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ABSTRACT

Recent Visual-Language Models (VLMs) have demonstrated strong fine-grained
perception capabilities across a wide range of Visual Question Answering (VQA)
tasks. However, this advantage comes at the cost of a rapidly increasing num-
ber of visual tokens, leading to substantial computational and memory overhead.
Existing training-free methods adopt fixed-layer or layer-by-layer pruning, which
disrupts modality fusion before alignment and leads to significant performance
degradation under high pruning ratios. In this study, we observe that after the
early stage of modal fusion, cross-modal attention not only accurately identifies
regions of interest but also demonstrates less sensitive to pruning. Building on this,
we propose PREP, a training-free method that identifies optimal pruning layer via
patch-level pre-inference, thereby avoiding the loss of fine-grained details under
stepwise pruning. Specifically, PREP identifies the the layer with accurate cross-
modal alignment using an Entropy–KL divergence (EKL) score derived from the
Information Bottleneck principle, and then retains tokens at this layer that are crit-
ical for visual integrity and semantic alignment during full inference. Experiments
on LLaVA-1.5-7B show that with only 9 visual tokens and half of the layers used
in pre-inference, PREP preserves 96.2% of the original performance while retain-
ing just 16 visual tokens (3%), leading to a 67% reduction in KV-cache usage
and a 1.66× acceleration in inference speed. We have presented our code in the
supplementary materials.

1 INTRODUCTION

Visual-Language Models (VLMs) have advanced rapidly in recent years (e.g., LLaVA-1.5 Liu et al.
(2023), InternVL3 Lu et al. (2025), GPT-4o Hurst et al. (2024)), pushing the frontier of multimodal
reasoning and fine-grained perception. For instance, LLaVA-1.5 encodes each image into a fixed
576 visual tokens, already far exceeding the number of textual tokens and straining LLM context
capacity. More recent models such as InternVL3 adopt substantially larger visual encoders, produc-
ing over 6000 tokens per image to capture fine-grained details. While such designs greatly enhance
perception, it also introduces substantial computational and memory overhead, thereby limiting the
scalability and real-time deployment of VLMs.

Existing token compression strategies fall into training and training-free methods. Training meth-
ods redesign the encoder or LLM architecture to inherently reduce visual token overhead. For ex-
ample, PDrop Xing et al. (2024) trains models to adapt to pruned token inputs by progressively
dropping tokens during training , while LLaVA-Mini Zhang et al. (2025b) introduces a lightweight
cross-attention module before LLM and reduce into one visual token. Although effective, these ap-
proaches require substantial retraining and often lack portability across different VLM backbones. In
contrast, training-free methods directly prune tokens at inference without retraining. Representative
approaches such as SparseVLM Zhang et al. (2024b), TopV Yang et al. (2025a), and Dymu Wang
et al. (2025) dynamically prune tokens layer by layer based on cross-modal attention, while oth-
ers like Minimonkey Huang et al. (2024) and VScan Zhang et al. (2025a) select a fixed layer to
prune. However, both of them fail to preserve performance under high visual token pruning ratios
(e.g., more than 90%), which we attribute to their neglect of the distinct functional roles of dif-
ferent layers, causing them both to miss when textual and visual information become aligned and
discard local details during pruning. As shown in Fig. 1, in the early layers, LLaVA-1.5-7B remains
in the stage of visual–textual fusion, where attention is broadly distributed and fails to capture the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Layer 0 Layer 6 Layer 12 Layer 18 Layer 24

What is the brand of this bottle?

Which cat is smaller?

What time is displayed on the phone screen?

Original Layer 0 Layer 6 Layer 12 Layer 18 Layer 24
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Figure 1: Attention matrices of LLaVA-1.5-7B across different layers, after filtering out tokens
with attention weights below 70% of the maximum. Yellow boxes indicate regions of interest.

regions of interest (ROI). In the middle layers, cross-modal alignment emerges, yielding accurate
localization of ROI. In the late layers, the models exploit high-level semantic representations for
task-specific reasoning, while attention becomes dispersed once again. In Fig. 2, this trend is fur-
ther confirmed by our observation that pruning in the middle and late layers incurs significantly
less performance degradation than in the early layers. Based on this finding, we argue that pruning
should be performed as soon as the layers completing modal fusion are identified. This not only
ensures efficiency but also mitigates the loss of fine-grained information that typically occurs within
layer-wise or fixed-layer pruning strategies.

Building upon this insight, we introduce a PRE-inference guided Pruning strategy, termed PREP.
Firstly, PREP averages a fixed number of visual tokens and get patch-level visual tokens as a cheap
proxy for observing cross-modal alignment. During pre-inference, PREP computes a visual impor-
tant distribution from cross-modal similarity of each layer and then identifies the optimal pruning
layer with the maximize Entropy and KL-divergence score(EKL), which is derived from informa-
tion bottleneck principle and signals accurate modal-alignment. Finally, at the selected layer, PREP
retains visual tokens according to multi-modal importance scores computed by combining visual–
visual and visual–prompt attention matrices, thereby preserving tokens critical for both visual in-
tegrity and semantic alignment.

Our experiments on 9 VQA benchmarks demonstrate that PREP retains 96.2% of the original per-
formance even with an 97% reduction in visual tokens. Meanwhile, KV cache usage is reduced
by 67%, and inference is accelerated by 1.66×, leading to substantial reductions in latency and
improved memory efficiency. These results highlight our method ability to significantly compress
visual tokens while preserving performance on challenging fine-grained vision-language tasks.

2 RELATED WORK

Recent advancements in Vision-Language Models (VLMs) focus on improving efficiency through
visual token compression. A promising and widely explored direction centers on train-
able compression techniques. Key examples of such trainable approaches include: LLaVA-
Mini Zhang et al. (2025b) reduces the number of vision tokens by using a query-based
compression module. Similarly, Vision Concept Models (VCM) Luo et al. (2025) dynam-
ically extract the most relevant visual concepts based on task-specific instructions, optimiz-
ing the model’s performance. The Progressive Visual Token Compression(PVC) Yang et al.
(2025b) method also enhances efficiency by focusing on key visual features by introducing
Progressive Visual Token Compression module, while PDrop Xing et al. (2024) introduces a
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dropout mechanism across a pyramid structure in the visual encoder, improving feature se-
lection. These methods aim to streamline visual processing while maintaining or enhancing
model performance. However, they often require retraining for each specific model, lead-
ing to significant resource consumption and limiting their scalability in diverse applications.
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Figure 2: Performance on the MME Zhang
et al. (2024a) when pruning 85% of tokens at
different layers.

Training-free methods compress or select visual to-
kens layer-by-layer during the pre-processing phase.
SparseVLM Zhang et al. (2024b) introduces a rank-
based strategy to adaptively determine sparsifica-
tion ratios and uses token recycling to compress
pruned tokens. HiRED Arif et al. (2025) employs
a token-dropping method within a fixed token bud-
get, allocating tokens based on the attention of the
CLS token in ViTs. TopV Yang et al. (2025a)
formulate token pruning as a layer-wise optimiza-
tion problem, accurately identifying important vi-
sual tokens. Dymu Wang et al. (2025) reduces to-
ken embeddings through Dynamic Token Merging
(DToMe) and simulates full-token sequences with
Virtual Token Unmerging (VTU) to maintain per-
formance without fine-tuning. Minimonkey Huang
et al. (2024) directly prunes tokens according to
the cross-attention of the second layer, while VS-

can Zhang et al. (2025a) prunes at the 16 layers. While these approaches avoid retraining, their
layer-wise or fixed-layer compression fails to identify the modality-alignment layers, thereby dis-
carding critical ROI regions and undermining fine-grained perception, ultimately leading to perfor-
mance degradation.

3 METHOD

In this section, we introduce our token pruning framework for VLMs. We begin by analyzing cross-
modal alignment from information bottleneck principle. Building on this insight, we present Entropy
and KL-divergence based Layer score (EKL) for layer selection during pre-inference. Then, we
introduce multi-modal token score for token pruning during full-inference. The overall framework
is shown in Fig. 3.
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Figure 3: Overview of PREP framework. Stage 1: PREP identifies pruning-friendly layer with
patch-level pre-inference tokens via EKL score. Stage 2: PREP combines visual–visual and
text–visual attention to retain the most informative tokens.

3.1 PRELIMINARY ANALYSIS

VLMs generate textual responses conditioned on images and prompts. An image input I ∈
RW×H×3 is first encoded by a transformer-based visual encoder (e.g., ViT Dosovitskiy et al.
(2020)) and then projected via an MLP to the required feature dimension D, yielding visual tokens
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V ∈ RN×D, where N is the number of tokens. Meanwhile, the text prompt is embedded through
the embedding layer as T ∈ RM×D, where M denotes the prompt length. Previous pruning meth-
ods (Zhang et al., 2024b; Wang et al., 2025) typically compute cross-modal similarity between Vk

and Tk or rely on attention scores Attnk from the k-th layer to determine the number of tokens
to prune. However, they fail to identify the precise layer where cross-modal alignment emerges,
leading to the loss of fine-grained information.

To address this, we first introduce Qk to reflect the alignment result between text and vision at the
k-th layer, which can be computed it as:

Qk =
Meanj

[
Softmax

(
Vk(Tk)⊤√

D

)]
∑

i Meanj

[
Softmax

(
Vk(Tk)⊤√

D

)]
i

, Qk ∈ RN , (1)

where Meanj [·] denotes averaging over the text-token dimension j, and the summation index i
corresponds to the visual dimension, corresponding to the average and L1 normalization in Fig. 3. In
the encoding results of this layer, visual tokens with higher similarity to the prompt will have a higher
Qk value, while it is ensured that Qk follows a probability distribution. Then, we introduce the target
distribution Y as the underlying visual importance, corresponding to prompt-relevant regions.

To evaluate whether the visual tokens of the current layer are aligned with the prompt and faithfully
reflect the relevant regions, Qk should simultaneously (i) preserve information about Y , ensuring
faithful identification of semantically relevant tokens(higher I(Qk;Y )), and (ii) remain maximally
compressed relative to the previous layer Qk−1(lower I(Qk;Qk−1)), thereby discarding redundant
information. This trade-off is consistent with the objective of the Information Bottleneck (IB) theory
and can be expressed by the following objective:

LIB = I(Qk;Y )− βI(Qk;Qk−1), (2)

where I(·; ·) denotes mutual information and β > 0 is a balancing parameter. As mentioned above, a
larger value of LIB indicates a higher cross-modal alignment quality for this layer. We then expand
this target as:

I(Qk;Y )− βI(Qk;Qk−1) = (1− β)H(Qk)−H(Qk | Y ) + βH(Qk | Qk−1)
)
, (3)

where H(·) denotes entropy and H(· | ·) conditional entropy. However, directly computing the
conditional entropy in Eq. 3 is intractable: the ground-truth target distribution Y is inaccessible dur-
ing inference, and the visual attention distribution from Qk−1 to Qk involves complex transformer
internal computations. To resolve this, we next propose a feasible approximation to the IB objective
using Entropy and KL–divergence(EKL) score.

3.2 ENTROPY AND KL–DIVERGENCE SCORE(EKL)

As mentioned above, H(Qk | Y ) quantifies the uncertainty of Qk when the underlying visual im-
portance Y is known. Intuitively, if Qk deviates significantly from Y (e.g., the attention of model
focuses on non-ROI regions), the uncertainty of Qk cannot be effectively reduced even with prior
knowledge of Y —this implies a larger H(Qk | Y ). In addition, according to our previous obser-
vations, obvious modal-alignment appears after early modal-fusion layers, indicating a small and
approximately constant H(Qk | Y ) for the middle layers. To identify this range, we calculate,
for each layer of LLaVA-1.5-7B, the ratio of the intersection area between the top 75% attention-
weighted areas predicted by Qk and the ROI to the area of the ROI, which is termed as intersection
over ROI (IoR) and described in detail in Fig. 4.

If the conditional entropy H(Qk | Y ) is small, this means that most of the regions attended to
by Qk can be predicted when Y is known; in this case, the intersection between these predicted
regions and the ROI will be larger, corresponding to a higher IoR. In Fig. 4, the IoR values remain
consistently high with minimal fluctuations across layers 6–15. This stable alignment between Qk

and Y implies that the conditional entropy H(Qk | Y ) remains relatively constant. Similar to the
patterns observed in Fig. 1, the shallower layers primarily facilitate cross-modal fusion, whereas the
deeper layers progressively transition toward task-specific reasoning. Consequently, the degree of
alignment between Qk and Y exhibits substantially larger fluctuations in these regions, suggesting
that the conditional entropy H(Qk | Y ) cannot be approximated as invariant across these layers.
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Similarly, for the second term in Eq. 2, we approximate H(Qk | Qk−1) by measuring the divergence
between the attention distributions of consecutive layers. Intuitively, if Qk carries little new infor-
mation beyond Qk−1, the two distributions will be highly similar, resulting in a small conditional
entropy. Conversely, a large divergence indicates that Qk introduces substantial novel information
relative to Qk−1. Following this intuition, we compute the KL divergence DKL(Q

k ∥Qk−1) at each
layer as a practical surrogate for H(Qk | Qk−1). Accordingly, we define the EKL score for layer k:

EKLk = H(Qk) +DKL

(
Qk∥Qk−1

)
. (4)

Based on the above analysis, for the selected layers where H(Qk | Y ) remains approximately
constant, a larger EKLk implies that the value of the remaining term in Eq. 3 is larger, which in turn
indicates a higher degree of cross-modal alignment for this layer.

However, directly computing the EKL score at the token level during pre-inference would be com-
putationally intensive. For efficiency, we partition V into r groups Vr ∈ Rr×L×D and average over
the first dimension (r) to obtain patch-level tokens Vp:

Vp =
1

L

L∑
k=1

Vr[:, k, :], Vp ∈ Rr×D, (5)

where the averaging operation aggregates pixel-level features within each patch to preserve patch-
wise semantics.

To validate its feasibility for pre-inference, we obtain the IoR of patch-level distribu-
tions Qk

p with the same setting as token-level IoR. As illustrated in Fig. 4, the high-
attention regions remain well aligned across both representations in the middle layers.

Mean IoR with Standard Deviation Across Layers

∩
IoR=

ROI Retained Regions Masked Regions

Mean IoR with Standard Deviation Across Layers

∩
IoR=

ROI Retained Regions Masked Regions

Figure 4: IoR means the intersection area be-
tween the top 75% attention-weighted areas
predicted by Qk and the ROI over the area of
the ROI on VizWiz Chen et al. (2022).

These findings suggest that patch-level encoding
faithfully preserves the critical semantics captured
by token-level encoding, thereby enabling reliable
pre-inference with reduced redundancy.

As shown in Fig. 3, PREP computes and ranks
EKLk of each layer, selecting k∗ with the highest
EKL to be pruned during full-inference.

3.3 MULTIMODAL TOKEN SCORE

During inference, we determine which visual to-
kens to prune by computing a layer-wise, token-
level importance score at the EKL-selected layer
k∗. This score fuses two complementary attention
signals: intra-visual structural relevance (visual-to-
visual, v2v) and cross-modal semantic alignment
(visual-to-text, v2t). By combining them, we en-
sure that tokens critical to either visual structure or
semantic information are preserved. As shown in

Fig. 3, we first extract the raw multi-head attention tensor from layer k∗:

Attnk∗
∈ RH×(S+N+M)×(S+N+M), (6)

where H is the number of attention heads, S is the length of system prompts, N is the number of
encoded visual tokens, and M is the number of text tokens. To reduce head-wise redundancy and
emphasize the aggregated attention patterns, we average over all heads:

Attn
k∗

=
1

H

H∑
h=1

Attnk∗
[h, :, :] ∈ R(S+N+M)×(S+N+M). (7)

We then extract the submatrices corresponding to visual-visual and visual-text attention:

Attnk∗

v = Attn
k∗

[S : S +N,S : S +N ], Attnk∗

t = Attn
k∗

[S : S +N,S +N :], (8)
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where Attnk∗

v ∈ RN×N captures intra-visual structural interactions and Attnk∗

t ∈ RN×M cap-
tures visual-text semantic alignment. Then we average on the col-dimension to obtain two kinds of
visual importance:

sv[i] =
1

N

N∑
j=1

Attnk∗

v [i, j], st[i] =
1

M

M∑
j=1

Attnk∗

t [i, j]. (9)

Finally, we define the Multi–modal token score as the sum of visual and semantic contributions:

Score[i] = sv[i] + st[i], Score ∈ RN . (10)

Higher multi–modal score indicates that the i-th visual token is important for maintaining both visual
structural integrity and cross-modal semantic alignment. During pruning, we retain the top-m% of
visual tokens with the highest multi-modal token scores, ensuring that the most informative tokens
are preserved.

3.4 THEORETICAL ANALYSIS OF REDUCED FLOPS

Following the PDrop Xing et al. (2024) approximation, the FLOPs of a single transformer layer with
visual sequence length N and dimension D is

FLOPslayer(N) ≈ 4ND2 + 2N2D + 3
ND2

H
, (11)

where H is the number of attention heads.As we prune at layer k∗ by retaining m% of the visual to-
kens and introduces overhead of EKL and multi–modal score, the total theoretical FLOPs reduction
simplifies to:

Reduced FLOPs =
K∑

k=k∗

[
4ND2 + 2N2D + 3

ND2

H

−
(
4m ·ND2 + 2(m ·N)2D + 3

(m ·N)D2

H

)]
−
[
k∗ ·

(
4rD2 + 2r2D +

3rD2

H

)
+N +HN2 +HNM

]
.

(12)

The detail is shown in Appendix A.1.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

To assess the effectiveness of our method on image understanding tasks, we conduct experiments
on four fine-grained benchmarks including MMStar Chen et al. (2024b), TextVQA Singh et al.
(2019), AI2D Kembhavi et al. (2016) and Seed2-Plus Li et al. (2024), and four widely used VQA
benchmarks including POPE Li et al. (2023), RealWorldQA x.ai. (2024), MME and VizWiz. At
the same time,we compare PREP with recent state-of-the-art methods as SparseVLM, ToMe Bolya
et al. (2022), TopV Yang et al. (2025a), FastV Chen et al. (2024a) and Minimonkey Huang et al.
(2024). We verify the generalizability of PREP on InternVL3 and LLaVA-1.5 series VLMs, pruning
between 6-15 layers of them. Besides, as LLaVA-1.5 gengerate fixed-size 576 visual tokens, we
select group size from 32,64,144 and 192. As InternVL3 set a fixed-size patch sequence length as
256, we group 256 visual tokens as a patch-level token. LLaVA-1.5 employs CLIP-pretrained ViT-L
as the visual tower, while InternVL3 owns dynamic high resolution encoder. All experiments are
done on one NVIDIA RTX3090 with 24GB.

4.2 MAIN RESULTS

Table 1 reports the performance of PREP on LLaVA-1.5-7B. We evaluate three target token budgets
(192, 128, and 64) to assess compression under different levels of pruning. When reducing from 576

6
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Table 1: Evaluation of our method on the LLaVA-1.5-7B model across nine datasets under three
visual token compression levels (192, 128, and 64). The vanilla configuration uses 576 tokens and
average 4.8T FLOPs. FLOPs ratio shows the ratio of pruned FLOPs to original FLOPs. Relative
score is the average ratio between the score and original score across all benchmarks.

Method Venue MMB MME POPE VizWiz TextVQA RWQA AI2D MMStar Seed2 Relative
Score(%)

FLOPs
Ratio(%)

Original - 64.8 1864 86.1 50.0 58.2 49.0 52.0 32.9 38.8 100.0% 100%

Retain Tokens 192
ToMe ICLR’23 60.5 1563 72.4 50.8 53.1 47.5 50.0 30.3 36.1 92.5% (↓7.5%) 44%
FastV ECCV’24 61.0 1605 64.8 50.9 52.1 47.9 50.5 30.5 36.5 92.1% (↓7.9%) 46%
SparseVLM ICML’25 62.5 1787 85.1 50.5 57.8 48.2 51.5 31.7 38.3 98.2% (↓1.8%) 52%
PDrop CVPR’25 63.3 1797 82.3 51.1 56.5 48.4 51.3 31.8 37.8 97.7% (↓2.3%) 44%
PREP - 64.8 1867 85.3 52.0 58.0 48.8 51.9 32.8 38.9 100.2% (↑0.2%) 46%

Retain Tokens 128
ToMe ICLR’23 53.3 1343 62.8 50.6 49.1 44.9 48.0 28.7 34.2 85.8% (↓14.2%) 37%
FastV ECCV’24 56.1 1490 53.4 51.3 50.5 45.3 49.0 29.3 35.7 87.3% (↓12.7%) 39%
SparseVLM ICML’25 60.0 1746 85.0 51.4 56.7 45.5 51.0 31.5 38.0 96.6% (↓3.4%) 36%
PDrop CVPR’25 61.6 1761 82.3 51.0 56.6 46.2 51.2 32.1 37.9 96.5% (↓3.5%) 35%
PREP - 64.2 1845 84.9 51.6 57.5 47.5 51.4 32.4 38.6 99.1% (↓0.9%) 38%

Retain Tokens 64
ToMe ICLR’23 43.7 1138 52.5 50.4 45.3 43.8 45.1 25.9 32.2 78.4% (↓21.6%) 26%
FastV ECCV’24 47.2 1255 38.2 51.8 47.8 42.2 46.3 26.7 33.1 79.1% (↓20.9%) 28%
SparseVLM ICML’25 56.2 1589 77.5 50.1 53.4 46.2 50.3 30.5 37.5 92.7% (↓7.3%) 30%
PDrop CVPR’25 58.8 1561 55.9 50.7 50.6 45.4 50.5 31.3 37.3 89.7%(↓10.3%) 26%
PREP - 63.7 1827 84.0 51.9 56.5 46.9 50.9 31.9 38.3 98.3% (↓1.7%) 29%

Retain Tokens 16
PREP - 63.3 1812 82.1 50.2 53.9 45.6 50.4 31.6 37.6 96.2% (↓3.8%) 27%

Table 2: Performance comparison with TopV and Minimonkey on InternVL3 VLMs.

Model Method(Retained Ratio) Venue MMB MME POPE TextVQA OCRBench AI2D MMStar Seed2 FLOPs
Ratio(%)

InternVL3-8B

original(100%) - 83.4 2415 91.1 81.8 880 69.7 85.2 68.2 100%
TopV (50%) CVPR’25 82.9 2407 89.6 80.4 825 66.6 84.5 67.2 62%
Minimonkey(50%) ICLR’25 81.7 2388 89.8 81.2 846 67.1 84.7 66.9 72%
PREP(50%) - 83.5 2416 90.2 81.6 864 67.8 85.2 67.8 57%
TopV(25%) CVPR’25 82.1 2298 88.2 78.6 783 62.4 83.1 65.3 46%
Minimonkey(25%) ICLR’25 81.5 2368 89.6 78.7 806 63.7 84.5 67.2 48%
PREP(25%) - 83.1 2385 89.8 79.3 816 64.1 84.8 67.4 39%

InternVL3-2B

original(100%) - 80.3 2180 89.6 77.0 835 78.7 78.6 64.6 100%
TopV(50%) CVPR’25 79.4 2076 88.4 75.2 795 77.4 76.8 62.5 59%
Minimonkey(50%) ICLR’25 79.7 2096 88.7 75.5 802 77.8 77.0 62.9 65%
PREP(50% ) - 80.2 2195 90.0 76.8 822 78.3 78.0 63.8 52%
TopV(25%) CVPR’25 78.5 2042 87.6 72.5 705 76.2 74.5 62.2 46%
Minimonkey(25%) ICLR’25 78.7 2068 87.9 72.8 721 76.4 74.8 62.4 48%
PREP(25%) - 80.3 2171 89.8 73.0 746 77.6 77.8 63.4 36%

to 192 tokens, PREP even improves 0.2% on average accuracy, substantially lower than the drop
of SparseVLM(1.8%) and PDrop (2.3%). At more aggressive pruning (16 tokens), PREP the drops
only 3.8%, while other methods like FastV and ToMe retain 64 tokens and even drop more than 20%.
Furthermore, we extend our approach to the advanced InternVL3 models in Table 2: when retaining
only 25% of visual tokens with an average 1500 tokens per sample (far more than in LLaVA-1.5),
PREP still keeps the average accuracy loss below 10%. Compared to TopV and Minimonkey on
InternVL, our method still achieves higher performance under the same token budget, highlighting
the generalization and effectiveness of our approach.

Table 3: Ablation study of EKL components
under 64 tokens retained.

Component MME MMBench MMStar

Entropy 1816 63.2 31.5
KL 1809 62.9 31.2
EKL 1827 63.7 31.9

Table 4: Ablation study of the k-th EKL score un-
der 64 tokens retained from layer 10 to 15.

k-th score 1 2 3 4 5 6

MME 1768 1801 1805 1804 1819 1845
TextVQA 55.1 55.4 56.2 55.7 56.1 57.1
POPE 81.0 81.7 81.8 82.5 82.9 84.5

Fig. 5 visualizes the performance degradation of our method compared with ToMe, FastV, and Spar-
seVLM on POPE, MME, and MMStar under different numbers of retained visual tokens. It can be
observed that even when the number of tokens is reduced to 16, our method is hardly affected by the
reduction in the number of tokens on MME and POPE. Furthermore, on the MMStar dataset—which
requires fine-grained perception—the magnitude of performance degradation of our method is sig-
nificantly smaller than that of the other methods. We attribute this to the fact that EKL effectively
identifies the layers where information fusion takes place. Combined with multi-modal token scores,
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Figure 5: Performance comparison with other baselines under different tokens. The horizontal axis
represents the remaining tokens to 576, 192, 128, 64 and 16, while the vertical axis means the scores.
Table 5: Counts of selected layers on MME,
MMBench and SEED2.

Layer 6-8 8-10 10-12 12-14

MME 680 828 205 651
MMBench 2246 1230 1350 1864
SEED2-PLUS 780 501 820 176

Table 6: Impact of group size on performance
across benchmarks.

Group size 32 64 144 192

MME 1804 1827 1806 1793
MMBench 64.2 64.5 63.7 63.2
SEED2-PLUS 31.6 31.9 31.3 31.1

PREP prevents the loss of details. These results demonstrate both the effectiveness and strong gen-
eralization of our approach.

4.3 ABLATION STUDY

EKL Table 3 compares three variants of our layer scoring: using only KL divergence, only en-
tropy, or their combination. The results show that integrating both yields the best performance,
confirming the complementarity of the two terms. Table 4 further examines the effect of selecting
the k-th highest scoring layer, where performance consistently declines as k decreases, demonstrat-
ing that EKL effectively ranks layer importance.

Table 5 shows that the majority of pruning occurs within layers 6–10, indicating that EKL
is able to identify the onset of cross-modal fusion at an early stage rather than simply se-
lecting deeper layers. This property substantially enhances the efficiency of the model.

Table 7: Performance of different variants on
four benchmarks.

POPE MME TextVQA Seed2

v2t 83.7 1806.3 56.1 38.0
v2v 83.5 1815.4 55.8 37.8
ours 84.0 1827.2 56.5 38.3

Finally, in Table 6, we investigate the impact of the
number of tokens per group used in average pool-
ing. We observe that grouping 64 tokens achieves
the best performance: it preserves fine details that
support reasoning while maintaining low inference
overhead.

Multi–modal token score. Table 7 reports an ab-
lation of multi–modal token score comparing three variants: v2t (using only visual-to-text attention),
v2v (using only visual-to-visual attention), and ours (the full multi-modal token score that fuses v2v
and v2t). Combining both signals (ours) yields the best result on all four benchmarks. For exam-
ple, POPE accuracy increases from 83.9% (v2t) and 83.5% (v2v) to 84.0% (ours), and the MME
score rises from 1842.3 / 1827.4 to 1856.2. Small but consistent improvements are also observed on
TextVQA and Seed2-PLUS. These results show that intra-visual structure and cross-modal align-
ment provide complementary information for token selection, and their fusion produces more robust
pruning decisions.

4.4 EFFICIENCY ANALYSIS

In Table 8,we evaluate the practical efficiency of our method on a single NVIDIA RTX 3090
(24GB) using full benchmarks. As our method progressively compresses visual tokens, both la-
tency and KV cache usage are significantly reduced. For instance, decreasing the retained token
count from 576 to 192 reduces latency from 0.48 s to 0.39 s, yielding a 1.23× speedup, while
KV cache occupancy drops nearly by half (from 100% to 56%). Further compression to 128 to-
kens decreases latency to 0.35 s (1.37× speedup) and KV cache usage to 44%, with minimal
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impact on the average performance across benchmarks (99.3%). Retaining only 64 tokens ac-
celerates inference to 0.32 s (1.50× speedup) and reduces KV cache to 39%, whereas a further

Table 8: Performance, latency, and KV cache usage com-
parison under different visual token configurations.

Retain tokens 576 192 128 64 16

Performance (%) 100 100 99.3 98.3 96.2
KV Cache (%) 100 56 44 39 33
Latency (s) 0.48 0.39 0.35 0.32 0.29
Speedup (×) 1.00 1.23 1.37 1.50 1.66

reduction to 16 tokens achieves the
highest speedup of 1.66×, with KV
cache occupancy lowered to 33%, al-
beit with a modest decrease in aver-
age performance (96.2%). These re-
sults demonstrate that our method ef-
fectively balances computational effi-
ciency and model accuracy, substan-
tially reducing memory and runtime

demands while maintaining high performance on average across multiple benchmarks.

4.5 CASE STUDY

As shown in Fig. 6, our method first identifies the cross-modal alignment layer via pre-inference in
Stage 1, and then prunes tokens at that layer based on multi-modal token scores. The visualization
highlights that our approach preserves tokens essential for answering, focusing on regions of interest.

clam chowder

What flavor is this?

ottier

What is the brand 

of the beer?

airfrance

What is written on 

the airplane?

0.15 0.92 0.47 0.56

0.36 0.54 0.24 0.79

0.19 0.85 0.63 0.65

Layer 6 8 10 12
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0.15 0.92 0.47 0.56

0.36 0.54 0.24 0.79

0.19 0.85 0.63 0.65

Layer 6 8 10 12

Figure 6: Visualization of our method. EKL scores are on the upper left and figures with star are the
pruned layers. Orange boxes indicate regions of interest.

5 CONCLUSION

In this work, we introduced PREP, a training-free pruning framework for efficient inference in
Visual-Language Models. By leveraging pooled patch-level tokens for pre-inference, PREP iden-
tifies pruning layers guided by the Information Bottleneck criterion, thereby avoiding the loss of
fine-grained information that commonly arises in stepwise pruning. At the selected layer, PREP re-
tains tokens based on multimodal importance scores, ensuring both structural integrity and semantic
alignment are preserved. Extensive experiments across nine VQA benchmarks demonstrate that
PREP achieves substantial efficiency gains—reducing visual tokens by up to 97%, KV-cache usage
by 67%, and inference time by 1.66×—while maintaining over 96% of the original model perfor-
mance. These results highlight the effectiveness of pre-inference guided pruning for high-resolution
VLMs, offering a general and scalable solution toward more efficient multimodal reasoning.

REFERENCES

Kazi Hasan Ibn Arif, JinYi Yoon, Dimitrios S Nikolopoulos, Hans Vandierendonck, Deepu John, and
Bo Ji. Hired: Attention-guided token dropping for efficient inference of high-resolution vision-
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pp. 1773–1781, 2025.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Chongyan Chen, Samreen Anjum, and Danna Gurari. Grounding answers for visual questions asked
by visually impaired people. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 19098–19107, 2022.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In European Conference on Computer Vision, pp. 19–35. Springer, 2024a.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Mingxin Huang, Yuliang Liu, Dingkang Liang, Lianwen Jin, and Xiang Bai. Mini-monkey: Multi-
scale adaptive cropping for multimodal large language models. CoRR, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14,
pp. 235–251. Springer, 2016.

Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:
Benchmarking multimodal large language models with text-rich visual comprehension. arXiv
preprint arXiv:2404.16790, 2024.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Dongchen Lu, Yuyao Sun, Zilu Zhang, Leping Huang, Jianliang Zeng, Mao Shu, and Huo Cao.
Internvl-x: Advancing and accelerating internvl series with efficient visual token compression.
arXiv preprint arXiv:2503.21307, 2025.

Run Luo, Renke Shan, Longze Chen, Ziqiang Liu, Lu Wang, Min Yang, and Xiaobo Xia. Vcm:
Vision concept modeling based on implicit contrastive learning with vision-language instruction
fine-tuning. arXiv preprint arXiv:2504.19627, 2025.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019.

Zhenhailong Wang, Senthil Purushwalkam, Caiming Xiong, Silvio Savarese, Heng Ji, and Ran
Xu. Dymu: Dynamic merging and virtual unmerging for efficient vlms. arXiv preprint
arXiv:2504.17040, 2025.

x.ai. Grok 1.5v: The future of ai models. Technical report, 2024.

Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
He, Jiaqi Wang, Feng Wu, et al. Pyramiddrop: Accelerating your large vision-language models
via pyramid visual redundancy reduction. arXiv preprint arXiv:2410.17247, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Chendi Li, Jinghua Yan, Yu Bai,
Ponnuswamy Sadayappan, Xia Hu, et al. Topv: Compatible token pruning with inference time
optimization for fast and low-memory multimodal vision language model. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 19803–19813, 2025a.

Chenyu Yang, Xuan Dong, Xizhou Zhu, Weijie Su, Jiahao Wang, Hao Tian, Zhe Chen, Wenhai
Wang, Lewei Lu, and Jifeng Dai. Pvc: Progressive visual token compression for unified image
and video processing in large vision-language models. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 24939–24949, 2025b.

Ce Zhang, Kaixin Ma, Tianqing Fang, Wenhao Yu, Hongming Zhang, Zhisong Zhang, Yaqi Xie,
Katia Sycara, Haitao Mi, and Dong Yu. Vscan: Rethinking visual token reduction for efficient
large vision-language models. arXiv preprint arXiv:2505.22654, 2025a.

Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video
large multimodal models with one vision token. arXiv preprint arXiv:2501.03895, 2025b.

Yi-Fan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Junfei Wu, Feng
Li, Kun Wang, Qingsong Wen, Zhang Zhang, et al. Mme-realworld: Could your multimodal
llm challenge high-resolution real-world scenarios that are difficult for humans? arXiv preprint
arXiv:2408.13257, 2024a.

Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsifi-
cation for efficient vision-language model inference. arXiv preprint arXiv:2410.04417, 2024b.

A APPENDIX

A.1 THEORETICAL ANALYSIS OF REDUCED FLOPS (EXPANDED)

We prune visual tokens at layer k∗, retaining only the top m% of N visual tokens. Below we
compute FLOPs explicitly in terms of model dimensions.

Transformer layer FLOPs. For a Transformer layer with visual sequence length N , hidden di-
mension D, and H attention heads, the approximate FLOPs is:

FLOPslayer(N) = 4ND2 + 2N2D + 3
ND2

H
. (13)

Pre-inference FLOPs. Before pruning, we partition N visual tokens into r groups and average
them(N = rL), which takes rL FLOPs. Then, we use them to pre-inference up to layer k∗, which
takes FLOPs:

FLOPspre-inference = k∗ · FLOPslayer(r) +N. (14)

Then, computing EKL requires entropy and KL divergence over r +M tokens:

FLOPsEKL ∼ O((r +M)D), (15)

Multi-modal token score computation FLOPs. At layer k∗, computing multi-modal token score
involves:

1. Averaging attention over H heads for v2v: FLOPsv2v = H ·N2,

2. Averaging attention over H heads for v2t: FLOPsv2t = H · (N ·M).

Thus the total multi-modal token score overhead is

FLOPsmulti-modal token score ≈ HN2 +HNM. (16)
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Inference FLOPs after pruning. After pruning 100−m% of visual tokens, the sequence length
becomes

Npruned = m ·N. (17)
The FLOPs per layer in the upper layers k∗, . . . ,K are

FLOPslayer(Npruned) = 4NprunedD
2 + 2N2

prunedD + 3
NprunedD

2

H
. (18)

Explicit expression. Substituting Nfull = N+M and Npruned = m·N+M , and using the standard
transformer FLOPs formula FLOPslayer(N) = 4ND2 + 2N2D + 3ND2/H , the reduced FLOPs
can be written explicitly as

Reduced FLOPs =
K∑

k=k∗

[
4ND2 + 2N2D + 3

ND2

H

−
(
4m ·ND2 + 2(m ·N)2D + 3

(m ·N)D2

H

)]
−
[
k∗ ·

(
4rD2 + 2r2D +

3rD2

H

)
+N +HN2 +HNM

]
.

(19)

Intuition. The first term captures the main savings from pruning the visual sequence in upper
layers. The second term accounts for pre-inference, EKL and multi-modal token score computation.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we employed ChatGPT as an auxiliary writing tool to improve the clarity and read-
ability of the manuscript. Specifically, ChatGPT was used to refine the language of the Abstract,
Introduction, and Conclusion sections. No part of the technical content, experimental design, or
results was generated or modified by LLMs.
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