Group then Scale: Dynamic Mixture-of-Experts Multilingual Language Model

Anonymous ACL submission

Abstract

The curse of multilinguality phenomenon is a fundamental problem of multilingual Large Language Models (LLMs), where the competition between massive languages results in inferior performance. It mainly comes from limited capacity and negative transfer between dissimilar languages. To address this issue, we propose a method to dynamically group and scale up the parameters of multilingual LLM while boosting positive transfer among similar languages. Specifically, the model is first tuned on monolingual corpus to determine the parameter deviation in each layer and quantify the similarity between languages. Layers with more deviations are extended to mixture-of-experts layers to reduce competition between languages, where one expert module serves one group of similar languages. Experimental results on 18 to 128 languages show that our method reduces the negative transfer between languages and significantly boosts multilingual performance with fewer parameters. Such language group specialization on experts benefits the new language adaptation and reduces the inference on the previous multilingual knowledge learned.

1 Introduction

011

013

014

017

019

042

After training on the massive multilingual corpus, large language models obtain impressive multilingual abilities, e.g., cross-lingual natural language understanding (Xue et al., 2021) and in-context learning (Lin et al., 2022; Scao et al., 2023; Wei et al., 2023b; Anil et al., 2023; Üstün et al., 2024). However, their performance in medium- to lowresource languages, still lags behind that of highresource languages (Lai et al., 2023; Asai et al., 2024), and is hindered by the *curse of multilinguality* phenomenon (Aharoni et al., 2019; Wu and Dredze, 2020). It is found that the limited capacity and negative language transfer mainly contribute to the curse of multilinguality phenomenon (Chang et al., 2024). Thus, our key research problem lies

(b) Dynamically scale up multilingual LLM.

Figure 1: (a) We first statisticize layer-wise parameter deviation of the multilingual language model for each language, (b) then dynamically scale up layers with more deviations into mixture-of-experts layers for language groups divided by language similarity.

on: *How to flexibly augment the capacity of LLM for massive languages?*

To address the research problem above, Pfeiffer et al. (2022) fine-tuned a module for each new language to augment parameters. The additional language identification process hinders its general application and affects the inference performance if misclassification. Blevins et al. (2024) trained models for new languages using the multilingual base model as initialization, and assembled them with vanilla models during inference. It largely increases the inference cost and the amount of model parameters which linearly grows with the number of languages involved.

In contrast, we introduce language specialization to the mixture-of-experts structure to scale up the parameters of the model. In particular, monolingual corpus from each language x is first adopted to tune the model and obtain the layer-wise parameter deviation $\Delta \theta_l^x$ like Figure 1(a). Layers near the input and output of LLM are often found with more derivation than the others (refer to Figure 10 in Appendix B for more details). We argue that layers 043

with more deviation require more capacity to con-066 tain language-specific knowledge, while the other 067 layers can be shared with all languages, like the 068 "concept space" in the multilingual LLM (Wendler et al., 2024). Thus, the former is extended to the mixture-of-experts layer, and the parameter of each 071 expert is tuned by a group of similar languages like 072 Figure 1(b). It aims to precisely exploit parameters during scaling up and keep a similar inference cost for each token. Such designation is also beneficial for extending new languages while reducing the effect on the previously learned languages. Given 077 a new language to adapt, we first determine its similarity between existing language groups, then copy and fine-tune the expert for the most similar language group to achieve a better transferring performance and alleviate catastrophic forgetting. The experimental results on 18 to 128 languages show that our method significantly improves multilingual 084 performance and mitigates the curse of multilinguality phenomenon. The improvement in perplexity reaches 11.4% over the continual pre-training method and even surpasses X-ELM (Blevins et al., 2024) 9.6% with 3.6x fewer parameters on average. In summary, our contributions lie in the following:

- We propose a mixture-of-experts training framework to flexibly group languages and dynamically augment the capacity of multilingual large language models.
- We formalize language grouping into a maximin optimization problem and introduce a token-level language classification loss to specialize mixture-of-experts layers.
- Extensive experiments on 18 to 128 languages demonstrate the effectiveness of our method which largely mitigates the curse of multilinguality phenomenon.

2 Related Works

099

101

102

104

2.1 Quantify Language Similarity

The LANG2VEC method (Littell et al., 2017) represents languages as typological, geographical, and 106 phylogenetic vectors to calculate the similarity be-107 tween them and has been widely adopted (Blevins 108 et al., 2024; Chang et al., 2024). However, they 109 110 rely exclusively on language- or data-intrinsic features, ignoring the characteristics of the down-111 stream models. To address this limitation, prior 112 works have proposed model-specific representa-113 tions, such as learnable language vectors (Tsvetkov 114

et al., 2016; Östling and Tiedemann, 2017; Johnson et al., 2017) and leveraging hidden states of the model (Malaviya et al., 2017) or gradients of the loss function (Wang and Zhang, 2022) to derive language representations. These model-specific approaches often require training from scratch or incur high computational costs by recalculating similarity during training. In contrast, our method utilizes parameter deviations as language representations, enabling stable similarity estimation through fine-tuning the downstream model on a small dataset in the preparatory phase.

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

2.2 Mixture of Experts

Since the concept of mixture-of-experts proposed (Jacobs et al., 1991; Jordan and Jacobs, 1994), it has been widely applied to SVM (Collobert et al., 2001), Gaussian process (Tresp, 2000), Dirichlet process (Shahbaba and Neal, 2009), LSTM (Theis and Bethge, 2015; Shazeer et al., 2017), and Transformer (Lepikhin et al., 2021; Roller et al., 2021; Fedus et al., 2022; Dai et al., 2022; MistralAI, 2023; Dai et al., 2024). Adding more experts scales up the total capacity of the model while keeping similar inference costs on each token. Previous studies mainly focus on designing a better load-balancing routing strategy (Roller et al., 2021; Fedus et al., 2022; Zhou et al., 2022) and a training method (Sukhbaatar et al., 2024). Our work is similar to X-MOD (Pfeiffer et al., 2022), which trains an adapter module for each language in all layers. The main differences lie in 1) grouping similar languages in each expert to boost cross-lingual transfer rather than allocating one adapter for each language. 2) Text for inference can be directly input to our model without specifying languages which is inflexible and required for X-MOD.

2.3 Multilingual Large Language Model

The pre-training methods of multilingual large language models (Conneau et al., 2020; Lin et al., 2022; Scao et al., 2023; Yang et al., 2023; Wei et al., 2023b) are mainly extended from the one for the monolingual corpus (Radford et al., 2018; Devlin et al., 2019; Lewis et al., 2020; Raffel et al., 2020), and relied on a balanced sampling method to mitigate the performance gap between languages.

To mitigate the curse of multilinguality, Blevins et al. (2024) applied the Branch-Train-Merge method (Li et al., 2022) on the training of multilingual language model, where one model serves for a group of languages, and assembled output of

Figure 2: The overview of our method to group and scale up the multilingual LLM. (a) Given pre-training languages, we first determine their parameter deviation $\Delta \theta^x$ on the model, then group similar languages by the similarity of $\Delta \theta^x$. (b) These layers with higher $\|\Delta \theta_l^x\|$ are extended to MoE layers, where each expert is tuned with tokens from the corresponding language group to specialize. (c) To adapt to the new language, we copy the multilingual expert from the most similar language group, then only fine-tune the router and expert added.

top-m models after language identification during inference. In contrast, our method is motivated by the distribution of parameter deviation during the training of multilingual large language models and strives to scale up the parameter on the languagespecific layers. It keeps a similar cost without additional language classification while augmenting the capacity of the multilingual language model during inference.

3 Method

165

166

169

170

171

172

173

174

175

176

177

178

179

180

182 183

184

As shown in Figure 2, to train a Dynamic Mixtureof-Experts model (DMoE), we first fine-tune the model on the monolingual corpus to obtain the parameter deviation for each language. Then the parameter deviation is used to cluster similar languages (Section 3.1) and determine layers to extend parameters (Section 3.2). Besides, new languages for adaption are also dynamically assigned to the most similar language cluster to mitigate catastrophic forgetting (Section 3.3).

3.1 Dynamic Language Clustering

The quality of the clustering method is primarily in-186 fluenced by the choice of similarity metric, making the determination of an appropriate metric central 188 to its effectiveness. We first obtain the parameter deviation of the model by fine-tuning only ten steps, 190 investigated in Appendix B, and take it as a rep-191 192 resentation of distinctive characteristics for each language. Given the high-dimensional nature of the 193 parameter deviation, we employ cosine similarity 194 as the metric to measure the similarity between languages. To satisfy the clustering process, we define 196

the intra-group language similarity as follows:

$$\operatorname{Sim}(\theta, G_k) = \min_{x, y \in G_k} \frac{\Delta \theta^x \cdot \Delta \theta^y}{\|\Delta \theta^x\| \|\Delta \theta^y\|} \quad (1)$$

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

223

224

225

where G_k is the k-th group of languages, $\Delta \theta^x$ and $\Delta \theta^y$ are the parameter deviation of language x and y respectively on the parameter θ , and $\Delta \theta^x = [\Delta \theta_1^x, \Delta \theta_2^x, \cdots, \Delta \theta_N^x]$ is the concatenation of the parameter deviation from all N layers after fine-tuning on language x.

A higher intra-group similarity indicates that the languages within the group are more similar, resulting in less conflict between them. This reduces the potential for gradient conflicts during the continuous pre-training on different languages, making it more appropriate to share parameters with the same expert. Therefore, we can perform clustering by maximizing the similarity within each group, which can be formalized as follows:

$$\max_{G_1, G_2, \dots, G_K} \sum_{k=1}^K \operatorname{Sim}(\theta, G_k)$$
(2)

However, obtaining the global optimal solution to this problem is NP-Hard. Additionally, the number of languages in each group needs to be balanced to enhance the utilization of experts. To address these challenges, we employ a greedy algorithm. The pseudo-code is provided in Algorithm 1.

3.2 Dynamic MoE Layer Extension

We assume that the layers with large parameter deviations are important and language-specific during fine-tuning, requiring additional capacities to mitigate the conflicts between languages. Thus the Algorithm 1 Balanced Language Clustering

Input: Parameter deviations for different languages $\Delta \Theta = \{\Delta \theta^1, \Delta \theta^2, \dots, \Delta \theta^x\}$, Number of groups *K*

Output: Language clustering result Groups

- 1: Initialize $Groups = \{\}$
- 2: while $\Delta \Theta$ is not empty do
- 3: Compute the cosine similarity between languages (i, j) for all $\Delta \theta^i, \Delta \theta^j \in \Delta \Theta$
- 4: Find the most similar pair of languages (i^*, j^*)
- 5: Merge languages i^* and j^* to form a group: $G = \{i^*, j^*\}$
- 6: Remove i^* and j^* from $\Delta \Theta$
- 7: while $|G| < \frac{|\Delta \Theta|}{K}$ do
- 8: Compute the intra-group similarity (Eq. 1) of $G \cup \{m\}$ for all $\Delta \theta^m \in \Delta \Theta$
- 9: Find the group $G \cup \{m^*\}$ that maximizes the intra-group similarity

10: Add m^* to G

- 11: Remove m^* from $\Delta \Theta$
- 12: end while
- 13: Add group G to Groups
- 14: end while

226

227

230

231

236

240

241

242

243

244

245

15: **Return:** *Groups*

top- ϵ of dense layers and extended to the mixtureof-experts layers with g experts, where $\epsilon \in [0, 1]$ and $g \in \mathbb{N}^+$ are hyper-parameters. Each expert is initialized from the parameter of the original dense layer. Corpus of each language group is used to fine-tune the parameter of the corresponding expert. We also train the parameter of the router with the following language group classification loss:

$$\mathcal{L}_{RC}(\theta) = -\sum_{x} \sum_{i=1}^{M} \left[\log \left(\mathsf{P}_{i}(l|x;\theta) \right) \right] \quad (3)$$

where x is a token from the language group l, and $P_i(\cdot)$ is the probability estimated by the router at the *i*-th MoE layer. Thus the final training loss comes to the weighted sum of Causal Language Modeling (CLM) loss and the above language group classification loss:

$$\mathcal{L}(\theta) = \mathcal{L}_{CLM}(\theta) + \alpha \mathcal{L}_{RC}(\theta) \tag{4}$$

where $\alpha \in \mathbb{R}_0^+$ is a hyper-parameter.

3.3 Dynamic Language Adaptation

Given new languages to adapt, we introduce a method to augment their capacity while reducing

the inference to other languages learned. Specifically, samples from the new language are first input to experts through a hard routing strategy. The multilingual expert with the lowest perplexity is considered the most similar one, which is copied and only fine-tuned for fast adaptation. It is noted that the other part of parameters like the shared dense layers and the other experts are frozen to avoid catastrophic forgetting during the new language learning (Winata et al., 2023). 246

247

248

249

250

251

252

253

255

256

257

258

259

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

278

279

280

281

282

283

287

290

4 Experiments

4.1 Experiments Settings

Large Language Models We adopt the multilingual Bloom (Scao et al., 2023) and English-centric Gemma (Team et al., 2024) series models in this work.

Corpus Two multilingual corpora, CulturaX (Nguyen et al., 2024) and MADLAD-400 (Kudugunta et al., 2023), are used in this work. We set the language sampling exponent to 0.3 following mT5 (Xue et al., 2021).

Evaluation Tasks There are five multilingual tasks, covering natural language inference (Conneau et al., 2018), paraphrase detection (Yang et al., 2019), and multilingual reasoning tasks (Ponti et al., 2020; Lin et al., 2022; Tikhonov and Ryabinin, 2021), selected to evaluate the performance of multilingual LLMs. To reduce the variability of prompt and evaluation method, we choose the default prompt from the language model evaluation harness framework (Gao et al., 2024).

Baselines

- + **Pre-train**, where the base model continues to pre-train on the same multilingual corpus. It denotes the performance of the vanilla continual multilingual pre-training method.
- **X-ELM** (Blevins et al., 2024) trains a model for two similar languages, and ensembles outputs from top-m models during inference, where m is set to 2 in this work.
- **Branch-Train-Mix** (Sukhbaatar et al., 2024) trains models specialized for one domain and merges them to obtain a mixture-of-experts model, which shows significantly better performance than Branch-Train-Merge (Li et al.,

291

311 312

313

2022). We apply our dynamic language clustering results to it, serving as a strong multilingual mixture-of-experts baseline.

To conduct a fair comparison, the total training token amount is the same for all methods. Hyperparameters are reported in Appendix A. Codes and model parameters will be public after review to advocate future work.

4.2 Results on 18 Languages

We first conduct experiments on 18 languages from 9 language families. Figure 3 illustrates the pairwise language similarity calculated by the $\Delta \theta$ of BLOOM_{560M}, and more details of other models refer to Appendix C.1. It mostly exhibits some linguistic characteristics. For example, Tamil (ta) and Telugu (te), which both come from the Dravidian language family, show a similar trend among languages and have higher similarity than the other languages. Based on the pair-wise similarity, languages are divided into multiple groups by Algorithm 1, and results are reported in Table 1. Appendix C.1 shows the results of other language models involved.

Figure 3: The cosine similarity between 18 languages for BLOOM_{560M}.

After language clustering, we continue pretraining on 18 languages under a 6.5B tokens 315 amount budget from CulturaX. The perplexity results of models across different parameter amounts are shown in Table 2. We can find that scaling 319 up model parameters brings better language modeling performance compared with the continued pre-training method ("+ Pre-train"). DMoE obtains the highest average improvement on perplexity (+11.4% over "+ Pre-train") than the other two 323

	ar	ur	bn	it	de	nl	ta	te	hi	id	fr	vi	ru	uk	th	ko	ja	zh
9G	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9
6G	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6
6G ^(L)	1	1	2	3	4	3	5	5	5	6	1	6	4	4	6	2	2	3
6G ^(R)	1	2	5	4	6	6	2	3	3	4	6	1	3	5	4	2	5	1
3G	1	1	1	2	2	2	1	3	1	1	2	2	3	3	3	3	3	2
2G	1	1	1	2	2	2	1	2	1	1	1	1	2	2	2	2	2	1

Table 1: The grouping results of BLOOM_{560M}, where "2G" denotes the result that divides into 2 groups. "6G^(L)" and "6G^(R)" indicate the LANG2VEC and random language clustering results, respectively.

strong baseline methods (+0.8% and +2.2% respectively) and requires the least additional parameters. It is noted that DMoE with 9 experts outperforms X-ELM (Blevins et al., 2024) using 3.6x less parameters. The improvement mostly comes from unseen languages like German (+17.9%) and lowresource languages like Urdu (+13.6%).

324

325

326

327

328

329

330

331

332

333

334

335

337

338

339

340

341

342

344

345

347

348

Figure 4 illustrates the trend of perplexity improvement over the continual pre-training baseline using DMoE across 18 languages. It can be found that languages with higher perplexity benefit more from our method. Moreover, with more language groups divided, DMoE shows better multilingual language modeling performance.

Figure 4: The improvement of DMoE comparing to the continual pre-training baseline method on BLOOM_{560M}.

Transfer language similarities. To evaluate the effectiveness of dynamic language clustering (Section 3.1), we replace the 6-group dividing into the LANG2VEC (Littell et al., 2017) and random grouping results in Table 1. The "w/ Random Cluster" row reports the language modeling result on BLOOM_{560M}, which is worse than the DMoE model (+1.4 PPL on average). We argue that the poor result arises from the negative transfer between dissimilar languages, especially deteriorating the performance of low-resource languages like

					Hi	igh						Ν	/lediur	n				Low		
Model	#Param.	ar	$\mathbf{d}\mathbf{e}^{\dagger}$	fr	it†	ja†	\mathbf{nl}^{\dagger}	\mathbf{ru}^{\dagger}	zh	bn	hi	id	ko†	th†	uk†	vi†	ta	te	ur	Avg↓
BLOOM _{560M}	560M	56.7	126.4	37.4	85.3	55.7	129.5	31.3	59.0	42.3	32.7	47.4	25.7	14.0	39.7	27.9	64.2	88.4	60.0	56.9
+ Pre-train	560M	39.0	27.6	22.0	17.8	15.0	16.6	8.2	36.0	26.5	20.9	32.6	8.4	4.4	6.8	18.5	31.0	26.9	29.8	21.6
X-ELM	5.03B	35.2	34.6	21.3	17.3	18.0	21.5	9.8	37.9	25.1	19.5	28.8	9.3	4.4	8.5	18.9	26.9	23.0	27.5	21.5
Branch-Train-Mix	1.57B	39.4	25.8	21.6	17.1	14.7	15.3	8.0	35.8	26.4	21.0	32.1	8.1	4.1	6.6	18.1	31.4	27.0	30.0	21.2
DMoE (2 Groups)	635M	37.9	25.0	21.5	17.1	15.0	14.5	7.4	34.4	25.4	20.5	31.3	7.9	3.8	5.9	18.4	30.3	26.7	28.6	20.6
DMoE (3 Groups)	710M	37.0	25.3	21.8	17.2	14.4	14.4	7.1	35.0	24.6	19.9	30.4	7.7	3.7	5.6	18.4	29.3	26.3	27.4	20.3
DMoE (6 Groups)	937M	36.2	23.5	20.9	16.0	13.8	13.6	7.3	34.1	23.9	19.1	30.7	7.4	3.9	5.9	17.6	27.9	23.4	26.8	19.5
w/ Gemma Clusters	937M	36.7	23.5	21.4	16.1	13.8	13.6	7.3	34.1	23.7	19.7	31.8	7.4	<u>3.6</u>	5.6	17.7	27.8	<u>23.3</u>	27.1	19.7
w/ LANG2VEC Clusters	937M	37.6	25.2	20.9	15.8	13.4	13.3	7.6	34.2	25.0	19.3	30.3	7.2	3.5	6.2	17.7	28.0	23.6	28.1	19.8
w/ Random Clusters	937M	38.5	25.7	21.5	17.0	14.6	15.2	7.9	35.3	25.7	20.6	31.8	8.1	4.1	6.5	18.1	30.6	26.1	29.4	20.9
w/o Class. Loss	937M	36.5	24.2	21.2	16.4	14.4	13.9	7.2	34.8	24.6	19.7	30.9	7.7	3.8	5.8	18.2	28.4	24.1	27.6	20.0
DMoE (9 Groups)	1.16B	36.9	23.1	<u>21.1</u>	14.7	14.0	13.3	7.5	34.6	25.1	19.6	<u>29.7</u>	7.2	<u>3.6</u>	6.1	17.9	27.6	23.0	$\underline{27.0}$	19.5
BLOOM _{1.7B}	1.72B	41.2	63.0	24.3	44.0	35.2	63.0	20.1	40.1	27.0	22.6	32.7	17.4	9.8	23.9	19.2	40.1	43.6	36.3	33.5
+ Pre-train	1.72B	25.1	21.0	15.3	15.5	11.7	17.4	7.0	23.4	16.8	15.3	23.0	7.8	4.3	8.5	13.1	21.6	21.1	22.6	16.1
X-ELM	15.50B	24.9	20.2	15.0	12.1	12.1	12.3	7.1	24.3	17.4	14.4	21.0	7.5	3.8	6.0	12.9	19.3	16.6	19.4	14.8
Branch-Train-Mix	5.75B	25.4	18.7	16.0	15.2	11.3	13.6	6.0	23.6	17.6	15.3	24.1	7.4	3.7	7.0	13.4	23.1	21.1	20.5	15.7
DMoE (3 Groups)	2.33B	26.3	17.5	16.0	12.5	11.0	10.5	5.7	25.2	17.5	15.1	22.4	6.3	3.2	4.5	13.8	21.1	19.6	19.9	14.9
DMoE (6 Groups)	3.23B	26.1	17.2	15.8	12.4	10.7	10.2	5.8	24.9	17.4	14.5	22.8	6.1	3.3	4.6	13.3	20.3	17.5	19.6	14.6
DMoE (9 Groups)	4.14B	26.6	16.8	16.0	11.5	<u>10.8</u>	10.0	5.9	25.1	17.8	14.8	22.2	5.9	3.1	4.8	13.5	20.1	<u>17.0</u>	19.8	14.5
Gemma _{2B}	2.51B	54.8	12.5	23.6	13.4	11.1	11.4	5.1	69.1	68.9	44.2	45.5	5.6	2.8	4.0	19.8	70.5	62.8	54.2	32.2
+ Pre-train	2.51B	28.8	$\underline{10.1}$	17.1	9.3	7.3	6.5	$\underline{4.1}$	29.4	21.7	14.9	$\underline{21.9}$	$\underline{3.8}$	$\underline{2.3}$	3.1	13.6	20.4	17.0	20.4	14.0
X-ELM	22.56B	30.2	11.1	19.3	10.2	8.0	7.3	4.3	34.6	22.7	$^{}_{15.3}$	23.9	3.9	2.3	3.3	14.4	19.9	16.5	22.8	15.0
Branch-Train-Mix	11.57B	27.7	10.7	18.2	9.7	7.5	6.8	4.2	30.6	18.5	<u>14.4</u>	23.8	3.9	2.3	$\underline{3.2}$	13.6	17.4	14.5	19.3	13.7
DMoE (9 Groups)	6.53B	24.8	9.9	16.8	9.1	7.0	6.3	4.0	27.8	17.6	12.9	19.6	3.6	2.2	3.1	12.2	15.3	12.8	17.3	12.4

Table 2: The normalized perplexity on the valid split of CulturaX. The perplexity is normalized to the vocabulary of Bloom following Wei et al. (2023a). [†] denotes the language unseen in the pre-training of BLOOM. "**High**", "**Medium**", and "**Low**" indicates the available amount of linguistic resources. The best and second results are denoted in **bold** and <u>underlined</u>, correspondingly.

Urdu (+2.6 PPL). And LANG2VEC brings an inferior result, +0.3 PPL on average, comparing our model-specific method. It demonstrates that better language clustering results can bring better crosslingual transfer to the low-resource languages. The language clustering result of Gemma_{2B} is further applied on BLOOM_{560M} to investigate the transferability of our method. It is interesting to find that BLOOM_{560M} with Gemma clusters is slightly worse than the vanilla model in Table 2. Although our method shows some transferability, we still recommend using language similarity classification based on its parameter derivation for better results.

351

352

353

357

Trade-off between learning and forgetting. 362 When new languages come for multilingual models 363 to adapt, it is better to achieve fast adaptation while alleviating the catastrophic forgetting of languages learned. We adopt 4 unseen languages: Belarusian 366 (be), Malayalam (ml), Marathi (mr), and Serbian (sr) to evaluate the performance of models. As shown in Table 3, the dense model suffers a catas-370 trophic forgetting of the 18 languages learned after Language Adaptation Pre-Training (LAPT), espe-371 cially on the medium and low resource languages (+2.0 PPL). In contrast, the proposed Dynamic Language Adaptation (DLA) method (Section 3.3) 374

for DMoE achieves better adaptation results on new languages, and mitigates the catastrophic forgetting of the languages learned (only +0.7 PPL). It benefits from language-specific expert design and fine-tuning method, which provides a better module for initialization and reduces the inference to the modules learned.

Figure 5: The average perplexity of DMoE across 18 languages under different ϵ using BLOOM_{560M}, where $\epsilon = 1$ denotes all layers are extended to MoE layers.

Ablation study We first modify the hyperparameter ϵ to determine the effect of augmenting the layer with higher parameter deviation. Figure 382

383

(a) DMoE (6 Groups) w/o language group classification loss.

(b) DMoE (6 Groups) w/ language group classification loss.

Figure 6: The router distribution of top-1 expert for texts in different languages. (a) DMoE trained with randomly initialized router. (b) DMoE trained with language classification loss. Refer to Appendix C.2 for more details.

	N	ew La	nguag	es	0	ld Languag	jes
Model	be	ml	mr	sr	High	Medium	Low
Gemma _{2B}	10.0	7.1	11.4	12.5	$ 26.9_{\pm 9.4} $	$15.1_{\pm 7.9}$	$10.5_{\pm 4.3}$
+ Pre-train	9.3	11.7	11.2	17.1	$15.1_{\pm 4.4}$	$\frac{8.5}{\pm 3.7}$	$5.4_{\pm 1.7}$
w/ LAPT	<u>6.4</u>	$\underline{4.3}$	$\underline{6.1}$	$\underline{8.3}$	$16.5_{\pm 4.6}$	$10.6_{\pm 3.8}$	$7.3_{\pm 3.1}$
DMoE	8.9	10.0	11.8	17.2	$ 14.4_{\pm 4.2} $	7.7 ±3.4	4.8 ±1.6
w/ DLA	6.2	4.0	5.4	8.2	$15.0_{\pm 4.2}$	$\underline{8.5}_{\pm 3.2}$	$5.4_{\pm 1.8}$

Table 3: The perplexity after adding new languages.

5 shows that scaling up layers with higher derivation is much better than the random augmentation baseline when ϵ is less than 0.5. To balance the parameter amount and performance, we set ϵ to 0.4 in this work.

388

390

396

400

The router classification loss is removed to quantify its contribution. As shown in the "w.o/ Class. Loss" row of Table 2, the perplexity increases by 0.5 on average. Figure 6 illustrates the statistics of token distribution assigned to the top-1 expert. It can be found that the bottom layer like the first layer does not show language specification without router classification loss (Figure 6(a)). Tokens are mostly assigned to the expert tuned in the same language with router classification loss as expected (Figure 6(b)).

4.3 Extend to 128 Languages

In this section, we further scale up the number of languages from 18 to 128 and increase the amount of pre-training tokens to 17.7B. Following previous findings, the number of language groups is set to 16, and refer to Table 8 in Appendix C.1 for more details of language dividing. 401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

Table 4 reports the perplexity of 20 languages across different resources and the average result of 128 languages. It can be found that DMoE significantly mitigates the curse of multilinguality phenomenon and outperforms Branch-Train-Mix 1.1 PPL on average across 128 languages. The improvement mostly comes from unseen languages and low-resource languages, which reach 2.1 PPL on average for the five extremely low-resource languages in Table 4. The eighty languages with Latin script improved by 2.9 PPL over the continual pretraining model on average, while the other non-Latin languages improved by only 0.7 PPL.

We calculate the improvement across language families and find that the trend is similar where our method outperforms the baseline methods. It is interesting to find that languages belonging to the Niger-Congo family, which only take up 0.4GB in the pre-training corpus of BLOOM, benefit the

	High						N	lediu	m				Low				Extr	emely-	Low		ALL 128L
Model	ar	de†	en	it†	ja†	hi	id	th†	uk†	vi†	kk [†]	\mathbf{mn}^{\dagger}	$\mathbf{m}\mathbf{y}^{\dagger}$	te	ur	\mathbf{br}^{\dagger}	\mathbf{pa}^{\dagger}	sw	\mathbf{ug}^{\dagger}	zu	$\mathbf{Avg}\downarrow$
BLOOM _{560M} + Pre-train	$\begin{vmatrix} 42.4 \\ 34.4 \end{vmatrix}$	$111.3 \\ 23.8$	$66.8 \\ 44.6$	$82.4 \\ 20.5$	55.5 12.9	30.6 20.5	$41.3 \\ 26.9$	$13.7 \\ 3.6$	$44.5 \\ 7.3$	$21.8 \\ 15.1$	$\begin{vmatrix} 29.0 \\ 5.7 \end{vmatrix}$	$31.2 \\ 6.8$	6.1 <u>2.8</u>	$91.4 \\ 30.3$	$72.5 \\ 37.6$	$261.7 \\ 40.2$	131.6 32.5	$224.9 \\ 45.5$	$44.5 \\ 9.2$	$1278.9 \\ 36.2$	$\begin{array}{r} 154.4_{\pm 157.0} \\ 20.7_{\pm 12.8} \end{array}$
Branch-Train-Mix DMoE	32.5 32.1	<u>21.0</u> 19.5	40.3 <u>40.8</u>	<u>17.1</u> 16.3	<u>12.1</u> 11.3	20.0 19.8	26.1 25.8	<u>3.5</u> 3.4	<u>6.6</u> 6.4	14.6 <u>14.7</u>	$\frac{5.4}{5.2}$	<u>6.3</u> 6.2	<u>2.8</u> 2.7	31.6 29.3	<u>37.1</u> 35.2	<u>35.4</u> 31.4	34.1 30.5	<u>43.5</u> 39.7	9.0 8.1	31.2 28.3	$\frac{19.2}{17.7_{\pm 11.2}}$
BLOOM _{1.7B} + Pre-train	$\begin{vmatrix} 30.4 \\ 22.9 \end{vmatrix}$	56.4 15.9	45.3 <u>30.3</u>	44.9 14.1	35.0 9.7	20.8	27.8 19.3	9.7 <u>3.1</u>	$26.7 \\ 5.4$	15.3 <u>11.3</u>	19.1 <u>4.5</u>	21.1 <u>5.4</u>	4.4 2.5	46.8 22.3	$44.0 \\ 26.8$	113.2 27.9	61.7 23.9	80.3 30.8	$\frac{28.4}{\underline{7.4}}$	$260.8 \\ 26.0$	$71.9_{\pm 52.1} \\ 14.9_{\pm 8.7}$
Branch-Train-Mix DMoE	21.1 22.7	<u>15.3</u> 14.9	29.7 31.3	<u>13.1</u> 12.8	<u>9.4</u> 8.9	14.1 14.7	18.6 19.1	<u>3.1</u> 3.0	<u>5.3</u> 5.1	10.9 11.3	$\frac{4.5}{4.3}$	<u>5.4</u> 5.1	$\frac{2.6}{2.5}$	22.4 22.1	25.7 26.0	<u>26.2</u> 23.9	24.2 23.2	<u>29.8</u> 29.2	7.5 6.8	<u>24.1</u> 22.8	$\frac{14.3}{\textbf{13.7}_{\pm 8.1}}$

Table 4: The perplexity of 20 languages on the valid split of MADLAD-400 (Kudugunta et al., 2023). Refer to Table 9 to 16 in Appendix C.3 for all results of 128 languages. [†] denotes the language unseen in the pre-training of BLOOM. "**High**"(>1%), "**Medium**"(>0.1%), "**Low**"(>0.01%), and "**Extremely-Low**"(<=0.01%) indicates the available amount of linguistic resources on the CommonCrawl following Lai et al. (2023).

			Zero-shot R	esults				Few-shot Ro	esults	
Model	XNLI	PAWS-X	ХСОРА	XStoryCloze	XWinograd	XNLI	PAWS-X	ХСОРА	XStoryCloze	XWinograd
BLOOM _{560M} + Pre-train	$\begin{vmatrix} 36.2_{\pm 3.3} \\ 37.1_{\pm 3.5} \end{vmatrix}$	$51.5_{\pm 1.6}$ $52.9_{\pm 2.4}$	$53.9_{\pm 4.1}$ $53.6_{\pm 2.9}$	$53.5_{\pm 3.5}$ $53.8_{\pm 2.6}$	$\frac{53.7_{\pm 4.0}}{\underline{54.9}_{\pm 4.1}}$	$\begin{vmatrix} 34.4_{\pm 2.4} \\ 34.7_{\pm 2.6} \end{vmatrix}$	$\frac{51.1_{\pm 1.2}}{51.6_{\pm 1.1}}$	$53.4_{\pm 4.0}$ $53.8_{\pm 2.4}$	$52.6_{\pm 3.5}$ $52.7_{\pm 2.8}$	$53.3_{\pm 4.2}$ $53.8_{\pm 5.1}$
Branch-Train-Mix DMoE	$\left \frac{37.2_{\pm 4.1}}{37.5_{\pm 4.5}}\right $	$\frac{53.1_{\pm 2.5}}{53.2_{\pm 1.7}}$	$\frac{54.1}{54.4}_{\pm 2.8}$	$\frac{53.8_{\pm 2.8}}{54.1_{\pm 2.7}}$	$54.4_{\pm 3.6}$ 55.1 _{±4.3}	$\begin{vmatrix} \frac{35.3}{\pm 2.6} \\ 35.7_{\pm 2.5} \end{vmatrix}$	$51.4_{\pm 2.1}$ 52.2 _{±1.4}	$\frac{53.9_{\pm 3.2}}{54.7_{\pm 2.6}}$	$\frac{53.1_{\pm 2.8}}{53.4_{\pm 2.7}}$	$\frac{54.2_{\pm 4.3}}{\textbf{55.1}_{\pm 4.6}}$
BLOOM _{1.7B} + Pre-train	$\left \frac{39.2_{\pm 5.4}}{39.2_{\pm 4.9}} \right $	$\frac{53.9_{\pm 1.6}}{53.7_{\pm 1.5}}$	$55.1_{\pm 5.7}$ $55.0_{\pm 3.9}$	$56.0_{\pm 4.7}$ $56.4_{\pm 3.6}$	$55.1_{\pm 5.2}$ $55.5_{\pm 4.6}$	$\frac{37.1_{\pm 4.5}}{37.1_{\pm 3.2}}$	$\frac{50.5_{\pm 1.1}}{51.8_{\pm 1.7}}$	$55.2_{\pm 5.8}$ $55.3_{\pm 4.5}$	$55.5_{\pm 5.2}$ $56.0_{\pm 3.6}$	$\frac{55.5_{\pm 5.2}}{\underline{55.8}_{\pm 4.6}}$
Branch-Train-Mix DMoE	$\begin{vmatrix} 39.1_{\pm 5.1} \\ 39.8_{\pm 4.8} \end{vmatrix}$	$53.5_{\pm 1.6}$ 54.1 _{±1.2}	$\frac{55.6}{56.0_{\pm 4.1}}$	$\frac{56.4}{56.6_{\pm 3.5}}$	$\frac{55.6}{56.4_{\pm 5.1}}$	$\begin{vmatrix} 36.8_{\pm 3.2} \\ 37.5_{\pm 2.9} \end{vmatrix}$	$51.3_{\pm 1.4}$ $52.2_{\pm 2.4}$	$\frac{55.5}{55.7}{}_{\pm 3.8}$	$\frac{56.2_{\pm 4.0}}{\underline{56.1}_{\pm 3.4}}$	$\frac{55.8}{56.4}{\pm 1.4}$

Table 5: The in-context learning results of models after training on 128 languages. The number of demonstration samples in the "Few-shot" setting is set to four in this work. Table 17 to 21 report results of all languages.

most from our method (Figure 7).

Figure 7: The average perplexity of BLOOM_{560M} across language families after training on the 128 languages.

In-context learning results on five multilingual datasets are shown in Table 5. Appendix C.3 reports the results of all languages on these tasks. Similar to the language modeling results, DMoE also boosts the in-context learning performance and outperforms baseline models across two parameter amounts under zero-shot and few-shot settings. The performance on the multilingual reasoning task XWinograd benifits most from our method, which improves 1.6% on average over the base model.

It further demonstrates the effectiveness of our method in improving multilingual large language models.

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

5 Conclusion and Future Work

In this paper, we propose a method to mitigate the curse of multilinguality by augmenting parameters and boosting cross-lingual transfer. Multilingual large language models trained with our method achieve better language modeling and incontext learning performance than the continued pre-trained dense model and other scaling methods. These language-specialized experts make it easier to learn new languages and keep multilingual knowledge learned.

The specialization of experts can be further improved in the future, e.g., a shared expert learning general knowledge and other experts specializing in language-related knowledge. Designing a method to determine the language similarity with less cost or calculate better language clustering results is another direction. We hope this work can motivate more studies on the curse of multilinguality phenomenon and put forward the development of multilingual language models.

Limitations

462

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496 497

498

499

500

504

505

506

507

508

510

511

512

513

514

515

The first limitation lies in the additional compu-463 tation to fine-tune and determine the parameter 464 derivation for each language, which will linearly in-465 crease with the number of languages involved and 466 the parameter amount of the model. Transferring 467 the language similarity calculated from the small 468 model into the larger model is a promising method 469 to save computation. 470

> The coverage of training and evaluation languages is another limitation. For example, languages from the Trans-New Guinea language family are not involved in this work. It is mainly due to the constrain of languages provided by the multilingual corpora and datasets used.

Our method relies on dynamic grouping languages and scaling parameters, which brings a higher training cost than the dense model. Due to the limited computation budget, the parameter amount of LLMs investigated in this work is less than 22.6B, and the token amount in training is restrained at 17.7B.

References

- Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.
 Massively multilingual neural machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3874–3884, Minneapolis, Minnesota. Association for Computational Linguistics.
- Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,

Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and Yonghui Wu. 2023. Palm 2 technical report. Preprint, arXiv:2305.10403.

516

517

518

519

520

522

523

524

525

526

527

528

529

530

531

533

534

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

566

567

568

569

570

571

572

573

- Akari Asai, Sneha Kudugunta, Xinyan Yu, Terra Blevins, Hila Gonen, Machel Reid, Yulia Tsvetkov, Sebastian Ruder, and Hannaneh Hajishirzi. 2024. BUFFET: Benchmarking large language models for few-shot cross-lingual transfer. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 1771–1800, Mexico City, Mexico. Association for Computational Linguistics.
- Terra Blevins, Tomasz Limisiewicz, Suchin Gururangan, Margaret Li, Hila Gonen, Noah A. Smith, and Luke Zettlemoyer. 2024. Breaking the curse of multilinguality with cross-lingual expert language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 10822–10837, Miami, Florida, USA. Association for Computational Linguistics.
- Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and Ben Bergen. 2024. When is multilinguality a curse? language modeling for 250 high- and low-resource languages. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 4074–4096, Miami, Florida, USA. Association for Computational Linguistics.
- Ronan Collobert, Samy Bengio, and Yoshua Bengio. 2001. A parallel mixture of svms for very large scale problems. In Advances in Neural Information Processing Systems, volume 14. MIT Press.
- Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440– 8451, Online. Association for Computational Linguistics.
- Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XNLI: Evaluating crosslingual sentence representations. In *Proceedings of*

679

680

681

682

683

684

685

686

687

688

632

633

634

575 576 577

57

58

- 58
- 584
- 585 586
- 587 588

590 591

5

- 5 5
- 594 595
- 596 597 598
- 56
- 602

60

60

60 60

610 611 612

614 615

6

6

621 622

623 624

625 626

627

6 6

6

631

the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2475–2485, Brussels, Belgium. Association for Computational Linguistics.

- Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wenfeng Liang. 2024. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. *Preprint*, arXiv:2401.06066.
- Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang Sui, Baobao Chang, and Furu Wei. 2022. Stable-MoE: Stable routing strategy for mixture of experts. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 7085–7095, Dublin, Ireland. Association for Computational Linguistics.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.
- William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39.
- Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. 2024. A framework for few-shot language model evaluation.
- Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive mixtures of local experts. *Neural computation*, 3(1):79–87.
- Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2017. Google's multilingual neural machine translation system: Enabling zero-shot translation. *Transactions of the Association for Computational Linguistics*, 5:339–351.
- Michael I Jordan and Robert A Jacobs. 1994. Hierarchical mixtures of experts and the em algorithm. *Neural computation*, 6(2):181–214.
- Sneha Kudugunta, Isaac Rayburn Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, and Orhan Firat. 2023. MADLAD-400: A multilingual and document-level

large audited dataset. In *Thirty-seventh Conference* on Neural Information Processing Systems Datasets and Benchmarks Track.

- Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan Rossi, and Thien Nguyen. 2023. Okapi: Instruction-tuned large language models in multiple languages with reinforcement learning from human feedback. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 318–327, Singapore. Association for Computational Linguistics.
- Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2021. {GS}hard: Scaling giant models with conditional computation and automatic sharding. In *International Conference on Learning Representations*.
- Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7871–7880, Online. Association for Computational Linguistics.
- Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A. Smith, and Luke Zettlemoyer. 2022. Branch-train-merge: Embarrassingly parallel training of expert language models. *Preprint*, arXiv:2208.03306.
- Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, and Xian Li. 2022. Few-shot learning with multilingual generative language models. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 9019–9052, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
- Patrick Littell, David R. Mortensen, Ke Lin, Katherine Kairis, Carlisle Turner, and Lori Levin. 2017. URIEL and lang2vec: Representing languages as typological, geographical, and phylogenetic vectors. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers*, pages 8–14, Valencia, Spain. Association for Computational Linguistics.
- Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In *International Conference on Learning Representations*.
- Chaitanya Malaviya, Graham Neubig, and Patrick Littell. 2017. Learning language representations for

799

800

801

typology prediction. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 2529–2535, Copenhagen, Denmark. Association for Computational Linguistics.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. 2018. Mixed precision training. In International Conference on Learning Representations.

693

700

701

702

703

704

705

710

711

713

714

715

717

718

719

724

725

726

727

731

733

734

735

736

737

738

740

741

742

743

744 745

- MistralAI. 2023. Mixtral of experts. *Mistral AI news*.
- Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai, Hieu Man, Nghia Trung Ngo, Franck Dernoncourt, Ryan A. Rossi, and Thien Huu Nguyen. 2024. CulturaX: A cleaned, enormous, and multilingual dataset for large language models in 167 languages. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 4226– 4237, Torino, Italia. ELRA and ICCL.
 - Robert Östling and Jörg Tiedemann. 2017. Continuous multilinguality with language vectors. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 644–649, Valencia, Spain. Association for Computational Linguistics.
 - Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, and Mikel Artetxe. 2022. Lifting the curse of multilinguality by pre-training modular transformers. In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 3479–3495, Seattle, United States. Association for Computational Linguistics.
 - Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020. XCOPA: A multilingual dataset for causal commonsense reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2362–2376, Online. Association for Computational Linguistics.
 - Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. *OpenAI blog*.
 - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67.
- Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD '20,

page 3505–3506, New York, NY, USA. Association for Computing Machinery.

- Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason E Weston. 2021. Hash layers for large sparse models. In *Advances in Neural Information Processing Systems*.
- BigScience Workshop: Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, and Alexandra Sasha Luccioni et al. 2023. Bloom: A 176bparameter open-access multilingual language model. *arXiv preprint arXiv:2211.05100*.
- Babak Shahbaba and Radford Neal. 2009. Nonlinear models using dirichlet process mixtures. *Journal of Machine Learning Research*, 10(8).
- Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In *International Conference on Learning Representations*.
- Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Roziere, Jacob Kahn, Shang-Wen Li, Wen tau Yih, Jason E Weston, and Xian Li. 2024. Branch-train-mix: Mixing expert LLMs into a mixture-of-experts LLM. In *First Conference on Language Modeling*.
- Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, and Pouya Tafti et al. 2024. Gemma: Open models based on gemini research and technology. *Preprint*, arXiv:2403.08295.
- Lucas Theis and Matthias Bethge. 2015. Generative image modeling using spatial lstms. In *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc.
- Alexey Tikhonov and Max Ryabinin. 2021. It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 3534–3546, Online. Association for Computational Linguistics.
- Volker Tresp. 2000. Mixtures of gaussian processes. In *Advances in Neural Information Processing Systems*, volume 13. MIT Press.
- Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui, Guillaume Lample, Patrick Littell, David Mortensen, Alan W Black, Lori Levin, and Chris Dyer. 2016. Polyglot neural language models: A case study in cross-lingual phonetic representation learning. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1357–1366, San Diego, California. Association for Computational Linguistics.

882

883

884

885

886

888

890

891

892

893

894

895

896

897

898

900

901

902

903

904

905

906

907

908

909

860

861

- 805

- 811 812
- 813 814
- 815 816 817 818
- 819 820
- 822

- 828 829
- 832 833
- 835
- 836 837
- 838 839
- 841 842

843 844

- 846 847
- 850
- 851

855

859

Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin Ko, Daniel D'souza, Gbemileke Onilude, Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. 2024. Aya model: An instruction finetuned open-access multilingual language model. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15894–15939, Bangkok, Thailand. Association for Computational Linguistics.

Qian Wang and Jiajun Zhang. 2022. Parameter differentiation based multilingual neural machine translation. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 11440-11448. AAAI Press.

- Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng, Weiwei Lü, Rui Hu, et al. 2023a. Skywork: A more open bilingual foundation model. arXiv preprint arXiv:2310.19341.
- Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhiwei Cao, Binbin Xie, Tianxiang Hu, Shangjie Li, Binyuan Hui, Bowen Yu, Dayiheng Liu, Baosong Yang, Fei Huang, and Jun Xie. 2023b. Polylm: An open source polyglot large language model. Preprint, arXiv:2307.06018.
- Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. 2024. Do llamas work in English? on the latent language of multilingual transformers. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15366–15394, Bangkok, Thailand. Association for Computational Linguistics.
- Genta Winata, Lingjue Xie, Karthik Radhakrishnan, Shijie Wu, Xisen Jin, Pengxiang Cheng, Mayank Kulkarni, and Daniel Preotiuc-Pietro. 2023. Overcoming catastrophic forgetting in massively multilingual continual learning. In Findings of the Association for Computational Linguistics: ACL 2023, pages 768-777, Toronto, Canada. Association for Computational Linguistics.
- Shijie Wu and Mark Dredze. 2020. Are all languages created equal in multilingual BERT? In Proceedings of the 5th Workshop on Representation Learning for NLP, pages 120-130, Online. Association for Computational Linguistics.
- Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 483–498, Online. Association for Computational Linguistics.

- Wen Yang, Chong Li, Jiajun Zhang, and Chengqing Zong. 2023. Bigtranslate: Augmenting large language models with multilingual translation capability over 100 languages. Preprint, arXiv:2305.18098.
- Yinfei Yang, Yuan Zhang, Chris Tar, and Jason Baldridge. 2019. PAWS-X: A cross-lingual adversarial dataset for paraphrase identification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3687–3692, Hong Kong, China. Association for Computational Linguistics.
- Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, zhifeng Chen, Quoc V Le, and James Laudon. 2022. Mixture-ofexperts with expert choice routing. In Advances in Neural Information Processing Systems, volume 35, pages 7103-7114. Curran Associates, Inc.

Α Hyper-parameters

Following Scao et al. (2023), the global batch size is set to 512 samples with 2048 tokens during the language adaptation pre-training stage. AdamW optimizer (Loshchilov and Hutter, 2019) with $\beta_1 =$ 0.9 and $\beta_2 = 0.999$ is used in this work. We empirically set the learning rate to 2e-5, adopt bf16 mixed precision training (Micikevicius et al., 2018) and ZeRO-3 (Rasley et al., 2020) to save GPU memory cost. And the α in the loss function (Equation 4) is empirically set to 1.28. All MoE models adopt top-2 routing during inference in this work.

B Language Delta

Figure 8 illustrates the cosine similarity of the parameter deviation during fine-tuning. It can be found that the deviation is relatively small after 10 tuning steps, and the cosine similarity of the one at the 10th step between the parameter deviation at the 40th step is higher than 80% for all languages. The language similarity matrices are similar using the parameter deviation at different steps (Figure 9). Therefore, we only fine-tune 10 steps to determine the parameter derivation of models for each language.

Figure 10 shows the distribution of parameter deviation $\|\Delta \theta^x\|$ across layers of BLOOM_{560M} for 18 languages. It is interesting to find that layers near the embedding or output layer often have a relatively high parameter derivation $\|\Delta \theta^x\|$.

Figure 8: The cosine similarity between $\Delta \theta^x$ at the i-th step and the one at the 40th step for each language using BLOOM_{560M}.

C Additional Results

910

911

912

913

914

915

916

917

918

919

921

923

924

925

931

932

933

935

937

939

940

943

C.1 Language Similarity and Grouping

Figure 11 and 12 illustrates the language similarity matrix calculated by all layers and the last 3 layers of the parameter derivation of $BLOOM_{1.7B}$. Except for the difference in absolute value, they are very similar in relative trend. Therefore, we adopt the last 3 layers of the parameter derivation to calculate the language similarity by default.

Figure 13 shows pair-wise language similarity matrices of Gemma_{2B}. It can be found that the one of BLOOM_{1.7B} is similar to the one of BLOOM_{560M} (Figure 3), which may arise from the same pre-training corpus used. In contrast, the language similarity matrix of Gemma_{2B} has a higher average similarity value and different patterns between languages. As shown in Figure 14, It is interesting to find that replacing the multilingual corpus from CulturaX to MADLAD-400 results in a similar matrix.

Given the language similarity matrix calculated, we obtain the language grouping results for BLOOM_{1.7B} and Gemma_{2B} in the 18-language experiments using Algorithm 1 (Table 6 and 7). Similar languages like Tamil and Telugu are often grouped in the same language cluster. BLOOM_{560M} and BLOOM_{1.7B} have the same language clustering result under the six and two groups settings.

Table 8 reports the 16 language groups used in the 128 languages experiment, which is calculated by the parameter deviation of BLOOM_{1.7B}. BLOOM_{560M} adopts this result to save computation for the similar trend with BLOOM_{1.7B} in the 18-language experiment.

	ar	ur	bn	it	de	nl	ta	te	hi	id	fr	vi	ru	uk	th	ko	ja	zh
9G	1	2	3	4	5	5	6	6	3	1	7	7	8	8	4	2	9	9
6G	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6
3G	1	2	2	3	3	3	2	2	1	1	1	1	2	3	3	2	3	1
2G	1	1	1	2	2	2	1	2	1	1	1	1	2	2	2	2	2	1

Table 6: The grouping results of $BLOOM_{1.7B}$, where "2G" denotes the result that divides into 2 groups.

	ar	ur	bn	it	de	nl	ta	te	hi	id	fr	vi	ru	uk	th	ko	ja	zh
9G	1	1	2	6	3	3	4	4	2	5	6	5	7	7	8	8	9	9
6G	1	1	2	3	4	4	2	2	1	3	4	5	3	5	5	6	6	6
3G	1	1	1	2	2	2	1	1	1	2	2	3	2	3	3	3	3	3
2 G	1	1	1	2	2	2	1	1	1	2	2	2	2	1	1	1	2	1

Table 7: The grouping results of $Gemma_{2B}$, where "2G" denotes the result that divides into 2 groups.

C.2 Token Router Distribution

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

We statisticize the top-1 expert distribution across the mixture-of-experts layers in Figure 15 and 16. As shown in Figure 15, the language specialization emerges at the last five MoE layers, while MoE layers often show language specialization with router language classification loss (Figure 16).

C.3 Extend to 128 Languages

We report the perplexity of all 128 languages on Table 9 to 15. And in-context learning results on five multilingual datasets are shown in Table 17 to 21.

D Licenses of Scientific Artifacts

We follow and report the licenses of scientific artifacts involved in Table 22.

E Additional Information about Language Codes

Table 23 reports more information about the lan-
guage codes involved in this work.962963

Index	Languages	Index	Languages
1	ceb, en, fil, hil, ilo, la, lg, so	9	el, grc, hu, os, pl, ro, tr, yi
2	fr, it, ny, sn, sw, xh, yo, zu	10	bn, gu, kn, ml, mr, pa, ta, te
3	am, dv, he, ka, ko, lo, my, ti	11	az, br, ckb, fa, ps, sd, ug, ur
4	ar, ca, es, eu, hi, id, pt, vi	12	ht, ig, jv, mg, ms, sl, su, vec
5	cnh, cs, de, ha, kha, lus, nl, uz	13	fy, haw, lv, mi, sm, st, tet, to
6	kaa, kk, ky, mn, ru, sah, tt, tyv	14	co, eo, gl, ja, ne, oc, yue, zh
7	da, et, fi, fo, gsw, is, no, se	15	ee, gd, hmn, lb, mt, om, rm,
8	av, be, ce, mk, sr, tg, udm, uk	16	bo, kbd, kl, km, pap, sa, th, t

Table 8: The 16 language groups divided for the 128 languages experiment.

Model	am	ar	av	az	be	bn	bo	br	ca	ce	ceb	ckb	cnh	со	cs	da
BLOOM560M	13.84	42.39	48.53	187.51	65.85	45.23	7.17	261.68	41.64	51.08	225.93	35.40	445.37	197.32	146.79	84.96
+ Pre-train	4.39	34.43	8.27	11.68	8.63	33.11	3.44	40.25	24.85	11.25	20.18	8.97	32.45	32.27	17.03	10.04
Branch-Train-Mix	4.12	32.53	7.53	10.85	7.61	32.62	3.47	35.44	23.59	9.62	18.37	8.46	28.38	28.55	15.43	8.67
DMoE	4.08	32.06	7.18	9.82	7.38	31.69	3.39	31.42	23.61	9.39	16.57	8.07	27.59	25.97	14.30	7.98
BLOOM _{1.7B}	8.60	30.41	32.15	72.69	36.83	28.67	5.58	113.16	26.55	34.38	93.94	24.93	188.45	103.17	73.24	42.47
+ Pre-train	3.74	22.93	6.40	8.68	6.40	22.04	3.15	27.93	18.00	8.30	15.50	7.51	24.43	22.78	12.06	6.97
Branch-Train-Mix	3.71	21.10	6.25	8.43	6.16	20.82	3.27	26.20	17.12	7.96	14.83	7.22	23.23	22.41	11.82	6.51
DMoE	3.62	22.66	5.94	7.88	5.94	21.89	3.12	23.89	17.88	7.69	13.80	7.07	21.90	20.34	11.15	6.18

Table 9: The perplexity of language "am" to "da" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

Model	de	dv	ee	el	en	eo	es	et	eu	fa	fi	fil	fo	fr	fy	gd
BLOOM _{560M}	111.29	4.96	300.78	18.28	66.79	266.55	39.23	310.09	80.16	161.83	250.93	234.67	253.93	43.25	285.93	172.37
+ Pre-train	23.83	2.10	20.79	4.34	44.58	31.29	24.03	29.32	39.50	14.98	24.25	17.72	24.34	27.21	24.39	15.01
Branch-Train-Mix	21.03	2.11	19.75	4.18	40.29	26.97	23.67	24.47	37.73	14.51	21.26	15.86	20.78	25.53	20.67	12.95
DMoE	19.46	2.05	15.78	4.02	40.82	22.84	23.14	22.67	36.67	13.40	18.91	14.18	19.00	25.97	18.13	11.55
BLOOM _{1.7B}	56.36	3.49	121.31	11.27	45.33	126.18	27.31	151.08	40.32	86.79	113.01	98.05	111.79	28.28	143.77	84.11
+ Pre-train	15.89	1.97	15.37	3.53	30.27	21.05	18.15	19.85	25.84	11.96	16.76	13.23	16.88	20.03	16.03	11.38
Branch-Train-Mix	15.34	2.00	14.43	3.57	29.69	20.33	17.43	18.64	24.97	11.35	16.27	12.54	15.78	18.89	14.92	10.30
DMoE	14.86	1.94	13.35	3.43	31.34	17.73	18.19	17.50	25.37	10.89	15.07	11.62	14.72	20.01	13.55	9.85

Table 10: The perplexity of language "de" to "gd" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

Model	gl	grc	gsw	gu	ha	haw	he	hi	hil	hmn	ht	hu	id	ig	ilo	is
BLOOM560M	121.12	19.74	143.45	180.03	559.77	73.99	20.93	30.55	220.05	120.38	391.80	156.40	41.35	262.93	271.81	207.29
+ Pre-train	26.66	6.00	42.16	39.27	27.09	10.39	7.01	20.45	17.53	13.11	33.86	15.41	26.93	28.80	26.04	20.08
Branch-Train-Mix	24.84	5.69	37.22	40.53	24.27	9.67	6.71	19.98	14.53	11.94	30.05	14.10	26.10	26.85	22.45	17.36
DMoE	23.70	5.45	35.14	37.51	22.80	9.00	6.44	19.78	13.22	10.78	26.19	13.00	25.81	23.77	19.76	15.98
BLOOM _{1.7B}	61.19	12.99	90.97	67.49	191.64	47.25	15.00	20.82	96.72	79.33	169.97	70.31	27.80	92.00	130.53	92.95
+ Pre-train	18.81	4.71	28.90	27.69	19.49	8.48	5.58	14.70	12.23	10.47	23.94	10.98	19.25	20.90	18.45	14.12
Branch-Train-Mix	18.04	4.74	27.91	27.50	18.94	8.24	5.55	14.14	10.97	9.79	21.31	10.91	18.65	19.81	17.42	13.36
DMoE	17.84	4.60	26.20	27.18	17.73	7.91	5.41	14.68	10.44	9.48	20.24	10.27	19.08	18.63	15.59	12.44

Table 11: The perplexity of language "gl" to "is" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

Model	it	ja	jv	ka	kaa	kbd	kha	kk	kl	km	kn	ko	ky	la	lb	lg
BLOOM _{560M}	82.38	55.55	277.50	12.20	50.53	30.80	200.91	28.98	231.11	10.09	196.03	24.03	47.03	111.79	261.41	369.16
+ Pre-train	20.47	12.86	36.26	4.16	6.56	7.68	20.35	5.71	16.50	3.85	46.08	7.36	7.37	36.19	25.71	46.19
Branch-Train-Mix	17.12	12.12	34.82	4.08	6.16	7.12	18.22	5.38	14.78	3.81	47.55	7.12	6.89	34.72	21.35	40.71
DMoE	16.33	11.34	30.43	3.89	5.95	6.35	17.05	5.20	13.57	3.63	43.80	6.74	6.61	32.04	18.92	36.13
BLOOM _{1.7B}	44.86	35.01	149.22	10.42	32.12	20.19	124.88	19.14	120.42	8.26	92.29	16.12	31.49	66.75	132.24	141.18
+ Pre-train	14.13	9.67	26.62	3.63	5.12	5.86	14.83	4.52	12.68	3.36	32.93	6.00	5.73	27.12	16.92	33.36
Branch-Train-Mix	13.10	9.39	25.49	3.66	5.14	5.83	14.51	4.50	12.57	3.39	32.53	5.96	5.73	27.40	15.66	31.24
DMoE	12.83	8.92	23.54	3.51	4.86	5.50	13.19	4.31	11.14	3.25	32.03	5.72	5.44	26.05	14.69	28.27

Table 12: The perplexity of language "it" to "lg" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

Model	lo	lus	lv	mg	mi	mk	ml	mn	mr	ms	mt	my	ne	nl	no	ny
BLOOM _{560M}	8.72	312.58	169.08	189.81	129.33	62.40	116.36	31.15	127.22	98.74	97.91	6.08	125.47	118.66	213.49	286.37
+ Pre-train	2.44	37.91	15.10	18.63	16.50	9.37	34.71	6.75	36.21	33.69	9.95	2.77	51.30	15.22	22.27	22.99
Branch-Train-Mix	2.42	34.92	12.49	16.38	15.14	8.45	35.88	6.31	36.48	32.98	8.94	2.77	53.62	13.01	19.45	20.69
DMoE	2.37	32.79	10.65	15.08	13.82	8.05	33.29	6.19	34.98	31.17	7.42	2.69	49.34	12.22	17.92	18.37
BLOOM _{1.7B}	4.58	159.69	83.05	82.55	74.40	36.15	50.08	21.05	61.00	51.52	59.86	4.41	63.23	58.05	97.54	126.71
+ Pre-train	2.17	28.49	10.26	14.08	13.02	6.96	23.58	5.37	24.57	23.49	7.26	2.52	35.24	10.26	15.45	17.08
Branch-Train-Mix	2.20	28.23	9.05	12.81	12.46	6.74	23.43	5.35	24.15	22.88	6.67	2.57	35.40	9.67	14.52	15.98
DMoE	2.13	26.04	8.45	12.54	11.84	6.51	23.58	5.13	24.06	22.18	6.27	2.48	34.91	9.37	13.86	15.11

Table 13: The perplexity of language "lo" to "ny" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

Model	oc	om	05	ра	рар	pl	ps	pt	rm	ro	ru	sa	sah	sd	se	sl
BLOOM _{560M}	80.82	260.13	30.78	131.60	367.89	91.73	67.38	37.27	354.95	195.23	33.77	181.38	32.12	83.51	255.36	218.52
+ Pre-train	20.72	27.23	8.08	32.55	28.52	12.84	10.99	23.22	27.98	16.72	8.13	43.64	6.88	13.97	27.01	22.97
Branch-Train-Mix	19.13	23.77	7.56	34.14	25.53	11.91	10.65	22.23	23.60	15.09	7.40	47.25	6.51	14.48	23.05	19.99
DMoE	17.82	21.06	7.06	30.48	22.65	11.12	9.59	22.51	18.69	14.06	7.24	41.47	6.20	12.62	21.32	17.32
BLOOM _{1.7B}	45.64	150.00	21.03	61.74	187.88	46.24	44.31	24.85	183.77	87.28	21.70	104.87	22.39	54.03	156.62	107.83
+ Pre-train	14.69	20.86	6.20	23.89	19.32	9.20	8.68	17.07	18.42	11.82	6.16	34.04	5.45	11.45	18.82	15.75
Branch-Train-Mix	14.14	19.52	6.36	24.24	17.96	9.25	8.46	16.35	15.92	11.42	5.93	36.76	5.52	11.82	17.97	14.49
DMoE	13.36	17.80	5.68	23.17	16.37	8.66	7.95	17.17	14.33	10.93	5.82	32.97	5.18	10.71	16.31	13.48

Table 14: The perplexity of language "oc" to "sl" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

Model	sm	sn	so	sr	st	su	sw	ta	te	tet	tg	th	ti	tk	to	tr
BLOOM _{560M}	114.75	435.89	239.57	51.57	275.07	224.84	224.92	80.03	91.45	206.03	40.17	13.71	16.22	217.70	82.62	153.97
+ Pre-train	15.29	28.67	18.92	9.57	18.37	27.30	45.46	37.65	30.32	16.00	7.22	3.64	5.13	14.84	14.60	14.62
Branch-Train-Mix	13.78	25.29	16.27	8.58	16.60	25.26	43.52	38.29	31.56	14.34	6.62	3.49	4.83	13.70	12.54	13.49
DMoE	12.63	22.63	14.53	8.07	14.96	22.70	39.65	36.32	29.26	12.48	6.36	3.43	4.70	12.08	11.60	12.80
BLOOM _{1.7B}	75.21	143.65	131.67	31.61	115.55	129.35	80.34	47.14	46.77	100.13	25.36	9.70	10.17	87.48	49.50	61.45
+ Pre-train	12.08	20.74	13.86	7.08	13.90	20.01	30.75	26.90	22.30	11.61	5.56	3.12	4.31	10.63	11.29	10.42
Branch-Train-Mix	11.27	19.18	12.80	6.88	13.11	18.71	29.84	26.40	22.36	10.45	5.49	3.09	4.31	10.80	10.27	10.20
DMoE	10.91	18.48	11.95	6.52	12.52	17.68	29.23	26.61	22.14	9.76	5.24	3.03	4.11	9.39	9.81	9.75

Table 15: The perplexity of language "sm" to "tr" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

Model	ts	tt	tyv	udm	ug	uk	ur	uz	vec	vi	xh	yi	yo	yue	zh	zu
BLOOM _{560M}	175.78	39.70	40.14	54.51	44.53	44.49	72.47	388.73	319.37	21.85	606.11	17.27	257.05	71.22	36.26	1278.88
+ Pre-train	13.05	7.46	8.37	8.87	9.21	7.30	37.61	18.66	73.68	15.12	34.44	5.10	28.08	25.72	15.07	36.17
Branch-Train-Mix	11.26	6.97	7.54	7.95	8.99	6.61	37.13	16.74	64.42	14.62	32.00	4.86	27.41	25.82	14.83	31.24
DMoE	9.90	6.71	7.33	7.65	8.10	6.40	35.19	15.80	55.43	14.66	27.73	4.71	24.28	23.99	14.31	28.31
BLOOM _{1.7B}	85.50	27.57	28.15	39.09	28.37	26.68	44.00	144.46	188.36	15.30	154.98	11.37	100.09	42.71	25.86	260.80
+ Pre-train	9.51	5.77	6.38	6.75	7.35	5.44	26.84	13.32	46.42	11.34	25.61	4.13	21.09	19.02	11.70	26.00
Branch-Train-Mix	8.67	5.74	6.20	6.54	7.47	5.28	25.68	13.08	43.24	10.88	24.70	4.17	21.20	17.44	11.33	24.14
DMoE	8.10	5.45	5.86	6.30	6.81	5.15	25.96	12.12	38.54	11.27	22.65	3.96	19.29	18.25	11.30	22.82

Table 16: The perplexity of language "ts" to "zu" on the valid split of MADLAD-400 (Kudugunta et al., 2023).

					High						Med	lium				Low		
Model	#shot	en	de†	es	eu	fr	ru†	zh	ar	bg^{\dagger}	el†	th [†]	tr†	vi	hi	sw	ur	Avg
BLOOM	0	43.9	34.4	40.5	37.9	39.1	34.6	35.5	33.5	34.0	35.2	32.1	31.6	39.0	39.8	33.9	34.5	36.2
	4	40.3	34.0	38.6	35.0	37.0	34.4	32.4	33.3	33.4	31.8	33.5	32.1	36.0	33.7	31.8	34.1	34.4
BLOOMscove + Pre-train	0	43.5	37.6	41.6	40.6	40.9	36.1	33.4	33.5	34.1	33.1	33.8	33.4	42.0	38.5	33.9	37.1	37.1
	4	40.3	33.9	38.5	36.7	38.4	32.7	35.5	33.4	31.6	33.4	31.8	32.8	36.3	35.3	32.2	32.1	34.7
Branch Train Mix	0	47.4	36.0	41.9	41.2	41.1	36.7	33.8	33.5	34.1	34.9	32.6	34.1	41.7	35.5	33.5	36.7	37.2
	4	41.6	35.8	39.8	35.0	38.6	36.1	34.9	32.7	34.2	33.1	34.3	33.1	35.8	33.9	32.0	33.9	35.3
	0	48.3	36.3	43.8	38.6	42.9	37.3	33.4	33.3	34.5	34.1	34.0	33.9	43.0	37.7	33.2	36.2	37.5
DMOE	4	41.2	35.2	40.5	35.2	39.0	35.8	35.2	33.9	35.4	33.9	33.3	33.6	37.7	35.1	32.1	34.0	35.7
PLOOM	0	49.2	36.6	47.7	47.0	45.2	37.8	34.9	33.3	35.6	33.6	33.7	35.3	42.9	42.2	34.1	38.4	39.2
BLOOM _{1.7B}	4	46.3	34.7	43.1	40.9	45.0	35.3	38.0	32.9	35.0	33.1	32.9	31.2	37.9	38.4	32.6	35.5	37.1
	0	49.4	40.8	46.7	42.6	43.5	42.4	33.7	33.5	35.1	34.3	37.4	32.7	42.6	38.6	34.9	38.6	39.2
BLOOM _{1.7B} + Fie-train	4	45.0	37.3	40.4	37.8	42.4	38.8	35.4	34.0	35.2	33.7	34.3	33.4	37.5	36.8	34.4	36.6	37.1
Bronch Train Mix	0	49.7	43.4	46.0	41.4	44.1	41.4	33.8	33.7	34.5	35.8	35.4	31.8	44.5	38.0	35.5	37.1	39.1
DI AUCII- ITAIII-IVIIX	4	44.7	38.4	41.2	37.3	41.5	38.2	35.3	34.4	34.9	33.6	33.8	33.6	37.8	35.9	34.3	34.1	36.8
	0	50.6	42.6	$^{}_{45.4}$	44.3	43.1	41.3	34.6	33.5	35.2	37.1	35.1	34.3	44.7	39.2	36.2	39.7	39.8
DIMOE	4	44.9	36.9	40.6	38.2	41.8	39.2	37.4	33.9	36.0	36.2	35.9	32.8	37.7	36.8	34.5	36.7	37.5

Table 17: In-context learning results on XNLI across all languages. "**High**", "**Medium**" and "**Low**" denotes the available amount of linguistic resources. [†] denotes the unseen language in the pre-training corpus of BLOOM.

				Hi	gh			Medium	
Model	#shot	de†	en	es	fr	ja†	zh	ko†	Avg
PLOOM	0	49.4	49.9	50.4	52.8	52.8	54.1	51.0	51.5
BLOOM _{560M}	4	52.5	50.0	49.7	51.9	51.3	52.5	49.7	51.1
	0	49.7	50.2	50.7	54.8	55.7	55.1	54.1	52.9
$BLOOM_{560M}$ + Pie-train	4	50.9	51.5	51.1	51.9	50.3	54.1	51.3	51.6
	0	51.3	49.1	50.9	54.6	56.2	55.3	54.7	53.1
Branch-Train-Mix	4	48.3	50.5	53.0	52.3	50.1	55.1	50.4	51.4
	0	51.4	51.1	51.2	54.6	54.9	55.2	54.0	53.2
DMoE	4	51.3	50.1	52.4	52.8	51.8	54.8	52.2	52.2
	0	52.6	53.8	50.7	54.9	55.7	54.8	54.8	53.9
BLOOM _{1.7B}	4	48.9	50.4	49.8	51.4	50.1	50.4	52.8	50.5
	0	53.3	51.1	52.7	54.9	55.9	54.9	53.5	53.7
$BLOOM_{1.7B} + Pre-train$	4	51.4	48.6	51.6	53.2	54.0	53.2	50.8	51.8
	0	51.3	53.1	52.8	54.8	55.8	55.3	51.7	53.5
Branch-Train-Mix	4	50.0	49.4	52.2	53.2	50.3	52.9	51.2	51.3
	0	53.0	53.7	52.8	54.8	55.9	55.4	53.0	54.1
DMoE	4	48.8	49.2	50.9	54.6	54.7	54.6	52.5	52.2

Table 18: In-context learning results on PAWS-X across all languages. "**High**" and "**Medium**" denotes the available amount of linguistic resources. [†] denotes the unseen language in the pre-training corpus of BLOOM.

		High			Medium				Low		Ex-	Low	
Model	#shot	zh	id	it†	$^{\rm th^{\dagger}}$	tr†	vi	et [†]	sw	ta	ht [†]	qu^\dagger	Avg
BLOOM	0	57.6	60.0	52.4	53.0	52.8	61.0	48.0	52.4	56.4	50.8	49.0	53.9
BEOOM560M	4	57.4	60.6	50.2	53.0	50.6	59.2	49.4	50.6	56.4	51.6	48.6	53.4
PLOOM Pro train	0	53.6	57.2	54.4	53.8	51.6	58.8	52.0	51.4	57.0	49.0	50.4	53.6
BLOOM560M + FIC-train	4	54.4	56.8	54.0	53.8	52.8	58.0	52.2	50.8	56.6	52.2	49.8	53.8
Propoh Troin Mir	0	55.8	57.4	54.4	56.2	53.6	58.8	50.2	53.0	54.6	49.8	51.6	54.1
Branch-Train-Mix	4	55.0	57.2	53.2	55.4	52.8	61.2	50.8	52.0	55.6	49.6	50.4	53.9
	0	55.8	59.0	54.2	55.6	53.2	58.6	53.2	51.2	55.6	52.4	49.2	54.4
DMOE	4	56.6	57.4	53.6	57.0	52.8	59.6	52.6	51.0	56.0	52.4	52.4	54.7
PL OOM	0	61.4	63.2	52.4	53.2	53.0	66.2	47.4	51.8	56.4	50.4	50.8	55.1
BLOOM _{1.7B}	4	63.8	62.0	51.2	53.0	52.0	66.2	49.2	52.0	57.0	51.0	50.2	55.2
	0	58.6	61.4	52.6	55.0	52.4	61.8	49.6	54.2	56.0	53.4	50.0	55.0
$BLOOM_{1.7B}$ + Pre-train	4	60.4	61.6	53.0	55.2	51.4	63.4	50.0	54.8	56.2	51.8	50.0	55.3
	0	58.6	61.2	55.2	55.2	54.2	62.6	51.0	52.6	55.2	54.0	51.4	55.6
Branch-Train-Mix	4	59.6	61.4	56.0	53.8	52.2	63.8	50.8	54.0	56.6	50.4	51.8	55.5
	0	59.6	62.8	54.2	56.2	54.8	63.6	51.2	54.2	56.0	52.6	51.2	56.0
DMOE	4	60.8	60.2	53.6	56.2	53.8	63.0	51.2	53.4	55.2	54.8	50.6	55.7

Table 19: In-context learning results on XCOPA across all languages. "**High**", "**Medium**", "**Low**" and "**Ex-Low**" denotes the available amount of linguistic resources. [†] denotes the unseen language in the pre-training corpus of BLOOM.

			Hi	igh		Meo	lium		Low		Ex-	Low	
Model	#shot	en	es	ru†	zh	ar	id	hi	sw	te	eu	my^{\dagger}	Avg
BLOOM 560M	0	59.9	55.9	48.4	55.1	52.5	55.3	55.1	49.9	55.1	53.5	47.3	53.5
DEC CH1500M	4	59.0	54.3	48.6	54.3	49.9	54.9	53.3	49.6	56.5	51.8	46.9	52.6
BLOOM cont + Pre-train	0	59.1	55.1	51.6	54.0	50.4	55.6	54.7	52.9	55.3	54.2	49.4	53.8
BEOOM560M + I IC-train	4	57.8	54.3	49.3	53.9	48.5	53.7	53.5	52.5	54.8	52.8	48.4	52.7
Branch Train Mix	0	59.2	56.1	51.8	53.6	50.6	55.2	53.8	52.5	55.7	54.9	48.2	53.8
Branch- Italii-Wix	4	58.5	54.6	51.4	53.5	49.4	54.7	53.6	51.6	55.7	52.9	47.9	53.1
	0	59.0	56.3	51.4	54.7	51.0	55.7	54.3	52.7	55.8	54.7	49.0	54.1
DWOE	4	58.6	54.9	50.5	54.3	50.6	54.5	53.8	52.2	55.7	53.9	48.4	53.4
PL OOM	0	64.4	61.0	50.3	58.1	54.8	59.9	56.9	52.1	56.6	54.9	47.0	56.0
BLOOM _{1.7B}	4	65.1	61.7	50.0	58.2	53.7	59.0	56.5	51.8	55.4	53.3	45.9	55.5
BLOOM Dra train	0	63.7	60.6	52.4	57.0	54.5	58.0	55.7	54.5	57.1	56.7	49.9	56.4
$BLOOM_{1.7B}$ + Pre-train	4	63.1	60.0	51.7	56.7	54.7	58.3	55.3	55.0	57.0	54.9	49.4	56.0
Bronch Troin Mir	0	62.6	60.2	54.0	57.2	55.1	58.2	56.3	55.0	57.2	55.3	49.2	56.4
Dranch-Train-Mix	4	64.5	60.1	52.8	56.5	53.9	58.6	55.9	54.9	57.6	55.1	48.3	56.2
	0	63.4	60.4	54.3	57.0	53.6	58.8	56.8	55.1	57.8	55.5	49.4	56.6
DIMOE	4	62.3	59.6	53.3	57.1	55.3	57.6	56.1	54.9	57.4	55.1	48.4	56.1

Table 20: In-context learning results on XStoryCloze across all languages. "**High**", "**Medium**", "**Low**" and "**Ex-Low**" denotes the available amount of linguistic resources. [†] denotes the unseen language in the pre-training corpus of BLOOM.

				High			Medium	
Model	#shot	en	fr	ru†	zh	ja†	pt	Avg
BLOOM _{560M}	0	54.0	51.8	50.8	51.7	62.3	51.3	53.7
	4	53.6	48.2	50.1	52.4	61.7	53.6	53.3
BLOOM Pre-train	0	52.9	55.4	50.2	52.1	63.1	55.9	54.9
DECOM _{560M} + 11c-train	4	53.7	48.2	51.1	53.7	64.5	51.7	53.8
Propoh Train Mix	0	52.9	54.2	49.8	54.9	61.5	52.9	54.4
Branch- Ham-Mix	4	54.5	51.8	49.4	55.9	62.5	51.0	54.2
	0	53.2	51.8	50.7	57.8	63.3	53.6	55.1
DWOE	4	53.7	55.4	50.2	55.6	64.3	51.3	55.1
DL OOM	0	55.7	50.6	50.8	54.3	65.9	53.2	55.1
BLOOM1.7B	4	56.1	51.8	51.8	54.3	66.7	52.1	55.5
	0	55.1	51.8	51.8	54.6	65.3	54.4	55.5
BLOOM _{1.7B} + Pie-train	4	55.4	53.0	51.2	54.6	65.5	55.1	55.8
Bronch Troin Mix	0	55.1	51.8	50.6	55.2	65.3	55.5	55.6
DIANCII- ITAIII-IVIIX	4	55.7	53.0	50.8	55.6	64.9	54.8	55.8
	0	54.6	50.6	52.6	57.1	66.7	57.0	56.4
DWOE	4	56.0	53.0	51.2	56.5	67.1	54.8	56.4

Table 21: In-context learning results on XWinograd across all languages. "**High**" and "**Medium**" denotes the available amount of linguistic resources. [†] denotes the unseen language in the pre-training corpus of BLOOM.

Figure 9: The language similarity matrices calculated by the parameter derivation at different fine-tuning steps using BLOOM_{560M}.

Name	License
Transformers	Apache 2.0 license
X-ELM	Apache 2.0 license
lm-evaluation-harness	MIT license
matplotlib	PSF license
Bloom	BigScience RAIL 1.0 license
Gemma	Gemma license
CulturaX	ODC-BY and CC0 license
MADLAD-400	CC-BY-4.0 license

Table 22: Licenses of scientific artifacts involved in this work.

ISO 639-1/2	Language	Family	ISO 639-1/2	Language	Family
am	Amharic	Afro-Asiatic, Semitic	10	Lao	Kra-Dai. Tai
ar*	Arabic	Afro-Asiatic Semitic	his	Mizo	Sino-Tibetan Tibeto-Burman
av	Avaric	Northeast Caucasian, Avar-Andic	lv	Latvian	Indo-European, Balto-Slavic
az	Azerbaijani	Turkic, Common Turkic	mg	Malagasy	Austronesian, Malavo-Polynesian
be	Belarusian	Indo-European, Balto-Slavic	mi	Maori	Austronesian, Malayo-Polynesian
bn*	Bangla	Indo-European, Indo-Iranian	mk	Macedonian	Indo-European, Balto-Slavic
bo	Tibetan	Sino-Tibetan, Tibeto-Burman	ml	Malayalam	Dravidian, Southern
br	Breton	Indo-European, Celtic	mn	Mongolian	Mongolic, Central Mongolic
ca	Catalan	Indo-European. Italic	mr	Marathi	Indo-European, Indo-Iranian
ce	Chechen	Northeast Caucasian, Nakh	ms	Malay	Austronesian, Malayo-Polynesian
ceb	Cebuano	Austronesian, Malayo-Polynesian	mt	Maltese	Afro-Asiatic, Semitic
ckb	Central Kurdish	Indo-European, Indo-Iranian	mv	Burmese	Sino-Tibetan, Tibeto-Burman
cnh	Chin Haka	Sino-Tibetan, Tibeto-Burman	ne	Nepali	Indo-European, Indo-Iranian
co	Corsican	Indo-European, Italic	nl*	Dutch	Indo-European, Germanic
cs	Czech	Indo-European, Balto-Slavic	no	Norwegian	Indo-European, Germanic
da	Danish	Indo-European, Germanic	nv	Chewa	Niger-Congo, Atlantic-Congo
de*	German	Indo-European, Germanic	00	Occitan	Indo-European. Italic
dv	Divehi	Indo-European Indo-Iranian	om	Oromo	Afro-Asiatic Cushitic
ee	Ewe	Niger-Congo Atlantic-Congo	05	Ossetian	Indo-Furopean Indo-Iranian
el	Greek	Indo-European Graeco-Phrygian	na	Punjahi	Indo-European, Indo-Iranian
en	English	Indo-European, Graeco-i in ygian	pa	Papiamento	Portuguese Creole Afro-Portuguese
en	English	Indo European, Italic	pap	Polish	Indo European Balto Slavic
<u>eo</u>	Spanish	Indo European, Italic	pi	Pashto	Indo European, Indo Iranian
es	Spanish	Uralia Einna Uaria	ps	Portuguese	Indo European, Indo-Italia
et	Basqua	Language isolate	pt	Pomonch	Indo European, Italia
eu	Dasque	Language Isolate	m	Romansn	Indo-European, Italia
ia c	Finnish	Indo-European, Indo-Iranian	ro *	Romanian	Indo-European, Italic
П 61	Finnish	Orane, Finno-Ogrie	ru	Russian	Indo-European, Balto-Slavic
111 6-	Filipino	Austronesian, Malayo-Polynesian	sa	Sanskrit	Tradice Common Tradice
10 6*	Faroese	Indo-European, Germanic	san	Yakut	Iurkie, Common Iurkie
IT C-	French Western Erisien	Indo-European, Italic	sa	Sindni Na stla sva Gassi	Indo-European, Indo-Iranian
IY	western Frisian	Indo-European, Germanic	se	Northern Sami	Uranc, Sami
gd	Scottish Gaelic	Indo-European, Celtic	\$1	Slovenian	Indo-European, Balto-Slavic
gı	Galician	Indo-European, Italic	sm	Samoan	Austronesian, Malayo-Polynesian
gre	Ancient Greek	Indo-European, Hellenic	sn	Snona	Niger-Congo, Atlantic-Congo
gsw	Swiss German	Indo-European, Germanic	so	Somali	Afro-Asiatic, Cusnitic
gu	Gujarati	Indo-European, Indo-Iranian	sr	Serbian	Niege Canage Atlantic Canage
na h	Hausa	Arro-Asiatic, Chadic	st	Somo	Niger-Congo, Atlantic-Congo
haw	Hawaiian	Austronesian, Malayo-Polynesian	su	Sundanese	Austronesian, Malayo-Polynesian
ne	Hebrew	Afro-Asiatic, Semitic	sw	Swanili	Niger-Congo, Atlantic-Congo
hi ^	Hindi	Indo-European, Indo-Iranian	ta^	Tamil	Dravidian, Southern
hil	Hiligaynon	Austronesian, Malayo-Polynesian	te	Telugu	Dravidian, Southern
hmn	Hmong	Hmong-Mien, Hmongic	tet	Tetum	Austronesian, Malayo-Polynesian
ht	Haitian Creole	French Creole, Circum-Caribbean French	tg	Tajik	Indo-European, Indo-Iranian
hu	Hungarian	Uralic, Finno-Ugric	th*	Thai	Kra-Dai, Tai
id*	Indonesian	Austronesian, Malayo-Polynesian	ti	Tigrinya	Afro-Asiatic, Semitic
ig	Igbo	Niger-Congo, Atlantic-Congo	tk	Turkmen	Turkic, Common Turkic
ilo	Iloco	Austronesian, Malayo-Polynesian	to	Tongan	Austronesian, Malayo-Polynesian
is	Icelandic	Indo-European, Germanic	tr	Turkish	Turkic, Common Turkic
it*	Italian	Indo-European, Italic	ts	Tsonga	Niger-Congo, Atlantic-Congo
ja*	Japanese	Japonic	tt	Tatar	Turkic, Common Turkic
jv	Javanese	Austronesian, Malayo-Polynesian	tyv	Tuvan	Turkic, Common Turkic
ka	Georgian	Kartvelian, Karto-Zan	udm	Udmurt	Uralic, Permic
kaa	Karakalpak	Turkic, Common Turkic	ug	Uyghur	Turkic, Common Turkic
kbd	Kabardian	Northwest Caucasian, Circassian	uk*	Ukrainian	Indo-European, Balto-Slavic
kha	Khasi	Austroasiatic, Khasi-Palaungic	ur*	Urdu	Indo-European, Indo-Iranian
kk	Kazakh	Turkic, Common Turkic	uz	Uzbek	Turkic, Common Turkic
kl	Greenlandic	Eskaleut, Eskimo	vec	Venetian	Indo-European, Italic
km	Khmer	Austroasiatic, Khmer	vi*	Vietnamese	Austroasiatic, Vietic
kn	Kannada	Dravidian, Proto-Dravidian	xh	Xhosa	Niger-Congo, Atlantic-Congo
ko*	Korean	Koreanic, Korean	yi	Yiddish	Indo-European, Germanic
ky	Kyrgyz	Turkic, Common Turkic	yo	Yoruba	Niger-Congo, Atlantic-Congo
la	Latin	Indo-European, Italic	yue	Yue Chinese	Sino-Tibetan, Sinitic
lb	Luxembourgish	Indo-European, Germanic	zh*	Chinese	Sino-Tibetan, Sinitic
lg	Ganda	Niger-Congo, Atlantic-Congo	zu	Zulu	Niger-Congo, Atlantic-Congo

Table 23: Details of language codes in this work. * denotes the language used in the 18 languages experiment.

Figure 10: The distribution of parameter deviation $\|\Delta \theta^x\|$ across layers of BLOOM_{560M} for 18 languages.

ar	1.00	0.28	0.15	0.36			0.14	0.10	0.08	0.11	0.11		0.16	0.05	0.08		0.35	
hn		1.00	0.11		0.36	0.19	0.10	0.08	0.07	0.08	0.08			0.04	0.06			0.17
de	0.15	0.11	1.00	0.23	0.13	0.17		0.14	0.10		0.15	0.09	0.08	0.07	0.12	0.10	0.15	0.10
Ψ	0.36			1.00			0.21	0.11	0.08	0.17	0.12	0.17	0.13	0.05	0.08	0.17	0.39	
E.		0.36	0.13		1.00		0.12	0.09	0.08	0.10	0.09			0.05	0.07			0.20
Pi		0.19	0.17	0.34		1.00	0.15	0.08	0.06	0.13	0.10	0.14	0.11	0.04	0.07	0.18	0.35	0.17
÷	0.14	0.10		0.21	0.12	0.15	1.00	0.11	0.07	0.20	0.10	0.09	0.07	0.04	0.10	0.09	0.14	0.09
<u>, a</u>	0.10	0.08	0.14	0.11	0.09	0.08	0.11	1.00	0.18	0.10	0.11	0.09	0.07	0.09	0.09	0.10	0.10	0.13
ko	0.08	0.07	0.10	0.08	0.08	0.06	0.07	0.18	1.00	0.09	0.12	0.08	0.07	0.15	0.12	0.08	0.08	0.08
Ц	0.11	0.08		0.17	0.10	0.13	0.20	0.10	0.09	1.00	0.09	0.07	0.06	0.06	0.10	0.07	0.11	0.08
5	0.11	0.08	0.15	0.12	0.09	0.10	0.10	0.11	0.12	0.09	1.00	0.08	0.07	0.11	0.34	0.08	0.11	0.08
ta			0.09	0.17		0.14	0.09	0.09	0.08	0.07	0.08	1.00	0.39	0.04	0.06		0.18	0.14
fe	0.16		0.08	0.13	0.27	0.11	0.07	0.07	0.07	0.06	0.07	0.39	1.00	0.04	0.05	0.18	0.14	0.11
ţ	0.05	0.04	0.07	0.05	0.05	0.04	0.04	0.09	0.15	0.06	0.11	0.04	0.04	1.00	0.14	0.04	0.05	0.04
uk	0.08	0.06	0.12	0.08	0.07	0.07	0.10	0.09	0.12	0.10	0.34	0.06	0.05	0.14	1.00	0.06	0.07	0.06
п			0.10	0.17		0.18	0.09	0.10	0.08	0.07	0.08		0.18	0.04	0.06	1.00	0.21	0.15
Ņ	0.35		0.15	0.39	0.28	0.35	0.14	0.10	0.08	0.11	0.11	0.18	0.14	0.05	0.07	0.21	1.00	0.25
zh		0.17	0.10		0.20	0.17	0.09	0.13	0.08	0.08	0.08	0.14	0.11	0.04	0.06	0.15		1.00
	ar	bn	de	fr	hi	id	it	ia	ko	nl	ru	ta	te	th	uk	ur	vi	zh

Figure 11: The cosine similarity between 18 languages using all parameter deviation of BLOOM_{1.7B}.

Figure 12: The cosine similarity between 18 languages using the parameter deviation of $BLOOM_{1.7B}$ at the last 3 layers.

Figure 13: The cosine similarity between 18 languages using the parameter deviation of $Gemma_{2B}$ at the last 3 layers.

Figure 14: The cosine similarity between 18 languages using the parameter deviation of $BLOOM_{1.7B}$ on the MADLAD-400 multilingual corpus.

Figure 15: The router distribution of top-1 expert for texts in different languages on models trained with randomly initialized router.

Figure 16: The router distribution of top-1 expert for texts in different languages on models trained with router language classification loss.