
Toward Fast Query Serving in Key-Value Store Migration
with Approximate Telemetry

Alexander Braverman
Seven Lakes High School

Katy, Texas

Zaoxing Liu
University of Maryland
College Park, Maryland

ABSTRACT
Distributed key-value stores scale data analytical process-
ing by spreading data across nodes. Frequent migration of
key-value shards between online nodes is a key technique
to react to dynamic workload changes for load balancing
and service elasticity. During migration, the data is split
between a source and a destination, making it difficult to
query the exact location. Existing solutions aiming to pro-
vide real-time read and write query capabilities during mi-
gration may require querying both source and destination
servers, doubling the compute/network resources. In this
paper, we explore a simple yet effective measurement ap-
proach to track the key-value migration status, in order to
improve the query-serving performance under migration. In
our preliminary prototype, we use a Bloom filter on the des-
tination server to keep track of individual key-value pairs
that have been successfully migrated. For key-value pairs
that have yet migrated, the information stored in the Bloom
filter enables fast forwarding to the source server without the
need to check the database. We prototype this design on a
local cluster with Redis deployments. Our preliminary re-
sults show that this approximate measurement-based design
minimizes query losses during migration.

1 Introduction
Modern cloud services (e.g., e-commerce, mobile gaming,
and social networking) depend on large-scale key-value stores
as the backend to perform various kinds of jobs (e.g., con-
tent caching, real time analytics and machine learning) [16,
3]. These services often require backend databases to pro-
cess requests over ever-growing data volumes and dynamic
workload distributions. However, static sharding limits the
ability of such systems to adapt to rapidly changing work-
loads. This can result in degraded performance and Service
Level Agreement (SLA) violations due to load imbalance
and insufficient provisioning of cloud resources [8, 9].

To tackle the problem of imbalance of load and resources,
a variety of key-value migration techniques are adopted [8, 9,
12] to efficiently migrate data between nodes (i.e., the source
and destination servers). However, the migration process it-
self is often time-consuming, and the actual query serving
performance varies depending on the workload distribution
and the migration progress. During migration, the client
is unknown about which keys have reached their destina-
tion (migrated) at any given time without actually accessing

Copyright is held by author/owner(s).

them on the relevant databases. Therefore, it is difficult for
the client to always query certain keys at the right location
because the client is unsure of the current location of the
queried key. To ensure query serviceability, a straightfor-
ward solution is to query both the source and destination
servers, incurring doubled overheads for the client. Alter-
natively, the client needs to access a database that records
the migrated keys, but such maintaining such a database is
resource-heavy (e.g., network, compute, and storage), since
the number of keys can be prohibitively large. Ideally, the
client should know where to access the queried key in the
right location without expensive bookkeeping and without
actually reaching the key-value store hosted on the servers
during the migration process.

To this end, we explore and leverage approximate teleme-
try approaches to track the status (e.g., “not started”, “in
transmission”, or “completed”) of the key-value pairs dur-
ing migration, allowing client requests to be served at the
right location as soon as possible. Approximate measure-
ment design brings a major benefit to serving client queries
in key-value store migration: the underlying data structures
used in the design are often probabilistic and require only
sublinear resources, such as sketches [7, 14] and Bloom fil-
ters. Such resource savings enables wider adoption of ap-
proximate telemetry on resource-constrained devices. Using
these devices to track migration status, including Smart-
NICs [1] and programmable switches [5], can direct client
requests to the appropriate location as early as possible.
Thus, in this preliminary work, we deploy a Bloom filter on
the Redis server to track migration progress and evaluate
potential query-serving performance improvements.

We implement a key-value migration protocol with a Bloom
filter deployed on the destination server. We deploy a large
Redis key-value store [2] (100GB) to migrate from one com-
modity server to another. We evaluate several experimen-
tal scenarios with client workloads following Zipf distribu-
tions [13] with varied write ratios in client requests. Our
preliminary results demonstrate that using the Bloom filter
to track key-value migration status can significantly reduce
query mishits (defined as query loss rate).

2 Preliminary Design and Prototype
Our workflow to perform key-value migration consists of
four main components: (1) the migration process of Re-
dis key/value pairs from a source server to a destination
server, (2) a Bloom filter that identifies whether a key-value
pair has migrated successfully and if a query is missed in
the local database, the filter tells the client where to for-



ward the missed requests, (3) a client that sends read and
write requests to the destination server, and (4) a forward-
ing mechanism which allows requests to be served before
the respective key reaches the destination server. Below, we
provide the details of each component using Redis [2] as an
example.

• Migration: The migration process [9] consists of ex-
tracting all the key/value pairs from a Redis instance
of the source server and sending them to the destina-
tion server and storing them in its Redis store. To
allow integration of Bloom filters, we reimplement a
UDP-based migration protocol to extract Redis key
value pairs from source to destination by extending
the implementation of DistCache [13].

• Bloom filter: During the migration process, when
an individual key-value pair reaches the destination
server and is updated in the Redis store, this key will
be added to a Bloom filter [4] on the destination side
to keep track of which key-value pairs have already
successfully migrated. Employing a simple Bloom fil-
ter at the destination has two benefits: (1) It does not
have false positives and can be adjusted to achieve rel-
atively low false negative rates as shown in Figure 1.
No false positives ensure that queries to the migrated
keys will never go back to the source server. (2) The
memory efficiency of the Bloom filter makes it possible
to serve as a “cache”. This additional saving of space
comes from the fact that we only store keys and not
values in the bloom filter.

• Serving client requests: When the client queries
certain key/value pairs currently in the destination,
the destination server will first check whether this key
has reached the server by probing the Bloom filter.
The advantage of using a probabilistic filter over di-
rectly accessing Redis to see if a key-value pair has
already migrated is that the Bloom filter is small in
space and allows for faster (parallel) memory accesses.
If the key has migrated, we know for sure that it is
in the filter, and we can access the Redis store locally
and directly respond to the client.

• Request forwarding: If a key is queried by the client,
which is not already in the Bloom filter, we know it
still has not reached the destination server. Therefore,
the destination server can simply forward [6] the client
request to the original sending server, who will be able
to serve the request on its own local Redis instance
and respond directly to the client.

3 Experiments
In our evaluation, every experiment conducted consisted of
using 50 million Redis key-value pairs for migration, which
held 100 GB of data. Our experiments run on a testbed
consisting of 3 servers, each of which has two Intel Xeon
Gold 5317s, 512GB DRAM, and a 10G NIC. Specifically,
each key-value pair held 2000 bytes, the keys ranging from
1− 50, 000, 000, and the values being a randomly generated
string with 1992 bytes to 1999 bytes of data depending on
the length of its respective key. Every experiment we run
generates 750,000 queries from the client. Furthermore, we
use different Zipfian distributions for our experiments, such

0.01 0.02 0.03 0.04 0.05
Write Ratio

0
2
4
6
8

10
12

Lo
ss

 R
at

e 
(%

)

Bloom Filter Without Redirecting

Figure 1: Query loss rates with varying write ratios.

0.90 0.95 0.99
Zipf

0
2
4
6
8

10
12

Lo
ss

 R
at

e 
(%

)

Bloom Filter Without Redirecting

Figure 2: Query loss rates with varying Zipf distri-
butions.

as .9, .95, and .99. Second, we also use different write ratios,
such as .01 to .05. We evaluate the loss rates when the
queries go to the wrong locations without being forwarded
to the right places for Bloom filter-based vs. no filter-based.

To evenly split the migration data and serve client re-
quests in parallel, we used 10 threads for both the source and
destination servers. Moreover, the data on the destination
server is randomly split amongst 5 Redis servers, to mitigate
the loss due to the large volume of migrated data. On the
destination server, the Bloom filter implementation [17] we
used has 125 MB of data stored overall in the data structure.

3.1 Effect of Query Distribution
Our first experiment revolves around the effect of the write
ratio of queries to the loss rate. This experiment on average
takes 14 minutes and 39 seconds across all write ratios. The
client issues key read/write queries following a Zipfian dis-
tribution of 0.9 skewness with write ratios of 0.01 to 0.05 as
shown in Figure 1. The inclusion of Bloom filter and request
forwarding demonstrates a 3.5 × improvement in mitigating
query loss on average (from 3.162 to 3.870).

3.2 Effect of Write Ratio
Our second experiment measures the effect of how the skew-
ness in Zipf distribution affects the loss rate. This experi-
ment on average takes 14 minutes and 38 seconds across



all Zipf distributions tested (0.9, 0.95, 0.99) and we use the
write ratio of 0.05. As shown in Figure 2, the inclusion of
the forwarding of requests results in a 3.837 × improvement
in mitigating query loss on average (from 3.367 to 4.367).

3.3 False Negatives in Bloom Filter
One of the main concerns of using bloom filters is the false
negatives. In our key-value migration case, false negatives
occur when the key is shown to be in the Bloom filter, but
in reality it has yet been migrated to the destination. In
each experiment, we calculate the number of false negatives
by checking when the Redis server returned null. In our
experiments, the number of such false negatives is always
less than 0.043 percent of all queries. Thus we can conclude
that with a relatively large filter (e.g., 150MB), false nega-
tives have negligible impacts on the average query-serving
performance.

3.4 Evaluation Summary
Overall, these experimental results demonstrate the need for
designing a proper measurement approach to using forward-
ing, as without the bloom filter, there is a notable drop in
performance that could prove costly in a real setting. Fur-
thermore, as the results demonstrated the positive effect of
forwarding, using higher power devices such as SmartNICs
[1, 15] could prove to be even more beneficial [10] in serving
client queries during migration.

4 Discussion
We conclude by highlighting a subset of new opportunities
for further research in this space.

Approximate telemetry for key-value migration on
near-user programmable devices. Our prototype demon-
strates the benefits of tracking the detailed migration status
with a Bloom filter-based design. However, for simplicity,
the filter for tracking the migration progress is deployed on
the server side. Every client request needs to pay the cost
of reaching the server first before it can be directed to the
right location. We posit that, with emerging flexibility and
programmability in the network devices (e.g., SmartNICs
and programmable switches), we can find a vantage point in
the network to easily measure how key-value pairs are being
migrated while not being far from the client.

Adaptive filters for improving the false negative rates.
The current prototype is limited to the standard Bloom fil-
ter with fixed false negatives. While our experiments show
small performance degradation on average, the false posi-
tives can incur performance problems at the tail (e.g., tail
query latency for some keys). Recent advances in adaptive
filters [11] have shown some practical designs to dynamically
tune the filters to reduce and control the error rates if we
have seen such false negatives so far.

5 References

[1] Bluefield data processing units.
https://www.nvidia.com/en-us/networking/

products/data-processing-unit/.

[2] Redis. https://redis.io/.

[3] Redis use cases. https://redis.com/blog/
5-industry-use-cases-for-redis-developers/.

[4] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,

jul 1970.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. ACM
SIGCOMM Computer Communication Review,
43(4):99–110, 2013.

[6] J. Chen, P. Druschel, and D. Subramanian. An
efficient multipath forwarding method. In Proceedings.
IEEE INFOCOM ’98, pages 1418–1425, 1998.

[7] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[8] J. Kang, L. Cai, F. Li, X. Zhou, W. Cao, S. Cai, and
D. Shao. Remus: Efficient live migration for
distributed databases with snapshot isolation. In
Proceedings of the 2022 International Conference on
Management of Data, pages 2232–2245, 2022.

[9] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and
R. Stutsman. Rocksteady: Fast migration for
low-latency in-memory storage. In Proceedings of the
26th Symposium on Operating Systems Principles,
pages 390–405, 2017.

[10] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella,
M. M. Swift, and T. V. Lakshman. Uno: Uniflying
host and smart nic offload for flexible packet
processing. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, page 506–519, New York,
NY, USA, 2017. Association for Computing
Machinery.

[11] D. J. Lee, S. McCauley, S. Singh, and M. Stein.
Telescoping filter: A practical adaptive filter. arXiv
preprint arXiv:2107.02866, 2021.

[12] Y.-S. Lin, S.-K. Pi, M.-K. Liao, C. Tsai, A. Elmore,
and S.-H. Wu. Mgcrab: transaction crabbing for live
migration in deterministic database systems.
Proceedings of the VLDB Endowment, 12(5):597–610,
2019.

[13] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,
X. Jin, and I. Stoica. Distcache: Provable load
balancing for large-scale storage systems with
distributed caching. In 17th USENIX Conference on
File and Storage Technologies (FAST 19), pages
143–157, 2019.

[14] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One sketch to rule them all:
Rethinking network flow monitoring with univmon. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 101–114, 2016.

[15] H. Seyedroudbari, S. Vanavasam, and A. Daglis.
Turbo: Smartnic-enabled dynamic load balancing of
µs-scale rpcs. In 2023 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 1045–1058, 2023.

[16] R. K. Singh and H. K. Verma. Redis-based messaging
queue and cache-enabled parallel processing social
media analytics framework. The Computer Journal,
65(4):843–857, 2022.

[17] T. Wang. Integer hash function.
https://gist.github.com/badboy/6267743, 2007.

https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://redis.io/
https://redis.com/blog/5-industry-use-cases-for-redis-developers/
https://redis.com/blog/5-industry-use-cases-for-redis-developers/
https://gist.github.com/badboy/6267743

	Introduction
	Preliminary Design and Prototype
	Experiments
	Effect of Query Distribution
	Effect of Write Ratio
	False Negatives in Bloom Filter
	Evaluation Summary

	Discussion
	References

