lc_1704 Decide whether the number of vowels
in the first half of the string is equal to
the number of vowels in the second half
of the string.

the length of
half of the
string

https:
//leetcode.c
om/problems/
determine-i
f-string-hal
ves-are-alike
/description

Continue on next page...

36

https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/find-the-losers-of-the-circular-game/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/reformat-phone-number/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/find-and-replace-pattern/description/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/removing-stars-from-a-string/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/sort-the-people/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/remove-one-element-to-make-the-array-strictly-increasing/description/
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description
https://leetcode.com/problems/determine-if-string-halves-are-alike/description


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_1823 Try to find the winner of the circular
game. Rule: the kth person next to the
start person will be kicked off the game.
Find the last person left in the game.

the number of
people

https:
//leetcode.c
om/problems/
find-the-win
ner-of-the-c
ircular-game/

RF-
pretrain

LeetCode lc_2810 Your laptop keyboard is faulty, and
whenever you type a character ’i’ on it,
it reverses the string that you have
written. Typing other characters works
as expected. You are given a 0-indexed
string s, and you type each character of
s using your faulty keyboard. Return
the final string that will be present on
your laptop screen.

the number of
characters in
the string (we
assure there is
only one "i"
in the string)

https://leet
code.com/pro
blems/faulty
-keyboard/de
scription/

RF-
pretrain

LeetCode lc_2645 Given a string word to which you can
insert letters "a", "b" or "c" anywhere
and any number of times, return the
minimum number of letters that must
be inserted so that word becomes valid.
A string is called valid if it can be
formed by concatenating the string
"abc" several times.

the length of
the string

https://leet
code.com/pro
blems/minimu
m-additions-t
o-make-valid
-string/

RF-
pretrain

LeetCode lc_2609 Find the longest balanced substring in a
given string. A substring of s is
considered balanced if all zeroes are
before ones and the number of zeroes is
equal to the number of ones inside the
substring. Notice that the empty
substring is considered a balanced
substring.

the length of
the string

https://leet
code.com/pro
blems/find-t
he-longest-b
alanced-subst
ring-of-a-bin
ary-string/de
scription/

RF-
pretrain

LeetCode lc_2423 Return true if it is possible to remove
one letter so that the frequency of all
letters in word is equal, and false
otherwise.

the length of
the string

https:
//leetcode.c
om/problems/
remove-lette
r-to-equaliz
e-frequency/d
escription/

RF-
pretrain

LeetCode lc_2185 Return the words that start with given
prefix.

the number of
words

https:
//leetcode.c
om/problems/
counting-wor
ds-with-a-giv
en-prefix/de
scription/

RF-
pretrain

LeetCode lc_2496 Given an array `strs` of
alphanumeric strings, return the
maximum value of any string in strs by
referring some specific rule.

the length of
the array

https:
//leetcode.c
om/problems/
maximum-value
-of-a-strin
g-in-an-array
/description/

Continue on next page...

37

https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/find-the-winner-of-the-circular-game/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/faulty-keyboard/description/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/minimum-additions-to-make-valid-string/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/find-the-longest-balanced-substring-of-a-binary-string/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/remove-letter-to-equalize-frequency/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/counting-words-with-a-given-prefix/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/
https://leetcode.com/problems/maximum-value-of-a-string-in-an-array/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_1275 A play Tic Tac Toe Game with B. A
started first. Given the moves, judge
who is the winner of the Tic Tac Toe
Game.

the number of
moves

https:
//leetcode.c
om/problems/
find-winner-o
n-a-tic-tac-t
oe-game/desc
ription/

RF-
pretrain

LeetCode lc_1576 Given a string s containing only
English letters and the "?" character.
Convert all the "?" characters into
letters such that the final string does not
contain any consecutive repeating
characters.

the length of
the string

https:
//leetcode.c
om/problems/
replace-all-s
-to-avoid-con
secutive-rep
eating-chara
cters/descri
ption/

RF-
pretrain

LeetCode lc_1041 On an infinite plane, a robot initially
stands at (0, 0) and faces north."G": go
straight 1 unit. "L": turn 90 degrees to
the left. "R": turn 90 degrees to the
right. The robot performs the
instructions given in order, and repeats
them forever. Return True if and only if
there exists a circle in the plane such
that the robot never leaves the circle.

the number of
instructions

https:
//leetcode.c
om/problems/
robot-bounded
-in-circle/de
scription/

RF-
pretrain

LeetCode lc_2078 There are n houses evenly lined up on
the street, and each house is beautifully
painted. You are given a 0-indexed
integer array colors of length n, where
colors[i] represents the color of the ith
house. Return the maximum distance
between two houses with different
colors. The distance between the ith
and jth houses is abs(i - j), where abs(x)
is the absolute value of x.

the number of
houses

https://leet
code.com/pro
blems/two-fur
thest-house
s-with-diffe
rent-colors/
description/

RF-
pretrain

LeetCode lc_2016 Given a 0-indexed integer array nums
of size n, find the maximum difference
between nums[i] and nums[j] (i.e.,
nums[j] - nums[i]), such that 0 <= i < j
< n and nums[i] < nums[j].

the length of
the array

https:
//leetcode.c
om/problems/
maximum-diffe
rence-between
-increasing-e
lements/desc
ription/

RF-
pretrain

LeetCode lc_3271 Conduct hash transformation on the
given string.

the length of
the string =
length * ran-
dom.randint(2,4)

https:
//leetcode.c
om/problems/
hash-divided
-string/desc
ription/

Continue on next page...

38

https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/replace-all-s-to-avoid-consecutive-repeating-characters/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/robot-bounded-in-circle/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/two-furthest-houses-with-different-colors/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/maximum-difference-between-increasing-elements/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/
https://leetcode.com/problems/hash-divided-string/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_2529 Given an array nums sorted in
non-decreasing order, find the
maximum between the number of
positive integers and the number of
negative integers.

the length of
the array

https://leet
code.com/pro
blems/maximu
m-count-of-p
ositive-integ
er-and-negat
ive-integer/d
escription/

RF-
pretrain

LeetCode lc_2047 Given a string sentence. What is the
number of valid words?

the number of
words

https:
//leetcode.c
om/problems/
number-of-val
id-words-in-a
-sentence/de
scription/

RF-
pretrain

LeetCode lc_2828 Dtermine whether a string is an
acronym of given words

the number of
words

https://leet
code.com/pro
blems/check-i
f-a-string-i
s-an-acronym
-of-words/des
cription/

RF-
pretrain

LeetCode lc_2404 Find out the most frequent even
element in the given array.

the length of
the array

https://leet
code.com/pro
blems/most-f
requent-eve
n-element/des
cription/

RF-
pretrain

LeetCode lc_2678 Given a 0-indexed array of strings
details. Each element of details
provides information about a given
passenger compressed into a string of
length 15. The eleventh and twelfth
digits represent the ages of the person.
What is the number of the olders?

the length of
the array

https:
//leetcode.c
om/problems/
number-of-sen
ior-citizens/
description/

RF-
pretrain

LeetCode lc_674 Return the length of the longest
continuous increasing subsequence.

the length of
the array

https://leet
code.com/pro
blems/longes
t-continuou
s-increasin
g-subsequence
/description/

RF-
pretrain

LeetCode lc_605 Given an integer array flowerbed
containing 0’s and 1’s, where 0 means
empty and 1 means not empty, and an
integer n, return true if n new flowers
can be planted in the flowerbed without
violating the no-adjacent-flowers rule
and false otherwise.

the length of
the array

https://leet
code.com/pro
blems/can-pla
ce-flowers/d
escription/

Continue on next page...

39

https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/maximum-count-of-positive-integer-and-negative-integer/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/number-of-valid-words-in-a-sentence/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/check-if-a-string-is-an-acronym-of-words/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/most-frequent-even-element/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/number-of-senior-citizens/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/longest-continuous-increasing-subsequence/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/
https://leetcode.com/problems/can-place-flowers/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_290 Given a pattern and a string s, find if s
follows the same pattern. (e.g., pattern
= "abba", s = "dog cat cat dog" → true)

the number of
words in the
string

https:
//leetcode.c
om/problems/
word-pattern
/description/

RF-
pretrain

LeetCode lc_414 Given an integer array nums, return the
third distinct maximum number in this
array. If the third maximum does not
exist, return the maximum number.

the length of
the array

https:
//leetcode.c
om/problems/
third-maximum
-number/desc
ription/

RF-
pretrain

LeetCode lc_388 What’s the length of the longest
absolute path to a file in the abstracted
file system? If there is no file in the
system, return 0.

the depth of
the file system

https://leet
code.com/pro
blems/longes
t-absolute-f
ile-path/

RF-
pretrain

LeetCode lc_434 Given a string s, What’s the number of
segments in the string? A segment is
defined to be a contiguous sequence of
non-space characters.

the number of
segments

https:
//leetcode.c
om/problems/
number-of-seg
ments-in-a-s
tring/descri
ption/

RF-
pretrain

LeetCode lc_228 Give a sorted unique integer array,
return the smallest sorted list of ranges
that cover all the numbers in the array
exactly,and no extra integer being
covered. (e.g., nums = [0,1,2,4,5,7] →
["0→2","4→5","7"]

first generate
an array of
given length,
then remove
the repeated
element

https://leet
code.com/pro
blems/summar
y-ranges/desc
ription/

RF-
pretrain

LeetCode lc_448 Given an array nums of n integers
where nums is a permutation of the
numbers in the range [1, n], return an
array of all the integers in the range [1,
n] that do not appear in nums.

the length of
the array

https://leet
code.com/pro
blems/find-a
ll-numbers-d
isappeared-i
n-an-array/d
escription/

RF-
pretrain

LeetCode lc_242 Determine whether the one word can be
converted into another word through
alphabetical order adjustment

the number of
letters of the
word

https:
//leetcode.c
om/problems/
valid-anagram
/description/

RF-
pretrain

LeetCode lc_268 Given an array nums containing n
distinct numbers in the range [0, n],
return the only number in the range that
is missing from the array.

length = n + 1 https://leet
code.com/pro
blems/missin
g-number/desc
ription/

Continue on next page...

40

https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/word-pattern/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/third-maximum-number/description/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/longest-absolute-file-path/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/number-of-segments-in-a-string/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/summary-ranges/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/find-all-numbers-disappeared-in-an-array/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/valid-anagram/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/
https://leetcode.com/problems/missing-number/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_383 Given two strings `ransomNote` and
`magazine`, return true if
`ransomNote` can be constructed by
using the letters from `magazine` and
false otherwise. Each letter in magazine
can only be used once in ransomNote.

the length of
the string
`magazine`

https:
//leetcode.c
om/problems/
ransom-note/
description/

RF-
pretrain

LeetCode lc_682 You are keeping the scores for a
baseball game with strange rules. At
the beginning of the game, you start
with an empty record. You are given a
list of strings operations, where
operations[i] is the ith operation you
must apply to the record.

the number of
operations

https://leet
code.com/pro
blems/baseba
ll-game/desc
ription/

RF-
pretrain

LeetCode lc_387 Given a string s, find the first
non-repeating character in it and return
its index. If it does not exist, return -1.

the length of
the string

https:
//leetcode.c
om/problems/
first-uniqu
e-character-i
n-a-string/de
scription/

RF-
pretrain

LeetCode lc_345 Given a string s, reverse only all the
vowels in the string and return it. And
the vowels can appear in both lower
and upper cases, more than once.

the length of
the string

https://leet
code.com/pro
blems/revers
e-vowels-of-a
-string/desc
ription/

RF-
pretrain

LeetCode lc_392 Given two strings `s` and `t`, return
true if `s` is a subsequence of `t`, or
false otherwise.

the length of
string `t`

https://leet
code.com/pro
blems/is-sub
sequence/des
cription/

RF-
pretrain

LeetCode lc_705 Design a HashSet without using any
built-in hash table libraries. Given
operations, return a list of result of each
step.

the number of
operations

https://leet
code.com/pro
blems/design
-hashset/descr
iption/

RF-
pretrain

LeetCode lc_796 Given two strings s and goal, return true
if and only if s can become goal after
some number of shifts on s. A shift on s
consists of moving the leftmost
character of s to the rightmost position.

the length of
the string s

https://leet
code.com/pro
blems/rotate
-string/desc
ription/

RF-
pretrain

LeetCode lc_2562 Given an integer array, compute the
concatenation value by repeatedly
adding the concatenation of the first
and last elements (or the single
remaining element) until the array is
empty, then returning the total value.

the length of
the array

https:
//leetcode.c
om/problems/
find-the-arr
ay-concatena
tion-value/d
escription/

Continue on next page...

41

https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/ransom-note/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/baseball-game/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/first-unique-character-in-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/reverse-vowels-of-a-string/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/is-subsequence/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/design-hashset/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/rotate-string/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/
https://leetcode.com/problems/find-the-array-concatenation-value/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_1417 Given an alphanumeric string s
(containing lowercase letters and
digits), rearrange it such that no two
adjacent characters are of the same type
(no two letters or two digits in a row).
Return the reformatted string if
possible; otherwise, return an empty
string.

the length of
the string

https:
//leetcode.c
om/problems/
reformat-the
-string/desc
ription/

RF-
pretrain

LeetCode lc_520 Given a string word, return true if the
usage of capitals in it is right.

the length of
the string

https://leet
code.com/pro
blems/detect
-capital/descr
iption/

RF-
pretrain

LeetCode lc_557 Given a string s, reverse the order of
characters in each word within a
sentence while still preserving
whitespace and initial word order.

the length of
the string

https://leet
code.com/pro
blems/revers
e-words-in-a
-string-iii/d
escription/

RF-
pretrain

LeetCode lc_541 Given a string s and an integer k,
reverse the first k characters for
every 2k characters counting from the
start of the string.

the length of
the string

https://leet
code.com/pro
blems/revers
e-string-ii/
description/

RF-
pretrain

LeetCode lc_485 Given a binary array nums, return the
maximum number of consecutive 1’s in
the array.

the length of
the array

https:
//leetcode.c
om/problems/
max-consecuti
ve-ones/desc
ription/

RF-
pretrain

LeetCode lc_344 Write a function that reverses a string.
The input string is given as an array of
characters s.

the length of
the string

https://leet
code.com/pro
blems/revers
e-string/desc
ription/

RF-
pretrain

LeetCode lc_500 Given an array of strings words,
return the words that can be typed
using letters of the alphabet on only
one row of American keyboard .

the number of
words

https:
//leetcode.c
om/problems/
keyboard-row
/description/

RF-
pretrain

LeetCode lc_482 Reformat the given license key
string s by removing all dashes,
converting letters to uppercase, and
grouping the characters into segments
of length k (except possibly the first
group), separated by dashes.

the length of
the string

https:
//leetcode.c
om/problems/
license-key-f
ormatting/de
scription/

RF-
pretrain

LeetCode lc_896 An array is monotonic if it is either
monotone increasing or monotone
decreasing.Given an integer array nums,
return true if the given array is
monotonic, or false otherwise.

the length of
the array

ttps://leetco
de.com/probl
ems/monotoni
c-array/descr
iption/

Continue on next page...

42

https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/reformat-the-string/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/detect-capital/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-words-in-a-string-iii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/reverse-string-ii/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/max-consecutive-ones/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/reverse-string/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/keyboard-row/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
https://leetcode.com/problems/license-key-formatting/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/
ttps://leetcode.com/problems/monotonic-array/description/


Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

LeetCode lc_551 Given a string s representing an
attendance record for a student where
each character signifies whether the
student was absent, late, or present on
that day. Return true if the student is
eligible for an attendance award, or
false otherwise.

the length of
the string

https://leet
code.com/pro
blems/studen
t-attendanc
e-record-i/d
escription/

RF-
pretrain

LeetCode lc_1556 Given an integer n, add a dot (".") as
the thousands separator and return it in
string format.

the number is
given by ```
random.randint(
1000,
1000+
10**length)
```

https://leet
code.com/pro
blems/thousa
nd-separator
/description/

RF-
pretrain

LeetCode lc_2869 You are given an array nums of positive
integers and an integer k. In one
operation, you can remove the last
element of the array and add it to your
collection. Return the minimum
number of operations needed to collect
elements 1, 2, ..., k.

the array and
k is given by:
```
nums = ran-
dom.sample([i
for i in
range(1,
length+1)]*2,
k=int(length*1.9))
k = ran-
dom.randint(3,
length)
```

https://leet
code.com/pro
blems/minimu
m-operation
s-to-collect
-elements/de
scription/

downstream LeetCode lc_258
(Add
Digits)

Given an integer, repeatedly sum its
digits until the result is a single digit.

the number of
digits in the
integer

https:
//leetcode.c
om/problems/
add-digits/de
scription/

downstream LeetCode lc_283
(Move
Zeros)

Given a list of integers, move all zeros
to the end while preserving the relative
order of the non-zero elements.

the length of
the list

https:
//leetcode.c
om/problems/
move-zeroes/
description/

downstream LeetCode lc_125
(Valid
Palin-
drome)

Given a string s, return true if it is a
palindrome after removing all
non-alphanumeric characters and
converting it to lowercase; otherwise,
return false.

half length of
the string

https://leet
code.com/pro
blems/valid-p
alindrome/de
scription/

downstream LeetCode lc_2544
(Alter-
nate
Digit
Sum)

Given a positive integer where the most
significant digit has a positive sign, and
each subsequent digit has the opposite
sign of its adjacent digit, return the sum
of these signed digits.

the number of
digits in the
integer

https:
//leetcode.c
om/problems/
alternating-d
igit-sum/des
cription/

Continue on next page...

43

https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/student-attendance-record-i/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/thousand-separator/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/minimum-operations-to-collect-elements/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/add-digits/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/move-zeroes/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/
https://leetcode.com/problems/alternating-digit-sum/description/

Split Domain Task
Name

Description Length
Definition

Reference URL

downstream LeetCode lc_1598
(Crawler
Log
Folder)

Determine the final folder after
performing the operations in the given
list, where ../ moves up one level, ./
stays in the current folder, and x/ moves
into folder x.

the number of
operations

https://leet
code.com/pro
blems/crawle
r-log-folder/
description/

downstream LeetCode lc_3324
(String
Se-
quence)

Given a target string, return a list of all
strings that appear on the screen in
order, using the minimum key presses.
Key 1 appends "a" to the string, and
Key 2 changes the last character to its
next letter in the alphabet.

The sum of
each letter’s
ASCII code
minus 96 in
the target
string should
equal its
length. For
example:
given input
’abc’, the
length is
1+2+3=6.

https://leet
code.com/pro
blems/find-t
he-sequence-o
f-strings-app
eared-on-the
-screen/

downstream LeetCode lc_2677
(Chunk
Array)

Given array and chunk size, split the
array into subarrays of a given size.

the length of
the array

https:
//leetcode.c
om/problems/
chunk-array/d
escription/

downstream LeetCode lc_461
(Ham-
ming
Dis-
tance)

The Hamming distance between two
integers is the number of positions at
which the corresponding bits are
different. Given two integers in binary
representation, return their Hamming
distance.

The bit length
of the integers

https://leet
code.com/pro
blems/hammin
g-distance/de
scription/

downstream NUPA Get
Digit
Integer

Given a number and an integer i, return
the i-th digit.

the number of
digits in the
given number

https://arxiv.
org/abs/2411
.03766

downstream NUPA Add
Integer

Add the two given integers together. the maximum
of the number
of digits of
the two given
numbers

https://arxiv.
org/abs/2411
.03766

downstream NUPA Digit
Max
Integer

Compare two numbers digit by digit
and return the larger digit at each
position, treating any missing digits as
0.

the number of
digits in the
given number

https://arxiv.
org/abs/2411
.03766

downstream NUPA Length
Integer

Return the total length (i.e., the number
of digits) of a number.

the number of
digits in the
given number

https://arxiv.
org/abs/2411
.03766

RF-
pretrain

BBH Dyck
Lan-
guages

Determine whether a given sequence of
parentheses forms a valid, properly
nested structure according to Dyck
language rules.

the number of
bracket pairs

https://arxiv.
org/abs/2210
.09261

Continue on next page...

44

https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/crawler-log-folder/description/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/find-the-sequence-of-strings-appeared-on-the-screen/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/chunk-array/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://leetcode.com/problems/hamming-distance/description/
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2411.03766
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261

Split Domain Task
Name

Description Length
Definition

Reference URL

RF-
pretrain

BBH HyperbatonGiven a sentence with scrambled
adjectives, determine whether their
current order follows grammatical
rules.

the number of
adjectives

https://arxiv.
org/abs/2210
.09261

RF-
pretrain

BBH Navigate Follow a set of directional instructions
to determine the final position.

the number of
instructions

https://arxiv.
org/abs/2210
.09261

RF-
pretrain

BBH Object
Count-
ing

Accurately count the number of
specified objects.

the number of
given objects

https://arxiv.
org/abs/2210
.09261

RF-
pretrain

BBH Reverse
List

Given a python list, return it in the
exact opposite order.

the length of
the list

https://arxiv.
org/abs/2210
.09261

RF-
pretrain

BBH Word
Sorting

Sort a given list of words in strict
dictionary order.

the number of
words

https://arxiv.
org/abs/2210
.09261

RF-
pretrain

Symbolic
Reason-
ing

Coin
Flip

Given a series of operations, answer
whether a coin is still heads up after
people either flip or don’t flip the coin.
(e.g., "A coin is heads up. Phoebe flips
the coin. Osvaldo does not flip the coin.
Is the coin still heads up?" → "no")

the number of
people who
flip the coin

https://arxiv.
org/abs/2201
.11903

RF-
pretrain

Symbolic
Reason-
ing

Last
Letter
Con-
catena-
tion

Given a list of words, concatenate the
last letters of each word and return the
string. (e.g., "Amy Brown" → "yn")

the number of
words

https://arxiv.
org/abs/2201
.11903

45

https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We list the contributions explicitly in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

46

Justification: We primarily focus on empirical results rather than theoretical analysis. The
paper does not present formal theoretical results requiring mathematical proofs. All claims
are supported with sufficient experimental evidence.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce our methods clearly in Section 3.1, and demonstrate the process
of our data construction pipeline in Section 3.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

47

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code for reproducibility in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We show the training details in Section 4.1 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For finetuning results during downstream adaptation, we report error bars, as
shown in Figure 3 and Figure 9. For ICL results, we set the temperature to 0 and perform
greedy decoding, which is a deterministic process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

48

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information on the computer resources in Appendix D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts in Appendix B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

49

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release new LLMs. Instead, we finetune LLMs that are already
released with safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets (code, data, and models) used in this work are properly
credited to their original creators, with clear citations to their respective sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

50

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code for our introduced length generalization dataset and include
documentation alongside the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper describes the data annotation process in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Our study involved human annotators for data construction tasks. All par-
ticipants were fairly compensated, and the annotation process adhered to our institution’s
ethical guidelines.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

51

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We study the length generalization performance of LLMs and propose a
framework of training LLMs to enhance their length generalization.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

52

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methods
	Meta Rule-Following Fine-Tuning (Meta-RFFT)
	Data Construction

	Main Results
	Experimental Setup
	Meta-RFFT Enhances Task-Transferable Length Generalization
	In-Context Learning

	Analysis
	Conclusion
	Limitations
	Impact Statements
	Dataset Overview
	Data Annotations
	Rule-Following Input Examples
	Downstream Tasks Description

	Training Details
	Training Hyperparameters
	Compute Resources
	Reinforcement Learning Settings

	Additional Results
	Results of 32B Models
	Length Generalization of Long-CoT Models
	Comparison between Meta-RFFT and Instruction Following
	Training Curves
	Effects of Data Dize on RF-pretraining and Downstream Adaptation
	Effects of Number of Tasks in RF-Pretraining Stage
	Effects of RF-pretraining Tasks on Downstream Performance
	Effects of Meta-RFFT on General Model Capabilities

	Error Cases
	Error Case of DeepSeek-R1 on Addition
	Error Case of Models Trained with RL

	Dataset Construction
	Rule-following Dataset Annotation
	Synthetic Data Generation
	Natural Language Rules

	Details of All 86 Tasks

