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Abstract

Vision-language foundation models (VLMs), such as CLIP, exhibit remarkable
performance across a wide range of tasks. However, deploying these models can
be unreliable when significant distribution gaps exist between training and test
data, while fine-tuning for diverse scenarios is often costly. This creates a need
for methods that can efficiently adapt to new data at test time without expensive
retraining. Cache-based test-time adapters serve this purpose by storing repre-
sentative test samples to guide subsequent classifications. Yet, these methods
typically employ naive cache management with limited capacity, leading to severe
catastrophic forgetting when samples are inevitably dropped during updates. In
this paper, we propose Dota (DistributiOnal Test-time Adaptation), a simple yet ef-
fective method addressing this limitation. Crucially, instead of merely memorizing
individual test samples, Dota continuously estimates the underlying distribution
of the test data stream. Test-time posterior probabilities are then computed using
these dynamically estimated distributions via Bayes’ theorem for adaptation. This
distribution-centric approach enables the model to continually learn and adapt to
the deployment environment. Extensive experiments validate that Dota signifi-
cantly mitigates forgetting and achieves state-of-the-art performance compared to
existing methods. Code is available at https://github.com/skylineeeeen/DOTA.

1 Introduction

Recent advances in vision-language foundation models have shown remarkable vision understanding
capabilities across a broad range of tasks by training on web-scale image-text pairs [39, 30, 51].
Taking CLIP as an example, it can conduct zero-shot classification without the need for additional
training data using predefined prompts [39]. However, CLIP may still face challenges when handling
various specific applications during test time, especially when there is a significant distribution gap
between the training and test data [41, 25, 13]. To adapt a foundational model to diverse deployment
environments and personalized application requirements, fine-tuning is often necessary, which can be
resource-intensive in terms of time, computational effort, and training data requirements.

Test-time adaptation (TTA) methods provide an efficient solution for addressing distributional shifts
between training and testing domains [5, 6, 45]. TTA allows for the dynamic adjustment of a pre-
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trained model during the inference phase by leveraging incoming test data to refine the model’s
parameters. This adaptation process optimizes the model’s performance for the specific test distribu-
tion, eliminating the need for resource-intensive retraining. As such, TTA aligns seamlessly with
real-world applications, where models must rapidly adapt to diverse and changing environments.
There are two primary lines to achieve TTA on VLMs. Early works advocate learning prompts
during test time with the test data [41, 13]. However, these methods require significant computational
resources to optimize the learnable prompts via backpropagation and gradient descent, rendering them
unsuitable for applications demanding fast test-time inference. Therefore, more efficient methods,
cache-based methods, have been proposed recently [25, 55]. Typically, to avoid the need for training
with backpropagation, Training-free Dynamic Adapter (TDA) maintains a lightweight cache during
testing to store representative test samples, which helps guide the classification of subsequent test
samples.

Figure 1: Cache-based TTA methods store indi-
vidual test samples within a limited cache, which
often leads to underutilization of the available test
data. In contrast, the proposed method continu-
ously estimates the underlying distribution of the
test data, enabling the full exploitation of all avail-
able test samples.

While cache-based classifiers like TDA offer
significant efficiency, they are fundamentally
constrained by their finite cache capacity. These
methods typically store a limited set of ‘typi-
cal’ test samples, updating the cache by replac-
ing older entries with newer, high-confidence
ones. However, this reliance on instance-level
memorization and forced sample discarding in-
evitably leads to catastrophic forgetting. As
the model adapts to new data patterns, it loses
information about previously seen variations,
hindering the formation of a stable and com-
prehensive understanding of the evolving test
distribution. Consequently, classifiers depend-
ing solely on cached samples can be suboptimal,
and ultimately performance-limited by the cache
size [55]. As illustrated in Fig. 1, to overcome
these limitations of instance-level caching, we
introduce DistributiOnal Test-time Adaptation
(Dota). This represents a paradigm shift in test-
time adaptation. Instead of passively memoriz-
ing discrete samples in the cache with limited
size, the core motivation of Dota lies in actively
and continuously estimating the underlying sta-
tistical distribution of the incoming test data,
thereby enabling the full utilization of all avail-
able test samples.

Specifically, Dota continually estimates the distribution of test samples to adapt the test environment.
Under the mild assumption that the embedding distribution of each class follows a Gaussian dis-
tribution [19], we propose an efficient method to continually estimate the distribution of different
classes. Once the distributions of different classes are estimated, we can easily calculate the posterior
probabilities of subsequent test samples based on Bayes’ theorem and obtain a test-time classifier for
test-time adaptation. Similar to cache-based methods, this process does not require gradient back-
propagation, avoiding the complex computational overhead during testing, leading to more than 20
times faster inference speed. Moreover, unlike cache-based methods memorizing only representative
test samples, Dota can continually adapt to the test environment by estimating the distribution of test
samples. The contributions of this paper are:

• We propose a novel continual test-time learning framework which improves the performance
of pretrained foundation models in downstream tasks by learning the statistical distribution
of test data, rather than caching a limited set of individual samples.

• Within this framework, we propose a simple and effective method to enhance foundation
models by estimating distribution of different categories at test time and using Bayes’
theorem to create an adaptive classifier.

• Extensive experiments on diverse datasets validate the effectiveness of the proposed method,
demonstrating a significant improvement. The code has been released at here.
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2 Related work

Test-time adaptation (TTA) for classical classification neural networks focuses on addressing the
distribution shift between training and test data by learning from the test data. Early efforts to
improve TTA performance primarily involve adjusting batch normalization layers and designing
unsupervised objective functions [35, 44, 28, 32]. For example, TENT [44] optimizes the affine
parameters in batch normalization layers by minimizing the entropy of the prediction probability.
MEMO [53] applies variant augmentation methods to a single test sample and optimizes model
parameters by minimizing the entropy of the prediction probability. A recent advancement in test-time
adaptation with distribution shift, which introduces the concept of universal TTA to address domain
non-stationarity and temporal correlation, ensuring robust model performance across diverse scenarios
[34]. The most relevant of these traditional TTA methods to us is T3A [24], which achieves test-time
adaptation by adjusting the trained linear classifier using prototypes. Compared to T3A, which
naively stores typical test samples, we achieve continuous adaptation by estimating the distribution of
test samples.

TTA for VLMs. To enhance the performance of VLMs during testing, TPT [41] introduces adaptive
text prompts and optimizes the prompts through entropy minimization. Building on this, DiffTPT [13]
leverages pre-trained stable diffusion models to generate diverse augmented data for use in test-time
prompt tuning. However, TPT and DiffTPT rely heavily on gradient backpropagation to optimize
the prompts, making them computationally expensive and resource-intensive. TDA [25] proposes a
lightweight test-time adaption method by storing representative test samples. Building upon TDA,
Boostadapter [55] enhances the cache sample selection strategy through Regional Bootstrapping.
Compared to TDA and Boostadapter, which naively stores typical test samples, we achieve continuous
adaptation by estimating the distribution of test samples, leading to a more adaptive solution.

Distribution estimation for recognition. Distribution estimation plays a crucial role in adapting
recognition models by leveraging data’s statistical properties for dynamic updates. This approach is
particularly effective when encountering new classes or shifting data distributions [19, 48]. For exam-
ple, [3] developed an open-world recognition system that continuously learns new object categories
by evolving the nearest class mean algorithm into a nearest non-outlier variant. Similarly, Prototypical
Networks [42] utilize distribution estimation by defining class prototypes as the mean of embedded
support examples; classification then relies on metric distances, yielding strong performance in
few-shot and zero-shot settings. Further addressing dynamic data, previous method [9] proposed a
system for continual prototype evolution, facilitating online learning from non-stationary streams
via efficient memory management and a novel objective function. Recently, a training-free CLIP
adaptation method has been proposed by introducing Gaussian Discriminant Analysis [48], which
estimates class means and shared covariance from data to build an ensemble classifier integrating
zero-shot CLIP predictions. Building upon these principles, particularly from the continual learning
literature, this paper introduces Dota to enhance the test-time performance of vision-language models.

Vision-language models have demonstrated strong vision understanding capabilities benefiting from
training on large-scale datasets [39, 51, 30]. Among them, CLIP [39] is the most representative
method by maximizing the similarity between image and their corresponding text embeddings. To
further enhance performance of CLIP on downstream tasks, prompt learning-based methods have
been proposed by optimizing the prompts of the text encoder [57, 58, 2, 27, 2]. Moreover, to reduce
the computational cost associated with gradient calculations in prompt learning, efficient CLIP
adaptation methods have been introduced [16, 54, 48, 31, 50]. These methods enable downstream
task adaptation using only a small number of training samples in the embedding space. Orthogonal
to above methods, this paper focuses on continuously adapting to environments during testing by
leveraging test samples.

3 Method

3.1 Zero-Shot Classification with Prompt

Zero-shot classification. During the pre-training stage, CLIP2 trains its image and text encoders using
large-scale image-text pairs. This is achieved by maximizing the cosine similarity between the image

2Dota is also applicable to other similar models.
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and text embeddings through contrastive loss. Unlike traditional classifiers trained on closed-set
labels, CLIP leverages open-set semantic information in the image-text pairs to learn a broader range
of visual concepts. Consequently, during the test stage, CLIP can perform zero-shot classification
without additional training. Specifically, given a test sample x for K-class classification, where
x represents the image embedding obtained from the image encoder, the corresponding zero-shot
prediction probability P zs

k for class k is calculated as:

P zs
k (y = k|x) = exp(cos(x,wk)/τ)∑K

k=1 exp(cos(x,wk)/τ)
, (1)

where zs refers to zero-shot. wk is the classification weight for class k, obtained by encoding
the corresponding prompt, e.g., “a photo of {class}”, with the class token replaced by the specific
category name. τ is the learned temperature parameter in CLIP, and cos(·, ·) denotes the cosine
similarity. The above classification process can be understood as comparing the obtained image
embedding with the text prompt and selecting the most similar category as the final decision.

3.2 Distributional Test-time Adaptation

Key motivation. When CLIP is deployed across different environments, its performance often
deteriorates due to changes in the data distribution, especially when the test data significantly deviates
from the training data. TTA can effectively enable the foundational model to adapt quickly to new
environments during the test phase. Current state-of-the-art methods typically maintain a cache of
representative samples from various classes, which guide the classification of subsequent test samples
[25, 55]. However, due to the limited cache size, cache-based TTA methods face several challenges:

• Limited information storage: These methods store embeddings for only a limited number of
samples, which restricts the breadth and depth of information captured. As a result, they
may fail to adequately represent the full complexity and nuances of the test data distribution.

• Lack of deep association learning: These methods primarily rely on cached samples for
similarity matching or guidance, rather than learning or updating the model’s understanding
of the deeper, intrinsic relationships between sample features and their corresponding
semantic labels in the new test environment.

• Significant risk of test-time forgetting: Due to the above limitations, when the cache
must be updated (e.g., by replacing older samples), the model struggles to retain the
adaptive knowledge gained previously. This leads to a high risk of catastrophic forgetting,
compromising both performance and stability as new data arrives.

To address these challenges, as shown in Fig. 1, we propose distributional test-time adaptation (Dota),
which continuously estimates the evolving test sample distribution during testing. By leveraging
Bayes’ theorem to infer the posterior distribution of different classes, Dota allows for dynamic
adaptation based on an accurate understanding of the current data distribution. This distributional
estimation ensures richer, more reliable information for classification, overcoming the limitations of
cache-based methods and reducing the risk of forgetting, thus maintaining stable performance.

Classification with classical Gaussian discriminant analysis. Formally, inspired by classical
Gaussian discriminant analysis [19], we assume that the embedding distribution of each class k
follows a Gaussian distribution, i.e., P (x|y=k) = N (µk,Σk), where µk and Σk are the mean
vector and covariance matrix of class k, respectively. Using Bayes’ theorem, the posterior probability
P (y=k|x) of class k can be given by

P (y=k|x) = P (x|y=k)P (y=k)

P (x)
,

where P (x) =
∑K

k=1 P (x|y=k)P (y=k) and P (y=k) is the prior probability. In practice, we set
P (y=k) to 1/K for simplicity. Then P (y=k|x) can be obtained with

P (y= k |x) = exp(fk(x))∑K
k=1 exp(fk(x))

, (2)

where fk(x) = − 1
2 (x−µk)

TΣ−1
k (x−µk)− 1

2 log |Σk|. The discriminant function fk(x) measures
how well a sample x fits the distribution of class k. The detail can be found in the Appendix A.6. For
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Figure 2: Pipeline of Dota. During test time, a stream of test samples is evaluated with original
zero-shot classifier, and we estimate the distributions for the test samples during testing, enabling the
model to continually learn from the test samples and the zero-shot classification probabilities. As
the number of test samples increases, the estimated test sample data distribution will become more
accurate. Finally the test-time classifier can be obtained with the estimated distributions according to
Bayes’ theorem for test-time adaptation.

the k-th class with Nk training samples, the mean and covariance matrix of different classes can be
estimated as follows:

µ̂k =

∑Nk

n=1 xn

Nk
, Σ̂k =

∑Nk

n=1(xn − µ̂k)(xn − µ̂k)
T

Nk
, (3)

where µ̂k and Σ̂k represent the estimated mean and covariance matrix of the k-th class, respectively.
xn denotes the input embeddings. However, there are two problems with the estimation of the mean
and covariance in Eq. 3 that make it unsuitable for test-time distribution estimation. First, during
testing, class labels are not available to compute the mean and covariance for class k. Second, during
testing, it is impossible to access all test samples at once for distribution estimation, as the test
samples are provided in the form of a data stream. We will address these two issues one by one below.

Parameter estimation with zero-shot predictive probability. When conducting test-time distribu-
tion estimation, one main challenge is that we cannot access to the ground-truth labels for the N test
samples. Therefore, we try to use the zero-shot predictive probability to estimate the distribution [19].
To this end we introduce the Prop. 3.1. The proof can be found in the appendix A.1.
Proposition 3.1 (Parameter estimation with zero-shot predictive probability using the Expectation–
Maximization (EM) algorithm). Let {P zs

k (y= k | xn)}Kk=1 be the zero-shot prediction probabilities
for n-th test sample. The means {µ̂k}Kk=1 and covariances {Σ̂k}Kk=1 of the distribution can be
estimated as a single iteration of the EM algorithm, where the expectation step computes the zero-shot
prediction and the maximization step updates the parameters by maximizing the likelihood. The
estimates are:

µ̂k =

∑N
n=1 P

zs
k (y= k | xn)xn∑N

n=1 P
zs
k (y= k | xn)

, Σ̂k =

∑N
n=1 P

zs
k (y= k | xn)(xn − µ̂k)(xn − µ̂k)

T∑N
n=1 P

zs
k (y= k | xn)

. (4)

Prop. 3.1 shows that the estimation process with zero-shot predictive probability. The estimation
can also be intuitively understood as reweighting, where the zero-shot probabilities are used as
weights to adjust the contributions of different samples, thereby mitigating the impact of the potential
inaccuracies in the zero-shot prediction.

Online test-time distribution estimation. When estimating data distribution at test time, one another
challenge is that we evaluate the test samples sequentially in a streaming manner instead of accessing
all samples simultaneously. This necessitates a strategy to appropriately adjust the estimation method
in Eq. 4 through effective initialization, and then allowing the parameters to be updated quickly as
new test samples arrive. To achieve this goal, Dota maintains the distribution information of different
classes (i.e., mean and covariance matrix) during testing, and updates its distribution information
based on its representation information after obtaining new samples. Initialization of {µ̂k, Σ̂k}Kk=1.
We can initialize the estimated mean of different classes in the following way:

µ̂0
k = ω1 and Σ̂

0

k = σ2I, (5)
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where ω and σ2 is a hyperparameter that determines the initial mean and variance, I is the identity
matrix. Update of {µ̂k, Σ̂k}Kk=1. We employ the update form described in [8], which is capable of
estimating Gaussian distribution parameters in an online setting. Theoretically, for any sequence, the
average regret of the update form converges to zero in the limit. Specifically, given a batch of test
samples at step t, the updated µ̂t

k, Σ̂
t

k can be computed based on the µ̂t−1
k , Σ̂

t−1

k as follows:

µ̂t
k =

ct−1
k µ̂t−1

k +
∑

P zs
k (y = k | xn)xn

ct−1
k +

∑
P zs
k (y = k | xn)

, Σ̂
t

k =
ct−1
k Σ̂

t−1

k +
∑

P zs
k (y = k | xn)S

t−1
k

ct−1
k +

∑
P zs
k (y = k | xn)

, (6)

where St−1
k = (xn − µ̂t−1

k )(xn − µ̂t−1
k )T , ct−1

k represents the effective sample size, defined by the
cumulative confidences of the observed samples of class k at step t− 1. Specifically, we set c0k = 0

and ctk is updated as ctk = ct−1
k +

∑
P zs
k (y=k|xn). When we obtain the estimated µ̂, Σ̂, we can use

Eq. 2 to calculate the test-time adapted posterior probability.

In practice, Eq. 6 is a generalized vector update version that works effectively with different test batch
sizes. For consistency with comparison methods, we set the batch size to 1 in our experiments. To
reduce computational complexity when inverting the covariance matrix Σ̂k, similar to the approach in
[1, 14], we approximate the covariance by averaging across all classes, reducing the number of matrix
inversions from K to 1, thereby improving efficiency and reducing the number of parameter estimates.
Additionally, we apply shrinkage regularization to the precision matrix to enhance the stability of the
inversion process as follows: Λ̂ = [(1− ϵ)Σ̂+ ϵI]−1, where ϵ = 10−4 is the shrinkage parameter.
The term ϵI ensures that the eigenvalues of the covariance matrix are well-conditioned, maintaining
the desired properties such as positive definiteness and rank stability.

3.3 Adaptive fusion of zero-shot and test-time classifier

As the number of test samples increases, the reliability of the estimated test sample distribution
improves [8]. However, when the number of test samples is insufficient, the estimated distribution
may be unreliable. To address this, we introduce a dynamic zero-shot classification and test-time
result fusion approach, allowing the model to rely more on zero-shot classification during stages
where the sample size for distribution estimation is insufficient. Formally, the final fusion probability
is defined as follows:

Pk(y = k|x) = exp(cos(x,wk)/τ + λfk(x))∑K
k=1[exp(cos(x,wk)/τ + λfk(x))]

, (7)

where λ = min(ρc, η). Here, c represents the number of test samples, and ρ and η are hyperpa-
rameters that control the weight of the test-time classifier logits. The value of λ increases with the
number of test samples when this number is insufficient, gradually approaching the maximum value η.
This approach encourages the model to rely on the zero-shot classifier results when the test samples
are insufficient to estimate the distribution, mitigating the potential negative impact of the test-time
classifier. The whole pseudo code is shown in Alg. 1.

The additive fusion in Eq. 7 is a heuristic yet effective strategy designed to balance the robust
prior knowledge from the pre-trained model with dynamic adaptation to test-time shifts. This
logit-level combination is computationally efficient and has been widely adopted as a common and
effective practice in the TTA literature for leveraging pre-trained knowledge while incorporating
new test-time information[25, 52]. While this approach is largely heuristic, it dynamically ensures
minimal interference in early stages while effectively refining predictions as Dota’s per-class modeling
becomes more accurate, proving highly effective in practice.

4 Experiments

Benchmarks. Consistent with prior works [41, 13, 25], we conduct our main experiments on
cross-domain generalization and natural distribution shifts (NDS) scenarios. In the cross-domain
generalization scenario, we evaluate the performance of the model across 10 diverse image classifica-
tion datasets, each representing a distinct domain with different classes: Aircraft [33], Caltech101
[12], Cars [29], DTD [7], EuroSAT [20], Flower102 [36], Food101 [4], Pets [37], SUN397 [49],
and UCF101 [43]. This benchmark provides a comprehensive evaluation of the adaptability of the
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Algorithm 1: The pseudocode of Dota.

Input: The embedding of N test samples {xn}Nn=1 in an streaming way, zero-shot classification
weights [w1, · · · ,wK ];
Initializing the distribution of different class;
for each test sample xi do

Obtain the zero-shot probability with Eq. 1;
Update the distribution of different class with Eq. 6;
Obtain the test-time classification probability with Eq. 2;
Obtain the final classification result with Eq. 7.

end for

Table 1: Top-1 accuracy (%) under the cross-domain generalization scenario. “PE” represents the use
of prompt enhancement[38].
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Zero-Shot 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59

TPT[41] 24.78 94.16 66.87 47.75 42.44 68.98 84.67 87.79 65.50 68.04 65.10
DiffTPT[13] 25.60 92.49 67.01 47.00 43.13 70.10 87.23 88.22 65.74 62.67 65.47
TDA[25] 23.91 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 67.53
BoostAdapter[55] 27.45 94.77 69.30 45.69 61.22 71.66 87.17 89.51 68.09 71.93 68.68
HisTPT[52] 26.90 94.50 69.20 48.90 49.70 71.20 89.30 89.10 67.20 70.10 67.60
ZERO[11] 25.21 93.66 68.04 46.12 34.33 67.68 86.53 87.75 65.03 67.77 64.21
Dota 26.25 94.16 69.56 47.64 62.78 75.23 87.08 92.01 69.80 72.54 69.71

DMN w/PE [56] 30.03 95.38 67.96 55.85 59.43 74.49 85.08 92.04 70.18 72.51 70.30
Dota w/ PE 29.82 94.85 69.06 55.97 58.35 77.06 87.07 92.40 70.97 74.86 71.04

model during test time across various class spaces. For the natural distribution shifts scenario, we
utilize multiple datasets including ImageNet [10], ImageNet-A [22], ImageNet-R [21], ImageNet-S
[46] and ImageNet-V2 [40], which serve as measures of the robustness of our approach. We also
evaluate Dota using medical image datasets and a pathology-pretrained foundation model [23], where
the labels were converted into descriptive sentences for evaluation (e.g., transforming “tumor” into
“H&E image of a tumor”). The evaluation includes three datasets: the Kather Colon dataset [26],
comprising nine different tissue types; the PanNuke dataset [15], focusing on benign versus malignant
classifications; and the WSSS4LUAD dataset [18], which distinguishes between tumor and normal
samples.

Comparison Method. We compare the proposed method with the following approaches: (1) CLIP’s
zero-shot method, which utilizes an ensemble of 80 prompts [39]; (2) Prompt-based training methods,
including TPT [41], DiffTPT [13], and Historical Prompt Tuning [52]. These methods focus on
optimizing input prompts rather than modifying the model’s parameters. TPT and DiffTPT adapt the
prompt at test time, with DiffTPT also introducing more diverse test sample augmentation using a
diffusion model. Historical Prompt Tuning uses prior task knowledge to refine prompts for better
task adaptation. (3) Efficient test-time adaptation methods, which do not require backpropagation
and rely on a cache of representative samples for adaptation, as demonstrated in [11, 25, 56, 55]. The
results for the above methods are obtained from the original papers.

Table 2: Performance under the NDS scenario.

Method ImageNet ImageNet-A ImageNet-R ImageNet-S Average

Zero-Shot 68.34 49.89 77.65 48.24 61.03
TPT [41] 68.98 54.77 77.06 47.94 62.19
DiffTPT [13] 70.30 55.68 75.00 46.80 61.95
TDA[25] 69.51 60.11 80.24 50.54 65.10
ZERO [11] 69.31 59.61 77.22 48.40 63.64
Dota 70.69 61.50 81.21 51.84 66.31

Table 3: Performance comparison
across datasets on PLIP model.

Dataset Zero-Shot TDA CTA
Kather 45.60 49.35 61.92

PanNuke 69.49 69.70 74.68
WSSS4LUAD 70.31 71.96 75.07

average 61.80 63.67 70.56
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4.1 Comparison with state-of-the-arts methods

Results under the cross-domain generalization scenario. We first compare Dota with state-of-the-
art methods under the cross-domain generalization scenario across 10 diverse image classification
datasets, each from a distinct domain with different classes. Tab. 1 presents the experimental results.
The proposed method achieved the best performance on most datasets and the top two performance
on all datasets. For example, when using the ViT-B/16 backbone network, the average performance
was improved by 1.03%.

Results under the natural distribution shifts scenario. We then compare Dota with state-of-the-art
methods in the context of natural distribution shifts. Tab. 2 presents the experimental results, revealing
the following key observation. Leveraging distribution modeling of the representation of test data,
Dota achieves superior performance without requiring gradient backpropagation. For instance, using
the CLIP-ViT-B/16 backbone network, Dota outperforms the second-best method by an average of
1.21%, achieving state-of-the-art results across all datasets.

Performance validation on pathological image classification with PLIP. To validate the per-
formance of the proposed method across other pretrained models and application scenarios, we
conducted experiments using the PLIP model in the context of pathological image classification.
The results are presented in Tab. 3. As shown in the table, the proposed method achieved superior
performance, with an average improvement of 6.89% over TDA.

Table 4: Comparisons of our Dota with
other methods in terms of efficiency (Test-
ing Time) and effectiveness (Accuracy).

Method Testing Time Accuracy Gain

Zero-Shot 11.82min 68.34 0

TPT 447min 68.98 +0.64
DiffTPT 1346min 70.30 +1.96
TDA 22min 69.51 +1.17
Dota (Ours) 22min 70.69 +2.35

Table 5: Comparisons of our Dota with other
methods on the ImageNetV2 dataset, where each
class contains only 10 samples.

Method ViT-B/16 ResNet-50

Zero-Shot 61.88 52.91

TDA 64.67 55.54
Dota (All test samples) 64.50 55.19
Dota (last 50% test samples ) 65.20 55.72

Inference time comparison. To illustrate the efficiency of the proposed method, we conduct
evaluation about the inference time using the ViT-B/16 backbone on the ImageNet [10] dataset. The
experimental results are shown in Tab. 4. From the table, we can see that the proposed method is faster
than the methods that require gradient backpropagation. For example, Dota is 24 times faster than
TPT, and 61 times faster than DiffTPT. Therefore, test-time adaptation methods that require gradient
backpropagation may not be applicable during deployment due to the performance limitations of
the inference device. At the same time, compared with TDA, the speed of the proposed method is
comparable, but the performance is higher.

Failure case study. While our approach highlights the advantages of continuously estimating the
distribution of test data and adapting to it, it does not consistently outperform TDA across all
datasets, particularly those with a limited number of samples. For instance, as shown in Tab. 5, on the
ImagenetV2 [40], which contains only 10 samples per class, the performance of Dota is slightly lower
than TDA. This is likely because the limited number of samples per class is insufficient to accurately
estimate the data distribution online. However, its performance shows a marked improvement on the
latter 50% of the test samples. This observation suggests that the proposed model has the potential
for further enhancement as the number of available test samples increases.

Table 6: Performance of Dota and TDA, comparing overall accuracy and the last 50% of test samples
to show continuous adaptability. The results show that the performance of our method is continual
improving. However, TDA is different, and its performance has declined on several datasets.

Method Aircraft Caltech101 Cars DTD Flower102 Food101 Pets SUN397 UCF101

TDA (all test samples) 23.91 94.24 67.28 47.40 71.42 86.14 88.63 67.62 70.66
TDA (last 50% test samples) 26.57 93.59 66.95 46.22 71.75 86.02 89.26 67.86 72.20

Dota (All test samples) 26.25 94.16 69.56 47.64 75.23 87.08 92.01 69.80 72.54
Dota (last 50% test samples) 27.65 94.65 69.98 50.47 76.46 87.12 93.30 70.69 73.73
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4.2 Ablation studies and further analysis

Figure 3: Improvement of different methods
in model performance as the number of en-
countered test samples increases.

Analysis of continuous learning ability and test-
time forgetting of TDA. We conducted this experi-
ment to validate our research motivation and demon-
strate experimentally that Dota possesses the capabil-
ity for continuous learning. During testing on the Im-
ageNet dataset, we recorded the performance of the
most recent 5,000 test samples and compared it with
the original zero-shot classifier’s performance. We
analyzed the relationship between the improvement
in model performance and the number of test sam-
ples processed. The results are illustrated in Fig. 3.
From the experimental results, it can be shown that
the proposed method progressively enhances model
performance as the number of test samples increases.
In contrast, TDA shows an initial improvement that
subsequently declines, indicating its inability to con-
tinuously learn from the test data stream. Further analysis on additional datasets, shown in Tab. 6,
highlights the performance on the last 50% of test samples as well as all samples. The results clearly
demonstrate that the performance of the last 50% of test samples for Dota is significantly higher
than the overall performance. This improvement can be attributed to the increasing reliability of the
estimated distribution as more test samples are observed. However, TDA exhibits a different pattern,
with its performance declining on several datasets.

Table 7: Ablation study to compare the performance of Dota with two variants: (1) rely solely on
high-confidence samples and their predictive labels for estimating the distribution; (2) using only the
mean, without updating the covariance matrix in the estimation of the Gaussian distribution.

Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average

Dota 26.25 94.16 69.56 47.64 62.78 75.23 87.08 92.01 69.80 72.54 69.71

high-confidence samples only 24.63 94.12 67.11 46.34 53.28 72.07 86.47 90.68 68.24 69.28 67.22
-1.62 -0.04 -2.45 -1.30 -9.50 -3.16 -0.61 -1.33 -1.56 -3.26 -2.49

w/o covariance 25.29 94.16 67.47 45.62 55.06 71.34 86.44 90.57 67.88 69.34 67.32
-0.96 0.00 -2.09 -2.02 -7.72 -3.89 -0.64 -1.44 -1.92 -3.20 -2.39

The Importance of distribution estimation using predictive probabilities of all test samples
in an EM framework. We compared the performance of the Dota with a simplified version that
only uses high-confidence samples and their corresponding predictive labels for estimating the
distribution. The experimental results are shown in Tab. 7. The experimental results demonstrate that
updating the data distribution using the proposed zero-shot predictive probabilities achieves better
performance compared to using pseudo-labels from only high-confidence samples. For instance,
overall performance sees a decline of approximately 2.49% when relying solely on high-confidence
pseudo-label.

Table 8: Hyperparameters analysis on the σ2

and (ρ, η) combinations.
σ2 0.0001 0.001 0.002 0.004 0.008 0.02

Acc 70.72 70.72 70.69 70.70 70.60 70.42

η\ρ 0.005 0.01 0.02 0.03

0.2 70.69 70.66 70.59 70.54
0.3 70.64 70.55 70.36 70.28
0.4 70.64 70.51 70.24 70.13
0.5 70.64 70.48 70.15 70.00

The necessity of distribution estimation. We com-
pared the performance of the Dota with a simplified
version that uses only the mean, excluding the es-
timation of the Gaussian distribution by removing
the updates to the covariance matrices. This experi-
ment aimed to understand the necessity of continual
distribution estimation in enhancing model accuracy.
The experimental results are shown in Tab. 7. The
fifth row in the table presents the accuracy reduc-
tions across different datasets when the covariance
matrix is not updated. The results indicate a consis-
tent decrease in accuracy across all datasets, with a
particularly notable drop of 7.72% on the EuroSAT
dataset. These findings highlight the importance of continual distribution estimation.

Hyperparameters analysis. To validate the sensitivity of our model to hyperparameters, we conduct
systematic experiments and analyses. First, we evaluate the hyperparameter σ2 while keeping other
fixed. The results showed minimal impact on accuracy, with performance ranging from 70.42 to 70.72.
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Next, we test different ρ and η combinations, observing stable performance across combinations.
For instance, accuracy ranged from 70.69 to 70.00 as ρ and η varied. Another hyperparameter ω we
consistently set to 0.001. Notably, all hyperparameter combinations show that the proposed method
outperforms the original zero-shot classifier, indicating that TTA can usually significantly enhance
performance even without a validation set for hyperparameter tuning.

The necessity of adaptive fusion of zero-shot and test-time classifier. We conduct ablation study to
show that adaptive fusion of zero-shot and test-time classifier is necessary. The specific experimental
results are shown on the Tab. 8. It can be observed that as ρ increases (indicating the diminishing
effect of dynamic fusion), the performance of Dota consistently decreases.

5 Conclusion and Limitations

In this paper, we proposed DistributiOnal Test-time Adaptation (Dota), a method that overcomes the
limitations of cache-based test-time adaptation by continuously estimating the underlying distribution
of test data. Unlike traditional methods, which are constrained by fixed cache sizes and suffer
from catastrophic forgetting, Dota dynamically updates class distributions, leading to more efficient
and adaptive test-time inference. Our experiments show that Dota significantly reduces forgetting,
improves performance, and offers over 20 times faster inference compared to test-time prompt
training methods. This approach provides an effective solution for deploying vision-language models
in dynamic environments, offering a scalable and computationally efficient alternative to traditional
adaptation techniques.

This method has three main limitations that suggest directions for future work. First, its single
Gaussian distribution assumption restricts its ability to model complex data, which could be addressed
by exploring more flexible models. Second, the assumption of uniform class priors is inconsistent
with real-world class imbalances and could be improved with an adaptive prior estimation mechanism.
Finally, the heuristic fusion strategy could be replaced by a more principled approach that dynamically
adjusts weights based on real-time sample uncertainty.
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A Appendix

A.1 Proof of Proposition 3.1

The EM algorithm is an iterative method used for finding maximum likelihood estimates of parameters
in statistical models with latent (unobserved) variables. It consists of two main steps:

(1) Expectation Step (E-step): Compute the expected value of the log-likelihood function, with
respect to the current estimate of the distribution of the latent variables.

(2) Maximization Step (M-step): Maximize this expected log-likelihood to update the parameter
estimates.

In the context of Gaussian Discriminant Analysis (GDA) for classification, the latent variables
correspond to the true class labels of the data points, which are unobserved during testing.
Assumption A.1 (Class-Conditional Distributions). For each class k ∈ {1, 2, . . . ,K}, the data
embedding x follows a Gaussian distribution:

P (x | y = k) = N (µk,Σk)

where µk and Σk are the mean vector and covariance matrix of class k, respectively.
Assumption A.2 (Prior Probabilities). The prior probability for each class is uniform: P (y = k) =
1
K .

The objective is how to estimate the parameters {µk,Σk}Kk=1 using the EM algorithm, leveraging
the zero-shot predictive probabilities P zs

k (y = k | xn) as part of the expectation step.

E-Step: Compute Expected Log-Likelihood. In the E-step, we compute the expectation of the
log-likelihood with respect to the posterior distribution of the latent variables given the current
parameter estimates. Given the zero-shot predictive probabilities P zs

k (y = k | xn), we treat them as
the responsibilities (i.e., the posterior probabilities) in the E-step:

πnk = P zs
k (y = k | xn)

The expected log-likelihood Q is then:

Q({µk,Σk} | current estimates) =
N∑

n=1

K∑
k=1

πnk

[
logN (xn | µk,Σk) + log

1

K

]
M-Step: Maximize the Expected Log-Likelihood. In the M-step, we maximize Q with respect to
{µk,Σk}Kk=1. Maximizing with Respect to µk. To find the optimal µk, take the derivative of Q
with respect to µk and set it to zero. First, expand the Gaussian log-probability:

logN (xn | µk,Σk) = −1

2
(xn − µk)

⊤Σ−1
k (xn − µk)−

1

2
log |Σk| −

d

2
log(2π)

where d is the dimensionality of xn. Focusing on terms involving µk:

Qµ = −1

2

N∑
n=1

πnk(xn − µk)
⊤Σ−1

k (xn − µk)

Take the derivative with respect to µk and set to zero:

∂Qµ

∂µk

=

N∑
n=1

πnkΣ
−1
k (xn − µk) = 0

Solving for µk:
N∑

n=1

πnkxn =

(
N∑

n=1

πnk

)
µk

µk =

∑N
n=1 πnkxn∑N
n=1 πnk
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This corresponds directly to the provided update formula for µ̂k:

µ̂k =

∑N
n=1 P

zs
k (y = k | xn)xn∑N

n=1 P
zs
k (y = k | xn)

Maximizing with Respect to Σk. Similarly, to find the optimal Σk, consider the terms in Q involving
Σk:

QΣ = −1

2

N∑
n=1

πnk

[
(xn − µk)

⊤Σ−1
k (xn − µk) + log |Σk|

]
Take the derivative with respect to Σ−1

k (using matrix derivative identities) and set to zero:

∂QΣ

∂Σ−1
k

=
1

2

N∑
n=1

πnk

[
(xn − µk)(xn − µk)

⊤ −Σk

]
= 0

Solving for Σk:

Σk =

∑N
n=1 πnk(xn − µk)(xn − µk)

⊤∑N
n=1 πnk

This aligns with the provided update formula for Σ̂k:

Σ̂k =

∑N
n=1 P

zs
k (y = k | xn)(xn − µ̂k)(xn − µ̂k)

⊤∑N
n=1 P

zs
k (y = k | xn)

Finally, the provided update equation is:

µ̂k =

∑N
n=1 P

zs
k (y = k | xn)xn∑N

n=1 P
zs
k (y = k | xn)

, Σ̂k =

∑N
n=1 P

zs
k (y = k | xn)(xn − µ̂k)(xn − µ̂k)

⊤∑N
n=1 P

zs
k (y = k | xn)

are precisely the M-step updates obtained by maximizing the expected log-likelihood in the EM
algorithm, where the E-step uses the zero-shot predictive probabilities as responsibilities. This
demonstrates that the parameter estimation process described is equivalent to performing a single
EM iteration. This single EM iteration leverages the zero-shot predictions to adjust the Gaussian
parameters, effectively “reweighting" the contributions of different samples based on their inferred
class probabilities.

A.2 Justification for the Gaussian Assumption

Our assumption that the embedding distribution of each class k follows a Gaussian distribution, i.e.,
P (x|y = k) = N (µk,Σk), is grounded in both theoretical principles and empirical evidence.

• Theoretical support: The Central Limit Theorem (CLT) provides a general justification.
A high-dimensional embedding can be viewed as an aggregation of numerous lower- and
mid-level features. The CLT posits that the sum of many weakly correlated random variables
will tend toward a normal distribution, making it reasonable to expect that the composite
feature for a single class will approach a multivariate Gaussian distribution.

• Empirical validation: Our own ablation study validates the importance of this assumption;
omitting covariance updates, which relies on the Gaussian model, significantly degrades
performance (e.g., a 7.72% drop on EuroSAT), confirming the practical utility of Gaussian
modeling.

A.3 Analysis of Catastrophic Forgetting

A key motivation for our work is to mitigate the catastrophic forgetting inherent in cache-based
methods like TDA. In the context of TTA, forgetting manifests at a “sample-level”s: due to a fixed-size
cache, adapting to new samples necessitates discarding information from older ones. To rigorously
validate this issue, we conducted two targeted experiments. The core idea is to have the model, after
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a period of continuous adaptation, revisit and re-evaluate its performance on historical test samples.
Our experiments revealed two levels of forgetting.

Forgetting without Significant Distribution Change. To assess this phenomenon, we designed
a two-stage experiment. This process first involves adapting a model on ImageNet and recording
its performance (Stage 1), after which we freeze the model’s parameters and re-evaluate it on the
early 25,000 test samples in the dataset (Stage 2). We hypothesize that if no forgetting occurs, this
initial adaptation stage should directly lead to an increase in the model’s performance. Conversely, a
performance decrease between stage 1 and stage 2 would suggest that the model has experienced
forgetting. Experimental results show that TDA suffers from obvious performance degradation, while
our method does not.

Table 9: Performance comparison in a two-stage experiment.

Samples Seen 10000 20000 25000

TDA Stage 1 0.42 0.71 0.76
TDA Stage 2 (Frozen) 0.17 0.57 0.29

DOTA Stage 1 0.58 1.16 1.25
DOTA Stage 2 (Frozen) 2.34 2.30 2.25

Domain-Level Forgetting. We challenged the model by adapting it first to an original domain
(ImageNet), then to a new, shifted domain (ImageNet-C), and finally re-evaluating its performance on
the original domain. TDA’s performance failed to improve upon returning to ImageNet, indicating it
had forgotten the original domain’s features. DOTA, however, showed improvement, demonstrating
it retained this knowledge.

Table 10: Domain-level forgetting experiment.

Method ImageNet ImageNet-C brightness ImageNet (Frozen model)

Zero-Shot 68.34 56.98 68.34
TDA 69.55 58.22 69.35
DOTA 70.76 60.64 70.93

We reinterpreted Fig. 3 and added additional experiments. We found that catastrophic forgetting
degrades a model’s generalization capabilities by eroding previously learned information. More
strikingly, we found that under certain conditions, continued adaptation is actively counterproductive,
yielding worse results than if adaption had stopped. This is because as we continue to adapt, we forget
more than we learn. The Tab. 11 illustrates this clearly. The standard TDA model’s performance
peaked after 20,000 samples and then degraded. A model whose training was frozen at that point
(TDA frozen) consistently outperformed the continuously trained model thereafter. Our proposed
method, DOTA, effectively mitigates this degradation and delivers robustly superior performance.

Table 11: Performance degradation during continuous adaptation.

Samples Seen 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k Ave

TDA 0.14 0.70 0.76 1.22 0.96 0.98 1.02 0.68 0.46 0.24 0.72
TDA (frozen after 20k) 0.14 0.70 0.76 1.22 1.00 1.54 1.04 0.82 0.66 0.68 0.86
DOTA -0.02 1.18 1.48 1.98 1.64 2.84 2.74 2.26 2.06 2.84 1.90

A.4 Results across multiple data ordering

We conducted experiments on five test data in different ordering on multiple datasets. The experimen-
tal results are shown in the Tab. 12. From the experimental results, we can see that the order of test
data has little effect on the prediction performance.

Table 12: Experimental results across multiple datasets and test data orderings.

Dataset Method\Data ordering 1 2 3 4 5 Average

ImageNet Dota 70.54 70.66 70.72 70.67 70.63 70.64
eurosat Dota 62.74 62.56 63.01 62.46 63.28 62.81
OxfordPets Dota 92.04 91.93 92.29 92.04 92.12 92.08
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A.5 Performance on non-i.i.d. data streams

We conducted additional experiments to evaluate the model’s performance under non-i.i.d. data
distribution during testing, using the ImageNet dataset as a benchmark. By employing a Dirichlet
distribution, we simulated varying degrees of non-i.i.d. data streams, adjusting the concentration
parameter and dividing the dataset into 5 and 10 time slices for analysis. The details of the experiments
are shown as follows:

Time Slices: We divided the ImageNet dataset into 5 and 10 time slices, where each slice contains
varying numbers of samples and class distributions.

Concentration Parameter ([α]K ): The concentration parameter of the Dirichlet distribution controls
the uniformity of class distributions across slices. Smaller α values (e.g., 0.1) create highly uneven
distributions, while larger values (e.g., 0.5 and 1) result in more uniform distributions.

Evaluation Setting: Since the sizes of sub-datasets for each time slice are unequal, the final average
accuracy is a weighted average based on the number of samples in each slice. The experimental
results are summarized below.

Table 13: Performance on non-i.i.d. data streams (5 slices).

α Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Average

0.1 68.18 70.06 71.60 71.09 70.91 70.41
0.5 69.55 70.78 69.43 71.95 70.92 70.58
1 69.41 71.64 71.05 70.01 71.81 70.83

Table 14: Performance on non-i.i.d. data streams (10 slices).

α Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice 9 Slice 10 Average

0.1 69.99 69.31 67.34 70.23 71.49 68.8 73.13 70.35 69.89 72.39 70.39
0.5 68.74 69.32 72.17 71.27 69.97 69.8 70.3 70.78 72.48 70.78 70.61
1 67.33 70.29 70.92 68.43 69.85 71.14 72.03 72.52 71.29 71.66 70.68

From the experimental results, we can see that the model shows strong robustness to non-i.i.d. data
streams, with only minimal accuracy decline under small α (e.g., α = 0.1).

A.6 More details and explanation about the fk(x) in Eq. 2.

The function fk(x), often referred to as the discriminant function, measures how well a data point x
fits the distribution of class k. It is derived from Gaussian Discriminant Analysis and consists of two
main components. The first component is the Mahalanobis distance, − 1

2 (x − µk)
TΣ−1

k (x − µk),
which calculates the squared distance between x and the class mean µk, scaled by the inverse
of the covariance matrix Σk. This term captures the similarity of x to the center of the class,
considering feature correlations. The second component is the normalization term, − 1

2 log |Σk|,
which accounts for the determinant of the covariance matrix Σk and reflects the spread (or volume)
of the Gaussian distribution for class k. This ensures that classes with larger variances are normalized
appropriately. Intuitively, a larger value of fk(x) indicates a higher likelihood that x belongs to class
k. In classification, fk(x) is used within the softmax function to compute the posterior probability
P (y = k | x), which determines the most likely class for x:

P (y = k | x) = exp(fk(x))∑K
k=1 exp(fk(x))

.

A.7 CLIP’s Superior Calibration Performance

When estimating the distribution, we use zero-shot probabilities, which we argue here to be relatively
well-calibrated. Specifically, we provide comparative data on the Expected Calibration Error (ECE)
metric to substantiate CLIP’s superior calibration performance. We draw on data from [47] and [17]
to present the following comparative table of ECE metrics on the ImageNet dataset for different
models.
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Table 15: Datasets details.

Dataset Classes Validation Size Test Size Task

ImageNet 1,000 N/A 50,000 Classification
ImageNet-V2 1,000 N/A 10,000 Generalization
ImageNet-S 1,000 N/A 50,000 Generalization
ImageNet-A 200 N/A 7,500 Generalization
ImageNet-R 200 N/A 30,000 Generalization

Aircraft 100 3,333 3,333 Aircraft recognition
Caltech101 100 1,649 2,465 Object recognition
Cars 196 1,635 8,041 Car recognition
DTD 47 1,128 1,692 Texture classification
EuroSAT 10 5,400 8,100 Remote sensing classification
Flowers102 102 1,633 2,463 Flower recognition
Food101 101 20,200 30,300 Food classification
Pets 37 736 3,669 Pet classification
SUN397 397 3,970 19,850 Scene recognition
UCF101 101 1,898 3,783 Action recognition

Kather 2 10,718 32,154 Colon classification
PanNuke 9 623 1,888 Tissue classification
WSSS4LUAD 2 1,009 3,028 Tissue classification

Table 16: Comparison of Expected Calibration Error (ECE) on the ImageNet dataset. Lower values
indicate better calibration. Note that CLIP achieves the lowest ECE without post-hoc calibration
methods like Temperature Scaling (TS) or Vector Scaling (VS).

Method DenseNet 161 DenseNet 161+TS DenseNet 161+VS ResNet 152 ResNet 152+TS ResNet 152+VS CLIP
ECE 6.28% 1.99% 2.24% 5.48% 1.86% 2.23% 1.51%

In the table, “TS” refers to Temperature Scaling, and “VS” refers to Vector Scaling. These are
calibration strategies applied to DenseNet and ResNet to reduce Expected Calibration Error (ECE),
whereas CLIP adopts no such strategies. Experimental data were obtained on the ImageNet dataset.

The table demonstrates that CLIP’s ECE is significantly lower than that of DenseNet and ResNet.
Even after applying scaling strategies to reduce ECE for the baseline models, CLIP’s ECE remains
lower, confirming its superior calibration performance.

A.8 Statistical significance for results

To evaluate the stability and robustness of our proposed method, Dota, we conducted experiments
across all datasets using five different random seeds. The aggregated results are presented in
Tab. 17, Tab. 18, and Tab. 19, which detail the mean accuracy, standard deviation (stddev), and 95%
confidence intervals. As shown, Dota exhibits highly consistent performance. This analysis confirms
the robustness and reliability of our findings.

Table 17: Statistical analysis for cross-domain generalization results.
Dataset Aircraft Caltech101 Cars DTD EuroSAT Flowers Food101 Pets Sun397 UCF101 Average
Dota (seed=1) 26.25 94.16 69.56 47.64 62.78 75.23 87.08 92.01 69.87 72.54 69.71
Dota (mean) 26.18 94.59 69.57 47.88 62.71 75.32 87.06 91.91 69.82 72.69 69.77
stddev 0.26 0.29 0.17 0.36 0.28 0.21 0.06 0.28 0.07 0.21 0.22
confidence interval [25.86, 26.51] [94.22, 94.96] [69.35, 69.78] [47.44, 48.33] [62.37, 63.06] [75.06, 75.58] [86.99, 87.13] [91.56, 92.26] [69.73, 69.91] [72.43, 72.94] [69.50, 70.05]

A.9 Implementation details

All the models in our experiments are built upon the pre-trained CLIP model [39] that consists of
an image encoder and a text encoder. Test-time adaptation is set for single-image scenarios, using
a batch size of 1. For natural distribution shifts scenario, we tune our hyperparameters using the
validation set. For the cross-domain generalization scenario, we perform hyperparameter search using
the corresponding validation sets. We adjust σ2 within [0.001, 0.002, 0.004], then search for the best
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Table 18: Statistical analysis for Natural Distribution Shift (NDS) results.

Dataset ImageNet ImageNet-A ImageNet-R ImageNet-S Average
Dota (seed=1) 70.69 61.50 81.21 51.84 66.31
Dota (mean) 70.66 61.32 81.13 51.85 66.24
stddev 0.07 0.20 0.11 0.11 0.12
confidence interval [70.57, 70.75] [61.06, 61.57] [81.00, 81.26] [51.71, 51.99] [66.08, 66.39]

Table 19: Statistical analysis for medical scenario results.

Dataset Kather PanNuke WSSS4LUAD Average
Dota (seed=1) 61.92 74.68 75.07 70.56
Dota (mean) 61.94 74.65 75.13 70.57
stddev 0.14 0.14 0.15 0.14
confidence interval [61.76, 62.11] [74.49, 74.82] [74.94, 75.32] [70.40, 70.75]

η across [0.2, 0.3, 0.4, 0.5] and ρ across [0.005, 0.01, 0.02, 0.03], with the shrinkage parameter ϵ set
to 0.0001. We use top-1 accuracy (%) as our evaluation metric. All experiments are conducted using
a single NVIDIA RTX 4090 GPU and a 12-core Intel Xeon Platinum 8352V CPU.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: the paper discusses the limitations of the work performed by the authors.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each theoretical result, the paper provides the full set of assumptions and a
complete (and correct) proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: the code has be released.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code has been released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full details have been provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we provide appropriate information about the statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we have provided time of execution.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research carried out in the paper complies in all respects with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Foundational models are being widely deployed, but they do not always adapt
perfectly to the distribution of test data. Collecting new data and fine-tuning models for
specific applications can be costly and slow in response. Therefore, allowing models to
adapt to unseen data during test time can enhance their generalization and adaptability.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g. code, data, models) used in
the paper are properly credited, and the licence and terms of use are explicitly stated and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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