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ABSTRACT

Decentralized learning offers a promising approach to crowdsource computational
workloads across geographically distributed compute interconnected through peer-
to-peer networks, accommodating the exponentially increasing compute demands
in the era of large models. However, the absence of proper incentives in locally con-
nected decentralized networks poses significant risks of free riding and malicious
behaviors. Data influence, which ensures fair attribution of data source contribu-
tions, holds great potential for establishing effective incentive mechanisms. Despite
the importance, little effort has been made to analyze data influence in decentral-
ized scenarios, due to non-trivial challenges arising from the distributed nature
and the localized connections inherent in decentralized networks. To overcome
this fundamental challenge, we propose DICE, the first framework to systemati-
cally define and estimate Data Influence CascadEs in decentralized environments.
DICE establishes a new perspective on influence measurement, seamlessly inte-
grating self-level and community-level contributions to capture how data influence
cascades implicitly through networks via communication. Theoretically, the frame-
work derives tractable approximations of influence cascades over arbitrary neighbor
hops, uncovering for the first time that data influence in decentralized learning is
shaped by a synergistic interplay of data, communication topology, and the curva-
ture information of optimization landscapes. By bridging theoretical insights with
practical applications, DICE lays the foundations for incentivized decentralized
learning, including selecting suitable collaborators and identifying malicious be-
haviors. We envision DICE will catalyze the development of scalable, autonomous,
and reciprocal decentralized learning ecosystems.

1 INTRODUCTION

Machine learning has made remarkable progress in the past a few years, driven primarily by large
language models (LLMs) such as GPT-4 (Achiam et al., 2023), Llama 3 (Dubey et al., 2024), Claude
3 (Anthropic, 2024) and Gemini 1.5 (Reid et al., 2024), which have surpassed human performance on
several key benchmarks (Maslej et al., 2024). Compute scaling, highlighted by Ho et al. (2024) as
central to these gains, is forecasted by Epoch AI to grow four to fivefold annually in cutting-edge
models (Sevilla & Roldán, 2024). This exponential growth in computational demands necessitates
substantial financial investments; for example, training OpenAI’s GPT-4 requires approximately $78
million in compute costs (Maslej et al., 2024). Such exorbitant expenses are far beyond the reach
of most individuals and academic institutions, resulting in a concentration of access to the most
advanced frontier models within a small set of well-funded large corporations.

Currently, large-scale training and inference processes are primarily conducted within luxury data
centers. Decentralized training, inspired by swarm intelligence (Bonabeau et al., 1999; Surowiecki,
2004; Mavrovouniotis et al., 2017), offers cost-efficient alternative by crowdsourcing computational
workload with geographically distributed edge compute (Yuan et al., 2022; Borzunov et al., 2023).
One notable example of decentralized computing’s substantial computational potential is the Bitcoin
system, whose instantaneous 16 GW power consumption (CCAF, 2023) triples the estimated 5 GW
of the world’s largest planned GPU cluster (Gardizy & Efrati, 2024).

Despite the advantage, the absence of a central authority complicating coordination among partic-
ipants. Additionally, contributing to decentralized training involves non-negligible costs for edge
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users, prompting a natural question: why are edge users willing to participate in the decentralized
training process? Game theory insights suggest that with appropriate incentives, even self-interested
individuals can contribute to a system that achieves socially desirable outcomes (Nisan et al., 2007).
To fully leverage the computational potential of decentralized swarms, incentive mechanisms akin
to those in the Bitcoin system are essential to ensure fair compensation for contributors1. A critical
component of these incentive mechanisms is the accurate quantification of individual contributions,
or proof of work, which is necessary to foster “benign collaboration” among decentralized swarms
without centralized governance. Therefore, the fundamental question arises:

Fundamental question: How to quantify individual contributions in decentralized learning?

Addressing this question establishes the foundation for promoting valuable contributions and discour-
aging free-riding and malicious behaviors, which are critical to a collaborative decentralized learning
environment based on reciprocity (Gouldner, 1960; Fehr & Gächter, 2000).

With the ever-growing demand for high-quality data in modern machine learning (Hoffmann et al.,
2022; Penedo et al., 2023; Li et al., 2023; Longpre et al., 2024; Villalobos et al., 2024), the influence
of data plays an increasingly important role (Sorscher et al., 2022; Grosse et al., 2023; Xia et al.,
2024). It ensures fair attribution of data source contributions, which is pivotal in establishing effective
incentive mechanisms. Besides serving as an incentive, data influence has been extensively applied in
various machine learning domains, including few-shot learning (Park et al., 2021), dataset pruning
(Sorscher et al., 2022; Yang et al., 2023), distillation (Loo et al., 2023), fairness improving (Li &
Liu, 2022), machine unlearning (Guo et al., 2020; Sekhari et al., 2021), explainability (Koh & Liang,
2017; Han et al., 2020; Grosse et al., 2023), as well as training-set attacks (Demontis et al., 2019;
Jagielski et al., 2021) and defenses (Hammoudeh & Lowd, 2022).

Despite its importance, understanding and measuring data influence in fully decentralized environ-
ments remains largely untouched. Unlike centralized scenarios, where data influence is confined
to a single model and can be statically analyzed after training, decentralized learning involves col-
laborative training among multiple participants connected via localized communication. In these
settings, the influence of a single data instance impacts its local model and propagates to neighbors
and even higher-order neighbors through iterative parameter exchange—a phenomenon we term the
cascading effect. Unfortunately, existing data influence estimators tailored for centralized settings
cannot characterize such dynamic transmission of data influence without significant modifications.

To address these challenges, we propose DICE (Data Influence CascadE), the first framework for
systematically defining and estimating data influence in decentralized learning environments. We
summarize our major contributions as follows:

• Conceptual contributions: DICE introduces the concept of a ground-truth data influence for
decentralized learning, seamlessly integrating direct and indirect contributions to capture influence
propagation across multiple hops during training.

• Theoretical contributions: Building on this foundation, we derive tractable approximations of
ground-truth DICE for an arbitrary number of neighbor hops, establishing a foundational framework
to systematically characterize the flow of influence across decentralized networks. These theoretical
results uncover, for the first time, that data influence in decentralized learning extends beyond the
data itself and the local model, as seen in centralized training. Instead, it is a joint product of three
critical factors: the original data, the topological importance of the data keeper, and the curvature
information of intermediate nodes mediating propagation. This dependency highlights the intricate
interplay between data quality, network structure, and the optimization landscape, deepening our
understanding of data influence and its pivotal role in shaping decentralized learning outcomes.

In our vision, we anticipate that the DICE framework will pave the way for novel incentive mechanism
designs and the establishment of an economic framework for decentralized learning, including
data and parameter markets. DICE also hold great potential to address critical challenges such as
identifying new suitable collaborators, and detecting free-riders and malicious behaviors, under the
constraints of limited local communication. We envision these impactful applications may contribute
to the practical realization of scalable, autonomous, and reciprocal decentralized learning ecosystems.

1In this paper, the terms contributor, node, agent and participant interchangeably refer to an edge individual.
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Figure 1: Visualization of influence cascades during decentralized trainingg with ResNet-18 on
CIFAR-10 under a designed communication matrix (see Figure D.22). The thickness of edges
represents the strength of communication links (i.e., weights in W ), while node sizes correspond to
the one-hop DICE-E influence scores (see Proposition 1) computed for the same data batch across
different participants. The differences in node sizes underscore how the identical data exerts varying
influences depending on the node where it is stored, highlighting the critical role of topology in
shaping data influence within decentralized learning.

2 RELATED WORK

Data Influence Estimation. Data influence quantifies the contribution of training data to model
predictions (Chen et al., 2024; Ilyas et al., 2024). Data influence estimators are broadly categorized
into static and dynamic approaches2. Specifically, static approaches include both retraining-based and
one-point methods. Retraining-based methods, such as leave-one-out (Cook, 1977), Shapley value
(Shapley, 1953), and Datamodels (Ilyas et al., 2022), assess data influence by retraining the model on
(subsets of) the training data. These methods offer a conceptually straightforward computation of
data influence and are grounded in strong theoretical foundations, but they are often computationally
expensive due to the requirement for retraining.

In contrast, one-point influence methods approximate the effect of retraining using a single trained
model. A well-established one-point method is the canonical influence function (Koh & Liang,
2017), developed from statistics (Hampel, 1974; Chatterjee et al., 1982), which examines how
infinitesimal perturbations of a training example affect the empirical risk minimizers (ERM) (Vapnik
& Chervonenkis, 1974). The influence function has been extended to incorporate higher-order
information (Basu et al., 2020) and scaled for larger models (Guo et al., 2021; Schioppa et al., 2022),
including LLMs (Grosse et al., 2023). While these static influence measures have elegant theoretical
foundations, they are limited in characterizing how training data influences the training process.

Alternatively, dynamic methods enhance influence estimation by considering the evolution of model
parameters across training iterations (Charpiat et al., 2019). Notable examples in this category include
TracIn (Pruthi et al., 2020) and In-Run Data Shapley (Wang et al., 2024), which track the influence
of training data points by averaging gradient similarities over time. The practicality of dynamic
influence estimators is demonstrated by their applications in improving training processes in modern
setups (Xia et al., 2024). Recently, Nickl et al. (2023) adopt a novel memory-perturbation equation

2Typically, data influence estimators are classified as retraining-based and gradient-based methods (Hammoudeh &
Lowd, 2024). For enhanced logical coherence in this paper, we group retraining-based methods and one-point gradient-based
techniques under the static category. This classification does not contradict conventional categorizations.
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framework to derive dynamic influence estimation of model trained under different centralized
optimization algorithms, including SGD, RMSprop and Adam.

However, the existing static and dynamic influence estimation methods primarily target centralized
scenarios, and little progress has been made in analyzing data influence in fully decentralized
environments. To the best of our knowledge, the only closely related work is by Terashita &
Hara (2022), who proposed a decentralized hyper-gradient method and provided novel insights on
applying hyper-gradients to compute a centralized formulation of data influence. Nevertheless, their
estimation method is static and cannot capture data cascades arising from gossip communication
during decentralized training. In contrast, our framework, DICE, is specifically designed for fully
decentralized environments, allowing it to provide a fine-grained characterization of the unique
influence cascades inherent in these settings.

Incentivized Decentralized Learning. Most existing incentive mechanisms for collaborative learning
are designed for federated learning (Zeng et al., 2021). For instance, Wang et al. (2023) propose
an Incentive Collaboration Learning (ICL) framework to promote collaboration. Their focus is on
mechanism design rather than the precise quantification of individual contributions. In contrast, our
work lays the foundation for such incentive mechanisms by accurately measuring individual-level
contributions. In federated learning, the Shapley value has been effectively utilized to quantify
participant contributions (Jia et al., 2019; Ghorbani & Zou, 2019; Wang et al., 2019; 2020). Our
approach differs fundamentally in two key aspects: first, we focus on fully decentralized settings
without central servers, although our framework supports federated learning scenarios; second, our
work considers influence cascades between participants, an completely new perspective that has
not been explored in existing literature. Regrading decentralized learning, we are only aware of the
work by Yu et al. (2023) presenting a blockchain-based incentive mechanism for fully decentralized
learning. However, their mechanism relies on smart contracts and differs from our focus.

3 NOTATIONS AND PRELIMINARIES

This section introduces notations and essential preliminaries for decentralized learning. For more
detailed background, please refer to Appendix A.1.

Setup. In the context of crowdsourcing workload, we consider a general distributed optimization
problem over a connected graph G = (V, E), where V represents the set of participants and E denotes
the communication links between them. The participants collaboratively minimize a weighted sum of
local objectives (T. Dinh et al., 2020; Hanzely & Richtárik, 2020; Even et al., 2024):

min
θ={θk∈Rd}k∈V

[
l(θ) ≜

∑
k∈V

qklk(θk)

]
, (1)

where qk ≥ 0 with
∑

k∈V qk = 1, and each local objective lk(θk) = Ezk∼Dk
[L(θk; zk)] is

defined by the expectation over the local data distribution Dk. Empirical risk minimization involves
optimizing the sample average approximation:

l̂(θ) =
∑
k∈V

qk l̂k(θk) where l̂k(θk) =
1

nk

nk∑
i=1

L(θk; zki
). (2)

Here, nk is the number of samples in participant k, and {zki
}nk
i=1 are drawn from Dk.

Decentralized learning aims to minimize the global objective l(θ) =
∑

k∈V qklk(θk) with only
local computations and gossip communications among neighboring participants (Xiao & Boyd,
2004; Nedic & Ozdaglar, 2009). The communication protocol is governed by a weighted adjacency
matrix W ∈ [0, 1]n×n, where Wk,j ≥ 0 represents the strength of connection from participant
j to participant k, with Wk,j > 0 if (k, j) ∈ E . This matrix characterizes the communication
topology, defining how information propagates through the network. In this paper, W is designed to
be row-stochastic, satisfying

∑n
j=1 Wk,j = 1 for all i ∈ V3.

3The weighted adjacency matrix W is typically assumed to be doubly-stochastic. The row-stochastic assumption is
weaker, yet the convergence of decentralized SGD is still guaranteed (Yuan et al., 2019; Xin et al., 2019).
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Decentralized stochastic gradient descent (Yuan et al., 2016; Lian et al., 2017; Koloskova et al., 2020)
is an standard implementation of decentralized training, which alternates between performing local
stochastic gradient steps and aggregating parameters through gossips, as shown below:

Algorithm 1 Decentralized Stochastic Gradient Descent (Decentralized SGD)

Require: G = (V, E), W ∈ [0, 1]n×n, {θ0
k}k∈V , learning rates {ηt}Tt=1, mini-batch {Btk}Tk∈V,t=1

1: for t = 1 to T do in parallel for all participants k ∈ V
2: Mini-batch gradient update: θt+ 1

2

k ← θt
k − 1

|Bt
k|
∑

z∈Bt
k
∇L(θt

k; z)

3: Information sharing: Send θ
t+ 1

2

k and ηt

|Bt
k|
∑

z∈Bt
k
∇L(θt

k; z) to {l ∈ V|Wl,k > 0}4

4: Gossip averaging from in-neighbors: θt+1
k ←

∑
j∈Nin(k)

W t
k,jθ

t+ 1
2

j

End for

Remark 1. The weighted adjacency matrix in Algorithm 1 can vary across iterations, resulting in
time-varying collaborations among participants. Additionally, FedAVG (McMahan et al., 2017) is a
special case of Algorithm 1 where the averaging step is performed globally. This demonstrates that
our framework accommodates decentralized learning with dynamic communication topologies and is
applicable to both federated and decentralized learning paradigms, even though the primary focus is
on fully decentralized learning without central servers.

4 DATA INFLUENCE CASCADES

In this section, we introduce DICE, a comprehensive framework for measuring data influence in
decentralized environments. Subsection 4.1 introduces the ground-truth influence measures designed
for decentralized learning and Subsection 4.2 provides their dynamic gradient-based estimations.

4.1 GROUND-TRUTH INFLUENCE IN DECENTRALIZED LEARNING

To ensure a logical and coherent flow, we first introduce the fundamental concepts of data influence
in centralized settings and then discuss the significant challenges involved in extending these ideas to
decentralized environments. In conventional centralized setups, the influence of an individual data
instance can be assessed by evaluating the counterfactual change in learning performance through
leave-one-out retraining (LOO) (Cook, 1977), defined as follows:

Definition 1 (Leave-one-out Influence).

ILOO(z, z
′) =L(θ∗; z′)− L(θ∗

\z; z
′), (3)

where z denotes the training data instance under influence assessment, z′ is the loss-evaluating
instance, θ∗ and θ∗

\z are the models trained on the entire dataset S and S \ {z}, respectively.

Intuitively, Equation (3) quantifies the influence of z by its individual impact on test loss reduction.
A smaller LOO value indicates a significant contribution to learning, which aligns with the concept
that the data influence is reflected in its ability to enhance model performance. LOO influence is
often considered as the “gold standard” for evaluating how well influence estimators approximate the
ground-truth influence in the data influence literature (Koh & Liang, 2017; Basu et al., 2021).

However, extending LOO to decentralized scenarios introduces non-trivial challenges due to the
distributed nature and the localized connections in decentralized learning, reflected in Equation (2)
and Algorithm 1. In centralized setups, the core idea of LOO is to link data influence to variations in
loss or parameter outcomes. In contrast, decentralized learning systems involve multiple participants
sharing model parameters through inter-participant communications. As a result, alterations in model
parameters caused by a data-level modification propagate throughout the whole network.

4In decentralized learning literature, it is common for each participant to share only local parameters with its neighboring
participants (Lian et al., 2017; Koloskova et al., 2020). We note that sharing local gradients with neighbors maintains the
decentralized learning paradigm and does not significantly compromise privacy, as a participant can reconstruct the gradients
of its neighbors using the shared parameters (Mrini et al., 2024).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

A natural way to measure the influence of one participant in such collaborative environments is
through evaluating its contribution to the whole community (Wang et al., 2020; Yu et al., 2020), which
aligns with the customer-centric principle (Drucker, 1985) in determining value5. In decentralized
learning, when a participant transmits its training assets (e.g., model parameters or gradients) to
neighboring participants—akin to offering a product—the recipients derive possible utility from
these training assets and may provide reciprocal feedback, such as sharing their own assets in return.
This dynamic positions the neighbors as “customers”, thereby entrusting them with the rights to
determine the value of the assets provided by the supplier. With these insights in mind, we recognize
that assessing data influence in decentralized scenarios is far more complex, as summarized below:

Key observations: In decentralized learning,
1) neighbors who serves as customers hold the rights to determine data influence;
2) data influence is not static but spreads across participants through gossips during training.

Unfortunately, existing static estimators only calculate the loss change after training and thus cannot
characterize the dynamic transmission of data influence within the whole decentralized learning
community. Based on the above discussion, we posit that a “gold-standard” influence measure in
decentralized scenarios should satisfy the following requirements:

• Quantify community-level influence: Measure the impact of training data instances on the collective
utility of the community.

• Depend on training dynamics: Measure the influence based on the training process to characterize
the propagation of influence on decentralized networks.

In the following, we introduce the ground-truth influence measures tailored to the requirements of
decentralized environments, termed as the ground-truth influence cascade (DICE-GT).

Definition 2 (One-hop Ground-truth Influence Cascade). The one-hop DICE-GT value quantifies the
influence of a data instance zt

j from participant j on a loss-evaluating instance z′ within itself and its
immediate neighbors. Formally, for a given participant j ∈ V:

I(1)DICE-GT(z
t
j , z

′) = qj

(
L(θ

t+ 1
2

j ; z′)− L(θt
j ; z

′)
)

︸ ︷︷ ︸
direct marginal contribution of zt

j to j

+
∑

k∈N (1)
out (j)

qk

(
L(θt+1

k ; z′)− L(θt+1
k\zt

j
; z′)

)
︸ ︷︷ ︸

indirect marginal contribution of zt
j to one-hop neighbors

,

where θ
t+ 1

2
j denotes the updated model parameters of j after training on zt

j at iteration t (see Algo-

rithm 1). For each one-hop out-neighbor k ∈ N (1)
out (j), θ

t+1
k denotes the averaged model parameters

after receiving updated parameters {θt+ 1
2

l |Wk,l > 0} influenced by zt
j , while θt+1

k\zt
j

represents the

model parameters of k without the influence from zt
j , i.e., θt+1

k\zt
j
=
∑

l∈Nout(k)\j W
t
k,lθ

t+ 1
2

l +W t
k,jθ

t
l .

The economic intuition behind the DICE-GT value is that it captures both the direct marginal
contribution of a data instance to itself and its subsequent impact on immediate neighbors. Specially,
the first term L(z′;θ

t+ 1
2

j )−L(z′;θt
j) captures the inter-node direct influence of training data instance

zt
j on the test loss change at node j, which corresponds to the TracInIdeal influence in (Pruthi et al.,

2020) designed for centralized scenarios. The second term
∑

k∈N (1)
out (j)

(L(z′;θt+1
k )− L(z′;θt

k\zt
j
))

measures the intra-node influence unique in decentralized learning, which aggregates the indirect
influences on all one-hop neighbors, i.e., direct neighbors, of node j.

In decentralized learning environments, data influence propagates not only to immediate neighbors
but also to multi-hop neighbors through the communication topology. To characterize this multi-hop
influence, we extend the ground-truth influence cascade measure to arbitrary r-hop neighbors.

Definition 3 (Multi-hop Ground-truth Influence Cascade). The multi-hop DICE-GT value quantifies
the cumulative influence of a data instance z on a loss-evaluating instance z′ across all nodes within

5Peter Drucker’s customer-centric value principle from Innovation and Entrepreneurship states, “Quality in a product or
service is not what the supplier puts in. It is what the customer gets out of it.”.
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r-hop neighborhoods of participant j. Formally, for a given participant j ∈ V:

I(r)DICE-GT(z
t
j , z

′) = qj

(
L(θ

t+ 1
2

j ; z′)− L(θt
j ; z

′)
)
+

r∑
s=1

∑
k∈N (s)

out (j)

qk

(
L(θt+s

k ; z′)− L(θt+s
k\zt

j
; z′)

)
,

where N (s)
out (j) denotes the set of s-hop out-neighbors of j (please refer to Appendix A.2 for details

of high-order neighbors). θt+s
k and θt+s

k\zt
j

represents the parameters of node k at iteration t+ s when

the influence from zt
j are included and excluded, respectively.

Analogous to Definition 2, the first term captures the direct influence of data zt
j on the loss at node

j. The subsequent summation aggregates the indirect influences on all multi-hop neighbors up to r
steps away from node j. The reason to measure test loss change at the t+ s step is that the impact of
zt
j propagating to k ∈ N (s)

out (j) requires s steps. This layered formulation accounts for the multi-hop

cascading effects through the network up to the specified order r. I(r)DICE-GT captures both immediate
and distinct impact within the decentralized learning community, aligning with the dynamic local
information propagation observed in decentralized environments.

4.2 DYNAMIC GRADIENT-BASED ESTIMATIONS

To meet the second aforementioned requirement of decentralized learning, we design dynamic
gradient-based estimators for DICE-GT, called the influence cascade estimations (DICE-E).

Proposition 1 (Approximation of One-hop DICE-GT). The one-hop DICE-GT value (see Defini-
tion 2) can be linearly approximated as follow:

I(1)DICE-E(z
t
j , z

′) = −ηtqj∇L(θt
j ; z

′)⊤∇L(θt
j ; z

t
j)− ηt

∑
k∈N (1)

out (j)

qkW
t
k,j∇L(θt+1

k ; z′)⊤∇L(θt
j ; z

t
j).

The proof is included in Appendix C.1.

Additivity. The one-hop DICE-E influence measure is additive over training instances. Specifically,
for a mini-batch Btj from participant j, the total influence is the sum of individual influences:

I(1)DICE-E(B
t
j , z

′) =
∑

zt
j∈Bt

j

I(1)DICE-E(z
t
j , z

′). (4)

This property arises from linear Taylor approximation and the mini-batch update rule in decentralized
SGD. Specifically, substituting the mini-batch gradient update procedure of Algorithm 1 into the
one-hop DICE-E expression and leveraging the linearity of the inner products, we observe that the
total influence is additive over the mini-batch. This additivity is crucial for practical implementations,
allowing efficient computation of DICE-E influence for large mini-batches.

We then extend the influence approximation to multi-hop neighbors in decentralized learning and
show how the influence of a data instance cascades over the decentralized network.

Proposition 2 (Approximation of Two-hop DICE-GT). The two-hop DICE-GT influence
I(2)DICE-GT(z

t
j , z

′) (see Definition 3) can be approximated as follows:

I(2)DICE-E(z
t
j , z

′) = I(1)DICE-E(z
t
j , z

′)

−
∑

k∈N (1)
out (j)

∑
l∈N (1)

out (k)

ηtqlW
t+1
l,k W t

k,j∇L(θt+2
l ; z′)⊤(I − ηt+1H(θt+1

k ; zt+1
k ))∇L(θt

j ; z
t
j), (5)

where H(θt+1
k ; zt+1

k ) denotes the Hessian matrix of L with respect to θ evaluated at θt+1
k and zt+1

k .
Full proof is included in Appendix C.2.
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Proposition 3 (Approximation of r-hop DICE-GT). The r-hop DICE-GT influence I(r)DICE-GT(z
t
j , z

′)
(see Definition 3) can be approximated as follows:

I(r)DICE-E(z
t
j , z

′) = −
r∑

ρ=0

∑
(k1,...,kρ)∈P

(ρ)
j

ηtqkρ

(
ρ∏

s=1

W t+s−1
ks,ks−1

)

∇L(θt+ρ
kρ

; z′)⊤

(
ρ∏

s=2

(
I − ηt+s−1H(θt+s−1

ks
; zt+s−1

ks
)
))
∇L(θt

j ; z
t
j). (6)

where k0 = j, P (ρ)
j denotes the set of all sequences (k1, . . . , kρ) such that ks ∈ N (1)

out (ks−1) for
s = 1, . . . , ρ (see Definition A.7) and H(θt+s

ks
; zt+s

ks
) is the Hessian matrix of L with respect to θ

evaluated at θt+s
ks

and data zt+s
ks

. For the cases when ρ = 0 and ρ = 1, the relevant product expressions
are defined as identity matrices, thereby ensuring that the r-hop DICE-E remains well-defined. Full
proof is deferred to Appendix C.3.

Multi-hop DICE-E characterizes the cascading effects of data influence through multiple “layers”
of communication. In this context, the influence of a data instance from participant j can propagate
through a sequence of intermediate nodes, reaching participants that are ρ hops away. This multi-
hop propagation mechanism allows DICE-E to account for indirect influences, providing a more
comprehensive and nuanced measurement of data influence across the entire decentralized network.

Influence Dynamics: Exponential Decay and Topological Dependency. Proposition 3 demonstrates
that the multi-hop influence of a data instance zt

j is governed by the product of communication
weights

∏ρ
s=1 W

t+s−1
ks,ks−1

and Hessian-related terms
∏ρ

s=2(I − ηt+s−1Ht+s−1
ks

). This indicates that
the multi-hop influence of data in decentralized learning depends on the curvature information of the
intermediate nodes and diminishes exponentially with each additional network hop. Moreover, the
influence dynamics are inherently tied to the communication graph topology, as reflected by weights
such as W t

k,j , representing connection strength. Nodes with higher topological importance (e.g.,
node j with large

∑n
j=1 Wj,k) have their data influences propagated more widely and with greater

impact on the global utility. This property highlights the interplay between the original data and the
network structure in sharping data influence in decentralized learning.

4.3 PRACTICAL APPLICATIONS OF DICE-E

In idealized scenarios, participants may seek to estimate the influence of their high-order neighbors
on their local utility improvement. However, multi-hop influence estimations can be computationally
intensive. Therefore, one-hop DICE-E emerges as a more suitable choice due to its computational
efficiency and inherent additivity. Based on Proposition 1, we derive the peer-level contribution,
which we refer to as the proximal influence.

Definition 4 (Proximal Influence). The proximal influence of a data instance zt
j from participant j

on participant k at iteration t is defined as follows:

Ik,jDICE-E(z
t
j , z

′) = −ηtW t
k,jqk∇L(θt

j ; z
t
j)

⊤∇L(θt+1
k ; z′). (7)

This term quantifies the influence of the data instance zt
j from participant j on the loss reduction

experienced by its immediate neighbor k. Importantly, under the information sharing protocol defined
in Algorithm 1, participant k has access to qk, W t

k,j , ∇L(θt
j ; z

t
j), and ∇L(θt+1

k ; z′). Therefore,
each participant can compute the proximal contributions of its neighbors. The proximal influence can
be utilized in the following scenarios:

Collaborator Selection. In decentralized learning, local data remains private and only local parameter
communication is permitted. The absence of a central authority complicates the problem of selecting
the most suitable neighbors with high-quality data. Fortunately, DICE offers a mechanism for
participants to efficiently estimate the contributions of their neighbors with proximal influence. By
assessing the proximal influence of their neighbors, participants can identify the potential collaborators
that have the most significant positive impact on their learning process.
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To ensure reciprocal collaboration (Gouldner, 1960; Sundararajan & Krichene, 2023), participants
can compute reciprocity factors, which evaluate the mutual balance of influence.

Definition 5 (Reciprocity Factors). The reciprocity factor is defined in two forms:

1. Proximal Reciprocity Factor: The reciprocity factor between participants j and k at iteration t is

Rt
k,j =

qkW
t
k,j∇L(θ

t+1
k ; z′)⊤∇L(θt

j ; z
t
k)

qjW t
j,k∇L(θ

t+1
j ; z′)⊤∇L(θt

k; z
t
j)
. (8)

2. Neighborhood Reciprocity Factor: To evaluate reciprocity at the community level, the neighbor-
hood reciprocity factor for participant j at iteration t is defined as:

Rt
j =

∑
k∈N (1)

out (j)
qkW

t
k,j∇L(θ

t+1
k ; z′)⊤∇L(θt

j ; z
t
j)∑

l∈N (1)
in (j)

qlW t
j,l∇L(θ

t+1
j ; z′)⊤∇L(θt

l ; z
t
j)

. (9)

The proximal reciprocity factor measures the balance of influence between two participants, with val-
ues near unity indicating equitable mutual contributions. Significant deviations suggest an imbalance,
helping participants refine their collaboration strategies. The neighborhood reciprocity factor extends
this concept to a participant’s local community, evaluating the balance between influence inflow and
outflow. This metric supports participants in adjusting their engagement and aids the community in
managing membership, such as admitting new members or excluding underperforming participants.

5 EXPERIMENTS

Computational Resources. The experiments are conducted on a computing facility equipped with
80 GB NVIDIA® A100™ GPUs.

Implementation Details. Vanilla mini-batch Adapt-Then-Communicate version of Decentralized
SGD ((Lopes & Sayed, 2008), see Algorithm 1) with commonly used topologies (Ying et al., 2021) is
employed to train three layer MLPs (Rumelhart et al., 1986), three layer CNNs (LeCun et al., 1998)
and ResNet-18 (He et al., 2016) on subsets of MNIST (LeCun et al., 1998), CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009) and Tiny ImageNet (Le & Yang, 2015) datasets. The number of participants
(one GPU as a participant) is set to 16 and 32, with each participant holding 512 samples. For
sensitivity analysis, we evaluate the stability of results under hyperparameter adjustments. The local
batch size is varied as 16, 64, and 128 per participant, while the learning rate is set as 0.1 and 0.01
without decay. The code will be made publicly available.

5.1 INFLUENCE ALIGNMENT

We evaluate the alignment between one-hop DICE-GT (see Definition 2) and its first-order approxi-
mation, one-hop DICE-E (see Proposition 1). One-hop DICE-E I(1)

DICE-E(B
t
j ,z

′) is computed as the sum
of one-sample DICE-E within the mini-batch Btj thanks to the additivity (see Equation (4)). DICE-GT
IDICE-GT(1)(Bt

j ,z
′) is calculated by measuring the loss reduction after removing Btj from node j at the

t-th iteration. As shown in Figure 2, each plot contains 30 points, with each point representing
the result of a single comparison of the ground-truth and estimated influence. We can observe from
Figure 2 that DICE-E closely tracks DICE-GT under different settings. The alignment becomes even
stronger on simpler data set including CIFAR-10 and CIFAR-100, as detailed in Appendix D.2. These
results demonstrate that DICE-E provides a strong approximation of DICE-GT, achieving consistent
alignment across datasets (CIFAR-10, CIFAR-100 and Tiny ImageNet) and model architectures
(CNN and MLP). Further validation of this alignment is provided in Appendix D.2 to corroborate the
robustness of one-hop DICE-E under changing batch sizes, learning rates, and training epochs.

5.2 ANOMALY DETECTION

DICE identifies malicious neighbors, referred to as anomalies, by evaluating their proximal influence,
which estimates the reduction in test loss caused by a single neighbor. A high proximal influence

9
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Figure 2: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
32-node ring graph. Each node uses a 512-sample subset of Tiny ImageNet. Models are trained for 5
epochs with a batch size of 128 and a learning rate of 0.1.

score indicates that a neighbor increases the test loss, negatively impacting the learning process. In
our setup, anomalies are generated through random label flipping or by adding random Gaussian noise
to features, please kindly refer to (Zhang et al., 2024). Figure 2 illustrates that the most anomalies (in
red) are readily detectable with proximal influence values. Additional results in Appendix D.3 further
validate the reliability of this approach.

Figure 3: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 128 and a learning rate of
0.1. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by random label flipping, while the other four are normal participants.

5.3 INFLUENCE CASCADES

The topological dependency of DICE-E in our theory reveals the “power asymmetries” (Blau, 1964;
Magee & Galinsky, 2008) in decentralized learning. To support the theoretical finding, we examine
the one-hop DICE-E values of the same batch on participants with vastly different topological
importance. Figure 1 illustrates the one-hop DICE-E influence scores of an identical data batch across
participants during decentralized training of a ResNet-18 model on the CIFAR-10 dataset. Node
sizes represent the one-hop DICE-E influence scores, quantifying how a single batch impacts other
participants in the network. The dominant nodes (e.g., those with larger outgoing communication
weights in W ) exhibit significantly higher influence, as shown in Figure 1 and further detailed in
Appendix D.4. These visualizations underscore the critical role of topological properties in shaping
data influence in decentralized learning, demonstrating how the structure of the communication
matrix W determines the asymmetries in influence.

6 CONCLUSION

In this paper, we introduce DICE, the first comprehensive framework to quantify data influence in
fully decentralized learning environments. DICE characterizes how data influence cascades through
the communication network and uncover for the first time the intricate interaction between original
data, communication topology and the curvature information of optimization landscapes in shaping
influence. Future work can also leverage DICE to design effective incentive schemes (Yu et al., 2020)
and build decentralized data and parameter markets (Huang et al., 2023; Fallah et al., 2024).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku. 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence functions for
black-box predictions. In Proceedings of the 37th International Conference on Machine Learning,
2020.

Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
International Conference on Learning Representations, 2021.

Peter M. Blau. Exchange and power in social life. 1964.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, 1999.

Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk, Tim Dettmers,
Younes Belkada, Pavel Samygin, and Colin A Raffel. Distributed inference and fine-tuning of large
language models over the internet. In Advances in Neural Information Processing Systems, 2023.

CCAF. Cambridge bitcoin electricity consumption index (CBECI). https://ccaf.io/cbnsi/
cbeci, 2023.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input similarity from the
neural network perspective. In Advances in Neural Information Processing Systems, 2019.

Samprit Chatterjee, R. Dennis Cook, and Sanford Weisberg. Residuals and influence in regression.
1982.

Daiwei Chen, Jane Zhang, and Ramya Korlakai Vinayak. Unraveling the impact of training
samples. In ICLR Blogposts 2024, 2024. URL https://iclr-blogposts.github.
io/2024/blog/unraveling-the-impact-of-training-samples/. https://iclr-
blogposts.github.io/2024/blog/unraveling-the-impact-of-training-samples/.

R. Dennis Cook. Detection of influential observation in linear regression. Technometrics, 19(1):
15–18, 1977.

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea,
Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer? explaining transferability
of evasion and poisoning attacks. In 28th USENIX Security Symposium (USENIX Security 19),
2019.

Peter F. Drucker. Innovation and Entrepreneurship. Perennial Library, 1985.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mathieu Even, Anastasia Koloskova, and Laurent Massoulie. Asynchronous SGD on graphs: a
unified framework for asynchronous decentralized and federated optimization. In Proceedings of
The 27th International Conference on Artificial Intelligence and Statistics, 2024.

Alireza Fallah, Michael I Jordan, Ali Makhdoumi, and Azarakhsh Malekian. On three-layer data
markets. arXiv preprint arXiv:2402.09697, 2024.
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Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, 2016.

Anson Ho, Tamay Besiroglu, Ege Erdil, David Owen, Robi Rahman, Zifan Carl Guo, David Atkinson,
Neil Thompson, and Jaime Sevilla. Algorithmic progress in language models. arXiv preprint
arXiv:2403.05812, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Laurent Sifre.
An empirical analysis of compute-optimal large language model training. In Advances in Neural
Information Processing Systems, 2022.

Tzu-Heng Huang, Harit Vishwakarma, and Frederic Sala. Train ’n trade: Foundations of parameter
markets. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Understanding predictions with data and data with predictions. In Proceedings of the 39th
International Conference on Machine Learning, 2022.

12

https://www.theinformation.com/articles/microsoft-and-openai-plot-100-billion-stargate-ai-supercomputer
https://www.theinformation.com/articles/microsoft-and-openai-plot-100-billion-stargate-ai-supercomputer


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrew Ilyas, Kristian Georgiev, Logan Engstrom, and Sung Min (Sam) Park. Data attribution at
scale, 2024. URL https://ml-data-tutorial.org/. ICML 2024 Tutorial.

Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. Subpopulation data
poisoning attacks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Peizhao Li and Hongfu Liu. Achieving fairness at no utility cost via data reweighing with influence.
In Proceedings of the 39th International Conference on Machine Learning, 2022.
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Abdellah El Mrini, Edwige Cyffers, and Aurélien Bellet. Privacy attacks in decentralized learning.
In Proceedings of the 41st International Conference on Machine Learning, 2024.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Peter Nickl, Lu Xu, Dharmesh Tailor, Thomas Möllenhoff, and Mohammad Emtiyaz E Khan. The
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Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, 2007.

Seulki Park, Jongin Lim, Younghan Jeon, and Jin Young Choi. Influence-balanced loss for imbalanced
visual classification. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon LLM: Outperforming curated corpora with web data only. In Thirty-seventh
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. In Advances in Neural Information Processing Systems,
2020.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation. MIT Press, 1986.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on
Neural Networks and Learning Systems, 32(8):3710–3722, 2021.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Advances in Neural Information
Processing Systems, 2021.

Jaime Sevilla and Edu Roldán. Training compute of frontier ai models
grows by 4-5x per year, 2024. URL https://epochai.org/blog/
training-compute-of-frontier-ai-models-grows-by-4-5x-per-year.

Lloyd S. Shapley. A value for n-person games. In Contributions to the Theory of Games, Volume II,
chapter 17. Princeton University Press, 1953.

14

https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Abhishek Singha, Charles Lua, Gauri Guptaa, Ayush Chopraa, Jonas Blanca, Tzofi Klinghoffera,
Kushagra Tiwarya, and Ramesh Raskara. A perspective on decentralizing ai. 2024.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. In Advances in Neural Information
Processing Systems, 2022.

Mukund Sundararajan and Walid Krichene. Inflow, outflow, and reciprocity in machine learning. In
Proceedings of the 40th International Conference on Machine Learning, 2023.

James Surowiecki. The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How
Collective Wisdom Shapes Business, Economies, Societies, and Nations. Doubleday, 2004.

Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau
envelopes. In Advances in Neural Information Processing Systems, 2020.

Naoyuki Terashita and Satoshi Hara. Decentralized hyper-gradient computation over time-varying
directed networks. arXiv preprint arXiv:2210.02129, 2022.

Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: Will we run out of data? Limits of LLM scaling based on human-generated data. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Guan Wang, Charlie Xiaoqian Dang, and Ziye Zhou. Measure contribution of participants in federated
learning. In 2019 IEEE International Conference on Big Data (Big Data), pp. 2597–2604, 2019.

Jiachen T Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training run. arXiv
preprint arXiv:2406.11011, 2024.

Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. A Principled Approach to
Data Valuation for Federated Learning, pp. 153–167. Springer International Publishing, 2020.

Xinran Wang, Qi Le, Ahmad Faraz Khan, Jie Ding, and Ali Anwar. A framework for incentivized
collaborative learning. arXiv preprint arXiv:2305.17052, 2023.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
Selecting influential data for targeted instruction tuning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 54104–54132, 2024.

Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control
Letters, 53(1):65–78, 2004.

Ran Xin, Chenguang Xi, and Usman A. Khan. Frost—fast row-stochastic optimization with uncoor-
dinated step-sizes. EURASIP Journal on Advances in Signal Processing, 2019(1):1, 2019.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
training data by examining generalization influence. In The Eleventh International Conference on
Learning Representations, 2023.

Bicheng Ying, Kun Yuan, Yiming Chen, Hanbin Hu, Pan Pan, and Wotao Yin. Exponential graph is
provably efficient for decentralized deep training. In Advances in Neural Information Processing
Systems, 2021.

Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and Qiang
Yang. A fairness-aware incentive scheme for federated learning. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, 2020.

Haoxiang Yu, Hsiao-Yuan Chen, Sangsu Lee, Sriram Vishwanath, Xi Zheng, and Christine Julien.
idml: Incentivized decentralized machine learning. arXiv preprint arXiv:2304.05354, 2023.

Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments. Advances in Neural Information Processing Systems, 2022.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, 2016.

Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H. Sayed. Exact diffusion for distributed opti-
mization and learning—part i: Algorithm development. IEEE Transactions on Signal Processing,
67(3):708–723, 2019.

Liangqi Yuan, Ziran Wang, Lichao Sun, Philip S. Yu, and Christopher G. Brinton. Decentralized
federated learning: A survey and perspective. IEEE Internet of Things Journal, pp. 1–1, 2024.

Rongfei Zeng, Chao Zeng, Xingwei Wang, Bo Li, and Xiaowen Chu. A comprehensive survey of
incentive mechanism for federated learning. arXiv preprint arXiv:2106.15406, 2021.

Chang Zhang, Shunkun Yang, Lingfeng Mao, and Huansheng Ning. Anomaly detection and defense
techniques in federated learning: a comprehensive review. Artificial Intelligence Review, 57(6):
150, 2024.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A BACKGROUND

A.1 BACKGROUND OF DECENTRALIZED LEARNING

Decentralized training allows collaborative training without the control of central servers. For a more
comprehensive overview of decentralized learning, we refer readers to Martı́nez Beltrán et al. (2023);
Singha et al. (2024); Yuan et al. (2024).

We summarize some commonly used notions regarding decentralized training as follows:

Definition A.1 (Doubly Stochastic Matrix). Let G = (V, E) represent a decentralized communication
topology, where V is the set of n nodes and E is the set of edges. For any G = (V, E), the doubly
stochastic gossip matrix W = [Wj,k] ∈ Rn×n is defined on the edge set E and satisfies:

• If j ̸= k and (j, k) /∈ E , then Wj,k = 0; otherwise, Wj,k > 0.

• Wj,k ∈ [0, 1] for all j, k, and
∑

k Wk,j =
∑

j Wj,k = 1.

Intuitively, the doubly stochastic property ensures a balanced flow of information during gossip
communication, a common assumption in decentralized learning literature. However, in the scenarios
we consider, participants may occupy different roles within the network. Influential nodes might have
higher outgoing weights, i.e.,

∑n
j=1 Wj,k > 1.

To accommodate such cases while still ensuring the convergence of decentralized SGD (Yuan et al.,
2019; Xin et al., 2019), we introduce a relaxed condition:

Definition A.2 (Row Stochastic Matrix). Let G = (V, E) denote a decentralized communication
topology, where V is the set of n nodes and E is the set of edges. For any G = (V, E), the row
stochastic gossip matrix W = [Wj,k] ∈ Rn×n is defined on the edge set E and satisfies:

• If j ̸= k and (j, k) /∈ E , then Wj,k = 0; otherwise, Wj,k > 0.

• Wj,k ∈ [0, 1] for all j, k, and
∑

j Wk,j = 1.

The weighted adjacency matrix W in Algorithm 1 can vary across iterations, resulting in time-varying
collaborations among participants. Additionally, FedAVG (McMahan et al., 2017) is a special case of
Algorithm 1 where the averaging step is performed globally. This demonstrates that our framework
accommodates decentralized learning with dynamic communication topologies and is applicable
to both federated and decentralized learning paradigms, even though the primary focus is on fully
decentralized learning without central servers.

A.2 BACKGROUND OF MULTI-HOP NEIGHBORS

In graph theory, the concept of neighborhoods is fundamental for understanding the structure and
dynamics of graphs. To ensure a coherent and comprehensive flow in Section 4, we provide formal
definitions of multi-hop neighborhoods.

The adjacency matrix serves as a powerful tool for representing and analyzing the structure of a graph.
Multi-hop neighbors can be precisely defined using the adjacency matrix.

Definition A.3 (Adjacency Matrix). The adjacency matrix A of a graph G = (V, E) is an n × n
square matrix (where n = |V|) defined by:

Ajk =

{
1 if (j, k) ∈ E ,
0 otherwise.

(A.1)

The adjacency matrix enables the determination of r-hop neighbors through matrix exponentiation.
Specifically, the (j, k)-entry of Ar, denoted as (Ar)jk, corresponds to the number of distinct paths of
length r from node j to node k.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Definition A.4 (r-hop Neighbor via Adjacency Matrix). The set of r-hop neighbors is formally
defined using the adjacency matrix A as:

N (r)(j) =

{
k ∈ V

∣∣∣∣ (Ar)jk > 0 and ∀s < r, (As)jk = 0

}
. (A.2)

This definition indicates that there exists at least one path of length r connecting nodes j and k, and
no shorter path exists between them.

Multi-hop neighbors can also be defined via the shortest path length between two nodes.

Definition A.5 (Shortest Path Length). In a connected graph G = (V, E), the shortest path length
d(j, k) between nodes j ∈ V and k ∈ V is the minimum number of edges that must be traversed to
travel from j to k.

Building upon this, the set of r-hop neighbors is defined as follows:

Definition A.6 (r-hop Neighbor via Shortest Path Length). For any node j ∈ V and a positive integer
r ≥ 1, the set of r-hop neighbors, denoted by N (r)(j), consists of all nodes that are at a distance of
exactly r from node j. Formally,

N (r)(j) = {k ∈ V | d(j, k) = r}, (A.3)

where d(j, k) represents the shortest path length between nodes j and k in the graph G.

Furthermore, an alternative perspective on r-hop neighborhoods involves characterizing them through
sequences of nodes, which provides a formal framework aligned with influence propagation in
decentralized learning.

Definition A.7 (r-hop Neighbor via Node Sequences). For any node j ∈ V and a positive integer
r ≥ 1, let P (r)

j denote the set of all sequences (k1, . . . , kr) such that for each s = 1, . . . , r, the node
ks is an out-neighbor of ks−1, with k0 = j. Formally,

P
(r)
j =

{
(k1, . . . , kr) | ks ∈ N (1)

out (ks−1) for s = 1, . . . , r
}
.

This definition ensures that each node in the r-hop neighborhood is reachable from node j through a
sequence of consecutive immediate out-neighbors within ρ ≤ r steps.

This sequence-based characterization of r-hop neighborhoods provides a granular understanding of
the pathways through which influence or information can propagate within the network, complement-
ing the previous definitions based on adjacency matrices and shortest path lengths.

B DISCUSSIONS

B.1 PRACTICAL APPLICATIONS OF DICE

Decentralized Machine Unlearning. As concerns about data privacy and the right to be forgotten
increase, the ability to remove specific data contributions from a trained model becomes important
(Guo et al., 2020; Sekhari et al., 2021). In decentralized settings, retraining the model from scratch
is often impractical for edge users with limited compute. The proximal influence measure enables
participants to estimate the impact of removing a particular data instance from its neighbor. For
example, by assessing the influence of zt

j on neighbors, participants can adjust their local models to
mitigate the effects of zt

j without requesting full retraining of the whole decentralized learning system.
This approach facilitates efficient and targeted unlearning procedures, avoiding costly system-wide
retraining while respecting individual data privacy requests.

B.2 ADDITIONAL RELATED WORK

Clustered Federated Learning. Clustered Federated Learning (CFL) addresses the challenge of data
heterogeneity by grouping clients with similar data distributions and training separate models for each
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cluster (Mansour et al., 2020; Ghosh et al., 2020; Sattler et al., 2021; Kim et al., 2024). Gradient-based
CFL methods (Sattler et al., 2021; Kim et al., 2024) use client gradient similarities to form clusters,
with Sattler et al. (2021) employing cosine similarity to recursively partition clients after convergence
and Kim et al. (2024) dynamically applying spectral clustering to organize clients based on gradient
features during training. These methods effectively capture direct, peer-to-peer gradient relationships
to cluster clients with similar data-generating distributions. Both gradient-based CFL and the one-hop
DICE estimator (see Proposition 1) utilize gradient similarity information. However, CFL is inherently
limited to local interactions, as its gradient similarity metrics are confined to pairwise relationships. In
contrast, DICE goes far beyond this scope by systematically quantifying the propagation of influence
across multiple hops in a decentralized network. DICE introduces the first comprehensive framework
to evaluate multi-hop influence cascades. Mathematically, Proposition 3 highlights how DICE
generalizes peer-level gradient similarity into a non-trivial extension for decentralized networks. This
includes incorporating key factors including network topology and curvature information, enabling
a deeper understanding of how influence flows through the whole decentralized learning systems.
A promising future direction is to explore the potential of DICE-E as a more advanced high-order
gradient similarity metric for effectively clustering participants in decentralized federated learning.
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C PROOF

C.1 PROOF OF PROPOSITION 1

Proposition 1 (Approximation of One-hop DICE-GT). The one-hop DICE-GT value (see Definition 2)
can be linearly approximated as follow:

I(1)DICE-E(z
t
j , z

′) = −ηtqj∇L(θt
j ; z

′)⊤∇L(θt
j ; z

t
j)− ηt

∑
k∈N (1)

out (j)

qkW
t
k,j∇L(θt+1

k ; z′)⊤∇L(θt
j ; z

t
j).

Proof. From Definition 2, the one-hop DICE-GT is given by:

I(1)DICE-GT(z
t
j , z

′) = qj

(
L(θ

t+ 1
2

j ; z′)− L(θt
j ; z

′)
)
+

∑
k∈N (1)

out (j)

qk

(
L(θt+1

k ; z′)− L(θt+1
k\zt

j
; z′)

)
.

We approximate each term using first-order Taylor expansion.

For the first term:

L(θ
t+ 1

2
j ; z′)− L(θt

j ; z
′) ≈ ∇L(θt

j ; z
′)⊤(θ

t+ 1
2

j − θt
j) (C.1)

= −ηt∇L(θt
j ; z

′)⊤∇L(θt
j ; z

t
j), (C.2)

where the last equality follows from the update rule θ
t+ 1

2
j = θt

j − ηt∇L(θt
j ; z

t
j).

For the second term, for each k ∈ N (1)
out (j):

L(θt+1
k ; z′)− L(θt+1

k\zt
j
; z′) ≈ ∇L(θt+1

k ; z′)⊤(θt+1
k − θt+1

k\zt
j
). (C.3)

From the update rule in Algorithm 1, we have:

θt+1
k =

∑
l∈Nin(k)

W t
k,lθ

t+ 1
2

l (C.4)

θt+1
k\zt

j
= W t

k,jθ
t
j +

∑
l∈Nin(k)\{j}

W t
k,lθ

t+ 1
2

l . (C.5)

Thus, the difference becomes:

θt+1
k − θt+1

k\zt
j
= W t

k,j(θ
t+ 1

2
j − θt

j)

= −ηtW t
k,j∇L(θt

j ; z
t
j). (C.6)

Therefore,

L(θt+1
k ; z′)− L(θt+1

k\zt
j
; z′) ≈ −ηtW t

k,j∇L(θt+1
k ; z′)⊤∇L(θt

j ; z
t
j). (C.7)

Combining the approximations, we obtain:

I(1)DICE-E(z
t
j , z

′) = −ηtqj∇L(θt
j ; z

′)⊤∇L(θt
j ; z

t
j)− ηt

∑
k∈N (1)

out (j)

qkW
t
k,j∇L(θt+1

k ; z′)⊤∇L(θt
j ; z

t
j).

(C.8)

This completes the proof.
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C.2 PROOF OF PROPOSITION 2

Proposition 2 (Approximation of Two-hop DICE-GT). The two-hop DICE-GT influence
I(2)DICE-E(z

t
j , z

′) (see Definition 3) can be approximated as follows:

I(2)DICE-E(z
t
j , z

′) = I(1)DICE-E(z
t
j , z

′)

−
∑

k∈N (1)
out (j)

∑
l∈N (1)

out (k)

ηtqlW
t+1
l,k W t

k,j∇L(θt+2
l ; z′)⊤(I − ηt+1H(θt+1

k ; zt+1
k ))∇L(θt

j ; z
t
j),

(C.9)

where H(θt+1
k ; zt+1

k ) denotes the Hessian matrix of L with respect to θt+1
k evaluated at zt+1

k .

Proof. According to Definition 2, the difference between the two-hop and one-hop DICE-GT influ-
ences can be expressed as follows:

I(2)DICE-GT(z
t
j , z

′)− I(1)DICE-GT(z
t
j , z

′) =
∑

k∈N (1)
out (j)

∑
l∈N (1)

out (k)

ql

(
L(θt+2

l ; z′)− L(θt+2
l\zt

j
; z′)

)
,

(C.10)

where θt+2
l is the parameter of participant l at iteration t+2, and θt+2

l\zt
j

denotes the parameter without

the influence of zt
j .

We approximate the loss difference with a first-order Taylor expansion:

L(θt+2
l ; z′)− L(θt+2

l\zt
j
; z′) ≈ ∇L(θt+2

l ; z′)⊤(θt+2
l − θt+2

l\zt
j
). (C.11)

According to the update rule in Algorithm 1, we have

θt+2
l =

∑
m∈Nin(l)

W t+1
l,m θ

t+ 3
2

m , (C.12)

θt+2
l\zt

j
=

∑
m∈Nin(l)

W t+1
l,m θ

t+ 3
2

m\zt
j
=

∑
m∈N (1)

out (l)\{k|k∈N (1)
out (j)}

W t+1
l,m θ

t+ 3
2

m +
∑

k∈N (1)
out (j)

W t+1
l,k θ

t+ 3
2

k\zt
j
,

(C.13)

where k includes all intermediate neighbors connecting participants j and l. The influence of zt
j only

propagate through intermediate neighbors k to l.

The difference in Equation (C.11) then becomes

θt+2
l − θt+2

l\zt
j

=
∑

m∈N (1)
in (l)

W t+1
l,m θ

t+ 3
2

m −

 ∑
m∈N (1)

out (l)\{k|k∈N (1)
out (j)}

W t+1
l,m θ

t+ 3
2

m +
∑

k∈N (1)
out (j)

W t+1
l,k θ

t+ 3
2

k\zt
j


=

∑
k∈N (1)

out (j)

W t+1
l,k (θ

t+ 3
2

k − θ
t+ 3

2

k\zt
j
). (C.14)

Next, we approximate θ
t+ 3

2

k − θ
t+ 3

2

k\zt
j
. Considering the update at participant k:

θ
t+ 3

2

k = θt+1
k − ηt+1∇L(θt+1

k ; zt+1
k ), (C.15)

θ
t+ 3

2

k\zt
j
= θt+1

k\zt
j
− ηt+1∇L(θt+1

k\zt
j
; zt+1

k ). (C.16)
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Therefore, we have

θ
t+ 3

2

k − θ
t+ 3

2

k\zt
j
= (θt+1

k − θt+1
k\zt

j
)− ηt+1

(
∇L(θt+1

k ; zt+1
k )−∇L(θt+1

k\zt
j
; zt+1

k )
)
. (C.17)

Applying the first-order Taylor expansion for the gradient difference yields

∇L(θt+1
k ; zt+1

k )−∇L(θt+1
k\zt

j
; zt+1

k ) ≈H(θt+1
k ; zt+1

k )(θt+1
k − θt+1

k\zt
j
). (C.18)

Substituting back, we have

θ
t+ 3

2

k − θ
t+ 3

2

k\zt
j
≈ (I − ηt+1H(θt+1

k ; zt+1
k ))(θt+1

k − θt+1
k\zt

j
). (C.19)

The difference θt+1
k − θt+1

k\zt
j

can be approximated as

θt+1
k − θt+1

k\zt
j
=

∑
m∈Nin(k)

W t
k,mθ

t+ 1
2

m −

 ∑
m∈Nin(k)\{j}

W t
k,mθ

t+ 1
2

m +W t
k,jθ

t
j

 (C.20)

= W t
k,j(θ

t+ 1
2

j − θt
j) (C.21)

≈ −W t
k,jη

t∇L(θt
j ; z). (C.22)

Therefore,

θ
t+ 3

2

k − θ
t+ 3

2

k\zt
j
≈ −(I − ηt+1H(θt+1

k ; zt+1
k ))W t

k,jη
t∇L(θt

j ; z
t
j). (C.23)

Combining Equation (C.11), Equation (C.14) and Equation (C.23) yields

I(2)DICE-E(z
t
j , z

′)− I(1)DICE-E(z
t
j , z

′)

= −
∑

k∈N (1)
out (j)

∑
l∈N (1)

out (k)

ηtqlW
t+1
l,k W t

k,j∇L(θt+2
l ; z′)⊤(I − ηt+1H(θt+1

k ; zt+1
k ))∇L(θt

j ; z
t
j).

(C.24)

This completes the proof.

C.3 PROOF OF PROPOSITION 3

Proposition 3 (Approximation of r-hop DICE-GT). The r-hop DICE-GT influence I(r)DICE-E(z, z
′)

(see Definition 3) can be approximated as follows:

I(r)DICE-E(z, z
′) = −

r∑
ρ=0

∑
(k1,...,kρ)∈P

(ρ)
j

ηtqkρ

(
ρ∏

s=1

W t+s−1
ks,ks−1

)

∇L(θt+ρ
kρ

; z′)⊤

(
ρ∏

s=2

(
I − ηt+s−1H(θt+s−1

ks
; zt+s−1

ks
)
))
∇L(θt

j ; z
t
j). (C.25)

where k0 = j, P (ρ)
j denotes the set of all sequences (k1, . . . , kρ) such that ks ∈ N (1)

out (ks−1) for
s = 1, . . . , ρ and H(θt+s

ks
; zt+s

ks
) is the Hessian matrix of L with respect to θ evaluated at θt+s

ks
and

data zt+s
ks

. For the cases when ρ = 0 and ρ = 1, the relevant product expressions are defined as
identity matrices, thereby ensuring that the r-hop DICE-E remains well-defined.
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Proof. From the definition of DICE-GT in Definition 3, the r-hop influence is given by:

I(r)DICE-GT(z, z
′) =

r∑
ρ=0

∑
(k1,...,kρ)∈P

(ρ)
j

qkρ

(
L(θt+ρ

kρ
; z′)− L(θt+ρ

kρ\zt
j
; z′)

)
, (C.26)

where for ρ = 0, we have k0 = j, and the term corresponds to the direct influence on participant j.

In the following, we will show that for arbitrary ρ ∈ N+,

∆I(ρ)DICE-GT(z
t
j , z

′) ≜ I(ρ)DICE-GT(z
t
j , z

′)− I(ρ−1)
DICE-GT(z

t
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≈ −
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(C.27)

From the definition of DICE-GT for ρ hops, the incremental influence beyond ρ− 1 hops is given by:

∆I(ρ)DICE-GT(z
t
j , z

′) ≜ I(ρ)DICE-GT(z
t
j , z

′)− I(ρ−1)
DICE-GT(z

t
j , z
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=
∑
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. (C.28)

We approximate the loss difference using first-order Taylor expansion:

L(θt+ρ
kρ

; z′)− L(θt+ρ
kρ\zt

j
; z′) ≈ ∇L(θt+ρ

kρ
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. (C.29)

Our goal is to express θt+ρ
kρ
− θt+ρ

kρ\zt
j

in terms of the propagated influence from zt
j at participant j

through the path (k1, . . . , kρ).

From the update rule in Algorithm 1, we have:

θt+ρ
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=
∑
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2
m , (C.30)
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2
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. (C.31)

Thus, the difference becomes
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However, only the predecessor participants kρ−1 are influenced by zt
j , so we have:
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(C.33)
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Using a first-order Taylor expansion
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we obtain
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By unrolling the recursion, we obtain:
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According to Equation (C.6), θt+1
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− θt+1
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= −ηtW t
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j). Then we have:
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Substituting back into the difference in DICD-GT:
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(C.38)

Summing over ρ from 0 to r in Equation (C.27), we obtain the final approximation:

I(r)DICE-E(z, z
′) = −
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which completes the proof.
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D ADDITIONAL EXPERIMENTS

D.1 DETAILS OF EXPERIMENTAL SETUP

We employ the vanilla mini-batch Adapt-Then-Communicate version of Decentralized SGD ((Lopes
& Sayed, 2008), see Algorithm 1) with commonly used network topologies (Ying et al., 2021) to train
three-layer MLPs (Rumelhart et al., 1986), three-layer CNNs (LeCun et al., 1998), and ResNet-18
(He et al., 2016) on subsets of MNIST (LeCun et al., 1998), CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and Tiny ImageNet (Le & Yang, 2015). The number of participants (one GPU as a
participant) is set to 16 and 32, with each participant holding 512 samples. For sensitivity analysis,
we evaluate the stability of results under hyperparameter adjustments. The local batch size is varied
as 16, 64, and 128 per participant, while the learning rate is set as 0.1 and 0.01 without decay. The
code will be made publicly available.

D.2 INFLUENCE ALIGNMENT

In this experiments, we evaluate the alignment between one-hop DICE-GT (see Definition 2) and
its first-order approximation, one-hop DICE-E (see Proposition 1). One-hop DICE-E I(1)

DICE-E(B
t
j ,z

′)

is computed as the sum of one-sample DICE-E within the mini-batch Btj thanks to the additivity
(see Equation (4)). DICE-GT IDICE-GT(1)(Bt

j ,z
′) is calculated by measuring the loss reduction after

removing Btj from node j at the t-th iteration. In the following Figures, each plot contains 30
points, with each point representing the result of a single comparison of one-hop DICE-GT and
the estimated influence DICE-E. Strong alignments of DICE-GT and DICE-E are observed across
datasets (CIFAR-10, CIFAR-100 and Tiny ImageNet) and model architectures (CNN and MLP).

Figure D.1: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on
a 16-node exponential graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100.
Models are trained for 5 epochs with a batch size of 128 and a learning rate of 0.1.

Figure D.2: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on
a 32-node exponential graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100.
Models are trained for 5 epochs with a batch size of 128 and a learning rate of 0.1.

We conduct additional sensitivity analysis experiments to evaluate the robustness of DICE-E under
varying hyperparameters, including learning rate, batch size, and training epoch. These results demon-
strate that DICE-E provides a strong approximation of DICE-GT, achieving consistent alignment
across datasets (CIFAR-10 and CIFAR-100) and model architectures (CNN and MLP) under different
batch sizes, learning rates, and training epochs.
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D.2.1 SENSITIVITY ANALYSIS ON BATCH SIZE

We conduct experiments to evaluate the robustness of DICE-E under varying batch sizes.

Figure D.3: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
32-node ring graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100. Models are
trained for 5 epochs with a batch size of 16 and a learning rate of 0.1.

Figure D.4: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
32-node ring graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100. Models are
trained for 5 epochs with a batch size of 64 and a learning rate of 0.1.

Figure D.5: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
32-node ring graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100. Models are
trained for 5 epochs with a batch size of 128 and a learning rate of 0.1.

D.2.2 SENSITIVITY ANALYSIS ON LEARNING RATE AND THE NUMBER OF NODES

We also condcut experiments to evaluate the robustness of DICE-E under varying learning rates and
the number of nodes.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure D.6: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
16-node ring graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100. Models are
trained for 5 epochs with a batch size of 64 and a learning rate of 0.1.

Figure D.7: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
16-node ring graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100. Models are
trained for 5 epochs with a batch size of 64 and a learning rate of 0.01.

Figure D.8: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
32-node ring graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100. Models are
trained for 5 epochs with a batch size of 64 and a learning rate of 0.1.

Figure D.9: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on a
32-node ring graph. Each node uses a 512-sample subset of CIFAR-10 or CIFAR-100. Models are
trained for 5 epochs with a batch size of 64 and a learning rate of 0.01.

D.2.3 SENSITIVITY ANALYSIS ON TRAINING EPOCHS

We conduct experiments to evaluate the robustness of DICE-E under varying training epochs.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure D.10: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on
16 and 32-node exponential graphs. Each node uses a 8192-sample subset of Tiny ImageNet. Models
are trained for 10 epochs with a batch size of 128 and a learning rate of 0.1.

Figure D.11: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis) on
16 and 32-node exponential graphs. Each node uses a 8192-sample subset of Tiny ImageNet. Models
are trained for 10 epochs with a batch size of 128 and a learning rate of 0.1.

Figure D.12: Alignment between one-hop DICE-GT (vertical axis) and DICE-E (horizontal axis)
on a 16 and 32-node exponential graph. Each node uses a 8192-sample subset of Tiny ImageNet.
Models are trained for 10 epochs with a batch size of 128 and a learning rate of 0.1.

D.3 ANOMALY DETECTION

We can also use the proximal influence metric to effectively detect anomalies. Specifically, anomalies
are identified by observing significantly higher or lower proximal influence values compared to
normal data instances. In our setup, anomalies are generated through random label flipping or by
adding random Gaussian noise to features. The following Figures illustrates that the most anomalies
(in red) is detectable with proximal influence values.

D.3.1 RANDOM LABEL FLIPPING

We can conclude from these experiments that anomalies introduced through random label flipping
are readily detectable by analyzing their proximal influence.
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Figure D.13: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 16 and a learning rate of
0.1. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by random label flipping, while the other four are normal participants.

Figure D.14: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 64 and a learning rate of
0.1. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by random label flipping, while the other four are normal participants.

Figure D.15: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 128 and a learning rate of
0.1. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by random label flipping, while the other four are normal participants.

D.3.2 FEATURE PERTURBATIONS

We can conclude from Figure D.19, Figure D.20 and Figure D.21 that most anomalies introduced
through adding zero-mean Gaussian noise with high variance are readily detectable by analyzing
their proximal influence, which significantly deviates from that of normal data participants.
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Figure D.16: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 16 and a learning rate of
0.01. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by random label flipping, while the other four are normal participants.

Figure D.17: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 64 and a learning rate of
0.01. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by random label flipping, while the other four are normal participants.

Figure D.18: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 128 and a learning rate of
0.01. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by random label flipping, while the other four are normal participants.

D.4 INFLUENCE CASCADES

The topological dependency of DICE-E in our theory reveals the “power asymmetries” (Blau, 1964;
Magee & Galinsky, 2008) in decentralized learning. To support the theoretical finding, we examine
the one-hop DICE-E values of the same batch on participants with vastly different topological
importance. Figure 1 illustrates the one-hop DICE-E influence scores of an identical data batch across
participants during decentralized training of a ResNet-18 model on the CIFAR-10 dataset. Node
sizes represent the one-hop DICE-E influence scores, quantifying how a single batch impacts other
participants in the network. The dominant nodes (e.g., those with larger outgoing communication
weights in W ) exhibit significantly higher influence, as shown in Figure 1 and further detailed
in Figure D.23 and Figure D.24. These visualizations underscore the critical role of topological
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Figure D.19: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 128 and a learning rate of
0.1. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by adding zero-mean Gaussian noise with variance equals 100 on each
feature, while the other four are normal participants.

Figure D.20: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 64 and a learning rate of
0.01. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by adding zero-mean Gaussian noise with variance equals 100 on each
feature, while the other four are normal participants.

Figure D.21: Anomaly detection on exponential graph with 32 nodes. Each node uses a 512-sample
subset of CIFAR-10. Models are trained for 5 epochs with a batch size of 16 and a learning rate of
0.1. In a 32-node exponential graph, each participant connects with 5 neighbors, where the neighbor
in red is set as an anomaly by adding zero-mean Gaussian noise with variance equals 100 on each
feature, while the other four are normal participants.

properties in shaping data influence in decentralized learning, demonstrating how the structure of the
communication matrix W determines the asymmetries in influence.

To better observe and showcase the “influence cascade” phenomenon, we design a communication
matrix with one “dominant” participant (node 0), two “subdominant” participants (nodes 7 and 10),
and several other common participants. Figure D.22 (Left) visualizes the communication topology,
where node sizes indicate out-degree, reflecting their influence, and edge thickness represents the
strength of communication links. Node 0 stands out as the dominant participant with the largest size,
while nodes 7 and 10 serve as subdominant intermediaries. Figure D.22 (Right) complements this by
showing the adjacency matrix W as a heatmap, where the color intensity highlights the magnitude
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of connection strengths, with the dominant participant exhibiting strong outgoing links across the
network. Together, these visualizations highlight the hierarchical structure and asymmetries in the
communication matrix, crucial for understanding topological influences in decentralized learning.

Figure D.22: Left: Visualization of the communication topology used in Subsection 5.3, where each
node represents a participant, and edges indicate communication links. Node sizes are proportional to
their out-degree (sum of outgoing edge weights), reflecting their communication influence within the
community. Edge thickness corresponds to the strength of connection (i.e., weight), with directional
arrows capturing the flow of information between participants. Self-loops are omitted for simplicity.
Right: Heatmap representation of the weighted adjacency matrix W used in Subsection 5.3, where
each entry Wk,j quantifies the communication strength from participant j to k. The color intensity
represents the magnitude of the weights.

Figure D.23: Visualization of influence cascades during decentralized trainingg with MLP on
MNIST (left) and CIFAR-10 (right) under a designed communication matrix (see Figure D.22).
The thickness of edges represents the strength of communication links (i.e., weights in W ), while
node sizes correspond to the relative one-hop DICE-E influence scores (see Proposition 1) computed
for the same data batch across different participants. The numerical labels on the nodes indicate the
corresponding participants, aligning with the participant indices in Figure D.22.
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Figure D.24: Visualization of influence cascades during decentralized trainingg with ResNet-18 on
CIFAR-10 (left) and CIFAR-100 (right) under a designed communication matrix (see Figure D.22).
The thickness of edges represents the strength of communication links (i.e., weights in W ), while
node sizes correspond to the relative one-hop DICE-E influence scores (see Proposition 1) computed
for the same data batch across different participants. The numerical labels on the nodes indicate the
corresponding participants, aligning with the participant indices in Figure D.22.
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