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ABSTRACT

Recent Visual-Language Models (VLMs) have demonstrated strong fine-grained
perception capabilities across a wide range of Visual Question Answering (VQA)
tasks. However, this advantage comes at the cost of a rapidly increasing num-
ber of visual tokens, leading to substantial computational and memory overhead.
Existing training-free methods adopt fixed-layer or layer-by-layer pruning, which
disrupts modality fusion before alignment and leads to significant performance
degradation under high pruning ratios. In this study, we observe that after the
early stage of modal fusion, cross-modal attention not only accurately identifies
regions of interest but also demonstrates less sensitive to pruning. Building on this,
we propose PREP, a training-free method that identifies optimal pruning layer via
patch-level pre-inference, thereby avoiding the loss of fine-grained details under
stepwise pruning. Specifically, PREP identifies the the layer with accurate cross-
modal alignment using an Entropy—KL divergence (EKL) score derived from the
Information Bottleneck principle, and then retains tokens at this layer that are crit-
ical for visual integrity and semantic alignment during full inference. Experiments
on LLaVA-1.5-7B show that with only 9 visual tokens and half of the layers used
in pre-inference, PREP preserves 96.2 % of the original performance while retain-
ing just 16 visual tokens (3%), leading to a 67 % reduction in KV-cache usage
and a 1.66 x acceleration in inference speed. We have presented our code in the
supplementary materials.

1 INTRODUCTION

Visual-Language Models (VLMs) have advanced rapidly in recent years (e.g., LLaVA-1.5 Liu et al.
(2023)), InternVL3 |Lu et al.| (2025)), GPT-40 |[Hurst et al.[(2024)), pushing the frontier of multimodal
reasoning and fine-grained perception. For instance, LLaVA-1.5 encodes each image into a fixed
576 visual tokens, already far exceeding the number of textual tokens and straining LLM context
capacity. More recent models such as InternVL3 adopt substantially larger visual encoders, produc-
ing over 6000 tokens per image to capture fine-grained details. While such designs greatly enhance
perception, it also introduces substantial computational and memory overhead, thereby limiting the
scalability and real-time deployment of VLMs.

Existing token compression strategies fall into training and training-free methods. Training meth-
ods redesign the encoder or LLM architecture to inherently reduce visual token overhead. For ex-
ample, PDrop Xing et al.| (2024) trains models to adapt to pruned token inputs by progressively
dropping tokens during training , while LLaVA-Mini|Zhang et al.[(2025b) introduces a lightweight
cross-attention module before LLM and reduce into one visual token. Although effective, these ap-
proaches require substantial retraining and often lack portability across different VLM backbones. In
contrast, training-free methods directly prune tokens at inference without retraining. Representative
approaches such as SparseVLM [Zhang et al.|(2024b)), TopV [Yang et al.| (2025a), and Dymu [Wang
et al.| (2025) dynamically prune tokens layer by layer based on cross-modal attention, while oth-
ers like Minimonkey Huang et al.| (2024) and VScan [Zhang et al. (2025a) select a fixed layer to
prune. However, both of them fail to preserve performance under high visual token pruning ratios
(e.g., more than 90%), which we attribute to their neglect of the distinct functional roles of different
layers, causing them both to miss when textual and visual information become aligned and discard
local details during pruning. As shown in Fig. [I] in the early layers, LLaVA-1.5-7B remains in
the stage of visual-textual fusion, where similarity between prompt and image tokens is broadly
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Figure 1: Attention matrices of LLaVA-1.5-7B across different layers, after filtering out tokens
with text-image similarity below 70% of the maximum. Yellow boxes indicate regions of interest.

distributed and fails to capture the regions of interest (ROI). In the middle layers, cross-modal align-
ment emerges, yielding accurate localization of ROI. In the late layers, the models exploit high-level
semantic representations for task-specific reasoning, while attention becomes dispersed once again.
In Fig.[2] this trend is further confirmed by our observation that pruning in the middle and late layers
incurs significantly less performance degradation than in the early layers. Based on this finding, we
argue that pruning should be performed as soon as the layers completing modal fusion are identified.
This not only ensures efficiency but also mitigates the loss of fine-grained information that typically
occurs within layer-wise or fixed-layer pruning strategies.

Building upon this insight, we introduce a PRE-inference guided Pruning strategy, termed PREP.
Firstly, PREP averages a fixed number of visual tokens and get patch-level visual tokens as a cheap
proxy for observing cross-modal alignment. During pre-inference, PREP computes a visual impor-
tant distribution from cross-modal similarity of each layer and then identifies the optimal pruning
layer with the maximize Entropy and KL-divergence score(EKL), which is derived from informa-
tion bottleneck principle and signals accurate modal-alignment. Finally, at the selected layer, PREP
retains visual tokens according to multi-modal importance scores computed by combining visual—
visual and visual-prompt attention matrices, thereby preserving tokens critical for both visual in-
tegrity and semantic alignment.

Our experiments on 9 VQA benchmarks demonstrate that PREP retains 96.2% of the original per-
formance even with an 97% reduction in visual tokens. Meanwhile, KV cache usage is reduced
by 67%, and inference is accelerated by 1.66 x, leading to substantial reductions in latency and
improved memory efficiency. These results highlight our method ability to significantly compress
visual tokens while preserving performance on challenging fine-grained vision-language tasks.

2 RELATED WORK

Recent advancements in Vision-Language Models (VLMs) focus on improving efficiency through
visual token compression. A promising and widely explored direction centers on train-
able compression techniques. Key examples of such trainable approaches include: LLaVA-
Mini [Zhang et al.| (2025b) reduces the number of vision tokens by using a query-based
compression module.  Similarly, Vision Concept Models (VCM) [Luo et al| (2025) dynam-
ically extract the most relevant visual concepts based on task-specific instructions, optimiz-
ing the model’s performance. The Progressive Visual Token Compression(PVC)
method also enhances efficiency by focusing on key visual features by introducing
Progressive Visual Token Compression module, while PDrop [Xing et al| (2024) introduces a
dropout mechanism across a pyramid structure in the visual encoder, improving feature se-
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lection. These methods aim to streamline visual processing while maintaining or enhancing
model performance. However, they often require retraining for each specific model, lead-
ing to significant resource consumption and limiting their scalability in diverse applications.

Training-free methods compress or select visual to-
2400 R g kens layer-by-layer during the pre-processing phase.
- Sparse VLM [Zhang et al.| (2024b) introduces a rank-
2200 , based strategy to adaptively determine sparsifica-
i tion ratios and uses token recycling to compress
e pruned tokens. HiRED (2025) employs
a token-dropping method within a fixed token bud-
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Figure 2: Performance on the MME Virtual Token Unmerging (VTU) to maintain per-
(20243) when pruning 85% of tokens at _{ormance without fine-tuning. Minimonkey

different layers. (2024) directly prunes tokens according to
the cross-attention of the second layer, while VS-

can [Zhang et al.| (2025a) prunes at the 16 layers. While these approaches avoid retraining, their
layer-wise or fixed-layer compression fails to identify the modality-alignment layers, thereby dis-
carding critical ROI regions and undermining fine-grained perception, ultimately leading to perfor-
mance degradation.
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3 METHOD

In this section, we introduce our token pruning framework for VLMs. We begin by analyzing cross-
modal alignment from information bottleneck principle. Building on this insight, we present Entropy
and KL-divergence based Layer score (EKL) for layer selection during pre-inference. Then, we
introduce multi-modal token score for token pruning during full-inference. The overall framework
is shown in Fig. 3]
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Figure 3: Overview of PREP framework. Stage 1: PREP identifies pruning-friendly layer with
patch-level pre-inference tokens via EKL score. Stage 2: PREP combines visual-visual and
text—visual attention to retain the most informative tokens.

3.1 PRELIMINARY ANALYSIS

VLMs generate textual responses conditioned on images and prompts. An image input I €
RW>HX3 ig first encoded by a transformer-based visual encoder (e.g., ViT Dosovitskiy et al.|
(2020)) and then projected via an MLP to the required feature dimension D, yielding visual tokens
V € RV*P where N is the number of tokens. Meanwhile, the text prompt is embedded through
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the embedding layer as T € R™*?, where M denotes the prompt length. Previous pruning meth-
ods (Zhang et al., 2024b; Wang et al., 2025) typically compute cross-modal similarity between V*
and T* or rely on attention scores Attn" from the k-th layer to determine the number of tokens to
prune. However, they fail to identify the precise layer where cross-modal alignment emerges, lead-
ing to the loss of fine-grained information. Specifically, as shown in Fig.|1} in some layers, the image
tokens in the prompt-related regions exhibit high similarity, showing explicitly modal alignment.

Based on this observation, we first introduce QF to reflect the alignment result between text and
vision at the k-th layer, which can be computed it as:

. Mean; [Softmax(L\/rlg)T)]

- >; Mean; [Softmax (L\/Tgﬁ> } i 7

Q" e RV, (1)

where Mean,[-] denotes averaging over the text-token dimension j, and the summation index 4
corresponds to the visual dimension, corresponding to the average and L1 normalization in Fig.[3] In
the encoding results of this layer, visual tokens with higher similarity to the prompt will have a higher
QP value, while it is ensured that Q follows a probability distribution. Then, we introduce the target
distribution Y as the underlying visual importance, corresponding to prompt-relevant regions.

To evaluate whether the visual tokens of the current layer are aligned with the prompt and faithfully
reflect the relevant regions, Q¥ should simultaneously (i) preserve information about Y, ensuring
faithful identification of semantically relevant tokens(higher 7(QF;Y)), and (ii) remain maximally
compressed relative to the previous layer Q*~!(lower I(QF; Q*~1)), thereby discarding redundant
information. This trade-off is consistent with the objective of the Information Bottleneck (IB) theory
and can be expressed by the following objective:

Lip=1(Q%Y) - BI(Q" Q" 1), )

where I(-; -) denotes mutual information and 3 > 0 is a balancing parameter. As mentioned above, a
larger value of L;p indicates a higher cross-modal alignment quality for this layer. We then expand
this target as:

QYY) - BHQM QM) = (1-HH(QY) - H(Q" |Y)+SH(Q" | Q*™)), ()

where H(-) denotes entropy and H(- | -) conditional entropy. However, directly computing the
conditional entropy in Eq. [3]is intractable: the ground-truth target distribution Y is inaccessible dur-
ing inference, and the visual attention distribution from Q*~! to QF involves complex transformer
internal computations. To resolve this, we next propose a feasible approximation to the IB objective
using Entropy and KL—divergence(EKL) score.

3.2 ENTROPY AND KL-DIVERGENCE SCORE(EKL)

As mentioned above, H(QF | Y) quantifies the uncertainty of Q* when the underlying visual im-
portance Y is known. Intuitively, if Q¥ deviates significantly from Y (e.g., the attention of model
focuses on non-ROI regions), the uncertainty of Q* cannot be effectively reduced even with prior
knowledge of Y —this implies a larger H(Q" | Y). In addition, according to our previous obser-
vations, obvious modal-alignment appears after early modal-fusion layers, indicating a small and
approximately constant H(Q" | Y') for the middle layers. To identify this range, we calculate,
for each layer of LLaVA-1.5-7B, the ratio of the intersection area between the top 75% attention-
weighted areas predicted by Q* and the ROI to the area of the ROI, which is termed as intersection
over ROI (IoR) and described in detail in Fig. E}

If the conditional entropy H(Q" | Y) is small, this means that most of the regions attended to
by QF can be predicted when Y is known; in this case, the intersection between these predicted
regions and the ROI will be larger, corresponding to a higher IoR. In Fig. ] the IoR values remain
consistently high with minimal fluctuations across layers 6-15. This stable alignment between QF
and Y implies that the conditional entropy H (QF | Y) remains relatively constant. In Appendix
we observe a similar prunable range in both InternVL and QwenVL. This phenomenon may arise
from the fact that current VLMs are pre-trained primarily using the next-token prediction objective
and share largely unified LLM-style architectures, which in turn leads to similar layer-wise attention
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patterns. Similar to the patterns observed in Fig. [T} the shallower layers primarily facilitate cross-
modal fusion, whereas the deeper layers progressively transition toward task-specific reasoning.
Consequently, the degree of alignment between Q* and Y exhibits substantially larger fluctuations
in these regions, suggesting that the conditional entropy H(Q" | Y') cannot be approximated as
invariant across these layers.

Similarly, for the second term in Eq.|2} we approximate H(Q" | Q*~!) by measuring the divergence
between the attention distributions of consecutive layers. Intuitively, if Q” carries little new infor-
mation beyond Q*~!, the two distributions will be highly similar, resulting in a small conditional
entropy. Conversely, a large divergence indicates that Q¥ introduces substantial novel information
relative to Q*~1. Following this intuition, we compute the KL divergence Dxr,(QF || Q*~!) at each
layer as a practical surrogate for H(Q" | Q*~1). Accordingly, we define the EKL score for layer k:

EKLj = H(Q") + Dkr,(Q"Q"1). 4)
We also provide a detailed proof using information-theoretical bounds in Appendix [A.2] proving
that EKL can be used as a computable lower bound for £;5. Based on the above analysis, for the
selected layers where H(Q" | Y') remains approximately constant, a larger EKL;, implies that the
value of the remaining term in Eq.[3]is larger, which in turn indicates a higher degree of cross-modal
alignment for this layer.

However, directly computing the EKL score at the token level during pre-inference would be com-
putationally intensive. For efficiency, we partition V into r groups V,. € R"*E*D and average over
the first dimension () to obtain patch-level tokens V,:

L
1 rXxD
Vo= ;:1: Vo[ k,:], V,eR™PD, (5)

where the averaging operation aggregates pixel-level features within each patch to preserve patch-
wise semantics.

To wvalidate its feasibility for pre-inference, we obtain the IoR of patch-level distribu-
tions Qg with the same setting as token-level IoR. As illustrated in Fig. |4, the high-
attention regions remain well aligned across both representations in the middle layers.
These findings suggest that patch-level encoding

Mean IoR with Standard Deviation Across Layers  faithfully preserves the critical semantics captured

o5 ROI Retained Regions M Masked Regions | DY token-level encoding, thereby enabling reliable
' n IoR= —1 pre-inference with reduced redundancy.
bt

As shown in Fig. 3] PREP computes and ranks

% EK Ly, of each layer, selecting £* with the highest
205 EKL to be pruned during full-inference.
S 04
o 3.3 MULTIMODAL TOKEN SCORE
—— Token-level
02 ——  Patch-level During inference, we determine which visual to-
: : - - = = ” kens to prune by computing a layer-wise, token-
Layer Index level importance score at the EKL-selected layer

k*. This score fuses two complementary attention
Figure 4: ToR means the intersection area be- signals: intra-visual structural relevance (visual-fo-
tween the top 75% attention-weighted areas Visual, v2v) and cross-modal semantic alignment

predicted by Qk and the ROI over the area of (Visual-t()-text, V2t) By COmbining them, we en-
the ROI on VizWiz|Chen et al| (2022). sure that tokens critical to either visual structure or

semantic information are preserved. As shown in
Fig.[3} we first extract the raw multi-head attention tensor from layer k*:

Attnk)* e RHX(S+N+IVI)X(S+N+I\/I)7 (6)

where H is the number of attention heads, S is the length of system prompts, N is the number of
encoded visual tokens, and M is the number of text tokens. To reduce head-wise redundancy and
emphasize the aggregated attention patterns, we average over all heads:

H
a1 T (S+N+M)x (S+N+M)
Attn fﬁ};Attn [h,:;,:] € R . (7)
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We then extract the submatrices corresponding to visual-visual and visual-text attention:
Attnﬁ* — Attn" [S: S+ N,S:S+ N, Attnf* — Attn" [S:S+N,S+N:, (8

where Attn®" € RY*N captures intra-visual structural interactions and Attnf € RNV*M cap-
tures visual-text semantic alignment. Then we average on the col-dimension to obtain two kinds of
visual importance:

N M
. 1 T . 1 o
syli] = i E Attnf [i,7], sfi] = — E Attn [i, 7. )
i=1 M=

Finally, we define the Multi—-modal token score as the sum of visual and semantic contributions:

Scoreli] = s,[i] + s¢]i], Scorec RN. (10)

Higher multi—-modal score indicates that the i-th visual token is important for maintaining both visual
structural integrity and cross-modal semantic alignment. During pruning, we retain the top-m% of
visual tokens with the highest multi-modal token scores, ensuring that the most informative tokens
are preserved.

3.4 THEORETICAL ANALYSIS OF REDUCED FLOPs

Following the PDrop Xing et al.[(2024) approximation, the FLOPs of a single transformer layer with
visual sequence length N and dimension D is

FLOPsjyyer(N) ~ 4ND? 4+ 2N?D + 3N DC, (11)

where C is the intermediate size of the feed-forward network. As we prune at layer k* by retaining
m% of the visual tokens and introduces overhead of EKL and multi—-modal score, the total theoretical
FLOPs reduction simplifies to, where the detail of derivation is shown in Appendix [A.3}

K
Reduced FLOPs = Y [4ND2 +2N2D + 3NDC

k=k*

~ (4m- ND?* +2(m - N)*D + 3m - NDC | (12)

- [k* - (4rD? 4+ 22D + 3rDC) + N + HN? + HNM} .

Experiments show that the introduced overhead is only 0.02 TFLOPs, accounting for merely 0.4%
of the original total FLOPs.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

To assess the effectiveness of our method on image understanding tasks, we conduct experiments
on four fine-grained benchmarks including MMStar |Chen et al.| (2024b), TextVQA |Singh et al.
(2019), AI2D |[Kembhavi et al.|(2016) and Seed2-Plus |Li et al.| (2024), and four widely used VQA
benchmarks including POPE [Li et al| (2023)), RealWorldQA x.ai.[ (2024), MME and VizWiz. At
the same time,we compare PREP with recent state-of-the-art methods as Sparse VLM, ToMe Bolya
et al.| (2022), TopV [Yang et al.| (2025a), FastV [Chen et al.| (2024a)), PDrop and Minimonkey Huang
et al.| (2024). We verify the generalizability of PREP on InternVL3 ,LLaVA-1.5 and Qwen2.5-VL
series VLMs, pruning between 6-15 layers of them. Besides, as LLaVA-1.5 gengerate fixed-size 576
visual tokens, we select group size from 32,64,144 and 192. As InternVL3 and Qwen2.5-VL set a
fixed-size patch sequence length, we group visual tokens according their original size. LLaVA-1.5
employs CLIP-pretrained ViT-L as the visual tower, while InternVL3 owns dynamic high resolution
encoder. All experiments are done on one NVIDIA RTX3090 with 24GB.
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Table 1: Evaluation of our method on the LLaVA-1.5-7B model across nine datasets under three
visual token compression levels (192, 128, and 64). The vanilla configuration uses 576 tokens and
average 4.8T FLOPs. FLOPs ratio shows the ratio of pruned FLOPs to original FLOPs. Relative
score is the average ratio between the score and original score across all benchmarks. Latency is
measured in seconds per iteration.

Method Venue MMB MME POPE VizWiz TextVQA RWQA AIZD MMStar Seed2 Slzf)'r"‘e‘(‘z/f) R';';ig];) L‘(’;/e:)‘y
Original - 648 1864 861  50.0 58.2 490 520 329 338 100.0% 100% 0.48
Retain Tokens 192
ToMe ICLR23 605 1563 724 508 53.1 475 500 303 361 925% (17.5%) 44% 041
FastV ECCV'24 610 1605 648 509 52.1 479 505 30.5 365 92.1% (17.9%) 46% 0.40
SparseVLM ICML25 625 1787 851 505 57.8 482 515 317 383 982% (1.8%) 52% 045
PDrop CVPR'25 633 1797 823  5l.1 56.5 484 513 318 378 97.7% (12.3%) 4% 0.42
PREP - 648 1867 853 520 58.0 488 519 328 389 1002% (10.2%)  46% 0.39
Retain Tokens 128
ToMe ICLR23 533 1343 628 506 49.1 449 480 287 342 858% (1142%)  37% 0.37
FastV ECCV'24 561 1490 534 513 50.5 453 490 293 357 873% (L127%)  39% 0.39
SparseVLM ICML25  60.0 1746 850 514 56.7 455 510 315 380 96.6% (13.4%) 36% 042
PDrop CVPR'25 616 1761 823 510 56.6 462 512 321 379 96.5% (13.5%) 35% 0.38
PREP - 642 1845 849  5L6 57.5 475 514 324 386 99.1% (10.9%) 38% 035
Retain Tokens 64
ToMe ICLR23 437 1138 525 504 453 438 451 25.9 22 784% (121.6%)  26% 033
FastV ECCV'24 472 1255 382 518 478 422 463 26.7 331 79.1% (1209%)  28% 0.34
SparseVLM ICML'25 562 1589  77.5  50.1 534 462 503 30.5 375 927% (17.3%) 30% 0.37
PDrop CVPR'25 588 1561 559  50.7 50.6 454 505 313 373 89.7%(1103%)  26% 035
PREP - 637 1827 840 519 56.5 469 509 319 383 98.3% (11.7%) 29% 0.32
Retain Tokens 16
PREP - 633 1812 821 502 539 456 504 316 376 96.2% (13.8%) 27% 0.29

Table 2: Performance comparison with TopV and Minimonkey on InternVL3 and Qwen2.5-VL
VLMs. Latency is measured in seconds per iteration.

Model ® Meﬂ,‘“gaﬁo) Venue' MMB MME POPE TextVQA OCRB AI2D MMStar Seed2 R?fi?(l;) L‘(‘;Z't‘fy
original(100%) B 834 2415 OL1 T8 880 697  S52 682  100% 0.94

TopV (50%) CVPR'25 829 2407 896 80.4 825 666 845 612 6% 0.87
Minimonkey(50%) ICLR'25 817 2388  89.8 81.2 846 671 847 669  65% 0.89

IntemVL3-8B  PREP(50%) - 835 2416 902 816 864 678 852 618  57% 0.84
TopV(25%) CVPR'25 821 2298 882 78.6 783 624 83l 653  46% 0.59
Minimonkey(25%) ICLR'25 815 2368  89.6 78.7 806 637 845 672  48% 0.63

PREP(25%) - 831 2385 8938 79.3 816 641 848 674  39% 0.52
original(100%) B 835 2305 862 849 864 SI.I 639 704  100% 12

TopV(50%) CVPR'25 798 2173 824 814 743 762 616 642 64% 0.83
Minimonkey(50%) ICLR'25  80.6 2132  8l.1 80.6 764 743 602 615 65% 0.79
Qwen2.5VL-7B  PREP(50% ) 817 2216 849 82.5 807 787 628 664  62% 0.72
TopV(25%) CVPR'25  78.1 1973  78.1 773 711 716 583 627 43% 0.68
Minimonkey(25%) ICLR'25  77.6 2034 793 76.5 737 723 571 603 46% 071

PREP(25%) B 807 2157 826 80.4 792 715 603 635  40% 0.63

4.2 MAIN RESULTS

Table[T]reports the performance of PREP on LLaVA-1.5-7B. We evaluate three target token budgets
(192, 128, and 64) to assess compression under different levels of pruning. For the balance, we
set similar computational overhead(TFLOPs) and compare both performance and latency. When
reducing from 576 to 192 tokens, PREP even improves 0.2% on average accuracy, substantially
lower than the drop of SparseVLM(1.8%) and PDrop (2.3%). At more aggressive pruning (16
tokens), PREP the drops only 3.8%, while other methods like FastV and ToMe retain 64 tokens and
even drop more than 20%. Furthermore, we extend our approach to the advanced InternVL3 models
in Table [2} when retaining only 25% of visual tokens with an average 1500 tokens per sample
(far more than in LLaVA-1.5), PREP still keeps the average accuracy loss below 10%. Compared to
TopV and Minimonkey on InternVL and Qwen2.5-VL, our method still achieves higher performance
under the same token budget, highlighting the generalization and effectiveness of our approach. In
addition, PREP achieves the lowest latency across all baselines, showing negligible pre-inference
overhead and higher efficiency. Comparasion on different scales of VLMs are in Appendix [A.4]

Table 3: Ablation study of EKL components Table 4: Ablation study of the k-th EKL score un-

under 64 tokens retained. der 64 tokens retained from layer 10 to 15.
Component MME MMBench MMStar k-th score 1 2 3 4 5 6
Entropy 1816  63.2 31.5 MME 1768 1801 1805 1804 1819 1845
KL 1809  62.9 31.2 TextVQA 55.1 554 56.2 55.7 56.1 57.1
EKL 1827  63.7 319 POPE 81.0 81.7 81.8 82.5 82.9 84.5
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Figure 5: Performance comparison with other baselines under different tokens. The horizontal axis
represents the remaining tokens to 576, 192, 128, 64 and 16, while the vertical axis means the scores.

Table 5: Counts of selected layers on MME, Table 6: Impact of group size on performance

MMBench and SEED2. across benchmarks.
Layer 6-8 8-10 10-12 12-14 Group size 32 64 144 192
MME 680 828 205 651 MME 1804 1827 1806 1793
MMBench 2246 1230 1350 1864 MMBench 64.2 64.5 63.7 63.2
SEED2-PLUS 780 501 820 176 SEED2-PLUS 31.6 31.9 31.3 31.1

Fig.[d| visualizes the performance degradation of our method compared with ToMe, FastV, and Spar-
seVLM on POPE, MME, and MMStar under different numbers of retained visual tokens. It can be
observed that even when the number of tokens is reduced to 16, our method is hardly affected by the
reduction in the number of tokens on MME and POPE. Furthermore, on the MMStar dataset—which
requires fine-grained perception—the magnitude of performance degradation of our method is sig-
nificantly smaller than that of the other methods. We attribute this to the fact that EKL effectively
identifies the layers where information fusion takes place. Combined with multi-modal token scores,
PREP prevents the loss of details. These results demonstrate both the effectiveness and strong gen-
eralization of our approach.

4.3 ABLATION STUDY

EKL Table 3| compares three variants of our layer scoring: using only KL divergence, only en-
tropy, or their combination. The results show that integrating both yields the best performance,
confirming the complementarity of the two terms. Table [4] further examines the effect of selecting
the k-th highest scoring layer, where performance consistently declines as k decreases, demonstrat-
ing that EKL effectively ranks layer importance.

Table [5] shows that the majority of pruning occurs within layers 6-10, indicating that EKL
is able to identify the onset of cross-modal fusion at an early stage rather than simply se-
lecting deeper layers. This property substantially enhances the efficiency of the model.
. . Finally, in Table[6] we investigate the impact of the

Table 7: Performance of different variants on ., ber of tokens per group used in average pool-
four benchmarks. ing. We observe that grouping 64 tokens achieves
POPE MME TextVQA Seed2 the best performance: it preserves fine details that

vt 837 18063 56.1 380 support reasoning while maintaining low inference

Vv 835 18154 558 378 overhead
ours 840 18272 565 383

Multi-modal token score. Table[7]reports an ab-
lation of multi—-modal token score comparing three variants: v2t (using only visual-to-text attention),
v2v (using only visual-to-visual attention), and ours (the full multi-modal token score that fuses v2v
and v2t). Combining both signals (ours) yields the best result on all four benchmarks. For exam-
ple, POPE accuracy increases from 83.9% (v2t) and 83.5% (v2v) to 84.0% (ours), and the MME
score rises from 1842.3 / 1827.4 to 1856.2. Small but consistent improvements are also observed on
TextVQA and Seed2-PLUS. These results show that intra-visual structure and cross-modal align-
ment provide complementary information for token selection, and their fusion produces more robust
pruning decisions.
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4.4 EFFICIENCY ANALYSIS

In Table [Blwe evaluate the practical efficiency of our method on a single NVIDIA RTX 3090
(24GB) using full benchmarks. As our method progressively compresses visual tokens, both la-
tency and KV cache usage are significantly reduced. For instance, decreasing the retained token
count from 576 to 192 reduces latency from 0.48 s to 0.39 s, yielding a 1.23x speedup, while
KV cache occupancy drops nearly by half (from 100% to 56%). Further compression to 128 to-
kens decreases latency to 0.35 s (1.37x speedup) and KV cache usage to 44%, with minimal
impact on the average performance across benchmarks (99.3%). Retaining only 64 tokens ac-
celerates inference to 0.32 s (1.50x speedup) and reduces KV cache to 39%, whereas a further

reduction to 16 tokens achieves the
Table 8: Performance, latency, and KV cache usage com- highest speedup of 1.66x, with KV

parison under different visual token configurations. cache occupancy lowered to 33%, al-

Retain tokens 576 192 128 64 16 beit with a modest decrease in aver-

age performance (96.2%). These re-
Performance (%) 100 100 99.3 983 96.2 sults demonstrate that our method ef-
KV Cache (%) 100 56 44 39 33

fectively bal tational effi-
Latency (s) 048 039 035 032 029 corvely ba ances computationa: e

ciency and model accuracy, substan-
Speedup (x) 1.00 123 137 150 1.66 tially reducing memory and runtime

demands while maintaining high performance on average across multiple benchmarks.

4.5 CASE STUDY

As shown in Fig. [6] our method first identifies the cross-modal alignment layer via pre-inference in
Stage 1, and then prunes tokens at that layer based on multi-modal token scores. The visualization
highlights that our approach preserves tokens essential for answering, focusing on regions of interest.

,Q\ What is the brand
of the beer?

= 0.19 PoBs®- = (.63 0.65
A, What flavor is this?
) - | clam chowder Vs
- =l
Hydrothérapy 0.36 e 0.54 ap 0.24 oy | -

R What is written on
the airplane?

él’ airfrance
A v

Figure 6: Visualization of our method. EKL scores are on the upper left and figures with star are the
pruned layers. Orange boxes indicate regions of interest.

5 CONCLUSION

In this work, we introduced PREP, a training-free pruning framework for efficient inference in
Visual-Language Models. By leveraging pooled patch-level tokens for pre-inference, PREP iden-
tifies pruning layers guided by the Information Bottleneck criterion, thereby avoiding the loss of
fine-grained information that commonly arises in stepwise pruning. At the selected layer, PREP re-
tains tokens based on multimodal importance scores, ensuring both structural integrity and semantic
alignment are preserved. Extensive experiments across nine VQA benchmarks demonstrate that
PREP achieves substantial efficiency gains—reducing visual tokens by up to 97 %, KV-cache usage
by 67 %, and inference time by 1.66 x—while maintaining over 96 % of the original model perfor-
mance. These results highlight the effectiveness of pre-inference guided pruning for high-resolution
VLMs, offering a general and scalable solution toward more efficient multimodal reasoning.
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A APPENDIX

A.1 CROSS-MODAL ALIGNMENT IN OTHER VLMS.
In Fig.[/| we also observed cross-modal alignment emerging in the intermediate layers of both the
InternVL and QwenVL models. This demonstrates that pretraining for next token prediction induces

similar attention patterns, eliminating the need to determine distinct pruning layers for different
models.

A.2 THEORETICAL ANALYSIS OF EKL SCORE.

Let P(i, j) be the joint distribution of visual tokens at adjacent layers k¥ — 1 and k, where 7 indexes
tokens at layer £ — 1 and j at layer k. The marginals are:

Q¥ (i) = ZP(i,j), QF(j) = Z P(i, j)

We begin with the definition of conditional entropy:

HQ" | Q") == P(i,j)log P(j | i) (13)

,J

=D Pli,j)log (M) (14)
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Figure 7: Attention matrices and IoR of InternVL3-8B and Qwen2.5-VL-7B across different layers,
after filtering out tokens with attention weights below 70% of the maximum. EKL scores are on the
upper left and yellow boxes indicate regions of interest.

Now consider the KL divergence between the marginals:

k .
Dk (Q|Q*1) ZQ’“ ) log Q%_Si;) (15)
-3 (Z P, j)> log Q‘f Q) (;) (16)

To establish a connection, we introduce the conditional distribution P(j | ¢) and examine the rela-
tionship between P(j | i) and Q" (j).

Consider the following decomposition:

E1QE B Q" (j)
HQ" | Q ZP@] log Q% (j +ZP7,_] 10gP< i) 17)
i,j
—Hcross(Q Qk)+Ez~Qk 1 [DKL( ( | )”Qk)] (18)
Note that Heoss(QF, QF) = H(QF), so
HQ" | Q") = (Qk)+Ez~Qk + [DxuL(P(- 19)]1QY)] (19)

From equation (T9), we see that the conditional entropy equals the marginal entropy add the expected
KL divergence between the conditional and marginal distributions.

Now, consider the following information-theoretic bound:

k .
Dk, (Q*QFY) ZQ’“ Jlog & o (J(;.) (20)
SEiNQH [DKL( (- 1)IQ* )] 1)

This inequality follows from the convexity of KL divergence and an application of Jensen’s inequal-
ity. Specifically:

12
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1. Convexity of KL divergence: For a fixed distribution @), the function P — Dk1,(P||Q) is
convex in its first argument. This means that for any two distributions P; and P», and any
Ae0,1]:

Dii,(APy + (1 = N P2||Q) < ADkr(P1]|Q) + (1 — X\)Dki(P2||Q)

2. Application of Jensen’s inequality: Let P, = P(- | i) be the conditional distribution at
layer k given token ¢ at layer k — 1. The marginal distribution at layer k is:

Q" =E;.q1[P)]
By Jensen’s inequality applied to the convex function P — Dt (P||Q*~1), we have:
Dii (Einqe—1[P]Q"") <Ejoqi—1 [Dxr(Pil|Q )]
Substituting Q* = E; .qr-1[P;] and P; = P(- | i) gives the desired inequality.

When the transformation between layers is sufficiently smooth and information-preserving, we can
make the key approximation:

Eivqt-1 [Dxu(P(- 19)1Q°)] = Eiugr [Dxr(P(- | 9)Q" )] 22)

This approximation holds when QF and Q*~! are similar, which is reasonable for adjacent layers
in a well-trained neural network.

Substituting approximation into equation (19):
HQ"[ Q") = H(QY) + Ejnqe-r [Dxe(P( [9)]Q*H)] (23)
> H(Q) + D (Q7Q") (24)

Finally, by substituting this inequality into (3), and considering that when IoR is similar, H(QF | )
remains relatively constant, we can bound (2) as:
Lip > H(QF) + Dkr(Q"|Q"") + const, (25)

which is the EKL computation method. Therefore, EKL provides a computationally tractable surro-
gate for analyzing information flow through the network layers and identifying cross-modal align-
ment.

A.3 THEORETICAL ANALYSIS OF REDUCED FLOPSs.

We prune visual tokens at layer k*, retaining only the top m% of N visual tokens. Below we
compute FLOPs explicitly in terms of model dimensions.

Transformer layer FLOPs. For a Transformer layer with visual sequence length N, hidden di-
mension D, intermediate size of feed-forward network C, the approximate FLOPs is:

FLOPSyyer(N) = 4N D? + 2N2D + 3N DC. (26)

Pre-inference FLOPs. Before pruning, we partition N visual tokens into r groups and average
them(N = rL), which takes L FLOPs. Then, we use them to pre-inference up to layer £*, which
takes FLOPs:
FLOPSpre—inference =k FLOPSlayer(T) + N. (27)
Then, computing EKL requires entropy and KL divergence over r + M tokens:
FLOPSEKL ~ O((T—FM)D), (28)

Multi-modal token score computation FLOPs. At layer £*, computing multi-modal token score
involves:

1. Averaging attention over H heads for v2v: FLOPs,,, = H - N2,
2. Averaging attention over H heads for v2t: FLOPs,y = H - (N - M).

Thus the total multi-modal token score overhead is
FLOPSmulti—modal token score ~ HN2 + HNM. (29)
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Inference FLOPs after pruning. After pruning 100 — m% of visual tokens, the sequence length
becomes

Npruned =m-N. (30)
The FLOPs per layer in the upper layers k*, ..., K are
FLOPSayer(Npruned) = 4Nprunea D? + 2N nea D + 3Nprunea DC. (31)

Explicit expression. Substituting Ny = N+M and Nppped = m-N +M, and using the standard
transformer FLOPs formula FLOPSye(N) = 4ND? + 2N?D + 3ND?/H, the reduced FLOPs
can be written explicitly as

K
Reduced FLOPs = 3 [4ND2 4+ 2N2D 4+ 3NDC

k=k*

~ (4m- ND?* + 2(m - N)*D + 3(m - N)DC) | (32)

_ [k; (40D +2r2D + 3rDC) + N + HN? + HNM} .

Intuition. The first term captures the main savings from pruning the visual sequence in upper
layers. The second term accounts for pre-inference, EKL and multi-modal token score computation.

A.4 COMPARISON ON DIFFERENT PARAMETER SCALES

In Tab. [9] we conducted a performance comparison between the InternVL3-2B and Qwen2.5-VL-
3B models and found that PREP consistently achieved favorable results across different parameter
scales.

Table 9: Performance comparison with TopV and Minimonkey on InternVL3-2B and Qwen2.5-VL-
3B. Latency is measured in seconds per iteration.

FLOPs Latency

Model Method(Retained Ratio) Venue MMB MME POPE TextVQA OCRBench AI2D MMStar Seed2 Ratio(%) (s/it)
original(100%) - 80.3 2180 89.6 71.0 835 78.7 78.6 64.6 100% 0.65

TopV(50%) CVPR25 794 2076 88.4 752 795 774 76.8 62.5 59% 0.52
Minimonkey(50%) ICLR25 797 2096 88.7 75.5 802 71.8 71.0 62.9 65% 0.55

InternVL3-2B  PREP(50% ) - 80.2 2195 90.0 76.8 822 78.3 78.0 63.8 52% 0.47
TopV(25%) CVPR25 785 2042 87.6 72.5 705 76.2 74.5 62.2 46% 0.39
Minimonkey(25%) ICLR’25 78.7 2068 87.9 72.8 721 76.4 74.8 62.4 48% 0.42

PREP(25%) - 803 2171 89.8 73.0 746 71.6 718 63.4 36% 0.33

original(100%) - 79.1 2157 83.6 79.3 797 81.6 559 67.6 100% 0.72

TopV(50%) CVPR’25 735 1895 82.1 75.8 698 74.8 50.2 60.8 62% 0.59
Minimonkey(50%) ICLR’25 742 1912 82.5 76.2 705 75.3 50.6 61.3 66 % 0.63

Qwen2.5VL-3B PREP(50% ) 76.7 1971 85.1 719 721 76.9 52.2 63.2 61% 0.51
TopV(25%) CVPR’25 71.8 1823 80.5 73.2 675 72.1 48.7 59.2 44% 0.44
Minimonkey(25%) ICLR’25 72.5 1845 81.0 73.8 682 72.8 49.1 59.8 46% 0.49

PREP(25%) - 74.2 1864 83.7 75.1 703 74.8 50.7 61.7 42% 0.38

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we employed ChatGPT as an auxiliary writing tool to improve the clarity and read-
ability of the manuscript. Specifically, ChatGPT was used to refine the language of the Abstract,
Introduction, and Conclusion sections. No part of the technical content, experimental design, or
results was generated or modified by LLMs.
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