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Abstract

Recent interpretability work on large language models (LLMs) has been increas-
ingly dominated by a feature-discovery approach with the help of proxy modules.
Then, the quality of features learned by, e.g., sparse auto-encoders (SAEs), is
evaluated. This paradigm naturally raises a critical question: do such learned
features have better properties than those already represented within the original
model parameters, and unfortunately, only a few studies have made such compar-
isons systematically so far. In this work, we revisit the interpretability of feature
vectors stored in feed-forward (FF) layers, given the perspective of FF as key-value
memories, with modern interpretability benchmarks. Our extensive evaluation re-
vealed that SAE and FFs exhibits a similar range of interpretability, although SAEs
displayed an observable but minimal improvement in some aspects. Furthermore,
in certain aspects, surprisingly, even vanilla FFs yielded better interpretability than
the SAEs, and features discovered in SAEs and FFs diverged. These bring ques-
tions about the advantage of SAEs from both perspectives of feature quality and
faithfulness, compared to directly interpreting FF feature vectors, and FF key-value
parameters serve as a strong baseline in modern interpretability research2.

1 Introduction

Transformer-based language models (LMs) have exhibited outstanding performance on a wide variety
of tasks [10, 35, 1, 44, 45], whereas their underlying mechanisms remain opaque [47, 37, 50, 17,
38, 18, 34, 28, 31]. This issue has been tackled in the interpretability field, and in earlier days, the
field has typically adopted a top-down approach, where, given candidate features or algorithms, e.g.,
syntactic structure, it has been inspected where in the original model those are encoded. Nowadays,
as a variety of capabilities emerge in larger LMs, the question tends to be more on the bottom-up,
feature-discovery side: what kind of features are encoded in the model?; and how can we discover and
control them? This feature-discovery age has brought two trends to the interpretability community
simultaneously: (i) training an external proxy module dedicated to this purpose, namely, sparse auto-
encoder (SAEs), to decompose neuron activations into simpler basic features [53, 8, 24, 30, 21, 16]
(proxy-based analysis), and (ii) developing new comprehensive interpretability benchmarks [36, 27]
to test the quality of discovered features.

∗Work done at Tohoku University.
2Project page: https://muyo8692.com/projects/ff-kv-sae
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This paper explores one overlooked question in the field, to what extent a proxy-based, artificial
decomposition of neuron activations empirically benefits the model interpretation. In other words,
feed-forward (FF) layers naturally implement the decomposition of neural activation into a set of
feature vectors, through the lens of FF as key-value memories [17](FF-KV analysis), why not first
evaluate such organic features in FFs with the newly developed interpretability benchmarks? Proxy-
based and FF-KV analysis have complementary advantages, and thus, there is no immediate reason
to dismiss the latter. For example, while some proxy-based methods have a theoretical motivation to
handle superposition, they also have limitations that FF-KV analysis can automatically bypass: proxy
modules can additionally expose biases to the interpretation, e.g., specific features are repeatedly
found [8, 49, 11]; the external proxy hallucinates features [22]; and additional computation costs are
needed to interpret the model. Furthermore, the FF activations are reported to be naturally sparse
even without any regularization [29]. Thus, if FF-KV and SAE analyses yield comparable results,
there are several advantages (more simply put, from Occam’s Razor principle) to adopting the former
FF-KV analyses.

To gauge the (dis)similarities between FF-KVs’ and SAEs’ interpretability level, we perform both
automatic evaluation and manual feature analyses. Automatic evaluation with SAEBENCH demon-
strates surprising similarities between the two approaches. The evaluation scores fell into a similar
range in all eight metrics in SAEBENCH, and the inter-metrics tendencies are also paralleled, e.g.,
causal intervention scores are poorer than feature disentanglement scores in both methods. One can
even observe some advantages of FF-KVs; for example, features in the original FFs tend to avoid
feature overlapping, resulting in better absorption scores [11] (i.e., less redundancy) than those in
SAEs. These comparable quality is further supported by human manual evaluation of feature qualities.
Conceptual features can be found with almost equal ease from both FF-KV features and SAEs. These
tentatively conclude that features from FF-KVs and SAEs serve a quite similar level of interpretability
from both quantitative and qualitative perspectives.

In our analysis, we further investigate the faithfulness of proxy-discovered features, considering
FF-KV features as gold, how large is the overlap between the feature sets of the original FF-KV
module and that of the proxy module? We analyzed such an overlap with Transcoder (TC), the closest
counterpart to FF-KV, as a proxy model, and revealed that the majority of TC features do not have
similar counterparts in the original FF module. This aligns with the existing report that SAEs can
interpret even random Transformers [22], and perhaps the proxy module hallucinates new features
rather than translating the workings of the original FF module, encouraging further research on the
faithfulness of the learned features, with FF-KV features as grounding points. To sum up, our study
reveals that proxy-based methods such as SAEs empirically offer very limited advantage over the
direct analysis of FFs (i.e., key-value memories). That is, the theoretical advantage of SAEs is not
observed empirically, at least through the lens of the current evaluation scheme, and encourages the
inclusion of FF-KV features as a strong baseline when assessing feature-discovery methods in the
interpretability field.

2 Background

2.1 Related Work

Dictionary Learning and LLMs Interpretation. Dictionary learning has been proposed to address
polysemanticity of the representation [3, 52, 42, 40, 14, 5, 20], and this has been applied to interpret
the internal activations of LLMs, represented by sparse autoencoders (SAEs) [53, 8, 24, 30, 21, 16, 25].
Specifically, these introduce a proxy module to decompose and reconstruct a model’s activation, and
seek interpretable features in it. Apparently, promising results were observed in earlier days: the
learned features are highly interpretable and can be directly used to steer the model’s behavior [46]:
modification on a feature will either eliminate the corresponding behavior, or enhance it.

Mixed Reports on SAE Features. Although the SAEs get increasing attention, concurrent works
have brought skeptical views on their success. For example, SAE-based feature steering quality is
inferior to simple baselines utilizing activations [51]; SAEs can learn meaningful features even from
a randomly initialized Transformer [22]; and they exhibit no clear advantage in downstream tasks
and sometimes underperform linear probes that use the model’s raw activations [9, 26]. This study, at
a high level, provides additional support for such criticisms of the general advantage of SAEs.
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Interpretability of Feed-Forward (FF) Layers. There have been a fair number of studies to
interpret the feed-forward (FF) layer in Transformers directly [13, 40, 2]. The closest work to ours
is Geva et al. [17], where FFs can be viewed as key-value memories, and they are interpretable and
useful to control the model output. Recent work also indicates that activations in FFs are already
sparse [29], and their neurons can be manipulated [51]; these motivate our work to contextualize the
bare FF interpretability with SAE works.

2.2 Sparse Autoencoder for Transformer Interpretability

Transformer. Transformer architecture is a stack of multiple modules, such as attention mech-
anisms, feed-forward (FF) layers, and normalization layers. There have recently been increasing
endeavors to interpret, especially, neuron activations around FF layers, such as SAEs. Henceforth,
vector denotes a row vector.

SAE. SAE decomposes and reconstructs the neuron activations, typically after the FF layer (residual
stream). That is, let xFFout

∈ Rdmodel be neuron activations after the FF layer, and dSAE denotes
the dimension of SAE features. SAE decomposes the neuron activations xFFout

and reconstructs it
x̂FFout as follows:

x̂FFout
≈ ReLU(xFFout

Wenc + benc) Wdec + bdec , (1)

with Wenc ∈ Rdmodel×dSAE , Wdec ∈ RdSAE×dmodel , benc ∈ RdSAE , and bdec ∈ Rdmodel in the SAE
module. ReLU(·) : Rd → Rd denotes an element-wise ReLU activation. Each activation dimension
is treated as a potentially interpretable feature, and the matrix maps each feature dimension to its
feature vector in the representation space. This module is trained so that the activations are as sparse
as possible with a sparsity loss to disentangle the potentially polysemantic input neurons.

Transcoder. Notably, as an alternative to SAEs and perhaps the closest attempt to this study,
Transcoders have recently been proposed [12]. This approximates the original FF by training a
sparse MLP as a proxy to predict FF output xFFout

from FF input xFFin
, and its internal activations

(∈ RdTC) are evaluated in the same way as the standard SAE. Still, their work [12] did not clearly
evaluate how interpretable the original FF’s internal activations are, and this work complements this
overlooked question.

2.3 Feed-Forward Layer as Key-Value Memories

Feed-forward layers in Transformers once project the FF input xFFin
∈ Rdmodel to dFF-dimensional

representation (dmodel < dFF), applies an element-wise non-linear activation ϕ(·) : Rd → Rd, and
projects it back, as follows:

xFFout
= ϕ(xFFin

WK + bK) WV + bV =
∑

i∈dFF

ϕ(xFFin
WK)[i] WV [:,i] + bV , (2)

where WK ∈ Rdmodel×dFF and WV ∈ RdFF×dmodel are learnable weight matrices, and bK ∈ RdFF ,
bV ∈ Rdmodel are learnable biases. dFF is typically set as 4dmodel. One interpretation of the FF
layer is a knowledge retrieval module; that is, the module first creates keys (activations) from an
input xFFin

and then aggregates their associated values (feature vectors) . Existing studies have
analyzed what kind of concept is stored in each feature vector of WV [:,i] and when they are activated
by ϕ(xFFinWK)[i] [17].

3 Comparing FF-KVs with SAEs

The feed-forward key-value memory module (FF-KV) inherently performs the same operation as
SAEs (although it is somewhat obvious, given that both adopt the MLP architectures): it first
decomposes the neuron activations into feature vectors and then aggregates them. This naturally
raises a question about how similar the decomposition naturally made by FF-KVs is to that learned
by the proxy module, e.g., SAEs. We examine several variants of FF-KV-based feature discovery
methods3.

3See Appendix A for the details on the implementations
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3.1 Methods

FF-KV. The vanilla FF key-value memories are evaluated with the SAE evaluation framework,
treating the key activations as features and the value vectors as feature vectors.

TopK FF-KV. To encourage the alignment with SAE research, we also introduce sparsity to
activations in FFs by applying a top-k activation function to the key vector, although it has been
reported that the vanilla FFs’ activations are somewhat already sparse [29]. This keeps only the k
neurons with the k largest activations in each inference, zeroing out the activation for the rest. We
call this TopK FF-KV, defined as follows:

xFFout
≈ Top-k(ϕ(WKxFFin

+ bK)) WV + bV . (3)

Normalized FF-KV. The feature vectors of SAE are typically normalized, whereas those in FF
are not. If a particular feature vector WV [i,:] has a large norm, the magnitude of its corresponding
activation may be underestimated. To handle this potential concern, we normalize each row of
WV , and the discounted vector norm is weighted to activations. We refer to the method with this
post-correction as Normalized (TopK) FF-KV:

xFFout
≈ Top-k(ϕ(WKxFFin

+ bK)⊙ s) W̃V + bV , (4)

s = [∥WV [1,:]∥2, ∥WV [2,:]∥2, · · · , ∥WV [dFF ,:]∥2] ∈ RdFF . (5)

Here, W̃V = diag(s)−1WV , where diag(·) expands a vector Rd to a diagonal matrix Rd×d.

3.2 Inference and Feature Discovery

Once a method to obtain activations from the models is determined, one can get an activation history
over a certain set of text. Here, we introduce several notations before going to the experiments.

Notations. Feature activations are analyzed through feeding specific texts to models, and the
exact text contents will vary depending on evaluation metrics. Let us denote a set of input texts as
S = [s1, · · · , sn], where each text consists of multiple tokens sk = [w(k,1), w(k,2), · · · , w(k,m)] ∈
S, which are used to get feature activations. For brevity, we flatten and re-index the tokens as
[w1, w2, · · · , wl]; one can recover the original indices (i, j) indicating text id and token position
via σ : N[1,l] → N[1,n] × N[1,m], e.g., σ(2) = (1, 2). For each token wt, we first collect feature
activations at ∈ Rdcoder with a particular method, such as SAE. Here, dcoder should be dSAE, dTC,
or dFF, depending on the methods; in other words, each method can maximally yield dcoder numbers
of features F = [f1, · · · , fdcoder

]. Repeatedly collecting the activations over inputs [w1, · · · , xl]
gives an activation history matrix A ∈ Rl×dcoder , where each row corresponds to each token xt, and
each column corresponds to each feature (neuron) fp ∈ F , respectively. A[:,p] ∈ Rl presents where
a feature fp was activated in S. Sp = {ti ∈ T | At,p > 0 and i, _ = σ(t)} ⊆ S represents the text
subset associated with the feature fp.

SwiGLU activation. Modern LMs adopt a SwiGLU gating function [41] for the non-linear acti-
vation of FFs ϕ(·). The existing work [54] showed the compatibility of SwiGLU activation with
FF-KV analysis, and thus, the above methods (§ 3.1) can be naturally implemented with SwiGLU.
For example, on top of the SwiGLU activation, the TopK FF-KV can be written as follows:

xFFout ≈ Top-k((WGxFFin)⊙ Swish(WKxFFin)) WV + bV , (6)

=
∑

i∈dFF

Top-k((WGxFFin
)⊙ Swish(WKxFFin

))[i] WV [;,i] + bV , (7)

where, WG ∈ RdFF×dmodel is the gating matrix.

4 Experiment 1: Automatic Evaluation

We evaluate FF-KVs, SAEs, and Transcoders using the metrics from SAEBENCH [27]. We also
report the Feature Alive Rate as a complementary statistic.
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4.1 Evaluation Metrics

Here, we give a high-level description of each metric, and details are shown in Appendix B.

Feature Alive Rate aggregates how many features are alive, out of dcoder features. A positive
value of At,p is regarded as the activation of p-th feature in xt. An indicator function, χ : X[:,p] 7→
1 if max(X[:,p]) > 0 else 0, judges if the feature fp is alive (activated at least once) and the following

score is calculated:
∑dcoder

j=1 χ(A[:,j])

dcoder
. A score of 1 indicates that all features are activated at least once.

Explained Variance evaluates how well the proxy module reconstructs the original activations, and
the FF-KV methods (without proxies) can automatically get a perfect score (=1) since this is the
original module as is.

Absorption Score evaluates how many features a particular simple concept (e.g., word starting with
“S”) is split into. A higher value implies that many features are needed to emulate the targeted single
concept, and thus, the feature set is redundant.

Sparse Probing evaluates the existence of specific informative features (e.g., sentiment) and their
generalizability to held-out data. This is measured based on the accuracy of probe classifiers trained
on the activation patterns to predict the properties of unseen inputs for the proxy module.

Auto-Interpretation Score evaluates how easily the activation patterns of the feature can be summa-
rized in natural language (e.g., “a feature related to accounting”). Specifically, given a text subset
Sp for the feature fp,4 an LLM is requested to summarize the feature concept and then predict the
(binary) feature activation on the held-out set based on the summary, following Paulo et al. [36]. A
score of 1 indicates that features can be perfectly summarized, and their activations are predictable.

Spurious Correlation Removal (SCR) evaluates how well spuriously correlated two features (e.g.,
gender and profession) are disentangled from different features, using the SHIFT [32] data. A score
of 1 indicates a perfect disentanglement. Notably, its extension, Targeted Probe Perturbation (TPP)
score, was also invented as a supplemental metric in SAEBENCH [27]. The TPP results are shown in
Appendix and yielded consistent results with SCR. Notably, SCR and TPP consider top-K activations
in evaluations (we adopt K = 20 here, following existing studies [27])5, and results for different K
are shown in Appendix B.

RAVEL [23] further evaluates the feature overlap and disentanglement, but slightly from a different
angle from SCR and TPP. Specifically, this concerns the separability and controllability of multiple

different attributes of the same entity (e.g., Japan continent−−−−−→Asia, Japan
capital−−−→Tokyo). The RAVEL

score can be decomposed into two complementary scores: (i) Isolation score—the probability that
all non-edited attributes remain unchanged; and (ii) Causality score—the probability that the edit
successfully changes the target attribute. We report both scores for the RAVEL results to clarify the
fine-grained properties.

4.2 LMs and Proxy Modules

LMs. We evaluate FFs in all layers of five LMs: Gemma-2-2B, Gemma-2-9B [43], Llama-3.1-
8B [45], GPT-2 [39], and Pythia-70M [4]. Due to space limitations, the results of the middle layers
of Gemma-2-2B (layer 13) and Llama-3.1-8B (layer 16) are shown in the main part of this paper,
and the results for other layers and models are shown in Appendix C. We also target randomly
initialized LLMs as baselines, given the assertion that SAEs can even interpret randomly initialized
Transformers. In our main experiments, we set k = 10 for the TopK FF-KV, and we additionally
compare results under varying k values.

SAEs. We use pretrained SAEs from Gemma Scope [30] (width 16k) for Gemma-2-2B and Gemma-
2-9B, Llama Scope [21] (width 32k) for Llama-3.1-8B, and SAELens [7] for GPT-2. All SAEs are
trained on FF outputs.

4It is also marked at which token in the text the feature was activated.
5We found SCR and TPP scores are highly unstable, and one may have to treat them as supplementary results.

See Appendix B for details.

5



Coder Status Concept Detection

Model SAE Type Feat. Alive ↑ Expl. Var. ↑ Absorption ↓ Sparse Prob. ↑

G
em

m
a-

2
2B

SAE 0.988±0.000 0.699±0.000 0.087±0.173 0.846±0.161
Transcoder 1.000±0.000 0.637±0.000 0.025±0.116 0.854±0.149

FF-KV 0.999±0.000 1.000±0.000 0.000±0.001 0.827±0.158
FF-KV (Norm.) 1.000±0.000 1.000±0.000 0.000±0.001 0.826±0.160
TopK-FF-KV 0.984±0.000 0.160±0.000 0.000±0.001 0.768±0.168
TopK-FF-KV (Norm.) 0.984±0.000 0.160±0.000 0.000±0.000 0.768±0.168

Random Transformer 1.000±0.000 1.000±0.000 0.007±0.013 0.798±0.067

L
la

m
a-

3.
1

8B

SAE 1.000±0.000 0.594±0.000 0.097±0.332 0.879±0.123
Transcoder - - - -

FF-KV 1.000±0.000 1.000±0.000 0.000±0.001 0.876±0.098
FF-KV (Norm.) 1.000±0.000 1.000±0.000 0.000±0.000 0.876±0.098
TopK-FF-KV 0.992±0.000 0.238±0.000 0.000±0.001 0.832±0.150
TopK-FF-KV (Norm.) 0.992±0.000 0.238±0.000 0.000±0.001 0.832±0.150

Random Transformer 1.000±0.000 1.000±0.000 0.002±0.006 0.837±0.084

Feature Explanation Feature Disentanglement

Model SAE Type Autointerp ↑ RAVEL-ISO ↑ RAVEL-CAU ↓ SCR (k=20) ↑

G
em

m
a-

2
2B

SAE 0.782±0.274 0.985±0.027 0.002±0.006 0.170±0.191
Transcoder 0.790±0.270 0.940±0.040 0.010±0.017 0.104±0.178

FF-KV 0.710±0.246 0.952±0.035 0.012±0.021 0.041±0.094
FF-KV (Norm.) 0.706±0.255 0.952±0.035 0.012±0.021 0.041±0.120
TopK-FF-KV 0.772±0.276 0.943±0.039 0.009±0.015 0.045±0.105
TopK-FF-KV (Norm.) 0.773±0.269 0.942±0.038 0.009±0.014 0.029±0.134

Random Transformer 0.679±0.248 - - 0.004±0.022

L
la

m
a-

3.
1

8B

SAE 0.817±0.272 0.993±0.016 0.002±0.007 0.219±0.323
Transcoder - - - -

FF-KV 0.751±0.248 0.955±0.044 0.007±0.012 0.048±0.070
FF-KV (Norm.) 0.749±0.245 0.954±0.044 0.007±0.012 0.046±0.071
TopK-FF-KV 0.807±0.267 0.954±0.044 0.006±0.011 0.030±0.045
TopK-FF-KV (Norm.) 0.807±0.256 0.955±0.043 0.006±0.010 0.029±0.043

Random Transformer 0.656±0.237 - - 0.053±0.239

Table 1: Overview of the SAEBENCH evaluation results for the middle layer of Gemma-2-2B (layer
13) and Llama-3.1-8B (layer 16). Results are reported as mean ±2 standard errors of the mean over
multiple seeds/settings. Norm. represent the normalized FF-KV. We also present the scores for a
randomly initialized FF layers, which serve as the baseline. No substantial difference between FF-KV
and SAEs is observed.

Transcoders. We use pretrained Transcoders (TCs) from Gemma Scope [30] for Gemma-2-2B and
one from the original paper [12] for GPT-2, respectively.6

4.3 Results

Overall. Table 1 shows the results for each interpretability method. First of all, the SAE-based
results and FF-KV results rendered similar tendencies. In each metric, the absolute difference between
the scores from different methods is typically much smaller than seed/layer variance. In addition, the
difficulty of each task (metric) is aligned across the tasks; for example, SAEs and FF-KVs achieved
higher RAVEL-Isolation scores than RAVEL-Causality scores. These results suggest that, even with
the activations in the original FF module, comparable interpretability can be realized compared to
proxy-based methods, i.e., SAEs and Transcoders.

6See Appendix D for more details on the SAEs and Transcoders we use.
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Figure 1: Evaluation scores for TopK FF-KVs at Layer 13 on Gemma-2-2B, under a different sparsity
value k. A higher k indicates a higher sparsity. Shaded areas denote ±2 standard errors of the mean,
computed across multiple seeds and evaluation settings.

Inter-Methods Similarity. To mention specific similarity among the methods, causal intervention
(RAVEL-Causality) was difficult for both SAEs and FF-KVs; that is, FF-KV methods inherit the
limitation of SAEs. In contrast, feature isolation is well realized in FF-KVs, similarly to SAEs,
even without any specific feature disentanglement regulation in FF-KVs, based on the high scores in
RAVEL-isolation. Later layers tend to yield a high RAVEL-isolation score, and vice versa, especially
in the case of FF-KVs. This shows a parallel with the existing observation that FFs in later layers have
more semantic features [17], and attributes targeted in the RAVEL dataset might not be well-shaped
in earlier layers.

5k 10k 15k 20k
0

0.2

0.4

0.6

0.8

1

5k 10k 15k 20k

TopK-FF-KV FF-KV

FF Size (Log Scale) FF Size (Log Scale)

Isolation Score↑ Cause Score↑

Loading [MathJax]/extensions/MathMenu.jsFigure 2: Relationship between FF hidden dimen-
sion size (model scale) and RAVEL scores.

Inter-Methods Difference. To highlight the
differences among the methods, FF-KV meth-
ods can achieve perfect explained variance by
definition (i.e., zero reconstruction loss as the
original model is directly analyzed), whereas
SAEs cannot. In addition, FF-KVs exhibited
better absorption scores; that is, a simple single
concept is not overly split into multiple con-
cepts in FF-KVs than in SAEs, and in this sense,
features in FF-KVs are less redundant. Sparse-
probing results are comparable or slightly better
in FF-KVs; representative features are encoded
and generalizable to the same extent in both
SAEs and FF-KVs. SAEs achieved slightly but
consistently better Auto-interpretablity and SCP
(although around zero) scores, which are only the advantage of SAEs compared to FF-KV-based
analyses.

FF-KV Variants. Within the FF-KV variants, TopK and normalization effects were generally small.
Vanilla FF-KV features already exhibited a reasonable interpretability.

TopK Effects. Figure 1 shows the relationship between the k value of the TopK FF-KV (x-axis) and
the SAEBENCH evaluation scores (y-axis). The increase of sparsity level leads to inconsistent results,
for example, a higher sparse probing (top-5) score but a lower autointerpretation score, suggesting
that higher sparsity is not always better, at least for interpretation FF-KV.
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FF-Scaling Effects. Figure 2 shows the relationship between FF hidden representation size (model
scale; x-axis) and RAEL interpretability scores (y-axis). These results suggest that FFs with a larger
hidden dimension size do not always get better interpretability results, suggesting that just extending
the hidden dimension size of FFs into that of SAEs does not lead to better interpretability. See
Appendix E for other metrics.

5 Experiment 2: Human Evaluation

Our results in Section 4 suggest that FFs’ internal activations have overall comparable interpretability
to SAEs/Transcoders based on automatic evaluations. In this section, we further perform a follow-up
manual inspection on the interpretability of features extracted from layer 13 of Gemma-2-2B’s FF-KV,
SAE, and Transcoder. We specifically explore the following questions: 1) Do features from the
FF-KV, SAE, and Transcoder appear equally interpretable to humans? 2) How accurately can humans
infer the origin of the feature?

5.1 Settings
Table 2: Number of superficial, concep-
tual, and uninterpretable features.

Coder SuperficialConceptualUninterp.

FF-KV 6 8 36
K-FF-KV 9 9 32
SAE 6 9 35
TC 16 11 23

We randomly sampled 50 features each from the FF-
KV, TopK FF-KV, SAE, and Transcoder of Gemma-2-2B
model, yielding a total of 200 features. Each feature fp is
presented with its top-ten associated texts ∈ Sp based on
the activation magnitude over a subset of OpenWebText cor-
pus [19] (200M tokens in total). From the annotator’s view,
the presentation order of features is randomly shuffled, and
their origins remain hidden throughout the experiment. The
annotations in this section were conducted by one of the
authors.

Interpretability Evaluation. One annotator judges the qualitative quality of a feature using three
categories: 1) superficial Feature: activates on shallow surface patterns (e.g., particular word, such
as “the,” punctuation, digits); 2) Conceptual Feature: activates on higher-level concepts spanning
multiple tokens (e.g., sentiment, topics); or, 3) Uninterpretable: exhibits no clear activation pattern7.

Table 3: Origin judgment
accuracies of features.

Origin Judging Acc.

FF-KV 0.86
K-FF-KV 0.28
SAE 0.13
TC 0.18

Feature Origin Judgment. We also designed a task to predict from
which module a feature originates, only based on the feature activation
patterns in 10 texts, with the same data, to exploratorily find any difference
between these activation patterns. If annotators can not guess which
module is used to obtain the given feature, the used methods would have
the same level of feature extraction ability. One annotator conducted
this analysis, and as preliminary training, the annotator had first learned
several activation patterns in the held-out set, paired with their module
names.

5.2 Results

Interpretability Evaluation. The results are presented in Table 2. First, the number of conceptual
features is nearly the same across the four interpretability methods. In this sense, the quality of
the obtained features is comparable. Transcoders could find a larger number of features that are
interpretable (superficial or conceptual), but the ratio of superficial features is higher than in the other
methods.

Feature Origin Judgment. Table 3 shows the results. The annotator could not correctly predict
the original model, except for the FF-KV methods. Through interviewing the annotator, we found
that they could identify the FF-KV features by relying on superficial patterns in the magnitude and
variance of feature activations (FF-KV tends to have a small value with high variance), rather than
the represented concepts. Using TopK FF-KV (K-FF-KV) alleviates this distinction pattern, and thus,

7We provide the actual text we use to annotate in Appendix F.
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if one wants to render a visualization of activations similar to that of SAEs, TopK FF-KV should be
preferred. The low accuracies for K-FF-KV, SAE, and TC support that their discovered features and
activations are similar to each other, as the human evaluator could not distinguish them.

6 Analysis: Feature Alignments

We analyze how similar features discovered by proxy methods, e.g., SAEs, are to the FF-KV ones.

6.1 Settings

To investigate the alignment of features from different interpretability methods, we specifically
focus on those from FF-KV and Transcoder (not SAE, as the closest counterpart to FF-KV). In
this analysis, we used layer 13 of Gemma-2-2B, which showed reasonable performance in the
automatic evaluation experiment. Given an r-th feature vector in the FF WV [:,r], we find the index
u of the most aligned feature vector in Wdec from Transcoder, based on their cosine similarity:
u = argmaxk(WV [:,r] ·Wdec[:,k]). Note that when analyzing features in TC, the searching direction
will be opposite: argmaxk(Wdec[:,r] ·WV [:,k]). We call these max-cosine scores MCS.

We first perform a quick check of the correlation between MCS and the semantic feature alignment.
For each MCS bin, we sampled ten feature pairs. Then, for feature pairs (fp1 , fp2) within a specific
MCS range, annotators manually inspected their alignment. Similarly to the previous experiment,
each feature fp is accompanied by ten associated texts ∈ Sp from a subset of the OpenWebText
corpus [19]. We consider a pair matched if these three criteria meet: 1) The two features generally
represent the same concept (e.g., sentiment, topic); OR 2) The associated texts for the two features
(Sp1

,Sp2
) exhibits 8/10 overlap; OR 3) The topics of the texts from two features coincide. The

annotations in this section were independently conducted by a different author from that of § 5.

6.2 Results
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Figure 3: Histogram of aligned features numbers
distribution for each MCS bin, between the FF and
Transcoder.

Validity of Cosine-Based Alignments. The
results of alignment analysis are shown in Fig-
ure 3. This clearly shows that higher cosine sim-
ilarity entails their semantic alignment. Based
on these results, we tentatively regard a feature
pair with cosine similarity above 0.9 as aligned,
and the similarity below 0.3 as unaligned in the
following analyses8.

Large Number of Unaligned Features.
Based on the above criteria with co-
sine similarity, 41% (=3,780/9,216) and
66% (=10,835/16,384) features in FF-KV and
Transcoder are unaligned with each other,
respectively. In contrast, 5.7% (=527/9,216)
and 3.2% (=527/16,384) features are regarded as aligned in FF-KV and Transcoder, respectively.
That is, there are a large number of unaligned features between FF and Transcoder, clarifying that the
same level of interpretability from different methods in automatic evaluation (§ 4) was not simply
due to their similar feature sets. In the next paragraph, we manually analyze the unaligned features.

Feature Complementarity. We manually analyze three sets of features: (a) aligned features (FF-
KV∩Transcoder), (b) FF-KV features not aligned with any Transcoder feature (FF-KV\Transcoder),
and (c) Transcoder features not aligned with any FF-KV feature (Transcoder\FF-KV). The analysis
target is the same as § 5; the features are classified into three categories of superficial, conceptual,
and uninterpretable. Table 4 shows the distribution of feature categories in each feature set. First and
interestingly, the unaligned features both in FFs and TC have a fair amount of conceptual ones. In
particular, 28% of features that are unaligned with FFs were conceptual.

8See Appendix F for examples of the feature pairs we use for annotation as well as how we decide the
threshold.
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Table 4: Number of superficial, multi-
token conceptual, and uninterpretable
features in aligned/unaligned features
between FF (FF-KV) and Transcoders
(TC).

Coder SuperficialConcept.Uninterp.

FF-KV∩TC 7 16 27
FF-KV\TC 1 8 41
TC\FF-KV 6 14 23

Discussion. Why are there so many unaligned features?
One optimistic view is that TC successfully decomposed
FF features into simpler ones, resulting in decomposed
features being orthogonal to the original FF features, al-
though this may offer a potential side effect of feature
absorption, which is suggested by relatively large number
of superficial features in TC\FF-KV and an already good
absorption scores achieved by FF-KVs (Table 1). One more
pessimistic view is that Transcoder invented completely
new features that are not in the original FF-KV, which is
in line with the fact that SAE can interpret even randomly
initialized Transformers [22]. Our analysis alone can not
fully distinguish between the two cases, but this fact of frequent misalignment deserves a motivation
to further explore the faithfulness of the learned features in proxy modules. Features in the FF-KVs
will serve as grounding points to evaluate such faithful evaluation, on top of our first extensive
attention to FF-KVs in the context of SAE research.

7 Conclusion

In this work, we revisit the interpretability of feature vectors already represented in the feed-forward
(FF) module, as a strong baseline to SAEs. Our results show that the original FF feature vectors
already exhibit reasonable interpretability comparable to that of sparse autoencoders (SAEs) and
Transcoders on both comprehensive benchmark and human evaluations. We further demonstrate that
a large portion of the features between the FF and the Transcoder are not aligned, and manual analysis
suggests a potential feature over-splitting or hallucination of new features in the proxy module. To
sum up, our results demonstrate that SAEs and Transcoders offer only limited advantages over the
direct analysis of feed-forward key–value (FF-KV) representations. This finding highlights the lack of
a strong and simple baseline within the interpretability community and underscores the importance of
including FF-KV analysis as a fundamental reference point for evaluating interpretability methods. It
also encourages future work to consider both model-internal parameters and proxy-module parameters
when pursuing feature-discovery-based interpretability of large language models.

Limitations. The feature dimension of SAEs and Transcoders we used was fixed; more diverse
configurations should be examined in the comparison, although publicly available pre-trained
SAEs/Transcoders are limited, and prior work shows that simply scaling width does not neces-
sarily improve SAEs and that there is not a universally best architecture choice [27]. Not all models
are accompanied by Transcoder results: still, training Transcoders on all layers of, e.g., 9B-parameter
models is prohibitively costly under an academic budget. We conducted only a few qualitative case
studies on the effect of k for TopK FF-KVs and on FF size. Although our analysis showed a discrep-
ancy between FF-KV and Transcocder features, the interpretation of this difference (faithfulness of
the learned features) remains unclear; future work should elaborate on this point.

Impact Statement. Our findings indicate that SAEs and Transcoders do not consistently outperform
the original feature vectors in FFs with respect to interpretability. We underscore the need to reassess
both the interpretability and, potentially, the reproducibility of the previously reported advantages
of SAEs. In a sense, our study supports the use of inherently black-box neural LLMs while setting
aside the interpretability issue, as their FFs appear to possess a certain degree of interpretability.
Nevertheless, one of the ultimate objectives of this line of research should remain the development of
models that are interpretable by design.

Ethics Statement. Our research primarily relied on publicly available models and datasets, and
strictly adhered to their respective licenses (see Table 7). For human evaluation, we collected data as
described in § 5.1. The data were collected with participant consent, and we ensured that responses
were anonymized to prevent them from being traced back to individuals. To promote transparency
and reproducibility, we have made the collected data, along with all code used in our experiments,
publicly accessible. Comprehensive details of our experimental setup are provided in each section
and the appendix to ensure reproducibility.
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A Implementation Details on FF-KVs

A.1 Overall Framework

We implement FF-KVs use the custom_sae class provided by SAEBENCH [7]. To faithfully reproduce
the activation of the FF sublayers, we apply the hook-based approach. The encode method simulates
the FF’s forward pass up to its neuron activations. It takes an input tensor x, injects it at the FF’s
input hook point, and captures the subsequent neuron activations using another hook. Conversely, the
decode method simulates the FF’s transformation from its neuron activations to its output. It accepts
a tensor of neuron activations, injects them at the corresponding hook point, and captures the FF’s
final output. A forward method is also provided, performing the full pass through the FF block using
hooks to inject input and capture the final output. This framework allows for the direct examination
of an FF’s feature extraction and signal reconstruction capabilities as if it were an SAE, providing a
unique lens for interpreting learned representations within large language models.

A.2 FF-KV Implement Details

The core principle is to map the FF’s operations to the conceptual stages of an SAE:

Input. Activations entering the FF block serve as the input to our pseudo-SAE.

Feature Representation (Encoding). The FF’s internal neuron activations, captured after the
non-linear activation function and any gating, are interpreted as the SAE’s latent features. The
dimensionality of this feature space is equivalent to the FF’s hidden dimension. The effective
“encoder weights” are the FF’s input weights.

Reconstruction (Decoding). The FF’s output, which is typically added to the residual stream, is
considered the reconstructed input. The effective “decoder weights” and “decoder bias” are the FF’s
output weights and output bias, respectively.

A.3 TopK FF-KV Implement Details

The TopK FF-KV extends the FF-KV framework by enforcing a strict TopK sparsity on the interme-
diate feature representations. The only modification from a FF-KV resides in the encode method.
After obtaining the FF’s internal neuron activations, a k-sparsity constraint is applied. For each input
position (e.g., token in a sequence), the method identifies the k neuron activations with the largest
absolute values. All other neuron activations for that position are set to zero. This results in a feature
vector where, at most, k dimensions are non-zero.

A.4 Normalized FF-KV Implement Details

The FF block’s original output weights (which serve as the “decoder weights”) are L2-normalized
along their feature dimension. The original norms of these weight vectors are stored. The encode
and forward methods remain unchanged from their respective base FF-KV implementations. The
key difference lies in the decode method. Before applying the normalized “decoder weights”, the
input feature activations are first scaled by the stored original norms. This step ensures that the
magnitude of the reconstructed output appropriately reflects the original scaling of the FF block’s
output projections, despite the normalization. For models that include a final normalization step after
the FF output (e.g., Gemma-2 Models), this step is also applied to maintain fidelity with the original
model’s computation.

A.5 Transcoder Implement Details

We load the Transcoder weight into the JumpReLU class of SAEBENCH. While evaluating it, we
follow the instructions of Gemma-Scope paper [30] to load model weights with folding applied.
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B Details on Metrics

We provide detailed definitions of the metrics used in our main results, alongside the experimental
settings for each metric.

Feature Alive Rate. This metric belongs to the “core” evaluations in SAEBENCH. It counts how
many features are alive out of the dcoder total features. A feature is deemed active when its activation
exceeds 0. The evaluation is conducted on a 4 M-token subset of OpenWebText [19].

The metric is especially relevant for TopK FF-KVs employing a TOPK activation, ensuring that the
mechanism does not repeatedly select only a small subset of neurons.

Explained Variance. Also in the “core” suite, this metric is computed on a 0.4 M-token subset of
OpenWebText [19].

Absorption Score. Feature absorption [11] stems from feature splitting [8, 49], in which newly
uncovered features become overly specific. A concrete example is a feature that activates only on
“U.S. cities except New York and Los Angeles.”

The metric targets a first-letter classification task, measuring situations where the main feature for a
letter fails to fully capture the concept of “first letter”, and other features compensate. Specifically, it
evaluates all 26 letters with the prompt “{word} has the first letter:“.

Given primary features Smain (e.g., selected via sparse probing) and auxiliary features Sabs, the
absorption score for one input is

Absorption =

∑
i∈Sabs

ai di ·p∑
i∈Sabs

ai di ·p+
∑

i∈Smain
ai di ·p

,

where ai is the activation, di the unit decoder direction, and p the ground-truth probe direction. We
use the default hyperparameters.

Sparse Probing. Sparse probing, introduced by Gurnee et al. [20], evaluates the alignment between
individual features and a prespecified concept c. It has a hyperparameter K that specifies how many
features are used when training the probe. For each feature hj ,

sj =
∣∣Ex∈X+ [hj(x)]− Ex∈X− [hj(x)]

∣∣, (8)

where X+ and X− denote inputs with and without c, respectively. The top K features by sj serve as
inputs to a logistic-regression probe; the probe’s test accuracy constitutes the sparse-probing score.
We again employ the default hyperparameters.

Auto-Interpretation Score. This evaluation has two phases: generation and scoring. In the
generation phase, it obtain SAE activations, annotate each token with its activation value for the
feature under consideration, and prompt an LLM to generate explanations based on these annotated
activation patterns. The scoring phase constructs a test set for each feature containing 14 examples,
exactly two of which are activated texts. The LLM must label each of the 14 texts as activated or not;
the resulting prediction accuracy yields the auto-interpretation score.

The dataset is a subset of the copyright-free version of the Pile [15] (monology/pile-uncopyrighted),
comprising 2 M tokens. GPT-4o [35] is used both to generate explanations and to predict activations.

SCR and TPP Following SHIFT [32], the SCR evaluation proceeds as follows. A baseline classifier
Cbase is trained on data containing both true and spurious correlations. We then zero–ablate the K
features most attributable to the spurious signal and re-measure accuracy on a balanced set:

SCR =
Aabl −Abase

Aoracle −Abase
,

where Aabl is the post-ablation accuracy, Abase the baseline accuracy, and Aoracle the accuracy of an
oracle probe trained on the true concept.
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TPP. We extend Targeted Probe Perturbation to the multi-class setting. For m classes, let Cj be a
linear probe that classifies concept cj with accuracy Aj . Let Ai,j denote the accuracy of probe Cj

after ablating the K most contributive features for class ci. The TPP score is then

TPP =
1

m

m∑
i=1

(
Ai,i −Ai

)
− 1

m(m− 1)

∑
i ̸=j

(
Ai,j −Aj

)
,

so higher SCR and TPP values indicate stronger disentanglement.

Stability Caveats. Both metrics are highly sensitive to the choice of K. Across different K values,
SCR can range from below 0.1 to above 0.4. For TPP the variation is even larger: for the same coder,
scores span from under 0.1 (SAE, K = 2, Figure 14) to over 0.4 (SAE, K = 50, Figure 18). Error
bands obtained from multiple sub-runs are also wide—not only for SAEs (e.g., SAE on Llama-3.1
in Figure 14, and on Pythia in Figure 15) but likewise for FF-KVs (e.g., Pythia in Figure 14 and
Figure 15).

Based on these empirical observations, we interpret SCR and TPP scores with caution.

RAVEL. Unlike SCR and TPP, we find RAVEL to be consistent across multiple models and coders,
and the results align with the scores reported in the original work [23]. This stability suggests that
RAVEL is comparatively insensitive to hyperparameter choices and dataset splits, making it a reliable
baseline when assessing disentanglement. Accordingly, we place greater weight on RAVEL when
synthesizing conclusions across metrics.

C Detailed Results on SAEBENCH

We provide detailed evaluation result with error bars indicate 95% confidence intervals (±2 SEM),

compute as SEM =
√∑

(xi−x̄)2

n(n−1) where n is the number of runs on different datasets for each metric
in each layer. Note that error bars are not applicable for the feature alive metric, as they are counts
for features activated at least once.

C.1 Detailed Results on More Models

Figures 5, 6, 10, 13, 7, 8, 9, and 17 present the detailed results for all models.

C.2 Detailed Results on Various Hyperparameter Choices

For metrics that have multiple hyperparameter choices for k, we provide detailed results for all tested
hyperparameters.

• For SCR, the available k values are 2, 5, 10, 20, 50, 100, and 500; the corresponding results
are shown in Figures 14, 15, 16, 17, 18, 19, and 20.

• For TPP, the available k values are the same, and all results are shown in Figures 21, 22, 23,
24, 25, 26, and 27.

• For Sparse Probing, the available k values are 1, 2, and 5; the results are shown in Figures 11,
12, and 13.

D Details on SAEs/Transcoders used

For both SAEs and Transcoders from Gemma-Scope, we use the canonical versions, whose average
L0 sparsity is close to 100, which are believed to be reasonably useful9. The SAEs are loaded through
SAELens [7] with the following keys: “gemma-scope-2b-pt-mlp-canonical” for Gemma-2-2B,
“gemma-scope-9b-pt-mlp-canonical” for Gemma-2-9B, and “llama_scope_lxm_8x” for Llama-3.1-
8B.

For Transcoders, since no canonical versions have been explicitly defined and the SAELens release
we use does not yet support loading them, we manually select checkpoints from the Gemma-Scope

9This statement can be found on Gemma Scope’s collection page on HuggingFace (link).
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Layer ID
0 layer_0/width_16k/average_l0_115/params.npz
1 layer_1/width_16k/average_l0_104/params.npz
2 layer_2/width_16k/average_l0_87/params.npz
3 layer_3/width_16k/average_l0_96/params.npz
4 layer_4/width_16k/average_l0_88/params.npz
5 layer_5/width_16k/average_l0_87/params.npz
6 layer_6/width_16k/average_l0_95/params.npz
7 layer_7/width_16k/average_l0_70/params.npz
8 layer_8/width_16k/average_l0_92/params.npz
9 layer_9/width_16k/average_l0_72/params.npz

10 layer_10/width_16k/average_l0_88/params.npz
11 layer_11/width_16k/average_l0_108/params.npz
12 layer_12/width_16k/average_l0_111/params.npz
13 layer_13/width_16k/average_l0_89/params.npz
14 layer_14/width_16k/average_l0_81/params.npz
15 layer_15/width_16k/average_l0_78/params.npz
16 layer_16/width_16k/average_l0_87/params.npz
17 layer_17/width_16k/average_l0_112/params.npz
18 layer_18/width_16k/average_l0_99/params.npz
19 layer_19/width_16k/average_l0_89/params.npz
20 layer_20/width_16k/average_l0_88/params.npz
21 layer_21/width_16k/average_l0_102/params.npz
22 layer_22/width_16k/average_l0_117/params.npz
23 layer_23/width_16k/average_l0_116/params.npz
24 layer_24/width_16k/average_l0_96/params.npz
25 layer_25/width_16k/average_l0_110/params.npz
Table 5: Mapping of layers to their corresponding IDs

collection and download the corresponding weights from HuggingFace (link). These checkpoints
are chosen according to the same criteria as the canonical SAEs, and their exact filenames are
listed in Table 5. We also directly download the weight from the Transcoder proposal work [12] on
HuggingFace (Link). To the best of our knowledge, there are no Transcoders publicly available for
Gemma-2-9B and Llama-3.1-8B, and Pythia-70M.

E Detailed Results on FF Scaling
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Figure 4: Proportion of aligned features as a func-
tion of the max-cosine score (MCS).

Table 6 shows the results on all metrics regard-
ing to various FF intermediate sizes. Scores
are not showing noticeable improvement ex-
cept for RAVEL and absorption. Trends shown
in SCR somehow understandable: these met-
rics highly depend on the ground truth prob-
ing performance, which is not always stable.
Sparse probing result is also understandable,
since sparse probing on FF from a random trans-
fer can achieve a reasonable score, the probs
can learn unintended signal in the dataset, rather
than the true feature.

F Feature Examples

We provide example features for each annotation and coder, visualizing the top input examples that
most strongly activate each feature. All features are extracted from layer 13 of Gemma-2-2B. To
analyze the relationship between alignment and the max-cosine score (MCS), we divide the MCS
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Table 6: Evaluation scores for different size of Pythia models’ FF and TopK FF-KVs.
Coder Status Concept Detection

FF Size SAE Type Feat. Alive ↑ Expl. Var. ↑ Absorption ↓ Sparse Prob. ↑

2048 FF-KV 1.000±0.000 1.000±0.000 0.060±0.083 0.802±0.173
TopK-FFKV 1.000±0.000 0.227±0.000 0.064±0.127 0.717±0.204

3072 FF-KV 1.000±0.000 1.000±0.000 0.013±0.038 0.826±0.140
TopK-FFKV 0.999±0.000 0.129±0.000 0.014±0.036 0.779±0.153

4096 FF-KV 1.000±0.000 1.000±0.000 0.003±0.007 0.803±0.128
TopK-FFKV 1.000±0.000 0.082±0.000 0.006±0.011 0.765±0.126

8192 FF-KV 1.000±0.000 1.000±0.000 0.003±0.009 0.812±0.194
TopK-FFKV 1.000±0.000 0.277±0.000 0.003±0.009 0.770±0.186

10240 FF-KV 1.000±0.000 1.000±0.000 0.001±0.004 0.850±0.117
TopK-FFKV 1.000±0.000 0.090±0.000 0.002±0.009 0.783±0.144

16384 FF-KV 1.000±0.000 1.000±0.000 0.001±0.003 0.870±0.119
TopK-FFKV 1.000±0.000 0.047±0.000 0.001±0.004 0.807±0.155

20480 FF-KV 1.000±0.000 1.000±0.000 0.002±0.005 0.818±0.164
TopK-FFKV 1.000±0.000 0.195±0.000 0.000±0.001 0.735±0.157

Feature Explanation Feature Disentanglement

FF Size SAE Type Autointerp ↑ RAVEL-ISO ↑ RAVEL-CAU ↓ SCR (k=20) ↑

2048 FF-KV 0.727±0.256 - - −0.056±0.464
TopK-FFKV 0.766±0.277 - - 0.000±0.131

3072 FF-KV 0.734±0.252 0.411±0.272 0.033±0.043 0.093±0.195
TopK-FFKV 0.731±0.271 0.389±0.218 0.032±0.043 0.017±0.114

4096 FF-KV 0.708±0.252 0.750±0.132 0.044±0.051 0.017±0.054
TopK-FFKV 0.716±0.263 0.739±0.123 0.039±0.053 −0.001±0.028

8192 FF-KV 0.714±0.256 0.900±0.032 0.035±0.064 0.047±0.099
TopK-FFKV 0.712±0.271 0.897±0.031 0.023±0.040 0.016±0.038

10240 FF-KV 0.707±0.259 0.916±0.037 0.013±0.025 0.049±0.130
TopK-FFKV 0.704±0.278 0.915±0.033 0.013±0.026 −0.017±0.065

16384 FF-KV 0.702±0.254 0.879±0.095 0.041±0.098 0.023±0.056
TopK-FFKV 0.701±0.265 0.865±0.122 0.025±0.046 0.003±0.018

20480 FF-KV 0.693±0.252 0.881±0.072 0.021±0.031 0.030±0.050
TopK-FFKV 0.698±0.270 0.854±0.069 0.019±0.028 0.022±0.064

range into ten bins (e.g., 0.1–0.2, 0.2–0.3). From each bin, we sample ten features, each associated
with ten pairs of input examples (for a total of 100 examples per bin), and annotate the proportion of
aligned features within each bin. As shown in Figure 4, features with an MCS below 0.3 are almost
never aligned, whereas those above 0.9 exhibit over 60% alignment.

F.1 Superficial Features

We show examples of “superficial” features here.

• Figure 29 shows the first FF-KV feature we annotate as superficial, activating on “now”.

• Figure 30 shows the first TopK FF-KV feature we annotate as superficial, focused on “the”.

• Figure 31 shows the first SAE feature we annotate as superficial, activating on “return” in
code.

• Figure 32 shows the first Transcoder feature we annotate as superficial, activating on
alphanumeric token combinations.
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F.2 Conceptual Features

We illustrate features that activate on higher-level concepts or semantic themes.

• Figure 33 shows the first FF-KV feature we annotate as conceptual, activating on coastal
concepts.

• Figure 34 shows the first TopK FF-KV feature we annotate as conceptual, linked to recipes
and desserts.

• Figure 35 shows the first SAE feature we annotate as conceptual, activating on country and
region names.

• Figure 36 shows the first Transcoder feature we annotate as conceptual, activating on college
degree concepts.

F.3 Uninterpretable Features

We also show examples of features without clear patterns.

• Figure 37 shows the first FF-KV feature we annotate as uninterpretable.
• Figure 38 shows the first TopK FF-KV feature we annotate as uninterpretable.
• Figure 39 shows the first SAE feature we annotate as uninterpretable.
• Figure 40 shows the first Transcoder feature we annotate as uninterpretable.

F.4 Aligned Features

Figure 41 shows the first FF-KV feature we annotate as uninterpretable.

F.5 Unaligned Features

Figure 42 shows the first FF-KV feature we annotate as uninterpretable.
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Table 7: The list of assets used in this work.
Asset Type Asset Name Link License Citation

Code SAEBench § Not specified [27]
Code TransformerLens § MIT License [33]
Code SAELens § MIT License [7]

Dataset OpenWebText Link CC0 1.0 Universal [19]
SAE Gemma-Scope-2B-pt-mlp google/gemma-scope-2b-pt-mlp Apache 2.0 [30]
SAE Gemma-Scope-9B-pt-mlp google/gemma-scope-9b-pt-mlp Apache 2.0 [30]
SAE Llama-Scope-3.1-8B-LXM-8x fnlp/Llama3_1-8B-Base-LXM-8x Not specified [21]
SAE GPT2-Small-32k-mlp-out jbloom/GPT2-Small-OAI-v5-32k-mlp-out-SAEs Not specified [6]
SAE Pythia-70m-deduped-mlp ctigges/pythia-70m-deduped__mlp-sm_processed Not specified [48]

Transcoder Gemma-Scope-2B-pt-transcoders google/gemma-scope-2b-pt-transcoders Apache 2.0 [30]
Model GPT-2-small openai-community/gpt2 MIT License [39]
Model Gemma-2-2B google/gemma-2-2b Gemma License [43]
Model Gemma-2-9B google/gemma-2-9b Gemma License [43]
Model Llama-3.1-8B meta-llama/Llama-3.1-8B Llama 3 Community License [45]
Model Pythia-70M-deduped EleutherAI/pythia-70m-deduped Apache 2.0 [4]
Model Pythia-160M-deduped EleutherAI/pythia-160m-deduped Apache 2.0 [4]
Model Pythia-410M-deduped EleutherAI/pythia-410m-deduped Apache 2.0 [4]
Model Pythia-1.4B-deduped EleutherAI/pythia-1.4b-deduped Apache 2.0 [4]
Model Pythia-2.8B-deduped EleutherAI/pythia-2.8B-deduped Apache 2.0 [4]
Model Pythia-6.9B-deduped EleutherAI/pythia-6.9B-deduped Apache 2.0 [4]
Model Pythia-12B-deduped EleutherAI/pythia-12B-deduped Apache 2.0 [4]

G Use of Existing Assets

Table 7 shows the assets being used in this paper, with the type, name, link, license, and citation for
each asset used in the paper.

H Compute Statement

Most experiments presented in this paper were run on a cluster consisting of the NVIDIA H200 GPUs
with 141GB of memory. All experiments on models are run using a single 141GB memory GPU.
Evaluation time per layer differs largely on model size, with Pythia-70M, it takes approximately 1
hour, and for larger models like Gemma-2-9B, it takes approximately 4 hours per layer. The total
GPU time for this work is approximately 1400 hours, including exploratory research stage.
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Figure 5: Detailed feature alive scores on all tested models, across all layers.
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Figure 6: Detailed explained variance scores on all tested models, across all layers.

23



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

0 10 20 30

0 2 4
0

0.2

0.4

0.6

0.8

1 Coder
Transcoder
SAE
TopK-FF-KV
Normalized-TopK-FF-KV
Normalized-FF-KV
FF-KV
Random Transformer

Autointerp↑ Across Layers and Models

Layer Index

A
ut

oi
nt

er
p 

S
co

re
A

ut
oi

nt
er

p 
S

co
re

A
ut

oi
nt

er
p 

S
co

re

GPT-2
Gemma-2

2B

Gemma-2
9B

Llama-3.1
8B

Pythia
70M

Figure 7: Detailed auto-interpretation scores on all tested models, across all layers.
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Figure 8: Detailed RAVEL scores on all tested models, across all layers.
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Figure 10: Detailed absorption scores on all tested models, across all layers.
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Figure 11: Detailed sparse probing scores on all tested models, across all layers, and various
hyperparameter (K) choices.
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Figure 12: Detailed sparse probing scores on all tested models, across all layers, and various
hyperparameter (K) choices.
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Figure 13: Detailed sparse probing scores on all tested models, across all layers, with the same
hyperparameter choice as the main result in Table 1.
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Figure 14: Detailed SCR scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 15: Detailed SCR scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 16: Detailed SCR scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 17: Detailed SCR scores on all tested models, across all layers, with the same hyperparameter
choice as the main result in Table 1.
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Figure 18: Detailed SCR scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 19: Detailed SCR scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 20: Detailed SCR scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 21: Detailed TPP scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 22: Detailed TPP scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 23: Detailed TPP scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 24: Detailed TPP scores on all tested models, across all layers, with the same hyperparameter
choice as the main result in Table 1.
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Figure 25: Detailed TPP scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 26: Detailed TPP scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 27: Detailed TPP scores on all tested models, across all layers, and various hyperparameter
(K) choices.
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Figure 28: Distribution of the L2 norms of all tested models’ FF-KV decoder weights (i.e., W2 in its
FF sublayer). Although the norms are not exactly one, they are concentrated in a narrow range.
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Figure 29: Top-4 activating examples for a particular feature in FF-KV annotated as “superficial”.
This feature specifically activates most on the word “now”, in various contexts.
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Figure 30: Top-activating examples for a feature in k-Sparse FF-KV annotated as “superficial”.
This feature specifically activates most on the word “the”, in various contexts.
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Figure 31: Top-activating examples for a feature in SAE annotated as “superficial”. This feature
activates on the word “return”, especially in programming-related contexts.
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Figure 32: Top-activating examples for a feature in Transcoder annotated as “superficial”. This
feature activates on the combination of digits and alphabet, in various contexts.
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Figure 33: Top-activating examples for a feature in FF-KV annotated as “conceptual”. The specific
annotation was “concept related to the coast” especially in various contexts.
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Figure 34: Top-activating examples for a feature in k-Sparse FF-KV annotated as “conceptual”.
The specific annotation was “concept related to recipes” especially in contexts related to deserts.
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Figure 35: Top-activating examples for a feature in SAE annotated as “conceptual”. The specific
annotation was “name of country and region” in various contexts.
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Figure 36: Top-activating examples for a feature in Transcoder annotated as “conceptual”. The
specific annotation was “concept related to college degrees” in various contexts.
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Figure 37: Top-activating examples for a feature in FF-KV annotated as “Uninterpretable”.

54



Figure 38: Top-activating examples for a feature in k-Sparse FF-KV annotated as “Uninter-
pretable”.
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Figure 39: Top-activating examples for a feature in SAE annotated as “Uninterpretable”.

56



Figure 40: Top-activating examples for a feature in Transcoder annotated as “Uninterpretable”.
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TranscoderFF-KV

Figure 41: The first feature pair we annotate as aligned.
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TranscoderFF-KV

Figure 42: The first feature pair we annotate as un-aligned.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is that the SAE-based approach provides comparable inter-
pretability to feature vectors stored in feed-forward layers (FF-KV). We diligently investigate
this claim across multiple LLMs and their corresponding SAEs, along with Transcoders,
through both automatic, extensive evaluation § 4 and manual evaluations § 5. All results
demonstrate high similarities between FF-KVs § 4.3 and SAEs § 5.2. We further analyze
the overlap between Transcoder features and FF-KV features § 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated “Limitations” paragraph in the “Conclusion”
section (Section 7). We discuss several limitations of the study, including that the feature
dimension of the SAEs and Transcoders used in this work was fixed; the results for the
Transcoders are not available for all models because not every model is accompanied by
one; and our qualitative analyses are limited to case studies.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational eMLPiciency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not involve theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it aMLPects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of all metrics and models, as well as the experimental
setup, in Section 4. We also provide detailed info on the SAEs we used in Appendix D.
Additional information on the implementation details is presented in Appendix A. We also
release the code at https://github.com/muyo8692/ff-kv-sae to facilitate maximum
reproducibility of our main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suMLPice, or if the contribution is a specific model and empirical evaluation, it
may be necessary to either make it possible for others to replicate the model with the
same dataset, or provide access to the model. In general. releasing code and data is
often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details on exprimental settings for our main result in § 4.2 and
Appendix D. We also provide additional information on metrics used in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The figures displaying as our main result (Table 1), as well as all detailed
figures shown in Appendix C, all include with 2-sigma error bands, calculated by SEM =√∑

(xi−x̄)2

n(n−1) . These are also reported in the text in Section 4.3 and Appendix C.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide suMLPicient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: We describe the compute used in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, the research conducted conforms with the
NeurIPS Code of Ethics. We explicitly discusses potential negative social impacts and
includes an ethics statement in Section 7.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We explicitly discuss potential negative societal impacts in Section 7
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the eMLPiciency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not find cause to believe our methods are at high risk for misuse, and
therefore did not feel that additional safeguards were warranted.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing eMLPective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a best
faith eMLPort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing open-source models, datasets, and evaluations that we use are
cited. We specify the asset type and license type in Appendix G.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce or release any new datasets, code, or models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments were performed. The human raters who carried
out the qualitative interpretability assessment in Section 5 and Section 6 were the authors of
this paper and colleagues at the lab, respectively. For assessment carried out by authors, care
was taken in the design and execution of this experiment to ensure that no authorial bias
would influence the results. For that was done by our colleagues, we include the detailed
evaluation criteria we ask them to follow in Section 6.1.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects—see item 14.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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