© N O O AW N =

N = o ©

13

16
17
18

20

21
22
23
24
25
26
27
28
29
30

32
33
34
35
36

Generative Al Enables Medical Image Segmentation in
Ultra Low-Data Regimes

Anonymous Author(s)
Affiliation
Address

email

Abstract

Semantic segmentation of medical images is pivotal in applications like disease di-
agnosis and treatment planning. While deep learning automates this task effectively,
it struggles in ultra low-data regimes for the scarcity of annotated segmentation
masks. To address this, we propose a generative deep learning framework that pro-
duces high-quality image-mask pairs as auxiliary training data. Unlike traditional
generative models that separate data generation from model training, ours uses
multi-level optimization for end-to-end data generation. This allows segmentation
performance to guide the generation process, producing data tailored to improve
segmentation outcomes. Our method demonstrates strong generalization across
11 medical image segmentation tasks and 19 datasets, covering various diseases,
organs, and modalities. It improves performance by 10-20% (absolute) in both
same- and out-of-domain settings and requires 8—20 times less training data than
existing approaches. This greatly enhances the feasibility and cost-effectiveness of
deep learning in data-limited medical imaging scenarios.

1 Introduction

Medical image semantic segmentation [[113]] is a pivotal process in the modern healthcare landscape,
playing an indispensable role in diagnosing diseases [4], tracking disease progression [3]], planning
treatments [6]], assisting surgeries [[7]], and supporting numerous other clinical activities [|8 9]]. This
process involves classifying each pixel within a specific image, such as a skin dermoscopy image,
with a corresponding semantic label, such as skin cancer or normal skin.

The advent of deep learning has revolutionized this domain, offering unparalleled precision and
automation in the segmentation of medical images [1} [2, [10, [11]. Despite these advancements,
training accurate and robust deep learning models requires extensive, annotated medical imaging
datasets, which are notoriously difficult to obtain [9}[12]. Labeling semantic segmentation masks
for medical images is both time-intensive and costly, as it necessitates annotating each pixel. It
requires not only substantial human resources but also specialized domain expertise. This leads to
what is termed as ultra low-data regimes — scenarios where the availability of annotated training
images is remarkably scarce. This scarcity poses a substantial challenge to the existing deep learning
methodologies, causing them to overfit to training data and exhibit poor generalization performance
on test images.

To address the scarcity of labeled image-mask pairs in semantic segmentation, several strategies
have been devised, including data augmentation and semi-supervised learning approaches. Data
augmentation techniques [[13H16] create synthetic pairs of images and masks, which are then utilized
as supplementary training data. A significant limitation of these methods is that they treat data
augmentation and segmentation model training as separate activities. Consequently, the process of
data augmentation is not influenced by segmentation performance, leading to a situation where the
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augmented data might not contribute effectively to enhancing the model’s segmentation capabilities.
Semi-supervised learning techniques [8, [17H20] exploit additional, unlabeled images to bolster
segmentation accuracy. Despite their potential, these methods face limitations due to the necessity
for extensive volumes of unlabeled images, a requirement often difficult to fulfill in medical settings
where even unlabeled data can be challenging to obtain due to privacy issues, regulatory hurdles (e.g.,
IRB approvals), among others.

Recent advancements in generative deep learning [21H23]] have opened new possibilities for overcom-
ing such challenges by generating synthetic data. Compared to traditional augmentation methods,
generative models have the potential to produce more realistic and diverse samples. However, most
existing data generation or augmentation approaches [13H16] do not incorporate feedback from the
segmentation performance itself. Some recent studies [24] have proposed multi-level optimization
frameworks in which the data generation process is guided by downstream tasks, such as classification.
Yet, applying such optimization effectively to segmentation tasks remains underexplored. Moreover,
unlike semi-supervised segmentation methods [8, [17H20]], generative approaches have the advantage
of not requiring additional unlabeled data — an important benefit in sensitive medical domains.

In this work, we introduce GenSeg, a generative deep learning framework designed to address the
challenges of ultra low-data regimes in medical image segmentation. GenSeg generates high-fidelity
paired segmentation masks and medical images through a multi-level optimization process directly
guided by segmentation performance. This ensures that the generated data not only meets high-quality
standards but is also optimized to improve downstream model training. Unlike existing augmentation
methods, GenSeg performs end-to-end data generation tightly coupled with segmentation objectives;
unlike semi-supervised approaches, it requires no additional unlabeled images. GenSeg is a versatile,
model-agnostic framework that can be seamlessly integrated into existing segmentation pipelines. We
validated GenSeg across 11 segmentation tasks and 19 datasets spanning diverse imaging modalities,
diseases, and organs. When integrated with UNet [1]] and DeepLab [10], GenSeg significantly boosts
performance in ultra low-data settings (e.g., using only 50 training examples), achieving absolute
gains of 10-20% in both same-domain and out-of-domain generalization. Additionally, GenSeg
demonstrates strong data efficiency, matching or exceeding baseline performance while requiring
8-20x fewer labeled samples.

2 Results

2.1 GenSeg overview

GenSeg is an end-to-end data generation framework designed to generate high-quality, labeled data, to
enable the training of accurate medical image segmentation models in ultra low-data regimes (Fig. [Th).
Our framework integrates two components: a data generation model and a semantic segmentation
model. The data generation model is responsible for generating synthetic pairs of medical images and
their corresponding segmentation masks. This generated data serves as the training material for the
segmentation model. In our data generation process, we introduce a reverse generation mechanism.
This mechanism initially generates segmentation masks, and subsequently, medical images, adhering
to a progression from simpler to more complex tasks. Specifically, given an expert-annotated real
segmentation mask, we apply basic image augmentation operations to produce an augmented mask,
which is then inputted into a deep generative model to generate the corresponding medical image.
A key distinction of our method lies in the architecture of this generative model. Unlike traditional
models [22} 123} 25| [26]] that rely on manually designed architecture, our model automatically learns
this architecture from data (Fig. [Ib and c¢). This adaptive architecture enables more nuanced and
effective generation of medical images, tailored to the specific characteristics of the augmented
segmentation masks.

GenSeg features an end-to-end data generation strategy, which ensures a synergistic relationship
between the generation of data and the performance of the segmentation model. By closely aligning
the data generation process with the needs and feedback of the segmentation model, GenSeg ensures
the relevance and utility of the generated data for effective training of the segmentation model. To
evaluate the effectiveness of the generated data, we first train a semantic segmentation model using
this data. We then assess the model’s performance on a validation set consisting of real medical
images, each accompanied by an expert-annotated segmentation mask. The model’s validation
performance serves as a reflection of the quality of the generated data: if the data is of low quality,
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Figure 1: Proposed end-to-end data generation framework for improving medical image seg-
mentation in ultra low-data regimes. a, Overview of the GenSeg framework. GenSeg consists of
1) a semantic segmentation model that predicts a segmentation mask from an input image, and 2) a
mask-to-image generation model that synthesizes an image from a segmentation mask. b, Searchable
architecture of the mask-to-image generation model. It comprises an encoder and a decoder. The
encoder processes an input mask into a latent representation using a series of searchable convolu-
tion (Conv.) cells. The decoder employs a stack of searchable up-convolution (UpConv.) cells to
transform the latent representation into an output medical image. Each cell, as shown in ¢, contains
multiple candidate operations characterized by varying kernel sizes, strides, and padding options.
Each operation is associated with a weight o denoting its importance. The architecture search process
optimizes these weights, and only the most influential operations are retained in the final model. d,
The weight parameters of the mask-to-image generator are trained within a generative adversarial
network (GAN) framework, in which a discriminator learns to distinguish real images from generated
ones, while the generator is optimized to produce images that are indistinguishable from real images.

the segmentation model trained on it will show poor performance during validation. By concentrating
on improving the model’s validation performance, we can enhance the quality of the generated data.

Our approach utilizes a multi-level optimization (MLO) [24] strategy to achieve end-to-end data
generation. MLO involves a series of nested optimization problems, where the optimal parameters
from one level serve as inputs for the objective function at the next level. Conversely, parameters
that are not yet optimized at a higher level are fed back as inputs to lower levels. This yields a
dynamic, iterative process that solves optimization problems in different levels jointly. Our method
employs a three-tiered MLO process, executed end-to-end. The first level focuses on training the
weight parameters of our data generation model, while keeping its learnable architecture constant.
This training is performed within a generative adversarial network (GAN) framework [22] (Fig. ml),
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Figure 2: GenSeg significantly boosted both in-domain and out-of-domain generalization per-
formance, particularly in ultra low-data regimes. a, The performance of GenSeg applied to UNet
(GenSeg-UNet) and DeepLab (GenSeg-DeepLab) under in-domain settings (test and training data are
from the same domain) in the tasks of segmenting placental vessels, skin lesions, polyps, intraretinal
cystoid fluids, foot ulcers, and breast cancer using limited training data (50, 40, 40, 50, 50, and 100
examples from the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID datasets, respectively
for each task), compared to vanilla UNet and DeepLab. b, The performance of GenSeg-UNet and
GenSeg-DeepLab under out-of-domain settings (test and training data are from different domains) in
segmenting skin lesions (using only 40 examples from the ISIC dataset for training, and the DermlIS
and PH2 datasets for testing) and lungs (using only 9 examples from the JSRT dataset for training,
and the NLM-MC and NLM-SZ datasets for testing), compared to vanilla UNet and DeepLab.

where a discriminator network learns to distinguish between real and generated images, and the data
generation model is optimized to fool the discriminator by producing images that closely resemble
real ones. At the second level, this trained model is used to produce synthetic image-mask pairs,
which are then employed to train a semantic segmentation model. The final level involves validating
the segmentation model using real medical images with expert-annotated masks. The performance of
the segmentation model in this validation phase is a function of the architecture of the generation
model. We optimize this architecture by minimizing the validation loss. By jointly solving the
three levels of nested optimization problems, we can concurrently train data generation and semantic
segmentation models in an end-to-end manner. Our framework was validated for a variety of medical
imaging segmentation tasks across 19 datasets, spanning a diverse spectrum of imaging techniques,
diseases, lesions, and organs.

2.2 GenSeg enables accurate segmentation in ultra-low data regimes

We evaluated GenSeg’s performance in ultra-low data regimes. We conducted three independent runs
for each dataset using different random seeds. The reported results represent the mean and standard
deviation computed across these runs. GenSeg, being a versatile framework, facilitates training
various backbone segmentation models with its generated data. To demonstrate this versatility, we
applied GenSeg to two popular models: UNet [1]] and DeepLab [10], resulting in GenSeg-UNet and
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Figure 3: GenSeg improves in-domain and out-of-domain generalization performance across
a variety of segmentation tasks covering diverse diseases, organs, and imaging modalities.
a, Visualizations of segmentation masks predicted by GenSeg-DeepLab and GenSeg-UNet under
in-domain settings in the tasks of segmenting placental vessels, skin lesions, polyps, intraretinal
cystoid fluids, foot ulcers, and breast cancer using limited training data (50, 40, 40, 50, 50, and 100
examples from the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID datasets), compared to
vanilla UNet and DeepLab. b, Visualizations of segmentation masks predicted by GenSeg-DeepLab
and GenSeg-UNet under out-of-domain settings in segmenting skin lesions (using only 40 examples
from the ISIC dataset for training, and the DermIS and PH2 datasets for testing) and lungs (using
only 9 examples from the JSRT dataset for training, and the NLM-MC and NLM-SZ datasets for
testing), compared to vanilla UNet and DeepLab.

GenSeg
-UNet

GenSeg-DeepLab, respectively. GenSeg-DeepLab and GenSeg-UNet demonstrated significant perfor-
mance improvements over DeepLab and UNet in scenarios with limited data (Fig.[2p). Specifically, in
the tasks of segmenting placental vessels, skin lesions, polyps, intraretinal cystoid fluids, foot ulcers,
and breast cancer, with training sets as small as 50, 40, 40, 50, 50, and 100 samples respectively,
GenSeg-DeepLab outperformed DeepLab substantially, with absolute percentage gains of 20.6%,
14.5%, 11.3%, 11.3%, 10.9%, and 10.4%. Similarly, GenSeg-UNet surpassed UNet by significant
margins, recording absolute percentage improvements of 15%, 9.6%, 11%, 6.9%, 19%, and 12.6%
across these tasks. The limited size of these training datasets presents significant challenges for
accurately training DeepLab and UNet models. For example, DeepLab’s effectiveness in these tasks
is limited, with performance varying from 0.31 to 0.62, averaging 0.51. In contrast, using our method,
the performance significantly improves, ranging from 0.51 to 0.73 and averaging 0.64. This highlights
the strong capability of our approach to achieve precise segmentation in ultra low-data regimes. More-
over, these segmentation tasks are highly diverse. For example, placental vessels involve complex
branching structures, skin lesions vary in shape and size, and polyps require differentiation from
surrounding mucosal tissue. GenSeg demonstrated robust performance enhancements across these
diverse tasks, underscoring its strong capability in achieving accurate segmentation across different
diseases, organs, and imaging modalities.
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Figure 4: GenSeg achieves performance on par with baseline models while requiring significantly
fewer training examples. a, The in-domain generalization performance of GenSeg-UNet and
GenSeg-DeepLab with different numbers of training examples from the FetReg, FUSeg, JSRT, and
ISIC datasets in segmenting placental vessels, foot ulcers, lungs, and skin lesions, compared to
UNet and DeepLab. b, The out-of-domain generalization performance of GenSeg-UNet and GenSeg-
DeepLab with different numbers of training examples in segmenting lungs (using examples from
JSRT for training, and NLM-SZ and NLM-MC for testing) and skin lesions (using examples from
ISIC for training, and DermlIS and PH2 for testing), compared to UNet and DeepLab.

2.3 GenSeg enables robust generalization in out-of-domain settings

Besides in-domain evaluation where the test and training images were from disjoint subsets of
the same dataset, we also evaluated GenSeg’s effectiveness in out-of-domain (OOD) scenarios,
wherein the training and test images originate from distinct datasets. The OOD evaluations were
also conducted in ultra low-data regimes, where the number of training examples was restricted to
only 9 or 40. Our evaluations focused on two segmentation tasks: the segmentation of skin lesions
from dermoscopy images and the segmentation of lungs from chest X-rays. For the task of skin
lesion segmentation, we trained our models using 40 examples from the ISIC dataset. These models
were then tested on two external datasets, DermIS and PH2, to evaluate their performance outside
the ISIC domain. In the lung segmentation task, we utilized 9 training examples from the JSRT
dataset and conducted evaluations on two additional datasets, NLM-SZ and NLM-MC, to test the
models’ adaptability beyond the JSRT domain. GenSeg showed superior out-of-domain generalization
capabilities (Fig. 2b). In skin lesion segmentation, GenSeg-UNet substantially outperformed UNet,
achieving a Jaccard index of 0.65 compared to UNet’s 0.41 on the DermIS dataset, and 0.77 versus
0.56 on PH2. Similarly, in lung segmentation, GenSeg-UNet demonstrated superior performance
with a Dice score of 0.86 compared to UNet’s 0.77 on NLM-MC, and 0.93 against 0.82 on NLM-SZ.
Similarly, GenSeg-DeepLab significantly outperformed DeepLab: it achieved 0.67 compared to 0.47
on DermlS, 0.74 vs. 0.63 on PH2, 0.87 vs. 0.80 on NLM-MC, and 0.91 vs. 0.86 on NLM-SZ.
Fig. [3| visualizes some randomly selected segmentation examples. Both GenSeg-UNet and GenSeg-
DeepLab accurately segmented a wide range of disease targets and organs across various imaging
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Figure 5: GenSeg’s end-to-end data generation mechanism significantly outperformed baselines’
separate generation mechanism. a, The in-domain generalization performance of GenSeg which
performs data generation and segmentation model training end-to-end, compared to the Separate
baseline which performs the two processes separately. b, GenSeg’s out-of-domain generalization
performance compared to the Separate baseline in segmenting skin lesions (using examples from
ISIC for training, and DermlIS and PH2 for testing) and lungs (using examples from JSRT for training,
and NLM-SZ and NLM-MC for testing), with UNet and DeepLab as the backbone.

modalities with their predicted masks closely resembling the ground truth, under both in-domain
(Fig. Bp) and out-of-domain (Fig. Bp) settings. In contrast, UNet and DeepLab struggled to achieve
similar levels of accuracy, often producing masks that were less precise and exhibited inconsistencies
in complex anatomical regions. This disparity underscores the advanced capabilities of GenSeg in
handling varied and challenging segmentation tasks. The generated images not only exhibit a high
degree of realism but also demonstrate excellent semantic alignment with their corresponding masks.
GenSeg’s superior OOD generalization capability stems from its ability to generate diverse medical
images accompanied by precise segmentation masks. When trained on this diverse augmented dataset,
segmentation models can learn more robust and OOD generalizable feature representations.

2.4 GenSeg achieves comparable performance with significantly fewer training examples

In comparing the number of training examples required for GenSeg and baseline models to achieve
similar performance, GenSeg consistently required fewer examples. Fig. ] illustrates this point by
plotting segmentation performance (y-axis) against the number of training examples (x-axis) for
various methods. Methods that are closer to the upper left corner of the subfigure are considered more
sample-efficient, as they achieve superior segmentation performance with fewer training examples.
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Across all subfigures, our methods consistently position nearer to these optimal upper left corners
compared to the baseline methods. First, GenSeg demonstrates superior sample efficiency under in-
domain settings (Fig.dp). For example, in the placental vessel segmentation task, GenSeg-DeepLab
achieved a Dice score of 0.51 with only 50 training examples, a ten-fold reduction compared to
DeepLab’s 500 examples needed to reach the same score. In foot ulcer segmentation, to reach a
Dice score around 0.6, UNet needed 600 examples, in contrast to GenSeg-UNet which required only
50 examples, a twelve-fold reduction. DeepLab required 800 training examples for a Dice score
of 0.73, whereas GenSeg-DeepLab achieved the same score with only 100 examples, an eight-fold
reduction. In lung segmentation, achieving a Dice score of 0.97 required 175 examples for UNet,
whereas GenSeg-UNet needed just 9 examples, representing a 19-fold reduction. Second, the sample
efficiency of GenSeg is also evident in out-of-domain (OOD) settings (Fig. @b). For example, in
lung segmentation, achieving an OOD generalization performance of 0.93 on the NLM-SZ dataset
required 175 training examples from the JSRT dataset for UNet, while GenSeg-UNet needed only 9
examples, representing a 19-fold reduction. In skin lesion segmentation, GenSeg-DeepLab, trained
with only 40 ISIC examples, reached a Jaccard index of 0.67 on DermlS, a performance that DeepLab
could not match even with 200 examples.

2.5 GenSeg’s end-to-end generation mechanism is superior to baselines’ separate generation

We compared the effectiveness of GenSeg’s end-to-end data generation mechanism against a baseline
approach, Separate, which separates data generation from segmentation model training. In Separate,
the mask-to-image generation model is initially trained and then fixed. Subsequently, it generates
data, which is then utilized to train the segmentation model. The end-to-end GenSeg framework
consistently outperformed the Separate approach under both in-domain (Fig. [5h) and out-of-domain
settings (Fig.[5b). For instance, in the segmentation of placental vessels, GenSeg-DeepLab attained
an in-domain Dice score of 0.52, significantly surpassing Separate-DeepLab, which scored 0.42. In
lung segmentation using JSRT as the training dataset, GenSeg-UNet achieved an out-of-domain Dice
score of 0.93 on the NLM-SZ dataset, considerably better than the 0.84 scored by Separate-UNet.

Discussion

We present GenSeg, a robust data generation tool designed for generating high-quality data to enhance
the training of medical image segmentation models. Demonstrating superior in-domain and out-of-
domain generalization performance across nine diverse segmentation tasks and 19 datasets, GenSeg
excels particularly in scenarios with a limited number of real, expert-annotated training examples (as
few as 50). GenSeg substantially enhances sample efficiency, requiring far fewer expert-annotated
training examples than baseline methods to achieve similar performance. This greatly reduces both
the burden and costs associated with medical image annotation.

GenSeg stands out by requiring fewer expert-annotated real training examples compared to baseline
methods, yet it achieves comparable performance. This substantial reduction in the need for manually
labeled segmentation masks significantly cuts down both the burden and costs associated with medical
image annotation. With just a small set of real examples, GenSeg effectively trains a data generation
model which then produces additional synthetic data, effectively mimicking the benefits of using a
large dataset of real examples.

Future research on GenSeg can progress in multiple directions. A key area is improving synthetic
data generation to better represent complex anatomical structures and the variability inherent in
diverse imaging modalities. This could involve refining the multi-level optimization process to
capture finer details or incorporating advanced neural architectures to enhance the quality of synthetic
images. Another important direction is applying domain adaptation techniques to improve GenSeg’s
robustness when encountering datasets that diverge significantly from the training data, such as novel
imaging technologies or underrepresented patient populations. This would ensure more reliable
performance in real-world clinical settings. Extending GenSeg’s capabilities beyond segmentation to
tackle other medical imaging challenges, like anomaly detection, image registration, or multimodal
image fusion, could further expand its utility. Furthermore, integrating feedback from clinical experts
into the synthetic data generation process could increase its clinical relevance, aligning outputs more
closely with diagnostic practices. These research directions could enhance GenSeg’s adaptability and
effectiveness across diverse medical imaging task.
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A Method

A.1 Overview of GenSeg

GenSeg consists of a data generation model and a medical image segmentation model. The data
generation model is based on conditional generative adversarial networks (GANs) [27, 28]. It
comprises two main components: a mask-to-image generator and a discriminator. Uniquely, our
generator has a learnable neural architecture [29], as opposed to the fixed architecture commonly seen
in previous GAN models. This generator, with weight parameters G and a learnable architecture A,
takes a segmentation mask as input and generates a corresponding medical image. The discriminator,
with learnable weight parameters H and a fixed architecture, differentiates between synthetic and real
medical images. The segmentation model has learnable weight parameters S and a fixed architecture.

Data generation is executed in a reverse manner. Starting with an expert-annotated segmentation
mask M, we first apply basic image augmentations, such as rotation, flipping, etc., to produce an

augmented mask M. This mask is then fed into the mask-to-image generator, resulting in a medical
image I(M, G, A), which corresponds to M, i.e., pixels in I(M, G, A) can be semantically labeled

~

using M. Each image-mask pair (i(lQ[, G,A), M) forms an augmented example for training the
segmentation model. Like other deep learning-based segmentation methods, GenSeg has access

to a training set comprised of real image-mask pairs Dy, = {1 M3V and a validation set
1 1 1) Nya
DYy = {10, MW

seg =
A.2 A multi-level optimization framework for GenSeg

GenSeg employs a multi-level optimization strategy across three distinct stages. The initial stage
focuses on training the data generation model, where we fix the generator’s architecture A and
train the weight parameters of both the generator (G) and the discriminator (H). To facilitate this

training, we modify the segmentation training dataset D;reg by swapping the roles of inputs and

outputs, resulting in a new dataset Dgyp = {M™ T}V I this setup, M(") serves as the input,

while I;”) acts as the output for our mask-to-image GAN model.

Let Lg,, represent the GAN training objective, a cross-entropy function that evaluates the discrim-
inator’s ability to distinguish between real and generated images. The discriminator’s goal is to
maximize Lg,,, effectively separating real images from generated ones. Conversely, the generator
strives to minimize L,,,, generating images that are so realistic they become indistinguishable from
real ones. This process is encapsulated in the following minimax optimization problem:

G*(A),H" = argminargmax Lgun(G, A, H, Dgyn), €))
G H

where G*(A) indicates that the optimally trained generator G* is dependent on the architecture A.
This dependency arises because G* is the outcome of optimizing the training objective function,
which in turn is influenced by A. A is tentatively fixed at this stage and will be updated later.
Otherwise, if we learn A by minimizing the training loss Lg,,, it may lead to a trivial solution
characterized by an overly large and complex architecture. Such a solution would likely overfit the
training data perfectly but perform poorly on unseen test data.

In the second stage, we leverage the trained generator to generate synthetic training examples using the

aforementioned process where expert-annotated masks are from Dg,. Let D(G*(A), Dy, ) represent

the generated data. We then use D(G*(A), Dy, ) and real training data Dy, to train the segmentation
model S by minimizing a segmentation loss L, (pixel-wise cross-entropy loss). This training is
formulated as the following optimization problem:

S*(A) = arg;nin L (S, ﬁ(G*(A), Die)) + VLsee (S, Dice), 2)

where 7 is a trade-off parameter.

In the third stage, we assess the performance of the trained segmentation model on the validation
dataset D:g‘;. The validation loss, Lges(S™(A), D;’é’é), serves as an indicator of the quality of the
generated data. If the generated data is of inferior quality, it will likely result in S*(A) - trained on

this data - performing poorly on the validation set, reflected in a high validation loss. Thus, enhancing

14



485
486

487
488

489
490
491
492

493

494
495
496
497
498
499
500
501
502
503
504
505

506

508
509

510

511
512

514

515
516
517

519

the quality of generated data can be achieved by minimizing L, (S*(A), Di) w.r.t the generator’s

architecture A. This objective is encapsulated in the following optimization problem:

min Lo (S*(A), D). (3)

seg

We can integrate these stages into a multi-level optimization problem as follows:

ming  Leg(S*(A), D)

seg

st S*(A) = argmin Ly (S, D(G*(A), DY, )+
S

seg
VLses (S, Digy) “4)

G*(A),H" = argmin argmax L. (G, A, H, Dy, )
G H

In this formulation, the levels are interdependent. The output G*(A) from the first level defines the
objective for the second level, the output S*(A) from the second level defines the objective for the
third level, and the optimization variable A in the third level defines the objective function in the first
level.

Architecture search space

To enhance the generation of medical images by accurately capturing their distinctive characteristics,
we make the generator’s architecture searchable. Inspired by DARTS [30], we employ a differentiable
search method that is not only computationally efficient but also allows for a flexible exploration of
architectural designs. Our search space is structured as a series of computational cells, each forming a
directed acyclic graph that includes an input node, an output node, and intermediate nodes comprising
K different operators, such as convolution and transposed convolution. These operators are each tied
to a learnable selection weight, «, ranging from O to 1, where a higher « value indicates a stronger
preference for incorporating that operator into the final architecture. The process of architecture search
is essentially the optimization of these selection weights. Let Conv-xyz and UpConv-zyz denote
a convolution operator and a transposed convolution operator respectively, where = represents the
kernel size, y the stride, and 2 the padding. The pool of candidate operators includes Conv/UpConv-
421, Conv/UpConv-622, and Conv/UpConv-823, i.e., the number of operators K is 3. For any given
cell 4 with input x;, the output y; is determined by the formula y; = Zle o 10 1 (X;), where o;
represents the k-th operator in the cell, and «; i is its corresponding selection weight. Consequently,
the architecture of the generator can be succinctly described by the set of all selection weights,
denoted as A = {a; 1 }. Architecture search amounts to learning A.

A.3 Optimization algorithm

We develop a gradient-based method to solve the multi-level optimization problem in Eq.()). First,
we approximate G* (A) using one-step gradient descent update of G W.r.t Lyan (G, A, H, Dgyp):

G*(A) ~ G' =G — 7,V Lon (G, A, H, Dgap), 5)

where 1), is a learning rate. Similarly, we approximate H" using one-step gradient ascent update of H
W.I.t Lgan (G, A, H, Dy ):

H' ~ H =H+ 7,V Lgn (G, A, H, Dyyy). ©6)

Then we plug G*(A) ~ G’ into the objective function in the second level, yielding an approximated

objective. We approximate S*(A) using one-step gradient ascent update of S w.r.t the approximated
objective:

S*(A) ~ S =S — 1, Vs (L (S, D(G', DL, )+

seg
VLses (S, Digy))- (N

Finally, we plug S*(A) ~ §' into the validation loss in the third level, yielding an approximated
validation loss. We update A using gradient descent w.r.t the approximated loss:

A A —10,VaLge(S,D2). 8)

seg
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After A is updated, we plug it into Eq.(5) to update G again. The update steps in Eq.(5}8) iterate
until convergence.
The gradient VALSeg(S’, DY) can be calculated as follows:

seg
 OG' 0S' OLyy(S', D)

Lse S,,Dval _ = , 9
VA g( seg) 8A 8G' aS/ ( )
where oc
G
(97A = _ngvi’(}Lgan(GaAvHaDgan)a (10)
o8’ . )
W = _nsv?}’,S(Lseg(SvD(G/?D;eg))—’_
'yLseg(S,D;reg)). (11

A.4 Datasets

In this study, we focused on the segmentation of skin lesions from dermoscopy images, lungs from
chest X-ray images, breast cancer from ultrasound images, placental vessels from fetoscopic images,
polyps from colonoscopy images, foot ulcers from standard camera images, intraretinal cystoid fluid
from optical coherence tomography (OCT) images, and left ventricle and myocardial wall from
echocardiography images, utilizing 19 datasets. Additionally, we extended GenSeg to 3D image
segmentation and evaluated its effectiveness on two 3D medical imaging datasets for hippocampus
and liver segmentation. Each dataset was randomly partitioned into training, validation, and test sets.
The number of training examples was determined based on two considerations. The first consideration
is consistency with prior work. For well-established benchmarks such as ISIC, we adopted low-data
configurations used in previous studies to enable fair comparisons. For example, in the skin lesion
segmentation task, we followed the setup used in SemanticGAN [20]. The second consideration is
dataset-specific complexity. For datasets without standardized low-sample training protocols, we
selected training set sizes based on task difficulty. Specifically, datasets involving more complex
anatomical structures, high intra-class variability, or low contrast typically required more training
samples to obtain stable performance. In contrast, datasets with simpler and well-defined structures
could be effectively learned using fewer samples.

For skin lesion segmentation from dermoscopy images, we utilized the ISIC2018 [31], PH2 [32]],
DermlS [33], and DermQuest [34]] datasets. The ISIC2018 dataset, provided by the International Skin
Imaging Collaboration (ISIC) 2018 Challenge, comprises 2,594 dermoscopy images, each meticu-
lously annotated with pixel-level skin lesion labels. The PH2 dataset, acquired at the Dermatology
Service of Hospital Pedro Hispano in Matosinhos, Portugal, contains 200 dermoscopic images of
melanocytic lesions. These images are in 8-bit RGB color format with a resolution of 768x560
pixels. DermlS offers a comprehensive collection of dermatological images covering a range of skin
conditions, including dermatitis, psoriasis, eczema, and skin cancer. DermQuest includes 137 images
representing two types of skin lesions: melanoma and nevus.

For lung segmentation from chest X-rays, we utilized the JSRT [35]], NLM-MC [36]], NLM-SZ [36],
and COVID-QU-Ex [37] datasets. The JSRT dataset consists of 247 chest X-ray images from
Japanese patients, each accompanied by manually annotated ground truth masks that delineate the
lung regions. The NLM-MC dataset was collected from the Department of Health and Human Services
in Montgomery County, Maryland, USA. It includes 138 frontal chest X-rays, with manual lung
segmentations provided. Of these, 80 images represent normal cases, while 58 exhibit manifestations
of tuberculosis (TB). The images are available in two resolutions: 4,020x4,892 pixels and 4,892x4,020
pixels. The NLM-SZ dataset, sourced from Shenzhen No.3 People’s Hospital, Guangdong, China,
contains 566 frontal chest X-rays in PNG format. Image sizes vary but are approximately 3,000x3,000
pixels. The COVID-QU-Ex dataset, compiled by researchers at Qatar University, comprises a large
collection of chest X-ray images, including 11,956 COVID-19 cases, 11,263 non-COVID infections,
and 10,701 normal instances. Ground-truth lung segmentation masks are provided for all images in
this dataset.

For placental vessel segmentation from fetoscopic images, we utilized the FPD [38]] and FetReg [39]]
datasets. The FPD dataset comprises 482 frames extracted from six distinct in vivo fetoscopic
procedure videos. To reduce redundancy and ensure a diverse set of annotated samples, the videos
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were down-sampled from 25 to 1 fps, and each frame was resized to a resolution of 448x448 pixels.
Each frame is provided with a corresponding segmentation mask that precisely outlines the blood
vessels. The FetReg dataset, developed for the FetReg2021 challenge, is the first large-scale, multi-
center dataset focused on fetoscopy laser photocoagulation procedures. It contains 2,718 pixel-wise
annotated images, categorizing background, vessel, fetus, and tool classes, sourced from 24 different
in vivo TTTS fetoscopic surgeries.

For polyp segmentation from colonoscopic images, we utilized the KVASIR [40] and CVC-
ClinicDB [41] datasets. Polyps are recognized as precursors to colorectal cancer and are detected in
nearly half of individuals aged 50 and older who undergo screening colonoscopy, with their prevalence
increasing with age. Early detection of polyps significantly improves survival rates from colorectal
cancer. The KVASIR dataset was collected using endoscopic equipment at Vestre Viken Health Trust
(VV) in Norway, which consists of four hospitals and provides healthcare services to a population of
470,000. The dataset includes images with varying resolutions, ranging from 720x576 to 1920x1072
pixels. It contains 1,000 polyp images, each accompanied by a corresponding segmentation mask,
with annotations verified by experienced endoscopists. CVC-ClinicDB comprises frames extracted
from colonoscopy videos and consists of 612 images with a resolution of 384x288 pixels, derived
from 31 colonoscopy sequences. videos.

For breast cancer segmentation, we utilized the BUID dataset [42], which consists of 630 breast
ultrasound images collected from 600 female patients aged between 25 and 75 years. The images
have an average resolution of 500x500 pixels. For foot ulcer segmentation, we utilized data from the
FUSeg challenge [43]], which includes over 1,000 images collected over a span of two years from
hundreds of patients. The raw images were captured using Canon SX 620 HS digital cameras and
iPad Pro under uncontrolled lighting conditions, with diverse backgrounds. For the segmentation of
intraretinal cystoids from Optical Coherence Tomography (OCT) images, we utilized the Intraretinal
Cystoid Fluid (ICFluid) dataset [44]. This dataset comprises 1,460 OCT images along with their
corresponding masks for the Cystoid Macular Edema (CME) ocular condition. For the segmentation
of left ventricles and myocardial wall, we employed data examples from the ETAB benchmark [435].
It is constructed from five publicly available echocardiogram datasets, encompassing diverse cohorts
and providing echocardiographies with a variety of views and annotations.

For 3D medical image segmentation tasks, we utilized two datasets from the Medical Segmentation
Decathlon (MSD) challenge [4]: Task04 (hippocampus segmentation) and Task03 (liver segmen-
tation). The hippocampus segmentation task focuses on segmenting the hippocampal region from
single-modality MR images. The hippocampus is a key brain structure involved in memory formation,
spatial navigation, and emotion processing. Anatomically, it is often divided into anterior and poste-
rior regions, each associated with distinct cognitive and emotional functions. In our experiments, we
merged the anterior and posterior regions into a single segmentation category. The dataset includes
MR scans from 394 patients, officially split into 260 training and 131 test cases. Since test annotations
are not publicly available, we split the original training set into training and test subsets using an
80:20 ratio. During training, the training set was further split into training and validation sets, also
with an 80:20 ratio. The Task03 dataset for liver segmentation contains 201 contrast-enhanced CT
scans from patients with primary liver cancers and metastatic disease originating from colorectal,
breast, and lung cancers. Among these, 123 cases are officially designated for training. We applied
the same data-splitting strategy as used in the hippocampus dataset, resulting in 98 training cases and
25 test cases.

A.5 Metrics

For all segmentation tasks except skin lesion segmentation, we used the Dice score as the evaluation

metric, adhering to established conventions in the field [46]]. The Dice score is calculated as %,
where A represents the algorithm’s prediction and B denotes the ground truth. For skin lesion
segmentation, we followed the guidelines of the ISIC challenge [47] and employed the Jaccard

index, also known as intersection-over-union (IoU), as the performance metric. The Jaccard index is
ANB . . .
computed as : AUB} for each patient case. These metrics provide a robust assessment of the overlap

between the predicted segmentation mask and the ground truth.
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A.6 Hyperparameters

In our method, mask augmentation was performed using a series of operations, including rotation,
flipping, and translation, applied in a random sequence. The mask-to-image generation model was
based on the Pix2Pix framework [28]], with an architecture that was made searchable, as depicted in
Fig.[Ip. The tradeoff parameter -y was set to 1. We configured the training process to perform 5,000
iterations. The RMSprop optimizer [48]] was utilized for training the segmentation model. It was set
with an initial learning rate of 1e — 5, a momentum of 0.9, and a weight decay of 1e — 3. Additionally,
the ReduceLROnPlateau scheduler was employed to dynamically adjust the learning rate according
to the model’s performance throughout the training period. Specifically, the scheduler was configured
with a patience of 2 and set to max mode, meaning it monitored the model’s validation performance
and adjusted the learning rate to maximize validation accuracy. For training the mask-to-image
generation model, the Adam optimizer [49]] was chosen, configured with an initial learning rate
of 1le — 5, beta values of (0.5, 0.999), and a weight decay of 1le — 3. Adam was also applied for
optimizing the architecture variables, with a learning rate of le — 4, beta values of (0.5, 0.999),
and weight decay of 1e — 5. At the end of each epoch, we assessed the performance of the trained
segmentation model on a validation set. The model checkpoint with the best validation performance
was selected as the final model. The experiments were conducted on A100 GPUs, with each method
being run three times using randomly initialized model weights. We report the average results along
with the standard deviation across these three runs.

A.7 Data availability

The skin lesion segmentation data used in this study are available in the ISIC [https://challenge!
isic-archive.com/data/], PH2 [https://www.fc.up.pt/addi/ph2/20database.html],
DermIS and DermQuest [https://uwaterloo.ca/vision-image-processing-lab/
research-demos/skin-cancer-detection| databases. The lung segmentation data used in this
study are available in the JSRT [http://db. jsrt.or. jp/eng.php], COVID-QU-Ex [https://
www.kaggle.com/datasets/anasmohammedtahir/covidqu], NLM-MC, and NLM-SZ [http:
//archive.nlm.nih.gov/repos/chestImages.php| databases. The breast cancer segmentation
data used in this study are available in the BUID [https://www.kaggle.com/datasets/
aryashah2k/breast-ultrasound-images-dataset?select=Dataset_BUSI_with_GT]|
database. The placental vessel segmentation data used in this study are available in the FPD [https:
//www.ucl.ac.uk/interventional-surgical-sciences/fetoscopy-placenta-datal
and FetReg [https://www.ucl.ac.uk/interventional-surgical-sciences/
weiss-open-research/weiss-open-data-server| databases. = The polyp segmentation
data used in this study are available in the KVASIR [https://datasets.simula.no/kvasir/|
and CVC-Clinic [https://www.kaggle.com/datasets/balraj98/cvcclinicdb]
databases. The foot ulcer segmentation data used in this study are available in the FUSeg
[https://github.com/uwm-bigdata/wound-segmentation/tree/master] database.
The intraretinal cystoid segmentation data used in this study are available in the ICFluid
[https://www.kaggle.com/datasets/zeeshanahmed13/intraretinal-cystoid-fluid]
database. The left ventricle and myocardial wall segmentation data used in this study
are available in the ETAB [https://github.com/Alaalab/ETAB/tree/main] database.
The hippocampus and liver segmentation data used in this study are available in the MSD
[https://drive.google.com/drive/folders/1HqEgzS8BV2c7xYNrZdEAnrHk70sJJ--2]
database. Source data are provided with this paper.

A.8 Code availability
The source code used in this study is available at https://github.com/importZL/GenSeg and is

archived at https://zenodo.org/records/15427671 [50]]. GenSeg is licensed under the Apache
2.0 License [51].

B GenSeg outperforms widely used data augmentation and generation tools
We compared GenSeg against prevalent data augmentation methods, including rotation, flipping,

and translation, as well as their combinations. Furthermore, GenSeg was benchmarked against a
data generation approach [52], which is based on the Wasserstein Generative Adversarial Network
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Figure 6: GenSeg significantly outperformed widely used data augmentation and generation
methods. a, GenSeg’s in-domain generalization performance compared to baseline methods includ-
ing Vanilla (without any data augmentations), Rotate, Flip, Translate, Combine, and WGAN, when
used with UNet or DeepLab in segmenting placental vessels, skin lesions, polyps, intraretinal cystoid
fluids, foot ulcers, and breast cancer using the FetReg, ISIC, CVC-Clinic, ICFluid, FUSeg, and BUID
datasets. b, GenSeg’s in-domain generalization performance compared to baseline methods using a
varying number of training examples from the ISIC dataset for segmenting skin lesions, with UNet
and DeepLab as the backbone segmentation models. ¢, GenSeg’s out-of-domain generalization per-
formance compared to baseline methods across varying numbers of training examples in segmenting
lungs (using examples from JSRT for training, and NLM-SZ and NLM-MC for testing) and skin
lesions (using examples from ISIC for training, and DermIS and PH2 for testing), with UNet and
DeepLab as the backbone segmentation models.
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Figure 7: GenSeg significantly outperformed state-of-the-art semi-supervised segmentation
methods. a, GenSeg’s in-domain generalization performance compared to baseline methods including
Vanilla (UNet/DeepLab), CTBCT, DCT, and MCF, when used with UNet or DeepLab in segmenting
placental vessels, skin lesions, polyps, intraretinal cystoid fluids, foot ulcers, and breast cancer
utilizing the FetReg, DermQuest, CVC-Clinic, ICFluid, FUSeg, and BUID datasets. b, GenSeg’s
in-domain generalization performance compared to baseline methods using a varying number of
training examples from the ISIC and JSRT datasets for segmenting skin lesions and lungs, with UNet
and DeepLab as the backbone segmentation models. ¢, GenSeg’s out-of-domain generalization per-
formance compared to baseline methods across varying numbers of training examples in segmenting
lungs (using examples from JSRT for training, and NLM-SZ and NLM-MC for testing) and skin
lesions (using examples from ISIC for training, and DermlIS and PH2 for testing), with UNet and
DeepLab as the backbone segmentation models.
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(WGAN) [53]. For each baseline augmentation method, the same hyperparameters (e.g., rotation
angle) were consistently applied to both the input image and the corresponding output mask within
each training example, resulting in augmented image-mask pairs. GenSeg significantly surpassed
these methods under in-domain settings (Fig. [6h). For instance, in foot ulcer segmentation using
UNet as the backbone segmentation model, GenSeg attained a Dice score of 0.74, significantly
surpassing the top baseline method, WGAN, which achieved 0.66. Similarly, in polyp segmentation
with DeepLab, GenSeg scored 0.76, significantly outperforming the best baselines - Flip, Com-
bine, and WGAN - which scored 0.69. GenSeg also demonstrated superior out-of-domain (OOD)
generalization performance compared to the baselines (Fig. [6t). For instance, in UNet-based skin
lesion segmentation, with 40 training examples from the ISIC dataset, GenSeg achieved a Dice
score of 0.77 on the PH2 dataset, substantially surpassing the best-performing baseline, Flip, which
scored 0.68. Moreover, GenSeg demonstrated comparable performance to baseline methods with
fewer training examples (Fig. [6p) under in-domain settings. For instance, using only 40 training
examples for skin lesion segmentation with UNet, GenSeg achieved a Dice score of 0.67. In contrast,
the best performing baseline, Combine, required 200 examples to reach the same score. Similarly,
with fewer training examples, GenSeg achieved comparable performance to baseline methods under
out-of-domain settings (Fig. [6k). For example, in lung segmentation with UNet, GenSeg reached a
Dice score of 0.93 using just 9 training examples, whereas the best performing baseline required 175
examples to achieve a similar score.

GenSeg outperforms existing data augmentation and generation techniques primarily due to its end-to-
end data generation mechanism. Unlike previous methods that separate data augmentation/generation
from segmentation model training, our approach integrates them end-to-end within a unified, multi-
level optimization framework. Within this framework, the validation performance of the segmentation
model acts as a direct indicator of the generated data’s usefulness. By leveraging this performance to
inform the training process of the generation model, we ensure that the data produced is specifically
optimized to improve the segmentation model. In previous methods, segmentation performance does
not impact the process of data augmentation and generation. As a result, the augmented/generated data
might not be effectively tailored for training the segmentation model. Furthermore, our framework
learns a generative model that excels in generating data with greater diversity compared to existing
augmentation methods.

C GenSeg outperforms state-of-the-art semi-supervised segmentation
methods

We conducted a comparative analysis of GenSeg against leading semi-supervised segmentation meth-
ods 18120, 154], including cross-teaching between convolutional neural networks and Transformer
(CTBCT) [55], deep co-training (DCT) [54], and a mutual correction framework (MCF) [56]], which
employ external unlabeled images (1000 in each experiment) to enhance model training and thereby
improve segmentation performance. GenSeg, which does not require any additional unlabeled images,
significantly outperformed baseline methods under in-domain settings (Fig. [7h). For example, when
using DeepLab as the backbone segmentation model for polyp segmentation, GenSeg achieved a
Dice score of 0.76, markedly outperforming the top baseline method, MCF, which reached only
0.69. GenSeg also exhibited superior out-of-domain (OOD) generalization capabilities compared
to baseline methods (Fig. [7c). For instance, in skin lesion segmentation based on DeepLab with
40 training examples from the ISIC dataset, GenSeg achieved a Dice score of 0.67 on the DermlS
dataset, significantly higher than the best-performing baseline, MCF, which scored 0.58. Additionally,
GenSeg showed performance on par with baseline methods using fewer training examples in both
in-domain (Fig.[7p) and out-of-domain settings (Fig. [7c).

In the context of medical imaging, collecting even unlabeled images presents a considerable challenge
due to stringent privacy concerns and regulatory constraints (e.g., IRB approval), thereby reducing
the feasibility of semi-supervised methods. Despite the use of unlabeled real images, semi-supervised
approaches underperform compared to GenSeg. This is primarily because these methods struggle to
generate accurate masks for unlabeled images, meaning that they are less effective at creating labeled
training data. In contrast, GenSeg is capable of producing high-quality images from masks, ensuring
a close correspondence between the images’ contents and the masks, thereby efficiently generating
labeled training examples.
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D GenSeg outperforms nnUNet across both in-domain and out-of-domain
scenarios

We compared GenSeg-UNet with nnUNet [2] - a state-of-the-art method for medical image seg-
mentation - under both in-domain and out-of-domain settings across multiple segmentation tasks.
GenSeg-UNet consistently outperformed nnUNet in these data-scarce scenarios (Fig. [8p and Fig. [8p).
In in-domain scenarios (Fig. [8a), GenSeg-UNet achieves 1-7% (absolute percentages) higher perfor-
mance scores across all tasks. In out-of-domain evaluations (Fig. [§p), which involve more substantial
distributional shifts, GenSeg-UNet demonstrates even greater improvements across all tasks, outper-
forming nnUNet by 5-16% (absolute percentages). For instance, in the lung segmentation task, when
trained on only 175 examples from the JSRT dataset and evaluated on the SZ dataset, GenSeg-UNet
achieves a Dice score of 94.5%, compared to 78.4% with nnUNet - a substantial gain of 16.1%.

The superior performance of GenSeg over nnUNet in ultra-low data regimes can be attributed to
fundamental differences in their augmentation strategies. nnUNet employs standard augmentation
techniques such as rotation, scaling, Gaussian blur, and intensity adjustments, which, while effective
in moderate- to large-scale data settings, offer limited diversity and adaptability in severely data-
constrained scenarios. In contrast, GenSeg trains a deep generative model that synthesizes diverse and
semantically consistent image—mask pairs tailored to the specific task and dataset. This generative
augmentation approach introduces significantly greater variability into the training data, enabling
the segmentation model to learn more robust and generalizable representations. By aligning the
data generation process with segmentation performance through end-to-end multi-level optimization,
GenSeg ensures that the synthesized data is not only realistic but also highly informative for improving
downstream segmentation accuracy.

E GenSeg improves the performance of diverse backbone segmentation
models

GenSeg is a versatile, model-agnostic framework that can seamlessly integrate with segmentation
models with diverse architectures to improve their performance. For example, after applying our
framework on UNet and DeepLab, we observed significant enhancements in their performance
(Figs. 2}5), both for in-domain and out-of-domain settings. Furthermore, we also integrated this
framework with a Transformer-based segmentation model, SwinUnet [57]. Using just 40 training
examples from the ISIC dataset, GenSeg-SwinUnet achieved a Jaccard index of 0.62 on the ISIC
test set. Furthermore, it demonstrated strong generalization with out-of-domain Jaccard index scores
of 0.65 on the PH2 dataset and 0.62 on the DermlS dataset. These results represent a substantial
improvement over the baseline SwinUnet model, which achieved Jaccard indices of 0.55 on ISIC,
0.56 on PH2, and 0.38 on DermIS (Fig.[8f).

F GenSeg improves 3D medical image segmentation

In addition to 2D medical image segmentation, GenSeg can be extended to support 3D segmentation
tasks. To enable this, we adapted our framework by incorporating 3D UNet[58]] as the segmentation
model and Pix2PixNIfTI[59] as the generative model, facilitating joint generation and segmentation
in a 3D volumetric setting. We make the architecture of the Pix2PixNIfTI model searchable by
replacing the convolution and transposed convolution layers in the original generator with our
differentiable convolutional and transposed convolutional cells. The architecture parameters of the
modified Pix2PixNIfTI model are optimized by minimizing the segmentation loss on the validation
set within our multi-level optimization-based framework. During training, the input 3D masks
are first augmented using rotation and flipping transformations, and the generator then synthesizes
3D volumes from these augmented masks. We evaluated this 3D extension on two datasets from
the Medical Segmentation Decathlon (MSD) challenge [4]], focusing on hippocampus and liver
segmentation tasks. Experiments were conducted under both ultra-low data settings (40 training
volumes) and higher data settings using the full available training sets (208 volumes for hippocampus
and 98 for liver).

GenSeg consistently improved segmentation performance over the baseline 3D UNet in both regimes
(Fig.[8d). Notably, in the ultra-low data setting, GenSeg yielded substantial gains, demonstrating its
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robustness and effectiveness in data-constrained 3D segmentation tasks. These results confirm that
GenSeg generalizes beyond 2D segmentation and remains effective when applied to more complex
3D volumetric data.

G GenSeg is effective in high-data regimes as well

While GenSeg is designed to enable medical image segmentation in ultra-low data regimes, we
further investigated its effectiveness in higher data settings. We conducted experiments on the ISIC,
FetReg, BUID, and CVC-Clinic datasets using UNet as the segmentation model. Two training
regimes were evaluated: (1) UNet-low and GenSeg-UNet-low, trained under ultra-low data conditions
with 40, 50, 100, and 40 training examples from the respective datasets; and (2) UNet-high and
GenSeg-UNet-high, trained using the full available training sets, consisting of 1000, 2000, 400, and
400 examples, respectively.

As shown in Fig. [B, several key observations emerge. First, GenSeg-UNet-high outperforms UNet-
high across all datasets, demonstrating that GenSeg’s generative augmentation strategy continues
to provide benefits even in high-data regimes. Second, as expected, segmentation performance
improves for all models as the training set size increases. Third, despite being trained on significantly
fewer examples, GenSeg-UNet-low achieves performance that is often close to that of UNet-high,
highlighting GenSeg’s strength in data-scarce scenarios. These findings underscore the versatility
and effectiveness of the GenSeg framework across varying data availability conditions. GenSeg
consistently enhances segmentation performance regardless of dataset size by integrating generative
augmentation into an end-to-end, task-driven learning paradigm. While particularly valuable in
low-data regimes, GenSeg also improves generalization in more data-rich settings by enriching the
training signal.

H Further improvement on ISIC and FetReg datasets

To further enhance GenSeg’s segmentation performance on challenging datasets such as ISIC and
FetReg, we conducted additional experiments by incorporating several targeted strategies. These
included increasing the amount of training data, refining augmentation techniques, and employing
a more proper segmentation backbone. For the ISIC dataset (UNet was used as the segmentation
model), we increased the number of training examples from 40 to 1000, which led to an improvement
in Jaccard score from 67.3% to 73.9% (Fig. [8f), reaching a level considered satisfactory for binary
segmentation tasks. For the FetReg dataset, which presents unique challenges due to high anatomical
variability, low image contrast, and the complexity of placental vessel structures, we implemented
three modifications: narrowing the rotation augmentation range to (—5° to 5°), replacing UNet
with DeepLab as the segmentation model, and expanding the training set size from 50 to 2000
examples. These adjustments resulted in a significant performance gain, improving the Dice score to
71.7% (Fig.[8). These findings indicate that with sufficient data and appropriate architectural and
augmentation refinements, GenSeg can achieve high segmentation accuracy even in complex tasks.

I Ablation study evaluating different mask-to-image generative models

We conducted ablation studies to investigate how different choices of mask-to-image generative
models affect the final segmentation performance. In addition to the GAN-based Pix2Pix model
used in our current framework, we evaluated two state-of-the-art alternatives: Soft-Intro VAE [60], a
variational autoencoder (VAE) [[61-64] based model, and BBDM [635]], a diffusion-based generative
model [66]. We integrated each model into our GenSeg framework by using them to replace
the original Pix2Pix mask-to-image generator. We modified both BBDM and Soft-Intro VAE by
incorporating our multi-branch convolutional cells into their generator networks, to allow their
architectures to be optimized based on segmentation performance. We trained each model using two
strategies: (1) Separate, where the generative model is trained independently and then fixed before
segmentation model training, and (2) End2End, our proposed multi-level optimization framework.
Evaluation was performed under both in-domain and out-of-domain scenarios.

BBDM (End2End) achieved the highest performance across all datasets, under both in-domain
settings (Fig. Eh) and out-of-domain settings (Fig. Eb). The performance of Pix2Pix (End2End) and

23



826
827
828
829
830
831
832
833
834

835
836
837
838
839
840

841

842

843
844
845
846
847
848
849
850
851

853
854

855
856
857
858
859

860
861
862
863

865
866
867
868
869

871
872
873

874

875

876
877

Soft-Intro VAE (End2End) was comparable, with both trailing slightly behind BBDM. However,
BBDM incurs significantly higher computational cost and model size compared to both Pix2Pix
and Soft-Intro VAE under the End2End strategy (Fig. Oc). Considering the trade-off between
segmentation performance and computational efficiency, Pix2Pix remains a practical and effective
choice for our setting, particularly when computational resources are limited. Furthermore, all three
End2End approaches consistently outperformed their respective Separate counterparts, highlighting
the advantage of jointly optimizing the generative and segmentation models within an end-to-end
training framework. This result reinforces the central premise of GenSeg: that aligning the data
generation process with downstream segmentation performance leads to more effective learning.

In addition, within the GAN family, we compared the Pix2Pix model with two other GAN-based
models: SPADE[67] and ASAPNet[68]. For a fair comparison, we also made the generator architec-
tures of these models searchable by applying the multi-branch convolutional modification (Fig. [Ic)
to their generators. Pix2Pix and SPADE demonstrated comparable performance, both significantly
outperforming ASAPNet (Fig.[0d). This performance gap can be attributed to the superior image
generation capabilities of Pix2Pix and SPADE.

J Ablation study investigating the impact of generating images and masks
Jjointly

In our current framework, image and mask generation is performed using a two-step approach:
we first generate augmented masks from real masks using standard augmentation techniques, and
then synthesize images from the augmented masks using a mask-to-image generative model. As an
alternative, one can generate both the image and the corresponding mask simultaneously [69]. To
investigate which strategy is more effective, we compared our two-step approach with an ablation
setting referred to as Simultaneous, in which images and masks are generated jointly using the
WGAN-GP model [53], integrated within our framework when using UNet as the segmentation
model. In this setting, WGAN-GP takes a random noise vector sampled from a Gaussian distribution
as input and simultaneously produces a medical image and its corresponding mask. To maintain
architectural consistency with our framework, we modified the original WGAN-GP by replacing its
convolutional layers with our multi-branch convolutional cells. We then trained the model using our
end-to-end optimization strategy to ensure a fair comparison.

The two-step approach consistently outperforms the WGAN-GP-based simultaneous generation
method in both in-domain (Fig. O¢) and out-of-domain (Fig. [9f) settings. Notably, in the out-of-
domain evaluations - where 40 examples from the ISIC dataset were used for training and PH2 and
DermlIS served as test sets - the two-step method achieved 12.1% and 8.9% higher performance,
respectively.

The superior performance of the two-step approach over the simultaneous generation method can
be attributed to the explicit conditioning and structural alignment enforced during the data gener-
ation process. In the two-step pipeline, segmentation masks are first augmented and then used as
conditioning inputs to guide the image generation process. This explicit conditioning enables the
mask-to-image generation model to synthesize images that are tightly aligned with the structural
boundaries and semantics defined by the input mask. As a result, the generated image—mask pairs
exhibit high spatial coherence and fidelity, which is crucial for effective segmentation model training.
In contrast, the simultaneous generation approach, as implemented with WGAN-GP, synthesizes both
the image and the mask jointly without enforcing a strong pixel-wise correspondence between the
two outputs. This lack of explicit conditioning can lead to weaker structural alignment, especially in
low-data regimes where the model may struggle to learn accurate joint representations. Specifically, it
does not impose semantic constraints that guarantee the generated masks accurately delineate regions
of interest within the corresponding images. This misalignment can reduce the effectiveness of the
generated data in training downstream segmentation models.

K The impact of mask augmentation operations on segmentation
performance

In GenSeg, the initial step involves applying augmentation operations to generate synthetic segmenta-
tion masks from real masks. We explored the impact of augmentation operations on segmentation
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performance. GenSeg, which utilizes all three operations - rotation, translation, and flipping - is
compared against three specific ablation settings where only one operation (Rotate, Translate, or Flip)
is used to augment the masks. GenSeg demonstrated significantly superior performance compared to
any of the individual ablation settings (Fig. [I0h). Notably, GenSeg exhibited superior generalization
on out-of-domain data, highlighting the advantages of integrating multiple augmentation operations
compared to using a single operation. By combining various augmentation operations, GenSeg
can generate a broader diversity of augmented masks, which in turn produces a more diverse set of
augmented images. Training segmentation models on this diverse dataset allows for learning more
robust representations, thereby significantly enhancing generalization capabilities on out-of-domain
test data.

L Ablation study on elastic and deformable augmentations

Elastic and deformable augmentations have recently shown promise in enhancing medical image
segmentation performance [[/0]. To evaluate their effectiveness within our framework, we conducted
an ablation study assessing the impact of incorporating elastic augmentation into the training pipeline
when using UNet as the segmentation model. Specifically, we compared the following three ablation
settings: 1) Without Elastic, using only our original set of augmentations (e.g., flipping, rotation,
translation), 2) With Elastic, combining our original augmentations with elastic augmentation, and 3)
Only Elastic, using elastic augmentation alone, without any other augmentations.

The combination of elastic and traditional augmentations (With Elastic) resulted in modest per-
formance improvements across both in-domain (Fig. [IOp) and out-of-domain (Fig. [I0c) settings.
However, the Without Elastic setting - using only our original traditional augmentations - consistently
outperformed the Only Elastic setting (Fig. [IOp and Fig. [I0k), which applies elastic deformation
alone, across all tasks. One possible explanation is that elastic augmentation, when used in iso-
lation, may result in a narrower range of transformations, focusing primarily on localized shape
distortions. While such deformations can be beneficial in mimicking anatomical variability, they
may not capture broader appearance and geometric changes - such as orientation, scale, or intensity
shifts - that traditional augmentations introduce. As a result, relying solely on elastic transformations
might limit the diversity of the training data and reduce generalization. These results suggest that
traditional augmentations provide a strong and versatile baseline, and that combining them with
elastic augmentations may offer additional benefits depending on the dataset characteristics and task
requirements.

M Ablation study on the impact of rotation augmentation in placental vessel
segmentation

In placental vessel segmentation, the orientation of vessels is highly sensitive, raising concerns that
rotation-based augmentations may be unsuitable for such images. To investigate this, we conducted
an ablation study on two vessel segmentation datasets: FetReg and FPD, each using 100 training
examples. We tested the impact of different degrees of rotation augmentation by comparing five
settings: no rotation, small-angle rotation (=5° to 5°), moderate rotation (—15° to 15°), large rotation
(-=30° to 30°), and very large rotation (—45° to 45°).

As shown in Fig.[I0d, on the FPD dataset, all degrees of rotation yielded better performance than
the no-rotation baseline. On the FetReg dataset, small-angle rotation (—5° to 5°) provided the best
performance, while increasing the rotation range gradually led to performance degradation. These
observations indicate that large-angle rotations can distort vessel morphology and interfere with fine-
grained structural cues essential for accurate segmentation, particularly in tasks requiring high spatial
precision. On the other hand, small-angle rotations appear beneficial. They introduce controlled
variability that helps improve model generalization without compromising anatomical integrity. We
hypothesize that such mild transformations encourage robustness to minor viewpoint changes while
still preserving the spatial structure of vessels - an important consideration in vascular imaging.
In summary, our results confirm that vessel segmentation tasks are sensitive to large rotational
transformations, which can negatively impact performance. However, mild rotations in the range
of —5° to 5° strike a balance between augmentation diversity and structural preservation, leading to
improved outcomes.
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N Ablation study on learnable multi-branch convolutions

To quantify the impact of the multi-branch design in Fig. [Tk, we conducted an ablation study
involving three settings. In the first setting (Single-branch), we trained a standard single-branch
Pix2Pix generator to synthesize images, which were then used to train the segmentation model
in a separate stage. In the second setting (Fixed Multi-branch), we used a multi-branch Pix2Pix
generator with branch weights (i.e., all weights « in Fig. [Ik) fixed to 1, also trained independently
from the segmentation model. In the third setting (Learnable Multi-branch), which corresponds to
our full GenSeg framework, the generator was integrated into an end-to-end pipeline, where the
branch weights o were learned by minimizing segmentation loss on the validation set. We evaluated
all three configurations on three representative tasks: skin lesion segmentation (ISIC dataset, 200
training examples), intraretinal cystoid segmentation (ICFluid dataset, 50 training examples), and
breast cancer segmentation (BUID dataset, 100 training examples). As shown in Fig.[I0p, the Fixed
Multi-branch model consistently outperformed the Single-branch model, demonstrating the advantage
of using multi-branch convolutions. Moreover, the Learnable Multi-branch model further improved
performance, highlighting the benefit of learning the branch weights in a task-adaptive manner. To
assess the statistical significance of these improvements, we conducted two-sided paired t-tests on
performance scores across three tasks. Each method was evaluated over three independent training
runs with different random seeds, and pairwise comparisons were performed.

We attribute these improvements to the increased representational capacity of the multi-branch
architecture, which enables the generator to learn a more diverse set of features tailored to varying
spatial and structural characteristics across datasets. While the fixed multi-branch design provides
architectural flexibility, the learnable version further strengthens performance by enabling end-to-end
optimization that aligns synthetic data generation with the segmentation objective. In summary,
this ablation study demonstrates that learnable multi-branch convolutions significantly improve
segmentation accuracy, demonstrating their role as an important micro-architectural component of
the GenSeg framework.

O The impact of the tradeoff parameter on segmentation performance

We investigated the effect of the hyperparameter ~ in Eq.(2) on the performance of our method.
This parameter controls the balance between the contributions of real and generated data during the
training of the segmentation model. Optimal performance was observed with a moderate ~y value
(e.g., 1), which effectively balanced the use of real and generated data (Fig. [I0f).

P Computation costs

Given that GenSeg is designed for scenarios with limited training data, the overall training time is
minimal, often requiring less than 2 GPU hours (Fig. [8g). To enhance the efficiency of GenSeg’s
training, we plan to incorporate strategies from [[71} [72] for accelerated GAN training and implement
the algorithm proposed in [[73]] to expedite the convergence of multi-level optimization. Importantly,
our method does not increase the inference cost of the segmentation model. This is because our
approach maintains the original architecture of the segmentation model, ensuring that the Multiply-
Accumulate (MAC) operations remain unchanged.
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Figure 8: a, GenSeg-UNet consistently outperforms nnUNet across a range of segmentation tasks
under in-domain scenarios. b, GenSeg-UNet consistently demonstrates superior performance to
nnUNet across diverse segmentation tasks in out-of-domain settings. In the X-Y notation, X refers
to the training dataset and Y to the test dataset, where X and Y are from distinct distributions. ¢,
GenSeg-SwinUnet outperforms SwinUnet, both trained on 40 examples from the ISIC dataset and
evaluated on the test sets of ISIC, PH2, and DermlIS. d, Extension of the GenSeg framework to 3D
medical image segmentation tasks under different training data regimes. “Hippo.-low” refers to
training with an ultra-low data setting for hippocampus segmentation, while “Hippo.-full” refers to
training with the full available dataset. The same settings are applied to the liver segmentation task. e,
Comparison of model performance under ultra-low and high data regimes. “UNet-low” denotes the
UNet model trained with an ultra-low amount of data, while “UNet-high” refers to the model trained
with the full available dataset. The same training settings are applied to GenSeg-UNet. f, GenSeg’s
performance on the ISIC and FetReg datasets can be further improved by employing several strategies,
including increasing the number of training examples, using task-appropriate segmentation models,
and refining augmentation techniques. g, The runtime (in hours on an A100 GPU) of GenSeg-UNet
was measured for lung segmentation using JSRT as the training data and for skin lesion segmentation
using ISIC as the training data.
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Figure 9: Ablation studies on generative models and generation strategies in GenSeg. a-b,
Ablation study evaluating the effectiveness of different generative models - including Pix2Pix (GAN-
based), BBDM (diffusion-based), and Soft-Intro VAE (VAE-based) - under separate and end-to-end
training strategies. Evaluations were conducted under both in-domain (a) and out-of-domain (b)
scenarios, using UNet as the segmentation model. For out-of-domain scenarios, datasets are labeled
in the format X-Y, where X denotes the training dataset and Y denotes the test dataset. ¢, Comparison
of training time (left) measured on an A100 GPU and model size (right) for Pix2Pix, BBDM, and
Soft-Intro VAE within our end-to-end training framework, in skin lesion segmentation with 40
training examples from the ISIC dataset when using UNet as the segmentation model. d, Impact of
mask-to-image GAN models on the performance of GenSeg-UNet was evaluated on the test datasets
of ISIC, PH2, and DermlS, in skin lesion segmentation. GenSeg-UNet was trained using 40 examples
from the ISIC training dataset. e-f, Ablation study comparing simultaneous image—mask generation
with the two-step approach, where masks are first augmented and then used to generate images. The
two-step strategy outperforms simultaneous generation. Experiments were conducted under both
in-domain (e) and out-of-domain (f) settings.

28



a I Rotate Bmm Translate - Flip = Al
Dice Jaccard
0.8

0.7 1

0.6 4

0.5 -
JSRT NLM-MC NLM-SZ ISIC PH2 DermIS

- Without elastic mmm With elastic B Only elastic
Cc
Jaccard Jaccard Jaccard

Dice Dice

0.60

0.55

0.50

0.60 . 0.60 0.70 0.55
CVC-Clinic ICFluid FUSeg ISIC ISIC-PH2 ISIC-DermIS

-45°~45° rotation  WEEN -15°~15°rotation WSS Withoutrotation ™ ey Single-branch  WEEE Fixed Multi-branch W Learnable Multi-branch
- -30°~30° rotation mmm -5°~5° rotation

Dice Dice Jaccard Dice Dice

0.50

0.45

0.40 . i )
EPD FetReg ISIC ICFluid BUID
f —- JSRT ~#— NLM-MC —@— NLM-SZ —- IsIC —A— PH2 —@— DermIS
Lung Skin lesion
9 JSRT training examples  UNet-based 40 ISIC training examples  UNet-based
Dice 0.964 Jaccard
0.956 0.958 ‘= 0.953
0.928
0.900
09 o.s76 0= 07 -
0.859 0.856 .
0.833
0.8 0.6
0.74.
0.7 T T T T 0.5 T T T T
0.1 0.5 gamma 1.0 15 0.1 0.5 gamma 1.0 15

Figure 10: Ablation studies of augmentation strategies, architectural components, and param-
eter sensitivity in GenSeg. a, (Left) Impact of augmentation operations on the performance of
GenSeg-UNet was evaluated on the test datasets of JSRT, NLM-MC, and NLM-SZ, in lung segmen-
tation. GenSeg-UNet was trained using 9 examples from the JSRT training dataset. ALL refers to the
full GenSeg method that incorporates all three operations. (Right) Impact of augmentation operations
on the performance of GenSeg-UNet was evaluated on the test datasets of ISIC, PH2, and DermlIS,
in skin lesion segmentation. GenSeg-UNet was trained using 40 examples from the ISIC training
dataset. b-c, Ablation study evaluating the impact of elastic augmentation under in-domain (b) and
out-of-domain settings (c¢). In out-of-domain scenarios, datasets are denoted in the format X—Y, where
X represents the training dataset and Y the test dataset. UNet was used as the segmentation model.
d, Ablation study evaluating the impact of rotation augmentation on placental vessel segmentation
using the FetReg and FPD datasets with UNet as the segmentation model. e, Ablation study on
learnable multi-branch convolutions, with UNet as the segmentation model. f, (Left) Impact of the
tradeoff parameter y on the performance of GenSeg-UNet on the test datasets of JSRT, NLM-MC,
and NLM-SZ, in lung segmentation with 9 examples from the JSRT training dataset. (Right) Impact
of the tradeoff parameter « on the performance of GenSeg-UNet on the test datasets of ISIC, PH2,
and DermlS, in skin lesion segmentation with 40 examples from the ISIC training dataset.
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