

000 PREP: PRE-INFERENCE GUIDED TOKEN PRUNING 001 FOR EFFICIENT VISION-LANGUAGE MODELS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 008 ABSTRACT 009

010 Recent Visual-Language Models (VLMs) have demonstrated strong fine-grained
011 perception capabilities across a wide range of Visual Question Answering (VQA)
012 tasks. However, this advantage comes at the cost of a rapidly increasing number
013 of visual tokens, leading to substantial computational and memory overhead.
014 Existing training-free methods adopt fixed-layer or layer-by-layer pruning, which
015 disrupts modality fusion before alignment and leads to significant performance
016 degradation under high pruning ratios. In this study, we observe that after the
017 early stage of modal fusion, cross-modal attention not only accurately identifies
018 regions of interest but also demonstrates less sensitive to pruning. Building on this,
019 we propose **PREP**, a training-free method that identifies optimal pruning layer via
020 patch-level pre-inference, thereby avoiding the loss of fine-grained details under
021 stepwise pruning. Specifically, PREP identifies the the layer with accurate cross-
022 modal alignment using an **Entropy-KL** divergence (EKL) score derived from the
023 Information Bottleneck principle, and then retains tokens at this layer that are criti-
024 cal for visual integrity and semantic alignment during full inference. Experiments
025 on LLaVA-1.5-7B show that with only **9** visual tokens and half of the layers used
026 in pre-inference, PREP preserves **96.2%** of the original performance while retain-
027 ing just **16** visual tokens (**3%**), leading to a **67%** reduction in KV-cache usage
028 and a **1.66 \times** acceleration in inference speed. We have presented our code in the
029 supplementary materials.

030 1 INTRODUCTION 031

032 Visual-Language Models (VLMs) have advanced rapidly in recent years (e.g., LLaVA-1.5 Liu et al.
033 (2023), InternVL3 Lu et al. (2025), GPT-4o Hurst et al. (2024)), pushing the frontier of multimodal
034 reasoning and fine-grained perception. For instance, LLaVA-1.5 encodes each image into a fixed
035 576 visual tokens, already far exceeding the number of textual tokens and straining LLM context
036 capacity. More recent models such as InternVL3 adopt substantially larger visual encoders, produc-
037 ing over 6000 tokens per image to capture fine-grained details. While such designs greatly enhance
038 perception, it also introduces substantial computational and memory overhead, thereby limiting the
039 scalability and real-time deployment of VLMs.

040 Existing token compression strategies fall into training and training-free methods. Training meth-
041 ods redesign the encoder or LLM architecture to inherently reduce visual token overhead. For ex-
042 ample, PDrop Xing et al. (2024) trains models to adapt to pruned token inputs by progressively
043 dropping tokens during training , while LLaVA-Mini Zhang et al. (2025b) introduces a lightweight
044 cross-attention module before LLM and reduce into one visual token. Although effective, these ap-
045 proaches require substantial retraining and often lack portability across different VLM backbones. In
046 contrast, training-free methods directly prune tokens at inference without retraining. Representative
047 approaches such as SparseVLM Zhang et al. (2024b), TopV Yang et al. (2025a), and Dymu Wang
048 et al. (2025) dynamically prune tokens layer by layer based on cross-modal attention, while oth-
049 ers like Minimonkey Huang et al. (2024) and VScan Zhang et al. (2025a) select a fixed layer to
050 prune. However, both of them fail to preserve performance under high visual token pruning ratios
051 (e.g., more than 90%), which we attribute to their neglect of the distinct functional roles of different
052 layers, causing them both to miss *when* textual and visual information become aligned and discard
053 local details during pruning. As shown in Fig. 1, in the early layers, LLaVA-1.5-7B remains in
the stage of visual–textual fusion, where similarity between prompt and image tokens is broadly

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
lection. These methods aim to streamline visual processing while maintaining or enhancing model performance. However, they often require retraining for each specific model, leading to significant resource consumption and limiting their scalability in diverse applications.

Figure 2: Performance on the MME Zhang et al. (2024a) when pruning 85% of tokens at different layers.

can Zhang et al. (2025a) prunes at the 16 layers. While these approaches avoid retraining, their layer-wise or fixed-layer compression fails to identify the modality-alignment layers, thereby discarding critical ROI regions and undermining fine-grained perception, ultimately leading to performance degradation.

3 METHOD

In this section, we introduce our token pruning framework for VLMs. We begin by analyzing cross-modal alignment from information bottleneck principle. Building on this insight, we present Entropy and KL-divergence based Layer score (EKL) for layer selection during pre-inference. Then, we introduce multi-modal token score for token pruning during full-inference. The overall framework is shown in Fig. 3.

Figure 3: Overview of PREP framework. Stage 1: PREP identifies pruning-friendly layer with patch-level pre-inference tokens via EKL score. Stage 2: PREP combines visual-visual and text-visual attention to retain the most informative tokens.

3.1 PRELIMINARY ANALYSIS

VLMs generate textual responses conditioned on images and prompts. An image input $\mathbf{I} \in \mathbf{R}^{W \times H \times 3}$ is first encoded by a transformer-based visual encoder (e.g., ViT Dosovitskiy et al. (2020)) and then projected via an MLP to the required feature dimension D , yielding visual tokens $\mathbf{V} \in \mathbf{R}^{N \times D}$, where N is the number of tokens. Meanwhile, the text prompt is embedded through

162 the embedding layer as $\mathbf{T} \in \mathbf{R}^{M \times D}$, where M denotes the prompt length. Previous pruning meth-
 163 ods (Zhang et al., 2024b; Wang et al., 2025) typically compute cross-modal similarity between \mathbf{V}^k
 164 and \mathbf{T}^k or rely on attention scores \mathbf{Attn}^k from the k -th layer to determine the number of tokens to
 165 prune. However, they fail to identify the precise layer where cross-modal alignment emerges, lead-
 166 ing to the loss of fine-grained information. Specifically, as shown in Fig. 1, in some layers, the image
 167 tokens in the prompt-related regions exhibit high similarity, showing explicitly modal alignment.

168 Based on this observation, we first introduce \mathbf{Q}^k to reflect the alignment result between text and
 169 vision at the k -th layer, which can be computed as:
 170

$$171 \mathbf{Q}^k = \frac{\text{Mean}_j \left[\text{Softmax} \left(\frac{\mathbf{V}^k (\mathbf{T}^k)^\top}{\sqrt{D}} \right) \right]}{\sum_i \text{Mean}_j \left[\text{Softmax} \left(\frac{\mathbf{V}^k (\mathbf{T}^k)^\top}{\sqrt{D}} \right) \right]_i}, \quad \mathbf{Q}^k \in \mathbf{R}^N, \quad (1)$$

175 where $\text{Mean}_j[\cdot]$ denotes averaging over the text-token dimension j , and the summation index i
 176 corresponds to the visual dimension, corresponding to the average and L1 normalization in Fig. 3. In
 177 the encoding results of this layer, visual tokens with higher similarity to the prompt will have a higher
 178 \mathbf{Q}^k value, while it is ensured that \mathbf{Q}^k follows a probability distribution. Then, we introduce the target
 179 distribution Y as the underlying visual importance, corresponding to prompt-relevant regions.

180 To evaluate whether the visual tokens of the current layer are aligned with the prompt and faithfully
 181 reflect the relevant regions, \mathbf{Q}^k should simultaneously (i) preserve information about Y , ensuring
 182 faithful identification of semantically relevant tokens (higher $I(\mathbf{Q}^k; Y)$), and (ii) remain maximally
 183 compressed relative to the previous layer \mathbf{Q}^{k-1} (lower $I(\mathbf{Q}^k; \mathbf{Q}^{k-1})$), thereby discarding redundant
 184 information. This trade-off is consistent with the objective of the Information Bottleneck (IB) theory
 185 and can be expressed by the following objective:
 186

$$\mathcal{L}_{IB} = I(\mathbf{Q}^k; Y) - \beta I(\mathbf{Q}^k; \mathbf{Q}^{k-1}), \quad (2)$$

188 where $I(\cdot; \cdot)$ denotes mutual information and $\beta > 0$ is a balancing parameter. As mentioned above, a
 189 larger value of \mathcal{L}_{IB} indicates a higher cross-modal alignment quality for this layer. We then expand
 190 this target as:
 191

$$I(\mathbf{Q}^k; Y) - \beta I(\mathbf{Q}^k; \mathbf{Q}^{k-1}) = (1 - \beta)H(\mathbf{Q}^k) - H(\mathbf{Q}^k | Y) + \beta H(\mathbf{Q}^k | \mathbf{Q}^{k-1}), \quad (3)$$

193 where $H(\cdot)$ denotes entropy and $H(\cdot | \cdot)$ conditional entropy. However, directly computing the
 194 conditional entropy in Eq. 3 is intractable: the ground-truth target distribution Y is inaccessible during
 195 inference, and the visual attention distribution from \mathbf{Q}^{k-1} to \mathbf{Q}^k involves complex transformer
 196 internal computations. To resolve this, we next propose a feasible approximation to the IB objective
 197 using Entropy and KL-divergence (EKL) score.
 198

199 3.2 ENTROPY AND KL-DIVERGENCE SCORE(EKL)

200 As mentioned above, $H(\mathbf{Q}^k | Y)$ quantifies the uncertainty of \mathbf{Q}^k when the underlying visual im-
 201 portance Y is known. Intuitively, if \mathbf{Q}^k deviates significantly from Y (e.g., the attention of model
 202 focuses on non-ROI regions), the uncertainty of \mathbf{Q}^k cannot be effectively reduced even with prior
 203 knowledge of Y —this implies a larger $H(\mathbf{Q}^k | Y)$. In addition, according to our previous obser-
 204 vations, obvious modal-alignment appears after early modal-fusion layers, indicating a small and
 205 approximately constant $H(\mathbf{Q}^k | Y)$ for the middle layers. To identify this range, we calculate,
 206 for each layer of LLaVA-1.5-7B, the **ratio** of the intersection area between the top 75% attention-
 207 weighted areas predicted by \mathbf{Q}^k and the ROI to the area of the ROI, which is termed as intersection
 208 over ROI (IoR) and described in detail in Fig. 4.

209 If the conditional entropy $H(\mathbf{Q}^k | Y)$ is small, this means that most of the regions attended to
 210 by \mathbf{Q}^k can be predicted when Y is known; in this case, the intersection between these predicted
 211 regions and the ROI will be larger, corresponding to a higher IoR. In Fig. 4, the IoR values remain
 212 consistently high with minimal fluctuations across layers 6–15. This stable alignment between \mathbf{Q}^k
 213 and Y implies that the conditional entropy $H(\mathbf{Q}^k | Y)$ remains relatively constant. In Appendix A.1,
 214 we observe a similar prunable range in both InternVL and QwenVL. This phenomenon may arise
 215 from the fact that current VLMs are pre-trained primarily using the next-token prediction objective
 and share largely unified LLM-style architectures, which in turn leads to similar layer-wise attention

patterns. Similar to the patterns observed in Fig. 1, the shallower layers primarily facilitate cross-modal fusion, whereas the deeper layers progressively transition toward task-specific reasoning. Consequently, the degree of alignment between \mathbf{Q}^k and Y exhibits substantially larger fluctuations in these regions, suggesting that the conditional entropy $H(\mathbf{Q}^k | Y)$ cannot be approximated as invariant across these layers.

Similarly, for the second term in Eq. 2, we approximate $H(\mathbf{Q}^k | \mathbf{Q}^{k-1})$ by measuring the divergence between the attention distributions of consecutive layers. Intuitively, if \mathbf{Q}^k carries little new information beyond \mathbf{Q}^{k-1} , the two distributions will be highly similar, resulting in a small conditional entropy. Conversely, a large divergence indicates that \mathbf{Q}^k introduces substantial novel information relative to \mathbf{Q}^{k-1} . Following this intuition, we compute the KL divergence $D_{\text{KL}}(\mathbf{Q}^k \| \mathbf{Q}^{k-1})$ at each layer as a practical surrogate for $H(\mathbf{Q}^k | \mathbf{Q}^{k-1})$. Accordingly, we define the EKL score for layer k :

$$\text{EKL}_k = \mathcal{H}(\mathbf{Q}^k) + D_{\text{KL}}(\mathbf{Q}^k \| \mathbf{Q}^{k-1}). \quad (4)$$

We also provide a detailed proof using information-theoretical bounds in Appendix A.2, proving that EKL can be used as a computable lower bound for \mathcal{L}_{IB} . Based on the above analysis, for the selected layers where $H(\mathbf{Q}^k | Y)$ remains approximately constant, a larger EKL_k implies that the value of the remaining term in Eq. 3 is larger, which in turn indicates a higher degree of cross-modal alignment for this layer.

However, directly computing the EKL score at the token level during pre-inference would be computationally intensive. For efficiency, we partition \mathbf{V} into r groups $\mathbf{V}_r \in \mathbf{R}^{r \times L \times D}$ and average over the first dimension (r) to obtain patch-level tokens \mathbf{V}_p :

$$\mathbf{V}_p = \frac{1}{L} \sum_{k=1}^L \mathbf{V}_r[:, k, :], \quad \mathbf{V}_p \in \mathbf{R}^{r \times D}, \quad (5)$$

where the averaging operation aggregates pixel-level features within each patch to preserve patch-wise semantics.

To validate its feasibility for pre-inference, we obtain the IoR of patch-level distributions \mathbf{Q}_p^k with the same setting as token-level IoR. As illustrated in Fig. 4, the high-attention regions remain well aligned across both representations in the middle layers.

These findings suggest that patch-level encoding faithfully preserves the critical semantics captured by token-level encoding, thereby enabling reliable pre-inference with reduced redundancy.

As shown in Fig. 3, PREP computes and ranks EKL_k of each layer, selecting k^* with the highest EKL to be pruned during full-inference.

3.3 MULTIMODAL TOKEN SCORE

During inference, we determine which visual tokens to prune by computing a layer-wise, token-level importance score at the EKL-selected layer k^* . This score fuses two complementary attention signals: intra-visual structural relevance (*visual-to-visual*, v2v) and cross-modal semantic alignment (*visual-to-text*, v2t). By combining them, we ensure that tokens critical to either visual structure or semantic information are preserved. As shown in

Figure 4: IoR means the intersection area between the top 75% attention-weighted areas predicted by \mathbf{Q}^k and the ROI over the area of the ROI on VizWiz Chen et al. (2022).

Fig. 3, we first extract the raw multi-head attention tensor from layer k^* :

$$\mathbf{Attn}^{k^*} \in \mathbf{R}^{H \times (S+N+M) \times (S+N+M)}, \quad (6)$$

where H is the number of attention heads, S is the length of system prompts, N is the number of encoded visual tokens, and M is the number of text tokens. To reduce head-wise redundancy and emphasize the aggregated attention patterns, we average over all heads:

$$\overline{\mathbf{Attn}}^{k^*} = \frac{1}{H} \sum_{h=1}^H \mathbf{Attn}^{k^*}[h, :, :] \in \mathbf{R}^{(S+N+M) \times (S+N+M)}. \quad (7)$$

270 We then extract the submatrices corresponding to visual-visual and visual-text attention:
 271

$$272 \quad \mathbf{Attn}_v^{k^*} = \overline{\mathbf{Attn}}^{k^*}[S : S + N, S : S + N], \quad \mathbf{Attn}_t^{k^*} = \overline{\mathbf{Attn}}^{k^*}[S : S + N, S + N :], \quad (8)$$

274 where $\mathbf{Attn}_v^{k^*} \in \mathbb{R}^{N \times N}$ captures intra-visual structural interactions and $\mathbf{Attn}_t^{k^*} \in \mathbb{R}^{N \times M}$ captures
 275 visual-text semantic alignment. Then we average on the col-dimension to obtain two kinds of
 276 visual importance:

$$277 \quad s_v[i] = \frac{1}{N} \sum_{j=1}^N \mathbf{Attn}_v^{k^*}[i, j], \quad s_t[i] = \frac{1}{M} \sum_{j=1}^M \mathbf{Attn}_t^{k^*}[i, j]. \quad (9)$$

281 Finally, we define the Multi-modal token score as the sum of visual and semantic contributions:
 282

$$283 \quad \text{Score}[i] = s_v[i] + s_t[i], \quad \text{Score} \in \mathbf{R}^N. \quad (10)$$

285 Higher multi-modal score indicates that the i -th visual token is important for maintaining both visual
 286 structural integrity and cross-modal semantic alignment. During pruning, we retain the top- $m\%$ of
 287 visual tokens with the highest multi-modal token scores, ensuring that the most informative tokens
 288 are preserved.

290 3.4 THEORETICAL ANALYSIS OF REDUCED FLOPs

292 Following the PDrop Xing et al. (2024) approximation, the FLOPs of a single transformer layer with
 293 visual sequence length N and dimension D is

$$294 \quad \text{FLOPs}_{\text{layer}}(N) \approx 4ND^2 + 2N^2D + 3NDC, \quad (11)$$

296 where C is the intermediate size of the feed-forward network. As we prune at layer k^* by retaining
 297 $m\%$ of the visual tokens and introduces overhead of EKL and multi-modal score, the total theoretical
 298 FLOPs reduction simplifies to, where the detail of derivation is shown in Appendix A.3:

$$299 \quad \text{Reduced FLOPs} = \sum_{k=k^*}^K \left[300 \quad 4ND^2 + 2N^2D + 3NDC \right. \\ 301 \quad \left. - \left(4m \cdot ND^2 + 2(m \cdot N)^2D + 3m \cdot NDC \right) \right] \\ 302 \quad - \left[k^* \cdot (4rD^2 + 2r^2D + 3rDC) + N + HN^2 + HNM \right]. \quad (12)$$

306 Experiments show that the introduced overhead is only 0.02 TFLOPs, accounting for merely 0.4%
 307 of the original total FLOPs.
 308

309 4 EXPERIMENT

312 4.1 EXPERIMENT SETTING

314 To assess the effectiveness of our method on image understanding tasks, we conduct experiments
 315 on four fine-grained benchmarks including MMStar Chen et al. (2024b), TextVQA Singh et al.
 316 (2019), AI2D Kembhavi et al. (2016) and Seed2-Plus Li et al. (2024), and four widely used VQA
 317 benchmarks including POPE Li et al. (2023), RealWorldQA x.ai. (2024), MME and VizWiz. At
 318 the same time, we compare PREP with recent state-of-the-art methods as SparseVLM, ToMe Bolya
 319 et al. (2022), TopV Yang et al. (2025a), FastV Chen et al. (2024a), PDrop and Minimonkey Huang
 320 et al. (2024). We verify the generalizability of PREP on InternVL3, LLaVA-1.5 and Qwen2.5-VL
 321 series VLMs, pruning between 6-15 layers of them. Besides, as LLaVA-1.5 generate fixed-size 576
 322 visual tokens, we select group size from 32, 64, 144 and 192. As InternVL3 and Qwen2.5-VL set a
 323 fixed-size patch sequence length, we group visual tokens according their original size. LLaVA-1.5
 employs CLIP-pretrained ViT-L as the visual tower, while InternVL3 owns dynamic high resolution
 encoder. All experiments are done on one NVIDIA RTX3090 with 24GB.

324
 325 Table 1: Evaluation of our method on the LLaVA-1.5-7B model across nine datasets under three
 326 visual token compression levels (192, 128, and 64). The vanilla configuration uses 576 tokens and
 327 average 4.8T FLOPs. FLOPs ratio shows the ratio of pruned FLOPs to original FLOPs. Relative
 328 score is the average ratio between the score and original score across all benchmarks. Latency is
 329 measured in seconds per iteration.

Method	Venue	MMB	MME	POPE	VizWiz	TextVQA	RWQA	AI2D	MMStar	Seed2	Relative Score(%)	FLOPs Ratio(%)	Latency (s/it)
Original	-	64.8	1864	86.1	50.0	58.2	49.0	52.0	32.9	38.8	100.0%	100%	0.48
Retain Tokens 192													
ToMe	ICLR'23	60.5	1563	72.4	50.8	53.1	47.5	50.0	30.3	36.1	92.5% (↓7.5%)	44%	0.41
FastV	ECCV'24	61.0	1605	64.8	50.9	52.1	47.9	50.5	30.5	36.5	92.1% (↓7.9%)	46%	0.40
SparseVLM	ICML'25	62.5	1787	85.1	50.5	57.8	48.2	51.5	31.7	38.3	98.2% (↓1.8%)	52%	0.45
PDrop	CVPR'25	63.3	1797	82.3	51.1	56.5	48.4	51.3	31.8	37.8	97.7% (↓2.3%)	44%	0.42
PREP	-	64.8	1867	85.3	52.0	58.0	48.8	51.9	32.8	38.9	100.2% (↑0.2%)	46%	0.39
Retain Tokens 128													
ToMe	ICLR'23	53.3	1343	62.8	50.6	49.1	44.9	48.0	28.7	34.2	85.8% (↓14.2%)	37%	0.37
FastV	ECCV'24	56.1	1490	53.4	51.3	50.5	45.3	49.0	29.3	35.7	87.3% (↓12.7%)	39%	0.39
SparseVLM	ICML'25	60.0	1746	85.0	51.4	56.7	45.5	51.0	31.5	38.0	96.6% (↓3.4%)	36%	0.42
PDrop	CVPR'25	61.6	1761	82.3	51.0	56.6	46.2	51.2	32.1	37.9	96.5% (↓3.5%)	35%	0.38
PREP	-	64.2	1845	84.9	51.6	57.5	47.5	51.4	32.4	38.6	99.1% (↓0.9%)	38%	0.35
Retain Tokens 64													
ToMe	ICLR'23	43.7	1138	52.5	50.4	45.3	43.8	45.1	25.9	32.2	78.4% (↓21.6%)	26%	0.33
FastV	ECCV'24	47.2	1255	38.2	51.8	47.8	42.2	46.3	26.7	33.1	79.1% (↓20.9%)	28%	0.34
SparseVLM	ICML'25	56.2	1589	77.5	50.1	53.4	46.2	50.3	30.5	37.5	92.7% (↓7.3%)	30%	0.37
PDrop	CVPR'25	58.8	1561	55.9	50.7	50.6	45.4	50.5	31.3	37.3	89.7% (↓10.3%)	26%	0.35
PREP	-	63.7	1827	84.0	51.9	56.5	46.9	50.9	31.9	38.3	98.3% (↓1.7%)	29%	0.32
Retain Tokens 16													
PREP	-	63.3	1812	82.1	50.2	53.9	45.6	50.4	31.6	37.6	96.2% (↓3.8%)	27%	0.29

345 Table 2: Performance comparison with TopV and Minimonkey on InternVL3 and Qwen2.5-VL
 346 VLMs. Latency is measured in seconds per iteration.

Model	Method (Retained Ratio)	Venue	MMB	MME	POPE	TextVQA	OCRB	AI2D	MMStar	Seed2	FLOPs Ratio(%)	Latency (s/it)
	original(100%)	-	83.4	2415	91.1	81.8	880	69.7	85.2	68.2	100%	0.94
	TopV(50%)	CVPR'25	82.9	2407	89.6	80.4	825	66.6	84.5	67.2	62%	0.87
	Minimonkey(50%)	ICLR'25	81.7	2388	89.8	81.2	846	67.1	84.7	66.9	65%	0.89
InternVL3-8B	PREP(50%)	-	83.5	2416	90.2	81.6	864	67.8	85.2	67.8	57%	0.84
	TopV(25%)	CVPR'25	82.1	2298	88.2	78.6	783	62.4	83.1	65.3	46%	0.59
	Minimonkey(25%)	ICLR'25	81.5	2368	89.6	78.7	806	63.7	84.5	67.2	48%	0.63
	PREP(25%)	-	83.1	2385	89.8	79.3	816	64.1	84.8	67.4	39%	0.52
	original(100%)	-	83.5	2305	86.2	84.9	864	81.1	63.9	70.4	100%	1.12
	TopV(50%)	CVPR'25	79.8	2173	82.4	81.4	743	76.2	61.6	64.2	64%	0.83
	Minimonkey(50%)	ICLR'25	80.6	2132	81.1	80.6	764	74.3	60.2	61.5	65%	0.79
Qwen2.5VL-7B	PREP(50%)	-	81.7	2216	84.9	82.5	807	78.7	62.8	66.4	62%	0.72
	TopV(25%)	CVPR'25	78.1	1973	78.1	77.3	711	71.6	58.3	62.7	43%	0.68
	Minimonkey(25%)	ICLR'25	77.6	2034	79.3	76.5	737	72.3	57.1	60.3	46%	0.71
	PREP(25%)	-	80.7	2157	82.6	80.4	792	77.5	60.3	63.5	40%	0.63

4.2 MAIN RESULTS

360 Table 1 reports the performance of PREP on LLaVA-1.5-7B. We evaluate three target token budgets
 361 (192, 128, and 64) to assess compression under different levels of pruning. For the balance, we
 362 set similar computational overhead(TFLOPs) and compare both performance and latency. When
 363 reducing from 576 to 192 tokens, PREP even improves 0.2% on average accuracy, substantially
 364 lower than the drop of SparseVLM(1.8%) and PDrop (2.3%). At more aggressive pruning (16
 365 tokens), PREP the drops only 3.8%, while other methods like FastV and ToMe retain 64 tokens and
 366 even drop more than 20%. Furthermore, we extend our approach to the advanced InternVL3 models
 367 in Table 2: when retaining only 25% of visual tokens with an average 1500 tokens per sample
 368 (far more than in LLaVA-1.5), PREP still keeps the average accuracy loss below 10%. Compared to
 369 TopV and Minimonkey on InternVL and Qwen2.5-VL, our method still achieves higher performance
 370 under the same token budget, highlighting the generalization and effectiveness of our approach. In
 371 addition, PREP achieves the lowest latency across all baselines, showing negligible pre-inference
 372 overhead and higher efficiency. Comparasion on different scales of VLMs are in Appendix A.4.

373 Table 3: Ablation study of EKL components
 374 under 64 tokens retained.

Component	MMB	MME	MMBench	MMStar
Entropy	1816	63.2	31.5	
KL	1809	62.9	31.2	
EKL	1827	63.7	31.9	

375 Table 4: Ablation study of the k -th EKL score under
 376 64 tokens retained from layer 10 to 15.

k -th score	1	2	3	4	5	6
MME	1768	1801	1805	1804	1819	1845
TextVQA	55.1	55.4	56.2	55.7	56.1	57.1
POPE	81.0	81.7	81.8	82.5	82.9	84.5

Figure 5: Performance comparison with other baselines under different tokens. The horizontal axis represents the remaining tokens to 576, 192, 128, 64 and 16, while the vertical axis means the scores.

Table 5: Counts of selected layers on MME, MMBench and SEED2.

Layer	6-8	8-10	10-12	12-14
MME	680	828	205	651
MMBench	2246	1230	1350	1864
SEED2-PLUS	780	501	820	176

Table 6: Impact of group size on performance across benchmarks.

Group size	32	64	144	192
MME	1804	1827	1806	1793
MMBench	64.2	64.5	63.7	63.2
SEED2-PLUS	31.6	31.9	31.3	31.1

Fig. 5 visualizes the performance degradation of our method compared with ToMe, FastV, and SparseVLM on POPE, MME, and MMStar under different numbers of retained visual tokens. It can be observed that even when the number of tokens is reduced to 16, our method is hardly affected by the reduction in the number of tokens on MME and POPE. Furthermore, on the MMStar dataset—which requires fine-grained perception—the magnitude of performance degradation of our method is significantly smaller than that of the other methods. We attribute this to the fact that EKL effectively identifies the layers where information fusion takes place. Combined with multi-modal token scores, PREP prevents the loss of details. These results demonstrate both the effectiveness and strong generalization of our approach.

4.3 ABLATION STUDY

EKL Table 3 compares three variants of our layer scoring: using only KL divergence, only entropy, or their combination. The results show that integrating both yields the best performance, confirming the complementarity of the two terms. Table 4 further examines the effect of selecting the k -th highest scoring layer, where performance consistently declines as k decreases, demonstrating that EKL effectively ranks layer importance.

Table 5 shows that the majority of pruning occurs within layers 6–10, indicating that EKL is able to identify the onset of cross-modal fusion at an early stage rather than simply selecting deeper layers. This property substantially enhances the efficiency of the model.

Table 7: Performance of different variants on four benchmarks.

	POPE	MME	TextVQA	Seed2
v2t	83.7	1806.3	56.1	38.0
v2v	83.5	1815.4	55.8	37.8
ours	84.0	1827.2	56.5	38.3

Finally, in Table 6, we investigate the impact of the number of tokens per group used in average pooling. We observe that grouping 64 tokens achieves the best performance: it preserves fine details that support reasoning while maintaining low inference overhead.

Multi-modal token score. Table 7 reports an ablation of multi-modal token score comparing three variants: **v2t** (using only visual-to-text attention), **v2v** (using only visual-to-visual attention), and **ours** (the full multi-modal token score that fuses v2v and v2t). Combining both signals (ours) yields the best result on all four benchmarks. For example, POPE accuracy increases from 83.9% (v2t) and 83.5% (v2v) to 84.0% (ours), and the MME score rises from 1842.3 / 1827.4 to 1856.2. Small but consistent improvements are also observed on TextVQA and Seed2-PLUS. These results show that intra-visual structure and cross-modal alignment provide complementary information for token selection, and their fusion produces more robust pruning decisions.

432 4.4 EFFICIENCY ANALYSIS
433

434 In Table 8, we evaluate the practical efficiency of our method on a single NVIDIA RTX 3090
435 (24GB) using full benchmarks. As our method progressively compresses visual tokens, both lat-
436 ency and KV cache usage are significantly reduced. For instance, decreasing the retained token
437 count from 576 to 192 reduces latency from 0.48 s to 0.39 s, yielding a $1.23\times$ speedup, while
438 KV cache occupancy drops nearly by half (from 100% to 56%). Further compression to 128 to-
439 kens decreases latency to 0.35 s ($1.37\times$ speedup) and KV cache usage to 44%, with minimal
440 impact on the average performance across benchmarks (99.3%). Retaining only 64 tokens ac-
441 celerates inference to 0.32 s ($1.50\times$ speedup) and reduces KV cache to 39%, whereas a further
442 reduction to 16 tokens achieves the highest speedup of $1.66\times$, with KV cache occupancy lowered to 33%,
443 albeit with a modest decrease in average performance (96.2%). These results demon-
444 strate that our method effectively balances computational efficiency and model accuracy, substan-
445 tially reducing memory and runtime demands while maintaining high performance on average across multiple benchmarks.

446 Table 8: Performance, latency, and KV cache usage com-
447 parison under different visual token configurations.

Retain tokens	576	192	128	64	16
Performance (%)	100	100	99.3	98.3	96.2
KV Cache (%)	100	56	44	39	33
Latency (s)	0.48	0.39	0.35	0.32	0.29
Speedup (\times)	1.00	1.23	1.37	1.50	1.66

448 449

450 demands while maintaining high performance on average across multiple benchmarks.

451 4.5 CASE STUDY
452

453 As shown in Fig. 6, our method first identifies the cross-modal alignment layer via pre-inference in
454 Stage 1, and then prunes tokens at that layer based on multi-modal token scores. The visualization
455 highlights that our approach preserves tokens essential for answering, focusing on regions of interest.

473 Figure 6: Visualization of our method. EKL scores are on the upper left and figures with star are the
474 pruned layers. Orange boxes indicate regions of interest.
475

476 5 CONCLUSION

477 In this work, we introduced **PREP**, a training-free pruning framework for efficient inference in
478 Visual-Language Models. By leveraging pooled patch-level tokens for pre-inference, PREP iden-
479 tifies pruning layers guided by the Information Bottleneck criterion, thereby avoiding the loss of
480 fine-grained information that commonly arises in stepwise pruning. At the selected layer, PREP re-
481 tains tokens based on multimodal importance scores, ensuring both structural integrity and semantic
482 alignment are preserved. Extensive experiments across nine VQA benchmarks demonstrate that
483 PREP achieves substantial efficiency gains—reducing visual tokens by up to **97%**, KV-cache usage
484 by **67%**, and inference time by **1.66 \times** —while maintaining over **96%** of the original model perfor-
485 mance. These results highlight the effectiveness of pre-inference guided pruning for high-resolution
VLMs, offering a general and scalable solution toward more efficient multimodal reasoning.

486 REFERENCES
487

488 Kazi Hasan Ibn Arif, Jin Yi Yoon, Dimitrios S Nikolopoulos, Hans Vandierendonck, Deepu John, and
489 Bo Ji. Hired: Attention-guided token dropping for efficient inference of high-resolution vision-
490 language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
491 pp. 1773–1781, 2025.

492 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
493 Hoffman. Token merging: Your vit but faster. *arXiv preprint arXiv:2210.09461*, 2022.

494 Chongyan Chen, Samreen Anjum, and Danna Gurari. Grounding answers for visual questions asked
495 by visually impaired people. In *Proceedings of the IEEE/CVF Conference on Computer Vision
496 and Pattern Recognition*, pp. 19098–19107, 2022.

497 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
498 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
499 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.

500 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
501 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
502 models? *arXiv preprint arXiv:2403.20330*, 2024b.

503 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
504 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
505 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
506 arXiv:2010.11929*, 2020.

507 Mingxin Huang, Yuliang Liu, Dingkang Liang, Lianwen Jin, and Xiang Bai. Mini-monkey: Multi-
508 scale adaptive cropping for multimodal large language models. *CoRR*, 2024.

509 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
510 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
511 arXiv:2410.21276*, 2024.

512 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
513 Farhadi. A diagram is worth a dozen images. In *Computer Vision–ECCV 2016: 14th Euro-
514 pean Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*,
515 pp. 235–251. Springer, 2016.

516 Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:
517 Benchmarking multimodal large language models with text-rich visual comprehension. *arXiv
518 preprint arXiv:2404.16790*, 2024.

519 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
520 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.

521 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
522 in neural information processing systems*, 36:34892–34916, 2023.

523 Dongchen Lu, Yuyao Sun, Zilu Zhang, Leping Huang, Jianliang Zeng, Mao Shu, and Huo Cao.
524 Internvl-x: Advancing and accelerating internvl series with efficient visual token compression.
525 *arXiv preprint arXiv:2503.21307*, 2025.

526 Run Luo, Renke Shan, Longze Chen, Ziqiang Liu, Lu Wang, Min Yang, and Xiaobo Xia. Vcm:
527 Vision concept modeling based on implicit contrastive learning with vision-language instruction
528 fine-tuning. *arXiv preprint arXiv:2504.19627*, 2025.

529 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
530 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF
531 conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

532 Zhenhailong Wang, Senthil Purushwalkam, Caiming Xiong, Silvio Savarese, Heng Ji, and Ran
533 Xu. Dymu: Dynamic merging and virtual unmerging for efficient vlms. *arXiv preprint
534 arXiv:2504.17040*, 2025.

540 x.ai. Grok 1.5v: The future of ai models. Technical report, 2024.
 541

542 Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan Zhang, Yuhang Zang, Yuhang Cao, Conghui
 543 He, Jiaqi Wang, Feng Wu, et al. Pyramiddrop: Accelerating your large vision-language models
 544 via pyramid visual redundancy reduction. *arXiv preprint arXiv:2410.17247*, 2024.
 545

546 Cheng Yang, Yang Sui, Jinqi Xiao, Lingyi Huang, Yu Gong, Chendi Li, Jinghua Yan, Yu Bai,
 547 Ponnuswamy Sadayappan, Xia Hu, et al. Topv: Compatible token pruning with inference time
 548 optimization for fast and low-memory multimodal vision language model. In *Proceedings of the*
 549 *Computer Vision and Pattern Recognition Conference*, pp. 19803–19813, 2025a.
 550

551 Chenyu Yang, Xuan Dong, Xizhou Zhu, Weijie Su, Jiahao Wang, Hao Tian, Zhe Chen, Wenhui
 552 Wang, Lewei Lu, and Jifeng Dai. Pvc: Progressive visual token compression for unified image
 553 and video processing in large vision-language models. In *Proceedings of the Computer Vision*
 554 *and Pattern Recognition Conference*, pp. 24939–24949, 2025b.
 555

556 Ce Zhang, Kaixin Ma, Tianqing Fang, Wenhao Yu, Hongming Zhang, Zhisong Zhang, Yaqi Xie,
 557 Katia Sycara, Haitao Mi, and Dong Yu. Vscan: Rethinking visual token reduction for efficient
 558 large vision-language models. *arXiv preprint arXiv:2505.22654*, 2025a.
 559

560 Shaolei Zhang, Qingkai Fang, Zhe Yang, and Yang Feng. Llava-mini: Efficient image and video
 561 large multimodal models with one vision token. *arXiv preprint arXiv:2501.03895*, 2025b.
 562

563 Yi-Fan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Junfei Wu, Feng
 564 Li, Kun Wang, Qingsong Wen, Zhang Zhang, et al. Mme-realworld: Could your multimodal
 565 llm challenge high-resolution real-world scenarios that are difficult for humans? *arXiv preprint*
 566 *arXiv:2408.13257*, 2024a.
 567

568 Yuan Zhang, Chun-Kai Fan, Junpeng Ma, Wenzhao Zheng, Tao Huang, Kuan Cheng, Denis Gu-
 569 dovskiy, Tomoyuki Okuno, Yohei Nakata, Kurt Keutzer, et al. Sparsevlm: Visual token sparsifi-
 570 cation for efficient vision-language model inference. *arXiv preprint arXiv:2410.04417*, 2024b.
 571

A APPENDIX

A.1 CROSS-MODAL ALIGNMENT IN OTHER VLMs.

572 In Fig. 7, we also observed cross-modal alignment emerging in the intermediate layers of both the
 573 InternVL and QwenVL models. This demonstrates that pretraining for next token prediction induces
 574 similar attention patterns, eliminating the need to determine distinct pruning layers for different
 575 models.
 576

A.2 THEORETICAL ANALYSIS OF EKL SCORE.

577 Let $P(i, j)$ be the joint distribution of visual tokens at adjacent layers $k - 1$ and k , where i indexes
 578 tokens at layer $k - 1$ and j at layer k . The marginals are:
 579

$$580 \mathbf{Q}^{k-1}(i) = \sum_j P(i, j), \quad \mathbf{Q}^k(j) = \sum_i P(i, j)$$

581 We begin with the definition of conditional entropy:
 582

$$583 H(\mathbf{Q}^k \mid \mathbf{Q}^{k-1}) = - \sum_{i,j} P(i, j) \log P(j \mid i) \quad (13)$$

$$584 = - \sum_{i,j} P(i, j) \log \left(\frac{P(i, j)}{\mathbf{Q}^{k-1}(i)} \right) \quad (14)$$

Figure 7: Attention matrices and IoR of InternVL3-8B and Qwen2.5-VL-7B across different layers, after filtering out tokens with attention weights below 70% of the maximum. EKL scores are on the upper left and yellow boxes indicate regions of interest.

Now consider the KL divergence between the marginals:

$$D_{\text{KL}}(\mathbf{Q}^k \parallel \mathbf{Q}^{k-1}) = \sum_j \mathbf{Q}^k(j) \log \frac{\mathbf{Q}^k(j)}{\mathbf{Q}^{k-1}(j)} \quad (15)$$

$$= \sum_j \left(\sum_i P(i, j) \right) \log \frac{\mathbf{Q}^k(j)}{\mathbf{Q}^{k-1}(j)} \quad (16)$$

To establish a connection, we introduce the conditional distribution $P(j \mid i)$ and examine the relationship between $P(j \mid i)$ and $\mathbf{Q}^k(j)$.

Consider the following decomposition:

$$H(\mathbf{Q}^k \mid \mathbf{Q}^{k-1}) = - \sum_{i,j} P(i, j) \log \mathbf{Q}^k(j) + \sum_{i,j} P(i, j) \log \frac{\mathbf{Q}^k(j)}{P(j \mid i)} \quad (17)$$

$$= H_{\text{cross}}(\mathbf{Q}^k, \mathbf{Q}^k) + \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [D_{\text{KL}}(P(\cdot \mid i) \parallel \mathbf{Q}^k)] \quad (18)$$

Note that $H_{\text{cross}}(\mathbf{Q}^k, \mathbf{Q}^k) = H(\mathbf{Q}^k)$, so:

$$H(\mathbf{Q}^k \mid \mathbf{Q}^{k-1}) = H(\mathbf{Q}^k) + \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [D_{\text{KL}}(P(\cdot \mid i) \parallel \mathbf{Q}^k)] \quad (19)$$

From equation (19), we see that the conditional entropy equals the marginal entropy add the expected KL divergence between the conditional and marginal distributions.

Now, consider the following information-theoretic bound:

$$D_{\text{KL}}(\mathbf{Q}^k \parallel \mathbf{Q}^{k-1}) = \sum_j \mathbf{Q}^k(j) \log \frac{\mathbf{Q}^k(j)}{\mathbf{Q}^{k-1}(j)} \quad (20)$$

$$\leq \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [D_{\text{KL}}(P(\cdot \mid i) \parallel \mathbf{Q}^{k-1})] \quad (21)$$

This inequality follows from the convexity of KL divergence and an application of Jensen's inequality. Specifically:

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

1. **Convexity of KL divergence:** For a fixed distribution Q , the function $P \mapsto D_{\text{KL}}(P\|Q)$ is convex in its first argument. This means that for any two distributions P_1 and P_2 , and any $\lambda \in [0, 1]$:
$$D_{\text{KL}}(\lambda P_1 + (1 - \lambda) P_2 \| Q) \leq \lambda D_{\text{KL}}(P_1 \| Q) + (1 - \lambda) D_{\text{KL}}(P_2 \| Q)$$

2. **Application of Jensen's inequality:** Let $P_i = P(\cdot \mid i)$ be the conditional distribution at layer k given token i at layer $k-1$. The marginal distribution at layer k is:

$$\mathbf{Q}^k = \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [P_i]$$

By Jensen's inequality applied to the convex function $P \mapsto D_{\text{KL}}(P\|\mathbf{Q}^{k-1})$, we have:

$$D_{\text{KL}}(\mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [P_i] \| \mathbf{Q}^{k-1}) \leq \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [D_{\text{KL}}(P_i \| \mathbf{Q}^{k-1})]$$

Substituting $\mathbf{Q}^k = \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [P_i]$ and $P_i = P(\cdot \mid i)$ gives the desired inequality.

When the transformation between layers is *sufficiently smooth* and *information-preserving*, we can make the key approximation:

$$\mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [D_{\text{KL}}(P(\cdot \mid i) \| \mathbf{Q}^k)] \approx \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [D_{\text{KL}}(P(\cdot \mid i) \| \mathbf{Q}^{k-1})] \quad (22)$$

This approximation holds when \mathbf{Q}^k and \mathbf{Q}^{k-1} are similar, which is reasonable for adjacent layers in a well-trained neural network.

Substituting approximation (22) into equation (19):

$$H(\mathbf{Q}^k \mid \mathbf{Q}^{k-1}) \approx H(\mathbf{Q}^k) + \mathbb{E}_{i \sim \mathbf{Q}^{k-1}} [D_{\text{KL}}(P(\cdot \mid i) \| \mathbf{Q}^{k-1})] \quad (23)$$

$$\geq H(\mathbf{Q}^k) + D_{\text{KL}}(\mathbf{Q}^k \| \mathbf{Q}^{k-1}) \quad (24)$$

Finally, by substituting this inequality into (3), and considering that when IoR is similar, $H(\mathbf{Q}^k \mid Y)$ remains relatively constant, we can bound (2) as:

$$\mathcal{L}_{IB} \geq H(\mathbf{Q}^k) + D_{\text{KL}}(\mathbf{Q}^k \| \mathbf{Q}^{k-1}) + \text{const}, \quad (25)$$

which is the EKL computation method. Therefore, EKL provides a computationally tractable surrogate for analyzing information flow through the network layers and identifying cross-modal alignment.

A.3 THEORETICAL ANALYSIS OF REDUCED FLOPs.

We prune visual tokens at layer k^* , retaining only the top $m\%$ of N visual tokens. Below we compute FLOPs explicitly in terms of model dimensions.

Transformer layer FLOPs. For a Transformer layer with visual sequence length N , hidden dimension D , intermediate size of feed-forward network C , the approximate FLOPs is:

$$\text{FLOPs}_{\text{layer}}(N) = 4ND^2 + 2N^2D + 3NDC. \quad (26)$$

Pre-inference FLOPs. Before pruning, we partition N visual tokens into r groups and average them ($N = rL$), which takes rL FLOPs. Then, we use them to pre-inference up to layer k^* , which takes FLOPs:

$$\text{FLOPs}_{\text{pre-inference}} = k^* \cdot \text{FLOPs}_{\text{layer}}(r) + N. \quad (27)$$

Then, computing EKL requires entropy and KL divergence over $r + M$ tokens:

$$\text{FLOPs}_{\text{EKL}} \sim O((r + M)D), \quad (28)$$

Multi-modal token score computation FLOPs. At layer k^* , computing multi-modal token score involves:

1. Averaging attention over H heads for v2v: $\text{FLOPs}_{\text{v2v}} = H \cdot N^2$,
2. Averaging attention over H heads for v2t: $\text{FLOPs}_{\text{v2t}} = H \cdot (N \cdot M)$.

Thus the total multi-modal token score overhead is

$$\text{FLOPs}_{\text{multi-modal token score}} \approx HN^2 + HNM. \quad (29)$$

702 **Inference FLOPs after pruning.** After pruning $100 - m\%$ of visual tokens, the sequence length
 703 becomes

$$704 \quad N_{\text{pruned}} = m \cdot N. \quad (30)$$

705 The FLOPs per layer in the upper layers k^*, \dots, K are

$$707 \quad \text{FLOPs}_{\text{layer}}(N_{\text{pruned}}) = 4N_{\text{pruned}}D^2 + 2N_{\text{pruned}}^2D + 3N_{\text{pruned}}DC. \quad (31)$$

709 **Explicit expression.** Substituting $N_{\text{full}} = N + M$ and $N_{\text{pruned}} = m \cdot N + M$, and using the standard
 710 transformer FLOPs formula $\text{FLOPs}_{\text{layer}}(N) = 4ND^2 + 2N^2D + 3ND^2/H$, the reduced FLOPs
 711 can be written explicitly as

$$713 \quad \text{Reduced FLOPs} = \sum_{k=k^*}^K \left[4ND^2 + 2N^2D + 3ND^2 \right. \\ 714 \quad \left. - \left(4m \cdot ND^2 + 2(m \cdot N)^2D + 3(m \cdot N)DC \right) \right] \\ 715 \quad - \left[k^* \cdot (4rD^2 + 2r^2D + 3rDC) + N + HN^2 + HNM \right]. \quad (32)$$

720 **Intuition.** The first term captures the main savings from pruning the visual sequence in upper
 721 layers. The second term accounts for pre-inference, EKL and multi-modal token score computation.

723 A.4 COMPARISON ON DIFFERENT PARAMETER SCALES

725 In Tab. 9, we conducted a performance comparison between the InternVL3-2B and Qwen2.5-VL-
 726 3B models and found that PREP consistently achieved favorable results across different parameter
 727 scales.

729 Table 9: Performance comparison with TopV and Minimonkey on InternVL3-2B and Qwen2.5-VL-
 730 3B. Latency is measured in seconds per iteration.

732 Model	733 Method(Retained Ratio)	734 Venue	735 MMB	736 MME	737 POPE	738 TextVQA	739 OCRBench	740 AI2D	741 MMStar	742 Seed2	743 FLOPs Ratio(%)	744 Latency (s/it)
InternVL3-2B	original(100%)	-	80.3	2180	89.6	77.0	835	78.7	78.6	64.6	100%	0.65
	TopV(50%)	CVPR'25	79.4	2076	88.4	75.2	795	77.4	76.8	62.5	59%	0.52
	Minimonkey(50%)	ICLR'25	79.7	2096	88.7	75.5	802	77.8	77.0	62.9	65%	0.55
	PREP(50%)	-	80.2	2195	90.0	76.8	822	78.3	78.0	63.8	52%	0.47
	TopV(25%)	CVPR'25	78.5	2042	87.6	72.5	705	76.2	74.5	62.2	46%	0.39
	Minimonkey(25%)	ICLR'25	78.7	2068	87.9	72.8	721	76.4	74.8	62.4	48%	0.42
Qwen2.5VL-3B	PREP(25%)	-	80.3	2171	89.8	73.0	746	77.6	77.8	63.4	36%	0.33
	original(100%)	-	79.1	2157	83.6	79.3	797	81.6	55.9	67.6	100%	0.72
	TopV(50%)	CVPR'25	73.5	1895	82.1	75.8	698	74.8	50.2	60.8	62%	0.59
	Minimonkey(50%)	ICLR'25	74.2	1912	82.5	76.2	705	75.3	50.6	61.3	66 %	0.63
	PREP(50%)	-	76.7	1971	85.1	77.9	721	76.9	52.2	63.2	61%	0.51
	TopV(25%)	CVPR'25	71.8	1823	80.5	73.2	675	72.1	48.7	59.2	44%	0.44
750 Minimonkey(25%)	ICLR'25	72.5	1845	81.0	73.8	682	72.8	49.1	59.8	46%	0.49	0.49
	PREP(25%)	-	74.2	1864	83.7	75.1	703	74.8	50.7	61.7	42%	0.38

741 A.5 THE USE OF LARGE LANGUAGE MODELS (LLMs)

744 In this work, we employed ChatGPT as an auxiliary writing tool to improve the clarity and readability
 745 of the manuscript. Specifically, ChatGPT was used to refine the language of the *Abstract*,
 746 *Introduction*, and *Conclusion* sections. No part of the technical content, experimental design, or
 747 results was generated or modified by LLMs.