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Abstract

Semantic segmentation of medical images is pivotal in applications like disease di-1

agnosis and treatment planning. While deep learning automates this task effectively,2

it struggles in ultra low-data regimes for the scarcity of annotated segmentation3

masks. To address this, we propose a generative deep learning framework that pro-4

duces high-quality image-mask pairs as auxiliary training data. Unlike traditional5

generative models that separate data generation from model training, ours uses6

multi-level optimization for end-to-end data generation. This allows segmentation7

performance to guide the generation process, producing data tailored to improve8

segmentation outcomes. Our method demonstrates strong generalization across9

11 medical image segmentation tasks and 19 datasets, covering various diseases,10

organs, and modalities. It improves performance by 10–20% (absolute) in both11

same- and out-of-domain settings and requires 8–20 times less training data than12

existing approaches. This greatly enhances the feasibility and cost-effectiveness of13

deep learning in data-limited medical imaging scenarios.14

1 Introduction15

Medical image semantic segmentation [1–3] is a pivotal process in the modern healthcare landscape,16

playing an indispensable role in diagnosing diseases [4], tracking disease progression [5], planning17

treatments [6], assisting surgeries [7], and supporting numerous other clinical activities [8, 9]. This18

process involves classifying each pixel within a specific image, such as a skin dermoscopy image,19

with a corresponding semantic label, such as skin cancer or normal skin.20

The advent of deep learning has revolutionized this domain, offering unparalleled precision and21

automation in the segmentation of medical images [1, 2, 10, 11]. Despite these advancements,22

training accurate and robust deep learning models requires extensive, annotated medical imaging23

datasets, which are notoriously difficult to obtain [9, 12]. Labeling semantic segmentation masks24

for medical images is both time-intensive and costly, as it necessitates annotating each pixel. It25

requires not only substantial human resources but also specialized domain expertise. This leads to26

what is termed as ultra low-data regimes – scenarios where the availability of annotated training27

images is remarkably scarce. This scarcity poses a substantial challenge to the existing deep learning28

methodologies, causing them to overfit to training data and exhibit poor generalization performance29

on test images.30

To address the scarcity of labeled image-mask pairs in semantic segmentation, several strategies31

have been devised, including data augmentation and semi-supervised learning approaches. Data32

augmentation techniques [13–16] create synthetic pairs of images and masks, which are then utilized33

as supplementary training data. A significant limitation of these methods is that they treat data34

augmentation and segmentation model training as separate activities. Consequently, the process of35

data augmentation is not influenced by segmentation performance, leading to a situation where the36
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augmented data might not contribute effectively to enhancing the model’s segmentation capabilities.37

Semi-supervised learning techniques [8, 17–20] exploit additional, unlabeled images to bolster38

segmentation accuracy. Despite their potential, these methods face limitations due to the necessity39

for extensive volumes of unlabeled images, a requirement often difficult to fulfill in medical settings40

where even unlabeled data can be challenging to obtain due to privacy issues, regulatory hurdles (e.g.,41

IRB approvals), among others.42

Recent advancements in generative deep learning [21–23] have opened new possibilities for overcom-43

ing such challenges by generating synthetic data. Compared to traditional augmentation methods,44

generative models have the potential to produce more realistic and diverse samples. However, most45

existing data generation or augmentation approaches [13–16] do not incorporate feedback from the46

segmentation performance itself. Some recent studies [24] have proposed multi-level optimization47

frameworks in which the data generation process is guided by downstream tasks, such as classification.48

Yet, applying such optimization effectively to segmentation tasks remains underexplored. Moreover,49

unlike semi-supervised segmentation methods [8, 17–20], generative approaches have the advantage50

of not requiring additional unlabeled data — an important benefit in sensitive medical domains.51

In this work, we introduce GenSeg, a generative deep learning framework designed to address the52

challenges of ultra low-data regimes in medical image segmentation. GenSeg generates high-fidelity53

paired segmentation masks and medical images through a multi-level optimization process directly54

guided by segmentation performance. This ensures that the generated data not only meets high-quality55

standards but is also optimized to improve downstream model training. Unlike existing augmentation56

methods, GenSeg performs end-to-end data generation tightly coupled with segmentation objectives;57

unlike semi-supervised approaches, it requires no additional unlabeled images. GenSeg is a versatile,58

model-agnostic framework that can be seamlessly integrated into existing segmentation pipelines. We59

validated GenSeg across 11 segmentation tasks and 19 datasets spanning diverse imaging modalities,60

diseases, and organs. When integrated with UNet [1] and DeepLab [10], GenSeg significantly boosts61

performance in ultra low-data settings (e.g., using only 50 training examples), achieving absolute62

gains of 10–20% in both same-domain and out-of-domain generalization. Additionally, GenSeg63

demonstrates strong data efficiency, matching or exceeding baseline performance while requiring64

8–20× fewer labeled samples.65

2 Results66

2.1 GenSeg overview67

GenSeg is an end-to-end data generation framework designed to generate high-quality, labeled data, to68

enable the training of accurate medical image segmentation models in ultra low-data regimes (Fig. 1a).69

Our framework integrates two components: a data generation model and a semantic segmentation70

model. The data generation model is responsible for generating synthetic pairs of medical images and71

their corresponding segmentation masks. This generated data serves as the training material for the72

segmentation model. In our data generation process, we introduce a reverse generation mechanism.73

This mechanism initially generates segmentation masks, and subsequently, medical images, adhering74

to a progression from simpler to more complex tasks. Specifically, given an expert-annotated real75

segmentation mask, we apply basic image augmentation operations to produce an augmented mask,76

which is then inputted into a deep generative model to generate the corresponding medical image.77

A key distinction of our method lies in the architecture of this generative model. Unlike traditional78

models [22, 23, 25, 26] that rely on manually designed architecture, our model automatically learns79

this architecture from data (Fig. 1b and c). This adaptive architecture enables more nuanced and80

effective generation of medical images, tailored to the specific characteristics of the augmented81

segmentation masks.82

GenSeg features an end-to-end data generation strategy, which ensures a synergistic relationship83

between the generation of data and the performance of the segmentation model. By closely aligning84

the data generation process with the needs and feedback of the segmentation model, GenSeg ensures85

the relevance and utility of the generated data for effective training of the segmentation model. To86

evaluate the effectiveness of the generated data, we first train a semantic segmentation model using87

this data. We then assess the model’s performance on a validation set consisting of real medical88

images, each accompanied by an expert-annotated segmentation mask. The model’s validation89

performance serves as a reflection of the quality of the generated data: if the data is of low quality,90
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Figure 1: Proposed end-to-end data generation framework for improving medical image seg-
mentation in ultra low-data regimes. a, Overview of the GenSeg framework. GenSeg consists of
1) a semantic segmentation model that predicts a segmentation mask from an input image, and 2) a
mask-to-image generation model that synthesizes an image from a segmentation mask. b, Searchable
architecture of the mask-to-image generation model. It comprises an encoder and a decoder. The
encoder processes an input mask into a latent representation using a series of searchable convolu-
tion (Conv.) cells. The decoder employs a stack of searchable up-convolution (UpConv.) cells to
transform the latent representation into an output medical image. Each cell, as shown in c, contains
multiple candidate operations characterized by varying kernel sizes, strides, and padding options.
Each operation is associated with a weight α denoting its importance. The architecture search process
optimizes these weights, and only the most influential operations are retained in the final model. d,
The weight parameters of the mask-to-image generator are trained within a generative adversarial
network (GAN) framework, in which a discriminator learns to distinguish real images from generated
ones, while the generator is optimized to produce images that are indistinguishable from real images.

the segmentation model trained on it will show poor performance during validation. By concentrating91

on improving the model’s validation performance, we can enhance the quality of the generated data.92

Our approach utilizes a multi-level optimization (MLO) [24] strategy to achieve end-to-end data93

generation. MLO involves a series of nested optimization problems, where the optimal parameters94

from one level serve as inputs for the objective function at the next level. Conversely, parameters95

that are not yet optimized at a higher level are fed back as inputs to lower levels. This yields a96

dynamic, iterative process that solves optimization problems in different levels jointly. Our method97

employs a three-tiered MLO process, executed end-to-end. The first level focuses on training the98

weight parameters of our data generation model, while keeping its learnable architecture constant.99

This training is performed within a generative adversarial network (GAN) framework [22] (Fig. 1d),100
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Figure 2: GenSeg significantly boosted both in-domain and out-of-domain generalization per-
formance, particularly in ultra low-data regimes. a, The performance of GenSeg applied to UNet
(GenSeg-UNet) and DeepLab (GenSeg-DeepLab) under in-domain settings (test and training data are
from the same domain) in the tasks of segmenting placental vessels, skin lesions, polyps, intraretinal
cystoid fluids, foot ulcers, and breast cancer using limited training data (50, 40, 40, 50, 50, and 100
examples from the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID datasets, respectively
for each task), compared to vanilla UNet and DeepLab. b, The performance of GenSeg-UNet and
GenSeg-DeepLab under out-of-domain settings (test and training data are from different domains) in
segmenting skin lesions (using only 40 examples from the ISIC dataset for training, and the DermIS
and PH2 datasets for testing) and lungs (using only 9 examples from the JSRT dataset for training,
and the NLM-MC and NLM-SZ datasets for testing), compared to vanilla UNet and DeepLab.

where a discriminator network learns to distinguish between real and generated images, and the data101

generation model is optimized to fool the discriminator by producing images that closely resemble102

real ones. At the second level, this trained model is used to produce synthetic image-mask pairs,103

which are then employed to train a semantic segmentation model. The final level involves validating104

the segmentation model using real medical images with expert-annotated masks. The performance of105

the segmentation model in this validation phase is a function of the architecture of the generation106

model. We optimize this architecture by minimizing the validation loss. By jointly solving the107

three levels of nested optimization problems, we can concurrently train data generation and semantic108

segmentation models in an end-to-end manner. Our framework was validated for a variety of medical109

imaging segmentation tasks across 19 datasets, spanning a diverse spectrum of imaging techniques,110

diseases, lesions, and organs.111

2.2 GenSeg enables accurate segmentation in ultra-low data regimes112

We evaluated GenSeg’s performance in ultra-low data regimes. We conducted three independent runs113

for each dataset using different random seeds. The reported results represent the mean and standard114

deviation computed across these runs. GenSeg, being a versatile framework, facilitates training115

various backbone segmentation models with its generated data. To demonstrate this versatility, we116

applied GenSeg to two popular models: UNet [1] and DeepLab [10], resulting in GenSeg-UNet and117
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Figure 3: GenSeg improves in-domain and out-of-domain generalization performance across
a variety of segmentation tasks covering diverse diseases, organs, and imaging modalities.
a, Visualizations of segmentation masks predicted by GenSeg-DeepLab and GenSeg-UNet under
in-domain settings in the tasks of segmenting placental vessels, skin lesions, polyps, intraretinal
cystoid fluids, foot ulcers, and breast cancer using limited training data (50, 40, 40, 50, 50, and 100
examples from the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID datasets), compared to
vanilla UNet and DeepLab. b, Visualizations of segmentation masks predicted by GenSeg-DeepLab
and GenSeg-UNet under out-of-domain settings in segmenting skin lesions (using only 40 examples
from the ISIC dataset for training, and the DermIS and PH2 datasets for testing) and lungs (using
only 9 examples from the JSRT dataset for training, and the NLM-MC and NLM-SZ datasets for
testing), compared to vanilla UNet and DeepLab.

GenSeg-DeepLab, respectively. GenSeg-DeepLab and GenSeg-UNet demonstrated significant perfor-118

mance improvements over DeepLab and UNet in scenarios with limited data (Fig. 2a). Specifically, in119

the tasks of segmenting placental vessels, skin lesions, polyps, intraretinal cystoid fluids, foot ulcers,120

and breast cancer, with training sets as small as 50, 40, 40, 50, 50, and 100 samples respectively,121

GenSeg-DeepLab outperformed DeepLab substantially, with absolute percentage gains of 20.6%,122

14.5%, 11.3%, 11.3%, 10.9%, and 10.4%. Similarly, GenSeg-UNet surpassed UNet by significant123

margins, recording absolute percentage improvements of 15%, 9.6%, 11%, 6.9%, 19%, and 12.6%124

across these tasks. The limited size of these training datasets presents significant challenges for125

accurately training DeepLab and UNet models. For example, DeepLab’s effectiveness in these tasks126

is limited, with performance varying from 0.31 to 0.62, averaging 0.51. In contrast, using our method,127

the performance significantly improves, ranging from 0.51 to 0.73 and averaging 0.64. This highlights128

the strong capability of our approach to achieve precise segmentation in ultra low-data regimes. More-129

over, these segmentation tasks are highly diverse. For example, placental vessels involve complex130

branching structures, skin lesions vary in shape and size, and polyps require differentiation from131

surrounding mucosal tissue. GenSeg demonstrated robust performance enhancements across these132

diverse tasks, underscoring its strong capability in achieving accurate segmentation across different133

diseases, organs, and imaging modalities.134
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Figure 4: GenSeg achieves performance on par with baseline models while requiring significantly
fewer training examples. a, The in-domain generalization performance of GenSeg-UNet and
GenSeg-DeepLab with different numbers of training examples from the FetReg, FUSeg, JSRT, and
ISIC datasets in segmenting placental vessels, foot ulcers, lungs, and skin lesions, compared to
UNet and DeepLab. b, The out-of-domain generalization performance of GenSeg-UNet and GenSeg-
DeepLab with different numbers of training examples in segmenting lungs (using examples from
JSRT for training, and NLM-SZ and NLM-MC for testing) and skin lesions (using examples from
ISIC for training, and DermIS and PH2 for testing), compared to UNet and DeepLab.

2.3 GenSeg enables robust generalization in out-of-domain settings135

Besides in-domain evaluation where the test and training images were from disjoint subsets of136

the same dataset, we also evaluated GenSeg’s effectiveness in out-of-domain (OOD) scenarios,137

wherein the training and test images originate from distinct datasets. The OOD evaluations were138

also conducted in ultra low-data regimes, where the number of training examples was restricted to139

only 9 or 40. Our evaluations focused on two segmentation tasks: the segmentation of skin lesions140

from dermoscopy images and the segmentation of lungs from chest X-rays. For the task of skin141

lesion segmentation, we trained our models using 40 examples from the ISIC dataset. These models142

were then tested on two external datasets, DermIS and PH2, to evaluate their performance outside143

the ISIC domain. In the lung segmentation task, we utilized 9 training examples from the JSRT144

dataset and conducted evaluations on two additional datasets, NLM-SZ and NLM-MC, to test the145

models’ adaptability beyond the JSRT domain. GenSeg showed superior out-of-domain generalization146

capabilities (Fig. 2b). In skin lesion segmentation, GenSeg-UNet substantially outperformed UNet,147

achieving a Jaccard index of 0.65 compared to UNet’s 0.41 on the DermIS dataset, and 0.77 versus148

0.56 on PH2. Similarly, in lung segmentation, GenSeg-UNet demonstrated superior performance149

with a Dice score of 0.86 compared to UNet’s 0.77 on NLM-MC, and 0.93 against 0.82 on NLM-SZ.150

Similarly, GenSeg-DeepLab significantly outperformed DeepLab: it achieved 0.67 compared to 0.47151

on DermIS, 0.74 vs. 0.63 on PH2, 0.87 vs. 0.80 on NLM-MC, and 0.91 vs. 0.86 on NLM-SZ.152

Fig. 3 visualizes some randomly selected segmentation examples. Both GenSeg-UNet and GenSeg-153

DeepLab accurately segmented a wide range of disease targets and organs across various imaging154
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Figure 5: GenSeg’s end-to-end data generation mechanism significantly outperformed baselines’
separate generation mechanism. a, The in-domain generalization performance of GenSeg which
performs data generation and segmentation model training end-to-end, compared to the Separate
baseline which performs the two processes separately. b, GenSeg’s out-of-domain generalization
performance compared to the Separate baseline in segmenting skin lesions (using examples from
ISIC for training, and DermIS and PH2 for testing) and lungs (using examples from JSRT for training,
and NLM-SZ and NLM-MC for testing), with UNet and DeepLab as the backbone.

modalities with their predicted masks closely resembling the ground truth, under both in-domain155

(Fig. 3a) and out-of-domain (Fig. 3b) settings. In contrast, UNet and DeepLab struggled to achieve156

similar levels of accuracy, often producing masks that were less precise and exhibited inconsistencies157

in complex anatomical regions. This disparity underscores the advanced capabilities of GenSeg in158

handling varied and challenging segmentation tasks. The generated images not only exhibit a high159

degree of realism but also demonstrate excellent semantic alignment with their corresponding masks.160

GenSeg’s superior OOD generalization capability stems from its ability to generate diverse medical161

images accompanied by precise segmentation masks. When trained on this diverse augmented dataset,162

segmentation models can learn more robust and OOD generalizable feature representations.163

2.4 GenSeg achieves comparable performance with significantly fewer training examples164

In comparing the number of training examples required for GenSeg and baseline models to achieve165

similar performance, GenSeg consistently required fewer examples. Fig. 4 illustrates this point by166

plotting segmentation performance (y-axis) against the number of training examples (x-axis) for167

various methods. Methods that are closer to the upper left corner of the subfigure are considered more168

sample-efficient, as they achieve superior segmentation performance with fewer training examples.169
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Across all subfigures, our methods consistently position nearer to these optimal upper left corners170

compared to the baseline methods. First, GenSeg demonstrates superior sample efficiency under in-171

domain settings (Fig. 4a). For example, in the placental vessel segmentation task, GenSeg-DeepLab172

achieved a Dice score of 0.51 with only 50 training examples, a ten-fold reduction compared to173

DeepLab’s 500 examples needed to reach the same score. In foot ulcer segmentation, to reach a174

Dice score around 0.6, UNet needed 600 examples, in contrast to GenSeg-UNet which required only175

50 examples, a twelve-fold reduction. DeepLab required 800 training examples for a Dice score176

of 0.73, whereas GenSeg-DeepLab achieved the same score with only 100 examples, an eight-fold177

reduction. In lung segmentation, achieving a Dice score of 0.97 required 175 examples for UNet,178

whereas GenSeg-UNet needed just 9 examples, representing a 19-fold reduction. Second, the sample179

efficiency of GenSeg is also evident in out-of-domain (OOD) settings (Fig. 4b). For example, in180

lung segmentation, achieving an OOD generalization performance of 0.93 on the NLM-SZ dataset181

required 175 training examples from the JSRT dataset for UNet, while GenSeg-UNet needed only 9182

examples, representing a 19-fold reduction. In skin lesion segmentation, GenSeg-DeepLab, trained183

with only 40 ISIC examples, reached a Jaccard index of 0.67 on DermIS, a performance that DeepLab184

could not match even with 200 examples.185

2.5 GenSeg’s end-to-end generation mechanism is superior to baselines’ separate generation186

We compared the effectiveness of GenSeg’s end-to-end data generation mechanism against a baseline187

approach, Separate, which separates data generation from segmentation model training. In Separate,188

the mask-to-image generation model is initially trained and then fixed. Subsequently, it generates189

data, which is then utilized to train the segmentation model. The end-to-end GenSeg framework190

consistently outperformed the Separate approach under both in-domain (Fig. 5a) and out-of-domain191

settings (Fig. 5b). For instance, in the segmentation of placental vessels, GenSeg-DeepLab attained192

an in-domain Dice score of 0.52, significantly surpassing Separate-DeepLab, which scored 0.42. In193

lung segmentation using JSRT as the training dataset, GenSeg-UNet achieved an out-of-domain Dice194

score of 0.93 on the NLM-SZ dataset, considerably better than the 0.84 scored by Separate-UNet.195

Discussion196

We present GenSeg, a robust data generation tool designed for generating high-quality data to enhance197

the training of medical image segmentation models. Demonstrating superior in-domain and out-of-198

domain generalization performance across nine diverse segmentation tasks and 19 datasets, GenSeg199

excels particularly in scenarios with a limited number of real, expert-annotated training examples (as200

few as 50). GenSeg substantially enhances sample efficiency, requiring far fewer expert-annotated201

training examples than baseline methods to achieve similar performance. This greatly reduces both202

the burden and costs associated with medical image annotation.203

GenSeg stands out by requiring fewer expert-annotated real training examples compared to baseline204

methods, yet it achieves comparable performance. This substantial reduction in the need for manually205

labeled segmentation masks significantly cuts down both the burden and costs associated with medical206

image annotation. With just a small set of real examples, GenSeg effectively trains a data generation207

model which then produces additional synthetic data, effectively mimicking the benefits of using a208

large dataset of real examples.209

Future research on GenSeg can progress in multiple directions. A key area is improving synthetic210

data generation to better represent complex anatomical structures and the variability inherent in211

diverse imaging modalities. This could involve refining the multi-level optimization process to212

capture finer details or incorporating advanced neural architectures to enhance the quality of synthetic213

images. Another important direction is applying domain adaptation techniques to improve GenSeg’s214

robustness when encountering datasets that diverge significantly from the training data, such as novel215

imaging technologies or underrepresented patient populations. This would ensure more reliable216

performance in real-world clinical settings. Extending GenSeg’s capabilities beyond segmentation to217

tackle other medical imaging challenges, like anomaly detection, image registration, or multimodal218

image fusion, could further expand its utility. Furthermore, integrating feedback from clinical experts219

into the synthetic data generation process could increase its clinical relevance, aligning outputs more220

closely with diagnostic practices. These research directions could enhance GenSeg’s adaptability and221

effectiveness across diverse medical imaging task.222
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A Method439

A.1 Overview of GenSeg440

GenSeg consists of a data generation model and a medical image segmentation model. The data441

generation model is based on conditional generative adversarial networks (GANs) [27, 28]. It442

comprises two main components: a mask-to-image generator and a discriminator. Uniquely, our443

generator has a learnable neural architecture [29], as opposed to the fixed architecture commonly seen444

in previous GAN models. This generator, with weight parameters G and a learnable architecture A,445

takes a segmentation mask as input and generates a corresponding medical image. The discriminator,446

with learnable weight parameters H and a fixed architecture, differentiates between synthetic and real447

medical images. The segmentation model has learnable weight parameters S and a fixed architecture.448

Data generation is executed in a reverse manner. Starting with an expert-annotated segmentation449

mask M, we first apply basic image augmentations, such as rotation, flipping, etc., to produce an450

augmented mask M̂. This mask is then fed into the mask-to-image generator, resulting in a medical451

image Î(M̂,G,A), which corresponds to M̂, i.e., pixels in Î(M̂,G,A) can be semantically labeled452

using M̂. Each image-mask pair (Î(M̂,G,A), M̂) forms an augmented example for training the453

segmentation model. Like other deep learning-based segmentation methods, GenSeg has access454

to a training set comprised of real image-mask pairs Dtr
seg = {I(tr)

n ,M(tr)
n }

Ntr
n=1 and a validation set455

Dval
seg = {I(val)

n ,M(val)
n }Nval

n=1.456

A.2 A multi-level optimization framework for GenSeg457

GenSeg employs a multi-level optimization strategy across three distinct stages. The initial stage458

focuses on training the data generation model, where we fix the generator’s architecture A and459

train the weight parameters of both the generator (G) and the discriminator (H). To facilitate this460

training, we modify the segmentation training dataset Dtr
seg by swapping the roles of inputs and461

outputs, resulting in a new dataset Dgan = {M(tr)
n , I(tr)

n }
Ntr
n=1. In this setup, M(tr)

n serves as the input,462

while I(tr)
n acts as the output for our mask-to-image GAN model.463

Let Lgan represent the GAN training objective, a cross-entropy function that evaluates the discrim-464

inator’s ability to distinguish between real and generated images. The discriminator’s goal is to465

maximize Lgan, effectively separating real images from generated ones. Conversely, the generator466

strives to minimize Lgan, generating images that are so realistic they become indistinguishable from467

real ones. This process is encapsulated in the following minimax optimization problem:468

G∗(A),H∗ = argmin
G

argmax
H

Lgan(G,A,H,Dgan), (1)

where G∗(A) indicates that the optimally trained generator G∗ is dependent on the architecture A.469

This dependency arises because G∗ is the outcome of optimizing the training objective function,470

which in turn is influenced by A. A is tentatively fixed at this stage and will be updated later.471

Otherwise, if we learn A by minimizing the training loss Lgan, it may lead to a trivial solution472

characterized by an overly large and complex architecture. Such a solution would likely overfit the473

training data perfectly but perform poorly on unseen test data.474

In the second stage, we leverage the trained generator to generate synthetic training examples using the475

aforementioned process where expert-annotated masks are from Dtr
seg. Let D̂(G∗(A),Dtr

seg) represent476

the generated data. We then use D̂(G∗(A),Dtr
seg) and real training data Dtr

seg to train the segmentation477

model S by minimizing a segmentation loss Lseg (pixel-wise cross-entropy loss). This training is478

formulated as the following optimization problem:479

S∗(A) = argmin
S

Lseg(S, D̂(G∗(A),Dtr
seg)) + γLseg(S,Dtr

seg), (2)

where γ is a trade-off parameter.480

In the third stage, we assess the performance of the trained segmentation model on the validation481

dataset Dval
seg. The validation loss, Lseg(S∗(A),Dval

seg), serves as an indicator of the quality of the482

generated data. If the generated data is of inferior quality, it will likely result in S∗(A) - trained on483

this data - performing poorly on the validation set, reflected in a high validation loss. Thus, enhancing484
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the quality of generated data can be achieved by minimizing Lseg(S∗(A),Dval
seg) w.r.t the generator’s485

architecture A. This objective is encapsulated in the following optimization problem:486

min
A

Lseg(S∗(A),Dval
seg). (3)

487

We can integrate these stages into a multi-level optimization problem as follows:488

minA Lseg(S∗(A),Dval
seg)

s.t S∗(A) = argmin
S

Lseg(S, D̂(G∗(A),Dtr
seg))+

γLseg(S,Dtr
seg) (4)

G∗(A),H∗ = argmin
G

argmax
H

Lgan(G,A,H,Dgan)

In this formulation, the levels are interdependent. The output G∗(A) from the first level defines the489

objective for the second level, the output S∗(A) from the second level defines the objective for the490

third level, and the optimization variable A in the third level defines the objective function in the first491

level.492

Architecture search space493

To enhance the generation of medical images by accurately capturing their distinctive characteristics,494

we make the generator’s architecture searchable. Inspired by DARTS [30], we employ a differentiable495

search method that is not only computationally efficient but also allows for a flexible exploration of496

architectural designs. Our search space is structured as a series of computational cells, each forming a497

directed acyclic graph that includes an input node, an output node, and intermediate nodes comprising498

K different operators, such as convolution and transposed convolution. These operators are each tied499

to a learnable selection weight, α, ranging from 0 to 1, where a higher α value indicates a stronger500

preference for incorporating that operator into the final architecture. The process of architecture search501

is essentially the optimization of these selection weights. Let Conv-xyz and UpConv-xyz denote502

a convolution operator and a transposed convolution operator respectively, where x represents the503

kernel size, y the stride, and z the padding. The pool of candidate operators includes Conv/UpConv-504

421, Conv/UpConv-622, and Conv/UpConv-823, i.e., the number of operators K is 3. For any given505

cell i with input xi, the output yi is determined by the formula yi =
∑K

k=1 αi,koi,k(xi), where oi,k506

represents the k-th operator in the cell, and αi,k is its corresponding selection weight. Consequently,507

the architecture of the generator can be succinctly described by the set of all selection weights,508

denoted as A = {αi,k}. Architecture search amounts to learning A.509

A.3 Optimization algorithm510

We develop a gradient-based method to solve the multi-level optimization problem in Eq.(4). First,511

we approximate G∗(A) using one-step gradient descent update of G w.r.t Lgan(G,A,H,Dgan):512

G∗(A) ≈ G′ = G− ηg∇GLgan(G,A,H,Dgan), (5)

where ηg is a learning rate. Similarly, we approximate H∗ using one-step gradient ascent update of H513

w.r.t Lgan(G,A,H,Dgan):514

H∗ ≈ H′ = H + ηh∇HLgan(G,A,H,Dgan). (6)

Then we plug G∗(A) ≈ G′ into the objective function in the second level, yielding an approximated515

objective. We approximate S∗(A) using one-step gradient ascent update of S w.r.t the approximated516

objective:517

S∗(A) ≈ S′ = S− ηs∇S(Lseg(S, D̂(G′,Dtr
seg))+

γLseg(S,Dtr
seg)). (7)

Finally, we plug S∗(A) ≈ S′ into the validation loss in the third level, yielding an approximated518

validation loss. We update A using gradient descent w.r.t the approximated loss:519

A← A− ηa∇ALseg(S′,Dval
seg). (8)
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After A is updated, we plug it into Eq.(5) to update G again. The update steps in Eq.(5-8) iterate520

until convergence.521

The gradient ∇ALseg(S′,Dval
seg) can be calculated as follows:522

∇ALseg(S′,Dval
seg) =

∂G′

∂A
∂S′

∂G′
∂Lseg(S′,Dval

seg)

∂S′ , (9)

where523

∂G′

∂A
= −ηg∇2

A,GLgan(G,A,H,Dgan), (10)
524

∂S′

∂G′ = −ηs∇2
G′,S(Lseg(S, D̂(G′,Dtr

seg))+

γLseg(S,Dtr
seg)). (11)

A.4 Datasets525

In this study, we focused on the segmentation of skin lesions from dermoscopy images, lungs from526

chest X-ray images, breast cancer from ultrasound images, placental vessels from fetoscopic images,527

polyps from colonoscopy images, foot ulcers from standard camera images, intraretinal cystoid fluid528

from optical coherence tomography (OCT) images, and left ventricle and myocardial wall from529

echocardiography images, utilizing 19 datasets. Additionally, we extended GenSeg to 3D image530

segmentation and evaluated its effectiveness on two 3D medical imaging datasets for hippocampus531

and liver segmentation. Each dataset was randomly partitioned into training, validation, and test sets.532

The number of training examples was determined based on two considerations. The first consideration533

is consistency with prior work. For well-established benchmarks such as ISIC, we adopted low-data534

configurations used in previous studies to enable fair comparisons. For example, in the skin lesion535

segmentation task, we followed the setup used in SemanticGAN [20]. The second consideration is536

dataset-specific complexity. For datasets without standardized low-sample training protocols, we537

selected training set sizes based on task difficulty. Specifically, datasets involving more complex538

anatomical structures, high intra-class variability, or low contrast typically required more training539

samples to obtain stable performance. In contrast, datasets with simpler and well-defined structures540

could be effectively learned using fewer samples.541

For skin lesion segmentation from dermoscopy images, we utilized the ISIC2018 [31], PH2 [32],542

DermIS [33], and DermQuest [34] datasets. The ISIC2018 dataset, provided by the International Skin543

Imaging Collaboration (ISIC) 2018 Challenge, comprises 2,594 dermoscopy images, each meticu-544

lously annotated with pixel-level skin lesion labels. The PH2 dataset, acquired at the Dermatology545

Service of Hospital Pedro Hispano in Matosinhos, Portugal, contains 200 dermoscopic images of546

melanocytic lesions. These images are in 8-bit RGB color format with a resolution of 768x560547

pixels. DermIS offers a comprehensive collection of dermatological images covering a range of skin548

conditions, including dermatitis, psoriasis, eczema, and skin cancer. DermQuest includes 137 images549

representing two types of skin lesions: melanoma and nevus.550

For lung segmentation from chest X-rays, we utilized the JSRT [35], NLM-MC [36], NLM-SZ [36],551

and COVID-QU-Ex [37] datasets. The JSRT dataset consists of 247 chest X-ray images from552

Japanese patients, each accompanied by manually annotated ground truth masks that delineate the553

lung regions. The NLM-MC dataset was collected from the Department of Health and Human Services554

in Montgomery County, Maryland, USA. It includes 138 frontal chest X-rays, with manual lung555

segmentations provided. Of these, 80 images represent normal cases, while 58 exhibit manifestations556

of tuberculosis (TB). The images are available in two resolutions: 4,020x4,892 pixels and 4,892x4,020557

pixels. The NLM-SZ dataset, sourced from Shenzhen No.3 People’s Hospital, Guangdong, China,558

contains 566 frontal chest X-rays in PNG format. Image sizes vary but are approximately 3,000x3,000559

pixels. The COVID-QU-Ex dataset, compiled by researchers at Qatar University, comprises a large560

collection of chest X-ray images, including 11,956 COVID-19 cases, 11,263 non-COVID infections,561

and 10,701 normal instances. Ground-truth lung segmentation masks are provided for all images in562

this dataset.563

For placental vessel segmentation from fetoscopic images, we utilized the FPD [38] and FetReg [39]564

datasets. The FPD dataset comprises 482 frames extracted from six distinct in vivo fetoscopic565

procedure videos. To reduce redundancy and ensure a diverse set of annotated samples, the videos566
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were down-sampled from 25 to 1 fps, and each frame was resized to a resolution of 448x448 pixels.567

Each frame is provided with a corresponding segmentation mask that precisely outlines the blood568

vessels. The FetReg dataset, developed for the FetReg2021 challenge, is the first large-scale, multi-569

center dataset focused on fetoscopy laser photocoagulation procedures. It contains 2,718 pixel-wise570

annotated images, categorizing background, vessel, fetus, and tool classes, sourced from 24 different571

in vivo TTTS fetoscopic surgeries.572

For polyp segmentation from colonoscopic images, we utilized the KVASIR [40] and CVC-573

ClinicDB [41] datasets. Polyps are recognized as precursors to colorectal cancer and are detected in574

nearly half of individuals aged 50 and older who undergo screening colonoscopy, with their prevalence575

increasing with age. Early detection of polyps significantly improves survival rates from colorectal576

cancer. The KVASIR dataset was collected using endoscopic equipment at Vestre Viken Health Trust577

(VV) in Norway, which consists of four hospitals and provides healthcare services to a population of578

470,000. The dataset includes images with varying resolutions, ranging from 720x576 to 1920x1072579

pixels. It contains 1,000 polyp images, each accompanied by a corresponding segmentation mask,580

with annotations verified by experienced endoscopists. CVC-ClinicDB comprises frames extracted581

from colonoscopy videos and consists of 612 images with a resolution of 384x288 pixels, derived582

from 31 colonoscopy sequences. videos.583

For breast cancer segmentation, we utilized the BUID dataset [42], which consists of 630 breast584

ultrasound images collected from 600 female patients aged between 25 and 75 years. The images585

have an average resolution of 500x500 pixels. For foot ulcer segmentation, we utilized data from the586

FUSeg challenge [43], which includes over 1,000 images collected over a span of two years from587

hundreds of patients. The raw images were captured using Canon SX 620 HS digital cameras and588

iPad Pro under uncontrolled lighting conditions, with diverse backgrounds. For the segmentation of589

intraretinal cystoids from Optical Coherence Tomography (OCT) images, we utilized the Intraretinal590

Cystoid Fluid (ICFluid) dataset [44]. This dataset comprises 1,460 OCT images along with their591

corresponding masks for the Cystoid Macular Edema (CME) ocular condition. For the segmentation592

of left ventricles and myocardial wall, we employed data examples from the ETAB benchmark [45].593

It is constructed from five publicly available echocardiogram datasets, encompassing diverse cohorts594

and providing echocardiographies with a variety of views and annotations.595

For 3D medical image segmentation tasks, we utilized two datasets from the Medical Segmentation596

Decathlon (MSD) challenge [4]: Task04 (hippocampus segmentation) and Task03 (liver segmen-597

tation). The hippocampus segmentation task focuses on segmenting the hippocampal region from598

single-modality MR images. The hippocampus is a key brain structure involved in memory formation,599

spatial navigation, and emotion processing. Anatomically, it is often divided into anterior and poste-600

rior regions, each associated with distinct cognitive and emotional functions. In our experiments, we601

merged the anterior and posterior regions into a single segmentation category. The dataset includes602

MR scans from 394 patients, officially split into 260 training and 131 test cases. Since test annotations603

are not publicly available, we split the original training set into training and test subsets using an604

80:20 ratio. During training, the training set was further split into training and validation sets, also605

with an 80:20 ratio. The Task03 dataset for liver segmentation contains 201 contrast-enhanced CT606

scans from patients with primary liver cancers and metastatic disease originating from colorectal,607

breast, and lung cancers. Among these, 123 cases are officially designated for training. We applied608

the same data-splitting strategy as used in the hippocampus dataset, resulting in 98 training cases and609

25 test cases.610

A.5 Metrics611

For all segmentation tasks except skin lesion segmentation, we used the Dice score as the evaluation612

metric, adhering to established conventions in the field [46]. The Dice score is calculated as 2|A∩B|
|A|+|B| ,613

where A represents the algorithm’s prediction and B denotes the ground truth. For skin lesion614

segmentation, we followed the guidelines of the ISIC challenge [47] and employed the Jaccard615

index, also known as intersection-over-union (IoU), as the performance metric. The Jaccard index is616

computed as |A∩B|
|A∪B| for each patient case. These metrics provide a robust assessment of the overlap617

between the predicted segmentation mask and the ground truth.618
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A.6 Hyperparameters619

In our method, mask augmentation was performed using a series of operations, including rotation,620

flipping, and translation, applied in a random sequence. The mask-to-image generation model was621

based on the Pix2Pix framework [28], with an architecture that was made searchable, as depicted in622

Fig. 1b. The tradeoff parameter γ was set to 1. We configured the training process to perform 5,000623

iterations. The RMSprop optimizer [48] was utilized for training the segmentation model. It was set624

with an initial learning rate of 1e−5, a momentum of 0.9, and a weight decay of 1e−3. Additionally,625

the ReduceLROnPlateau scheduler was employed to dynamically adjust the learning rate according626

to the model’s performance throughout the training period. Specifically, the scheduler was configured627

with a patience of 2 and set to max mode, meaning it monitored the model’s validation performance628

and adjusted the learning rate to maximize validation accuracy. For training the mask-to-image629

generation model, the Adam optimizer [49] was chosen, configured with an initial learning rate630

of 1e − 5, beta values of (0.5, 0.999), and a weight decay of 1e − 3. Adam was also applied for631

optimizing the architecture variables, with a learning rate of 1e − 4, beta values of (0.5, 0.999),632

and weight decay of 1e− 5. At the end of each epoch, we assessed the performance of the trained633

segmentation model on a validation set. The model checkpoint with the best validation performance634

was selected as the final model. The experiments were conducted on A100 GPUs, with each method635

being run three times using randomly initialized model weights. We report the average results along636

with the standard deviation across these three runs.637

A.7 Data availability638

The skin lesion segmentation data used in this study are available in the ISIC [https://challenge.639

isic-archive.com/data/], PH2 [https://www.fc.up.pt/addi/ph2%20database.html],640

DermIS and DermQuest [https://uwaterloo.ca/vision-image-processing-lab/641

research-demos/skin-cancer-detection] databases. The lung segmentation data used in this642

study are available in the JSRT [http://db.jsrt.or.jp/eng.php], COVID-QU-Ex [https://643

www.kaggle.com/datasets/anasmohammedtahir/covidqu], NLM-MC, and NLM-SZ [http:644

//archive.nlm.nih.gov/repos/chestImages.php] databases. The breast cancer segmentation645

data used in this study are available in the BUID [https://www.kaggle.com/datasets/646

aryashah2k/breast-ultrasound-images-dataset?select=Dataset_BUSI_with_GT]647

database. The placental vessel segmentation data used in this study are available in the FPD [https:648

//www.ucl.ac.uk/interventional-surgical-sciences/fetoscopy-placenta-data]649

and FetReg [https://www.ucl.ac.uk/interventional-surgical-sciences/650

weiss-open-research/weiss-open-data-server] databases. The polyp segmentation651

data used in this study are available in the KVASIR [https://datasets.simula.no/kvasir/]652

and CVC-Clinic [https://www.kaggle.com/datasets/balraj98/cvcclinicdb]653

databases. The foot ulcer segmentation data used in this study are available in the FUSeg654

[https://github.com/uwm-bigdata/wound-segmentation/tree/master] database.655

The intraretinal cystoid segmentation data used in this study are available in the ICFluid656

[https://www.kaggle.com/datasets/zeeshanahmed13/intraretinal-cystoid-fluid]657

database. The left ventricle and myocardial wall segmentation data used in this study658

are available in the ETAB [https://github.com/AlaaLab/ETAB/tree/main] database.659

The hippocampus and liver segmentation data used in this study are available in the MSD660

[https://drive.google.com/drive/folders/1HqEgzS8BV2c7xYNrZdEAnrHk7osJJ--2]661

database. Source data are provided with this paper.662

A.8 Code availability663

The source code used in this study is available at https://github.com/importZL/GenSeg and is664

archived at https://zenodo.org/records/15427671 [50]. GenSeg is licensed under the Apache665

2.0 License [51].666

B GenSeg outperforms widely used data augmentation and generation tools667

We compared GenSeg against prevalent data augmentation methods, including rotation, flipping,668

and translation, as well as their combinations. Furthermore, GenSeg was benchmarked against a669

data generation approach [52], which is based on the Wasserstein Generative Adversarial Network670
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Figure 6: GenSeg significantly outperformed widely used data augmentation and generation
methods. a, GenSeg’s in-domain generalization performance compared to baseline methods includ-
ing Vanilla (without any data augmentations), Rotate, Flip, Translate, Combine, and WGAN, when
used with UNet or DeepLab in segmenting placental vessels, skin lesions, polyps, intraretinal cystoid
fluids, foot ulcers, and breast cancer using the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID
datasets. b, GenSeg’s in-domain generalization performance compared to baseline methods using a
varying number of training examples from the ISIC dataset for segmenting skin lesions, with UNet
and DeepLab as the backbone segmentation models. c, GenSeg’s out-of-domain generalization per-
formance compared to baseline methods across varying numbers of training examples in segmenting
lungs (using examples from JSRT for training, and NLM-SZ and NLM-MC for testing) and skin
lesions (using examples from ISIC for training, and DermIS and PH2 for testing), with UNet and
DeepLab as the backbone segmentation models.
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Figure 7: GenSeg significantly outperformed state-of-the-art semi-supervised segmentation
methods. a, GenSeg’s in-domain generalization performance compared to baseline methods including
Vanilla (UNet/DeepLab), CTBCT, DCT, and MCF, when used with UNet or DeepLab in segmenting
placental vessels, skin lesions, polyps, intraretinal cystoid fluids, foot ulcers, and breast cancer
utilizing the FetReg, DermQuest, CVC-Clinic, ICFluid, FUSeg, and BUID datasets. b, GenSeg’s
in-domain generalization performance compared to baseline methods using a varying number of
training examples from the ISIC and JSRT datasets for segmenting skin lesions and lungs, with UNet
and DeepLab as the backbone segmentation models. c, GenSeg’s out-of-domain generalization per-
formance compared to baseline methods across varying numbers of training examples in segmenting
lungs (using examples from JSRT for training, and NLM-SZ and NLM-MC for testing) and skin
lesions (using examples from ISIC for training, and DermIS and PH2 for testing), with UNet and
DeepLab as the backbone segmentation models.
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(WGAN) [53]. For each baseline augmentation method, the same hyperparameters (e.g., rotation671

angle) were consistently applied to both the input image and the corresponding output mask within672

each training example, resulting in augmented image-mask pairs. GenSeg significantly surpassed673

these methods under in-domain settings (Fig. 6a). For instance, in foot ulcer segmentation using674

UNet as the backbone segmentation model, GenSeg attained a Dice score of 0.74, significantly675

surpassing the top baseline method, WGAN, which achieved 0.66. Similarly, in polyp segmentation676

with DeepLab, GenSeg scored 0.76, significantly outperforming the best baselines - Flip, Com-677

bine, and WGAN - which scored 0.69. GenSeg also demonstrated superior out-of-domain (OOD)678

generalization performance compared to the baselines (Fig. 6c). For instance, in UNet-based skin679

lesion segmentation, with 40 training examples from the ISIC dataset, GenSeg achieved a Dice680

score of 0.77 on the PH2 dataset, substantially surpassing the best-performing baseline, Flip, which681

scored 0.68. Moreover, GenSeg demonstrated comparable performance to baseline methods with682

fewer training examples (Fig. 6b) under in-domain settings. For instance, using only 40 training683

examples for skin lesion segmentation with UNet, GenSeg achieved a Dice score of 0.67. In contrast,684

the best performing baseline, Combine, required 200 examples to reach the same score. Similarly,685

with fewer training examples, GenSeg achieved comparable performance to baseline methods under686

out-of-domain settings (Fig. 6c). For example, in lung segmentation with UNet, GenSeg reached a687

Dice score of 0.93 using just 9 training examples, whereas the best performing baseline required 175688

examples to achieve a similar score.689

GenSeg outperforms existing data augmentation and generation techniques primarily due to its end-to-690

end data generation mechanism. Unlike previous methods that separate data augmentation/generation691

from segmentation model training, our approach integrates them end-to-end within a unified, multi-692

level optimization framework. Within this framework, the validation performance of the segmentation693

model acts as a direct indicator of the generated data’s usefulness. By leveraging this performance to694

inform the training process of the generation model, we ensure that the data produced is specifically695

optimized to improve the segmentation model. In previous methods, segmentation performance does696

not impact the process of data augmentation and generation. As a result, the augmented/generated data697

might not be effectively tailored for training the segmentation model. Furthermore, our framework698

learns a generative model that excels in generating data with greater diversity compared to existing699

augmentation methods.700

C GenSeg outperforms state-of-the-art semi-supervised segmentation701

methods702

We conducted a comparative analysis of GenSeg against leading semi-supervised segmentation meth-703

ods [18–20, 54], including cross-teaching between convolutional neural networks and Transformer704

(CTBCT) [55], deep co-training (DCT) [54], and a mutual correction framework (MCF) [56], which705

employ external unlabeled images (1000 in each experiment) to enhance model training and thereby706

improve segmentation performance. GenSeg, which does not require any additional unlabeled images,707

significantly outperformed baseline methods under in-domain settings (Fig. 7a). For example, when708

using DeepLab as the backbone segmentation model for polyp segmentation, GenSeg achieved a709

Dice score of 0.76, markedly outperforming the top baseline method, MCF, which reached only710

0.69. GenSeg also exhibited superior out-of-domain (OOD) generalization capabilities compared711

to baseline methods (Fig. 7c). For instance, in skin lesion segmentation based on DeepLab with712

40 training examples from the ISIC dataset, GenSeg achieved a Dice score of 0.67 on the DermIS713

dataset, significantly higher than the best-performing baseline, MCF, which scored 0.58. Additionally,714

GenSeg showed performance on par with baseline methods using fewer training examples in both715

in-domain (Fig. 7b) and out-of-domain settings (Fig. 7c).716

In the context of medical imaging, collecting even unlabeled images presents a considerable challenge717

due to stringent privacy concerns and regulatory constraints (e.g., IRB approval), thereby reducing718

the feasibility of semi-supervised methods. Despite the use of unlabeled real images, semi-supervised719

approaches underperform compared to GenSeg. This is primarily because these methods struggle to720

generate accurate masks for unlabeled images, meaning that they are less effective at creating labeled721

training data. In contrast, GenSeg is capable of producing high-quality images from masks, ensuring722

a close correspondence between the images’ contents and the masks, thereby efficiently generating723

labeled training examples.724
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D GenSeg outperforms nnUNet across both in-domain and out-of-domain725

scenarios726

We compared GenSeg-UNet with nnUNet [2] - a state-of-the-art method for medical image seg-727

mentation - under both in-domain and out-of-domain settings across multiple segmentation tasks.728

GenSeg-UNet consistently outperformed nnUNet in these data-scarce scenarios (Fig. 8a and Fig. 8b).729

In in-domain scenarios (Fig. 8a), GenSeg-UNet achieves 1–7% (absolute percentages) higher perfor-730

mance scores across all tasks. In out-of-domain evaluations (Fig. 8b), which involve more substantial731

distributional shifts, GenSeg-UNet demonstrates even greater improvements across all tasks, outper-732

forming nnUNet by 5–16% (absolute percentages). For instance, in the lung segmentation task, when733

trained on only 175 examples from the JSRT dataset and evaluated on the SZ dataset, GenSeg-UNet734

achieves a Dice score of 94.5%, compared to 78.4% with nnUNet - a substantial gain of 16.1%.735

The superior performance of GenSeg over nnUNet in ultra-low data regimes can be attributed to736

fundamental differences in their augmentation strategies. nnUNet employs standard augmentation737

techniques such as rotation, scaling, Gaussian blur, and intensity adjustments, which, while effective738

in moderate- to large-scale data settings, offer limited diversity and adaptability in severely data-739

constrained scenarios. In contrast, GenSeg trains a deep generative model that synthesizes diverse and740

semantically consistent image–mask pairs tailored to the specific task and dataset. This generative741

augmentation approach introduces significantly greater variability into the training data, enabling742

the segmentation model to learn more robust and generalizable representations. By aligning the743

data generation process with segmentation performance through end-to-end multi-level optimization,744

GenSeg ensures that the synthesized data is not only realistic but also highly informative for improving745

downstream segmentation accuracy.746

E GenSeg improves the performance of diverse backbone segmentation747

models748

GenSeg is a versatile, model-agnostic framework that can seamlessly integrate with segmentation749

models with diverse architectures to improve their performance. For example, after applying our750

framework on UNet and DeepLab, we observed significant enhancements in their performance751

(Figs. 2-5), both for in-domain and out-of-domain settings. Furthermore, we also integrated this752

framework with a Transformer-based segmentation model, SwinUnet [57]. Using just 40 training753

examples from the ISIC dataset, GenSeg-SwinUnet achieved a Jaccard index of 0.62 on the ISIC754

test set. Furthermore, it demonstrated strong generalization with out-of-domain Jaccard index scores755

of 0.65 on the PH2 dataset and 0.62 on the DermIS dataset. These results represent a substantial756

improvement over the baseline SwinUnet model, which achieved Jaccard indices of 0.55 on ISIC,757

0.56 on PH2, and 0.38 on DermIS (Fig. 8c).758

F GenSeg improves 3D medical image segmentation759

In addition to 2D medical image segmentation, GenSeg can be extended to support 3D segmentation760

tasks. To enable this, we adapted our framework by incorporating 3D UNet[58] as the segmentation761

model and Pix2PixNIfTI[59] as the generative model, facilitating joint generation and segmentation762

in a 3D volumetric setting. We make the architecture of the Pix2PixNIfTI model searchable by763

replacing the convolution and transposed convolution layers in the original generator with our764

differentiable convolutional and transposed convolutional cells. The architecture parameters of the765

modified Pix2PixNIfTI model are optimized by minimizing the segmentation loss on the validation766

set within our multi-level optimization-based framework. During training, the input 3D masks767

are first augmented using rotation and flipping transformations, and the generator then synthesizes768

3D volumes from these augmented masks. We evaluated this 3D extension on two datasets from769

the Medical Segmentation Decathlon (MSD) challenge [4], focusing on hippocampus and liver770

segmentation tasks. Experiments were conducted under both ultra-low data settings (40 training771

volumes) and higher data settings using the full available training sets (208 volumes for hippocampus772

and 98 for liver).773

GenSeg consistently improved segmentation performance over the baseline 3D UNet in both regimes774

(Fig. 8d). Notably, in the ultra-low data setting, GenSeg yielded substantial gains, demonstrating its775
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robustness and effectiveness in data-constrained 3D segmentation tasks. These results confirm that776

GenSeg generalizes beyond 2D segmentation and remains effective when applied to more complex777

3D volumetric data.778

G GenSeg is effective in high-data regimes as well779

While GenSeg is designed to enable medical image segmentation in ultra-low data regimes, we780

further investigated its effectiveness in higher data settings. We conducted experiments on the ISIC,781

FetReg, BUID, and CVC-Clinic datasets using UNet as the segmentation model. Two training782

regimes were evaluated: (1) UNet-low and GenSeg-UNet-low, trained under ultra-low data conditions783

with 40, 50, 100, and 40 training examples from the respective datasets; and (2) UNet-high and784

GenSeg-UNet-high, trained using the full available training sets, consisting of 1000, 2000, 400, and785

400 examples, respectively.786

As shown in Fig. 8e, several key observations emerge. First, GenSeg-UNet-high outperforms UNet-787

high across all datasets, demonstrating that GenSeg’s generative augmentation strategy continues788

to provide benefits even in high-data regimes. Second, as expected, segmentation performance789

improves for all models as the training set size increases. Third, despite being trained on significantly790

fewer examples, GenSeg-UNet-low achieves performance that is often close to that of UNet-high,791

highlighting GenSeg’s strength in data-scarce scenarios. These findings underscore the versatility792

and effectiveness of the GenSeg framework across varying data availability conditions. GenSeg793

consistently enhances segmentation performance regardless of dataset size by integrating generative794

augmentation into an end-to-end, task-driven learning paradigm. While particularly valuable in795

low-data regimes, GenSeg also improves generalization in more data-rich settings by enriching the796

training signal.797

H Further improvement on ISIC and FetReg datasets798

To further enhance GenSeg’s segmentation performance on challenging datasets such as ISIC and799

FetReg, we conducted additional experiments by incorporating several targeted strategies. These800

included increasing the amount of training data, refining augmentation techniques, and employing801

a more proper segmentation backbone. For the ISIC dataset (UNet was used as the segmentation802

model), we increased the number of training examples from 40 to 1000, which led to an improvement803

in Jaccard score from 67.3% to 73.9% (Fig. 8f), reaching a level considered satisfactory for binary804

segmentation tasks. For the FetReg dataset, which presents unique challenges due to high anatomical805

variability, low image contrast, and the complexity of placental vessel structures, we implemented806

three modifications: narrowing the rotation augmentation range to (–5° to 5°), replacing UNet807

with DeepLab as the segmentation model, and expanding the training set size from 50 to 2000808

examples. These adjustments resulted in a significant performance gain, improving the Dice score to809

71.7% (Fig. 8f). These findings indicate that with sufficient data and appropriate architectural and810

augmentation refinements, GenSeg can achieve high segmentation accuracy even in complex tasks.811

I Ablation study evaluating different mask-to-image generative models812

We conducted ablation studies to investigate how different choices of mask-to-image generative813

models affect the final segmentation performance. In addition to the GAN-based Pix2Pix model814

used in our current framework, we evaluated two state-of-the-art alternatives: Soft-Intro VAE [60], a815

variational autoencoder (VAE) [61–64] based model, and BBDM [65], a diffusion-based generative816

model [66]. We integrated each model into our GenSeg framework by using them to replace817

the original Pix2Pix mask-to-image generator. We modified both BBDM and Soft-Intro VAE by818

incorporating our multi-branch convolutional cells into their generator networks, to allow their819

architectures to be optimized based on segmentation performance. We trained each model using two820

strategies: (1) Separate, where the generative model is trained independently and then fixed before821

segmentation model training, and (2) End2End, our proposed multi-level optimization framework.822

Evaluation was performed under both in-domain and out-of-domain scenarios.823

BBDM (End2End) achieved the highest performance across all datasets, under both in-domain824

settings (Fig. 9a) and out-of-domain settings (Fig. 9b). The performance of Pix2Pix (End2End) and825
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Soft-Intro VAE (End2End) was comparable, with both trailing slightly behind BBDM. However,826

BBDM incurs significantly higher computational cost and model size compared to both Pix2Pix827

and Soft-Intro VAE under the End2End strategy (Fig. 9c). Considering the trade-off between828

segmentation performance and computational efficiency, Pix2Pix remains a practical and effective829

choice for our setting, particularly when computational resources are limited. Furthermore, all three830

End2End approaches consistently outperformed their respective Separate counterparts, highlighting831

the advantage of jointly optimizing the generative and segmentation models within an end-to-end832

training framework. This result reinforces the central premise of GenSeg: that aligning the data833

generation process with downstream segmentation performance leads to more effective learning.834

In addition, within the GAN family, we compared the Pix2Pix model with two other GAN-based835

models: SPADE[67] and ASAPNet[68]. For a fair comparison, we also made the generator architec-836

tures of these models searchable by applying the multi-branch convolutional modification (Fig. 1c)837

to their generators. Pix2Pix and SPADE demonstrated comparable performance, both significantly838

outperforming ASAPNet (Fig. 9d). This performance gap can be attributed to the superior image839

generation capabilities of Pix2Pix and SPADE.840

J Ablation study investigating the impact of generating images and masks841

jointly842

In our current framework, image and mask generation is performed using a two-step approach:843

we first generate augmented masks from real masks using standard augmentation techniques, and844

then synthesize images from the augmented masks using a mask-to-image generative model. As an845

alternative, one can generate both the image and the corresponding mask simultaneously [69]. To846

investigate which strategy is more effective, we compared our two-step approach with an ablation847

setting referred to as Simultaneous, in which images and masks are generated jointly using the848

WGAN-GP model [53], integrated within our framework when using UNet as the segmentation849

model. In this setting, WGAN-GP takes a random noise vector sampled from a Gaussian distribution850

as input and simultaneously produces a medical image and its corresponding mask. To maintain851

architectural consistency with our framework, we modified the original WGAN-GP by replacing its852

convolutional layers with our multi-branch convolutional cells. We then trained the model using our853

end-to-end optimization strategy to ensure a fair comparison.854

The two-step approach consistently outperforms the WGAN-GP-based simultaneous generation855

method in both in-domain (Fig. 9e) and out-of-domain (Fig. 9f) settings. Notably, in the out-of-856

domain evaluations - where 40 examples from the ISIC dataset were used for training and PH2 and857

DermIS served as test sets - the two-step method achieved 12.1% and 8.9% higher performance,858

respectively.859

The superior performance of the two-step approach over the simultaneous generation method can860

be attributed to the explicit conditioning and structural alignment enforced during the data gener-861

ation process. In the two-step pipeline, segmentation masks are first augmented and then used as862

conditioning inputs to guide the image generation process. This explicit conditioning enables the863

mask-to-image generation model to synthesize images that are tightly aligned with the structural864

boundaries and semantics defined by the input mask. As a result, the generated image–mask pairs865

exhibit high spatial coherence and fidelity, which is crucial for effective segmentation model training.866

In contrast, the simultaneous generation approach, as implemented with WGAN-GP, synthesizes both867

the image and the mask jointly without enforcing a strong pixel-wise correspondence between the868

two outputs. This lack of explicit conditioning can lead to weaker structural alignment, especially in869

low-data regimes where the model may struggle to learn accurate joint representations. Specifically, it870

does not impose semantic constraints that guarantee the generated masks accurately delineate regions871

of interest within the corresponding images. This misalignment can reduce the effectiveness of the872

generated data in training downstream segmentation models.873

K The impact of mask augmentation operations on segmentation874

performance875

In GenSeg, the initial step involves applying augmentation operations to generate synthetic segmenta-876

tion masks from real masks. We explored the impact of augmentation operations on segmentation877
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performance. GenSeg, which utilizes all three operations - rotation, translation, and flipping - is878

compared against three specific ablation settings where only one operation (Rotate, Translate, or Flip)879

is used to augment the masks. GenSeg demonstrated significantly superior performance compared to880

any of the individual ablation settings (Fig. 10a). Notably, GenSeg exhibited superior generalization881

on out-of-domain data, highlighting the advantages of integrating multiple augmentation operations882

compared to using a single operation. By combining various augmentation operations, GenSeg883

can generate a broader diversity of augmented masks, which in turn produces a more diverse set of884

augmented images. Training segmentation models on this diverse dataset allows for learning more885

robust representations, thereby significantly enhancing generalization capabilities on out-of-domain886

test data.887

L Ablation study on elastic and deformable augmentations888

Elastic and deformable augmentations have recently shown promise in enhancing medical image889

segmentation performance [70]. To evaluate their effectiveness within our framework, we conducted890

an ablation study assessing the impact of incorporating elastic augmentation into the training pipeline891

when using UNet as the segmentation model. Specifically, we compared the following three ablation892

settings: 1) Without Elastic, using only our original set of augmentations (e.g., flipping, rotation,893

translation), 2) With Elastic, combining our original augmentations with elastic augmentation, and 3)894

Only Elastic, using elastic augmentation alone, without any other augmentations.895

The combination of elastic and traditional augmentations (With Elastic) resulted in modest per-896

formance improvements across both in-domain (Fig. 10b) and out-of-domain (Fig. 10c) settings.897

However, the Without Elastic setting - using only our original traditional augmentations - consistently898

outperformed the Only Elastic setting (Fig. 10b and Fig. 10c), which applies elastic deformation899

alone, across all tasks. One possible explanation is that elastic augmentation, when used in iso-900

lation, may result in a narrower range of transformations, focusing primarily on localized shape901

distortions. While such deformations can be beneficial in mimicking anatomical variability, they902

may not capture broader appearance and geometric changes - such as orientation, scale, or intensity903

shifts - that traditional augmentations introduce. As a result, relying solely on elastic transformations904

might limit the diversity of the training data and reduce generalization. These results suggest that905

traditional augmentations provide a strong and versatile baseline, and that combining them with906

elastic augmentations may offer additional benefits depending on the dataset characteristics and task907

requirements.908

M Ablation study on the impact of rotation augmentation in placental vessel909

segmentation910

In placental vessel segmentation, the orientation of vessels is highly sensitive, raising concerns that911

rotation-based augmentations may be unsuitable for such images. To investigate this, we conducted912

an ablation study on two vessel segmentation datasets: FetReg and FPD, each using 100 training913

examples. We tested the impact of different degrees of rotation augmentation by comparing five914

settings: no rotation, small-angle rotation (–5° to 5°), moderate rotation (–15° to 15°), large rotation915

(–30° to 30°), and very large rotation (–45° to 45°).916

As shown in Fig. 10d, on the FPD dataset, all degrees of rotation yielded better performance than917

the no-rotation baseline. On the FetReg dataset, small-angle rotation (–5° to 5°) provided the best918

performance, while increasing the rotation range gradually led to performance degradation. These919

observations indicate that large-angle rotations can distort vessel morphology and interfere with fine-920

grained structural cues essential for accurate segmentation, particularly in tasks requiring high spatial921

precision. On the other hand, small-angle rotations appear beneficial. They introduce controlled922

variability that helps improve model generalization without compromising anatomical integrity. We923

hypothesize that such mild transformations encourage robustness to minor viewpoint changes while924

still preserving the spatial structure of vessels - an important consideration in vascular imaging.925

In summary, our results confirm that vessel segmentation tasks are sensitive to large rotational926

transformations, which can negatively impact performance. However, mild rotations in the range927

of –5° to 5° strike a balance between augmentation diversity and structural preservation, leading to928

improved outcomes.929
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N Ablation study on learnable multi-branch convolutions930

To quantify the impact of the multi-branch design in Fig. 1c, we conducted an ablation study931

involving three settings. In the first setting (Single-branch), we trained a standard single-branch932

Pix2Pix generator to synthesize images, which were then used to train the segmentation model933

in a separate stage. In the second setting (Fixed Multi-branch), we used a multi-branch Pix2Pix934

generator with branch weights (i.e., all weights α in Fig. 1c) fixed to 1, also trained independently935

from the segmentation model. In the third setting (Learnable Multi-branch), which corresponds to936

our full GenSeg framework, the generator was integrated into an end-to-end pipeline, where the937

branch weights α were learned by minimizing segmentation loss on the validation set. We evaluated938

all three configurations on three representative tasks: skin lesion segmentation (ISIC dataset, 200939

training examples), intraretinal cystoid segmentation (ICFluid dataset, 50 training examples), and940

breast cancer segmentation (BUID dataset, 100 training examples). As shown in Fig. 10e, the Fixed941

Multi-branch model consistently outperformed the Single-branch model, demonstrating the advantage942

of using multi-branch convolutions. Moreover, the Learnable Multi-branch model further improved943

performance, highlighting the benefit of learning the branch weights in a task-adaptive manner. To944

assess the statistical significance of these improvements, we conducted two-sided paired t-tests on945

performance scores across three tasks. Each method was evaluated over three independent training946

runs with different random seeds, and pairwise comparisons were performed.947

We attribute these improvements to the increased representational capacity of the multi-branch948

architecture, which enables the generator to learn a more diverse set of features tailored to varying949

spatial and structural characteristics across datasets. While the fixed multi-branch design provides950

architectural flexibility, the learnable version further strengthens performance by enabling end-to-end951

optimization that aligns synthetic data generation with the segmentation objective. In summary,952

this ablation study demonstrates that learnable multi-branch convolutions significantly improve953

segmentation accuracy, demonstrating their role as an important micro-architectural component of954

the GenSeg framework.955

O The impact of the tradeoff parameter on segmentation performance956

We investigated the effect of the hyperparameter γ in Eq.(2) on the performance of our method.957

This parameter controls the balance between the contributions of real and generated data during the958

training of the segmentation model. Optimal performance was observed with a moderate γ value959

(e.g., 1), which effectively balanced the use of real and generated data (Fig. 10f).960

P Computation costs961

Given that GenSeg is designed for scenarios with limited training data, the overall training time is962

minimal, often requiring less than 2 GPU hours (Fig. 8g). To enhance the efficiency of GenSeg’s963

training, we plan to incorporate strategies from [71, 72] for accelerated GAN training and implement964

the algorithm proposed in [73] to expedite the convergence of multi-level optimization. Importantly,965

our method does not increase the inference cost of the segmentation model. This is because our966

approach maintains the original architecture of the segmentation model, ensuring that the Multiply-967

Accumulate (MAC) operations remain unchanged.968
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Figure 8: a, GenSeg-UNet consistently outperforms nnUNet across a range of segmentation tasks
under in-domain scenarios. b, GenSeg-UNet consistently demonstrates superior performance to
nnUNet across diverse segmentation tasks in out-of-domain settings. In the X-Y notation, X refers
to the training dataset and Y to the test dataset, where X and Y are from distinct distributions. c,
GenSeg-SwinUnet outperforms SwinUnet, both trained on 40 examples from the ISIC dataset and
evaluated on the test sets of ISIC, PH2, and DermIS. d, Extension of the GenSeg framework to 3D
medical image segmentation tasks under different training data regimes. “Hippo.-low” refers to
training with an ultra-low data setting for hippocampus segmentation, while “Hippo.-full” refers to
training with the full available dataset. The same settings are applied to the liver segmentation task. e,
Comparison of model performance under ultra-low and high data regimes. “UNet-low” denotes the
UNet model trained with an ultra-low amount of data, while “UNet-high” refers to the model trained
with the full available dataset. The same training settings are applied to GenSeg-UNet. f, GenSeg’s
performance on the ISIC and FetReg datasets can be further improved by employing several strategies,
including increasing the number of training examples, using task-appropriate segmentation models,
and refining augmentation techniques. g, The runtime (in hours on an A100 GPU) of GenSeg-UNet
was measured for lung segmentation using JSRT as the training data and for skin lesion segmentation
using ISIC as the training data.
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Figure 9: Ablation studies on generative models and generation strategies in GenSeg. a-b,
Ablation study evaluating the effectiveness of different generative models - including Pix2Pix (GAN-
based), BBDM (diffusion-based), and Soft-Intro VAE (VAE-based) - under separate and end-to-end
training strategies. Evaluations were conducted under both in-domain (a) and out-of-domain (b)
scenarios, using UNet as the segmentation model. For out-of-domain scenarios, datasets are labeled
in the format X-Y, where X denotes the training dataset and Y denotes the test dataset. c, Comparison
of training time (left) measured on an A100 GPU and model size (right) for Pix2Pix, BBDM, and
Soft-Intro VAE within our end-to-end training framework, in skin lesion segmentation with 40
training examples from the ISIC dataset when using UNet as the segmentation model. d, Impact of
mask-to-image GAN models on the performance of GenSeg-UNet was evaluated on the test datasets
of ISIC, PH2, and DermIS, in skin lesion segmentation. GenSeg-UNet was trained using 40 examples
from the ISIC training dataset. e-f, Ablation study comparing simultaneous image–mask generation
with the two-step approach, where masks are first augmented and then used to generate images. The
two-step strategy outperforms simultaneous generation. Experiments were conducted under both
in-domain (e) and out-of-domain (f) settings.
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Figure 10: Ablation studies of augmentation strategies, architectural components, and param-
eter sensitivity in GenSeg. a, (Left) Impact of augmentation operations on the performance of
GenSeg-UNet was evaluated on the test datasets of JSRT, NLM-MC, and NLM-SZ, in lung segmen-
tation. GenSeg-UNet was trained using 9 examples from the JSRT training dataset. ALL refers to the
full GenSeg method that incorporates all three operations. (Right) Impact of augmentation operations
on the performance of GenSeg-UNet was evaluated on the test datasets of ISIC, PH2, and DermIS,
in skin lesion segmentation. GenSeg-UNet was trained using 40 examples from the ISIC training
dataset. b-c, Ablation study evaluating the impact of elastic augmentation under in-domain (b) and
out-of-domain settings (c). In out-of-domain scenarios, datasets are denoted in the format X–Y, where
X represents the training dataset and Y the test dataset. UNet was used as the segmentation model.
d, Ablation study evaluating the impact of rotation augmentation on placental vessel segmentation
using the FetReg and FPD datasets with UNet as the segmentation model. e, Ablation study on
learnable multi-branch convolutions, with UNet as the segmentation model. f, (Left) Impact of the
tradeoff parameter γ on the performance of GenSeg-UNet on the test datasets of JSRT, NLM-MC,
and NLM-SZ, in lung segmentation with 9 examples from the JSRT training dataset. (Right) Impact
of the tradeoff parameter γ on the performance of GenSeg-UNet on the test datasets of ISIC, PH2,
and DermIS, in skin lesion segmentation with 40 examples from the ISIC training dataset.
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