
DiffuserLite: Towards Real-time Diffusion Planning

Zibin Dong1∗ Jianye Hao1† Yifu Yuan1 Fei Ni1 Yitian Wang2 Pengyi Li1 Yan Zheng1
1College of Intelligence and Computing, Tianjin University

2UC San Diego Jacobs School of Engineering

D
iff
us
er
L
ite

D
D

D
iff
us
er

D
iff
us
er
L
ite

D
D

D
iff
us
er

D
iff
us
er
L
ite

D
D

D
iff
us
er

D
iff
us
er
L
ite

D
D

D
iff
us
er

D
iff
us
er
L
ite

D
D

D
iff
us
er

1.3Hz 0.4Hz 122Hz 4.1M 59M 2.7M

Figure 1: Performance overview. We present DiffuserLite, a lightweight framework that utilizes progressive
refinement planning to reduce redundant information generation and achieves real-time diffusion planning.
DiffuserLite significantly outperforms predominant frameworks, Diffuser and DD, regarding scores, inference
time, and model size on three popular D4RL benchmarks. The decision-making frequency of DiffuserLite
achieves 122.2Hz, which is 112.7 times higher than predominant frameworks.

Abstract

Diffusion planning has been recognized as an effective decision-making paradigm
in various domains. The capability of generating high-quality long-horizon trajecto-
ries makes it a promising research direction. However, existing diffusion planning
methods suffer from low decision-making frequencies due to the expensive itera-
tive sampling cost. To alleviate this, we introduce DiffuserLite, a super fast and
lightweight diffusion planning framework, which employs a planning refinement
process (PRP) to generate coarse-to-fine-grained trajectories, significantly reducing
the modeling of redundant information and leading to notable increases in decision-
making frequency. Our experimental results demonstrate that DiffuserLite achieves
a decision-making frequency of 122.2Hz (112.7x faster than predominant frame-
works) and reaches state-of-the-art performance on D4RL, Robomimic, and FinRL
benchmarks. In addition, DiffuserLite can also serve as a flexible plugin to increase
the decision-making frequency of other diffusion planning algorithms, providing a
structural design reference for future works. More details and visualizations are
available at project website.

1 Introduction

Diffusion models (DMs) are powerful generative models that demonstrate promising performance
across various domains [52, 44, 29, 22]. Motivated by their remarkable capability in complex
distribution modeling and conditional generation, researchers have developed a series of works
applying diffusion models for decision-making tasks in recent years [55]. DMs can play various
roles in decision-making tasks, such as acting as planners to make better decisions from a long-
term perspective [20, 1, 8, 36, 10], serving as policies to support complex multimodal-distribution
modeling [38, 50, 6], and working as data synthesizers to assist reinforcement learning (RL) training
[33, 51, 16], etc. Among these roles, diffusion planning is the most widely applied paradigm [55].
Unlike auto-regressive planning in previous model-based RL approaches [14, 49, 15], diffusion
planning avoids severe compounding errors by directly generating the entire trajectory rather than
one-step transition [55]. Also, its powerful conditional generation capability allows planning at the

∗Contact me at zibindong@outlook.com
†Correspondence to: Jianye Hao (jianye.hao@tju.edu.cn), Yan Zheng (yanzheng@tju.edu.cn)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://diffuserlite.github.io/

trajectory level without being limited to step-wise shortsightedness. The diffusion planning paradigm
has achieved state-of-the-art (SOTA) performance in various offline RL tasks, including single-agent
RL [27], multi-agent RL [54], meta RL [36], and more.

Figure 2: Comparison of one-shot planning (top) and
PRP (down) on Antmaze. The former directly gener-
ates plans with a temporal horizon of 129. The latter
consists of three coarse to fine-grained levels with tempo-
ral horizons of 0-128, 0-32, and 0-8, and temporal jumps
of 32, 8, and 1, respectively. The visualization in the fig-
ure illustrates the x-y coordinates of 100 plans. It shows
that one-shot planning exhibits a significant amount of
redundant information and a large search space. In con-
trast, PRP demonstrates better plan consistency and a
smaller search space.

One key issue that diffusion planning faces is
the expensive iterative sampling cost. As de-
picted in fig. 1, the decision-making frequen-
cies (number of actions inferred per second)
of two predominant diffusion planning frame-
works, Diffuser [20] and Decision Diffuser (DD)
[1], are recorded as 1.3Hz and 0.4Hz, respec-
tively. Such a low decision frequency fails to
meet the requirements of numerous real-world
applications, e.g. real-time robot control [48]
and game AI [39]. The low decision frequency
is primarily attributed to modeling a denoising
process for a long-horizon trajectory distribu-
tion, which requires a heavy neural network
backbone and multiple forward passes. A ques-
tion may arise whether the generation of com-
plete long-horizon trajectories is necessary for
successful planning. Experimental results in-
dicate that it is not, for the detailed trajectory
information in long-horizon segments is highly
redundant. As shown in fig. 2, a motivation ex-
ample in Antmaze, the disparities between plans
increase as the horizon grows, leading to poor
consistency between plans in consecutive steps. Besides, in practice, agents often struggle to reach
the planned distant state. These facts argue that while long-horizon planning helps improve foresight,
it introduces redundant information in distinct parts. The details in closer parts are more crucial.
Ignoring the modeling of these redundant parts in the diffusion planning process will significantly
reduce the complexity of the trajectory distribution to be fitted, making it possible to build a fast and
lightweight diffusion planning framework.

Motivated by these insights, we propose to build a plan refinement process (PRP) to speed up diffusion
planning. First, we perform “rough” planning, where jumpy planning is executed, only considering
the states at intervals that are far apart and ignoring other individual states. Then, we refine a small
portion of the plan, focusing on the steps closer to the current state. By doing so, we fill in the
execution details between two states far apart, gradually refining the plan to the step level. This
approach has three advantages: 1) It reduces the length of the sequences generated by the diffusion
model, simplifying the complexity of the probability distribution to be fitted. 2) It significantly
reduces the search space of plans, making it easier for the planner to find well-performed trajectories.
3) Since only the first action of each step is executed, rough planning of steps further away causes no
noticeable performance drop.

Diffusion planning with PRP, which we call DiffuserLite, is simple, fast, and lightweight. Our
experiments have demonstrated the effectiveness of PRP, significantly increasing decision-making
frequency while achieving SOTA performance. Moreover, it can be easily adapted to other existing
diffusion planning methods. In summary, our contributions are as follows:

• We introduce the plan refinement process (PRP) for coarse-to-fine-grained trajectory genera-
tion, reducing the modeling of redundant information.

• We introduce DiffuserLite, a lightweight diffusion planning framework, which significantly
increases decision-making frequency by employing PRP.

• DiffuserLite is a simple and flexible plugin that can be easily combined with other diffusion
planning algorithms.

• DiffuserLite achieves a super high decision-making frequency (122.2Hz, 112.7x faster than
predominant frameworks) and SOTA performance on multiple benchmarks in D4RL.

2

2 Preliminaries

Problem Setup: Consider a system governed by discrete-time dynamics ot+1 = f(ot, at) at state ot
given an action at. A trajectory x = [x0, · · · , xT−1] can be either a sequence of states xt = ot or
state-action pairs xt = (ot, at), where T is the planning horizon. Each trajectory can be mapped to a
property c. Diffusion planning aims to find a trajectory that exhibits a property closest to the target:

x∗ = argmin
x

d(C(x), ctarget) (1)

where d is a certain distance metric, C is a critic that maps a trajectory to the property it exhibits,
and ctarget is the target property. The action to be executed at is then extracted from the selected
trajectory (state-action sequences) or predicted by an inverse dynamic model at = h(ot, ot+1) (state-
only sequences). In the context of offline RL, it is a common choice to define the property as the
corresponding cumulative reward C(x) =

∑T−1
t=0 r(ot, at) in previous works [20, 1].

Diffusion Models assume an unknown trajectory distribution q0(x0), DMs define a forward process
{xs}s∈[0,S] with S > 0. Starting with x0, previous work [23] proved that one can obtain any xs by
solving the following stochastic differential equation (SDE):

dxs = f(s)xsds+ g(s)dws, x0 ∼ q0(x0) (2)

where ws is the standard Wiener process, and f(s) = d logαs

ds , g2(s) = dσ2
s

ds − 2σ2
s
d logαs

ds . Values of
αs, σs ∈ R+ depend on the noise schedule but keep the signal-to-noise-ratio (SNR) α2

s/σ
2
s strictly

decreasing [23]. While this SDE transforms q0(x0) into a noise distribution qS(xS) = N (0, I), one
can reconstruct trajectories from the noise by solving the reverse process of eq. (2). Previous work
[46] proved that solving its associated probability flow ODE can support faster sampling:

dxs

ds
= f(s)xs −

1

2
g2(s)∇x log qs(xs), xS ∼ qS(xS) (3)

in which score function ∇x log qs(xs) is the only unknown term and estimated by a neural network
−ϵθ(xs, s)/σs in practice. The parameter θ is optimized by minimizing the following objective:

L(θ) = Eq0(x0),q(ϵ),s[||ϵθ(xs, s)− ϵ||22] (4)

where ϵ ∼ q(ϵ) = N (0, I), xs = αsx0 + σsϵ. Various ODE solvers can be employed to solve
Equation (3), such as the Euler solver [2], RK45 solver [9], DPM solver [32], etc.

Conditional Sampling helps to generate trajectories exhibiting certain properties in a priori. There
are two main approaches: classifier-guidance (CG) [7] and classifier-free-guidance (CFG) [18]. CG
requires an additional classifier log pϕ(c|xs, s) to predict the log probability that a noisy trajectory
xs exhibits a given property c. The gradients from this classifier are then used to guide the solver:

ϵ̃θ(xs, s, c) := ϵθ(xs, s)− w · σs∇xs
log pϕ(c|xs, s) (5)

CFG does not require an additional classifier but uses a conditional noise predictor to guide the solver.

ϵ̃θ(xs, s, c) := w · ϵθ(xs, s, c) + (1− w) · ϵθ(xs, s) (6)

Increasing the value of guidance strength w leads to more property-aligned generation, but decreases
the legality of the generated trajectories [8].

3 Efficient Planning via Refinement

Diffuser [20] and DD [1] are two pioneering frameworks, upon which a vast amount of diffusion
planning works has been built [28, 26, 53]. Although the design details differ, they can be unified
into one paradigm. In the inference step, multiple candidate trajectories are first conditionally
sampled using the diffusion model. Then, a critic is used to select the optimal one that exhibits
the closest property to the target. Finally, the action to be executed is extracted. This paradigm
relies on multiple forwarding complex neural networks, resulting in extremely low decision-making
frequencies (typically 1-10Hz, or even less than 1Hz), severely hindering its real-world deployment.

3

Diffusion Denoising

Critic Selection𝒂𝒕

Inverse Dynamic

Gaussian Noise

Candidate States

Environment

Current State

Current Action

𝒐𝟎 𝒐𝑰𝟎 𝒐𝟐𝑰𝟎 𝒐𝑯𝟎%𝟏

𝒐𝟎 𝒐𝑰𝟎 𝒐𝟐𝑰𝟎 𝒐𝑯𝟎%𝟏

𝒐𝟎

Level 0

Diffusion Denoising

Critic Selection

𝒐𝟎 𝒐𝑯𝟏%𝟏

𝒐𝟎 𝒐𝑰𝟏 𝒐𝟐𝑰𝟏 𝒐𝑯𝟏%𝟏

𝒐𝟎 𝒐𝑰𝟏 𝒐𝟐𝑰𝟏 𝒐𝑯𝟏%𝟏

Level 1

Diffusion Denoising

Critic Selection

𝒐𝟎 𝒐𝑯𝑳"𝟏"𝟏

𝒐𝟎 𝒐𝟏 𝒐𝟐 𝒐𝑯𝑳"𝟏"𝟏

𝒐𝟎 𝒐𝟏 𝒐𝟐 𝒐𝑯𝑳"𝟏"𝟏

Level L-1

𝒐𝒕

Selected States

Figure 3: Overview of DiffuserLite. Observing the current state ot, level 0 of DiffuserLite fixes ot as o0 and
generates multiple candidate trajectories. A critic is then used to select the optimal one, in which oI0 is then
passed to the next level as its terminal oH1−1. The plan refinement process continues iteratively until the last
level with a temporal jump of IL−1 = 1. Finally, the action at to be executed is extracted using an inverse
dynamic model at = h(o0, o1).

The fundamental reason is the requirement for highly complex neural networks to model the complex
long-horizon trajectory distributions [55]. Although some works have explored using advanced ODE
solvers to reduce the sampling steps to around 5 [8], the time consumption of network forwarding is
still unacceptable. However, we notice that ignoring some redundant distant parts of the generated
plan can be a possible solution to address the issue. As shown in fig. 2, the disparities between plans
increase as the horizon grows, leading to poor consistency between the plans selected in consecutive
steps. Besides, agents often struggle to reach the distant states given by a plan in practice. Both facts
indicate that terms in distant parts of a plan become increasingly redundant, whereas the closer parts
are more crucial.

Regarding these findings, we aim to develop a progressive refinement planning (PRP) process. This
process initially plans a rough trajectory consisting of only key points spaced at equal intervals and
then progressively refines the first interval by generative interpolating. It is worth noting that this is
orthogonal to methods of identifying key points based on task semantic information [27]. Specifically,
our proposed PRP consists of L planning levels. At each level l ∈ {0, 1, · · · , L− 1}, starting from
the known first term x0, DMs plan rough trajectories x0:Hl:Il with temporal horizon Hl and temporal
jump Il. Then, the planned first key point xIl is passed to the next level as its terminal:

x0:Hl:Il : = [x0, xIl , x2Il · · · , xHl−1]

x0:Hl+1:Il+1
: =

[
x0, xIl+1

, x2Il+1
, · · · , xHl+1−1

]
xIl = xHl+1−1

(7)

By this design, only the first planned intervals are refined in the next level, and the other redundant
details are all ignored, resulting in a coarse-to-fine generation process. The progressive refinement
continues until the last level to extract an action. To support conditional sampling for each level, we
define the property of a rough trajectory x0:Hl:Il as the property expectation over the distribution of
all its completed trajectories X (x0:Hl:Il):

C(x0:Hl:Il) := Ex∼X (x0:Hl:Il
)[C(x)] (8)

PRP ensures that long-term planning maintains foresight while alleviating the burden of modeling
redundant information. As a result, it greatly contributes to reducing model size and improving
planning efficiency:

Simplifying the fitted distribution of DMs. The absence of redundant details in PRP allows for
a significant reduction in the complexity of the fitted distribution at each level. This reduction in
complexity enables us to utilize a lighter neural network backbone, shorter network input sequence
lengths, and a reduced number of denoising steps.

Reducing the plan-search space. Key points generated at former levels often sufficiently reflect the
quality of the entire trajectory, which allows the planner to focus more on finding distant key points
and planning actions for the immediate steps, reducing search space and complexity.

4

4 A Lite Architecture for Real-time Diffusion Planning

Employing PRP results in a new lightweight architecture for diffusion planning, which we refer to as
DiffuserLite. DiffuserLite can reduce the complexity of the fit distribution and significantly increase
the decision-making frequency, achieving 122Hz on average for the need of real-time control. We
present the architecture overview in fig. 3, provide pseudocode for both training and inference in
algorithm 1 and algorithm 2, and discuss detailed design choices in this section.

Diffusion model for each level: We train L diffusion models for all levels to generate state-only
sequences. We employ DiT [40] as the noise predictor backbone, instead of the more commonly used
UNet [43] due to the significantly reduced length of the generated sequences in each level (typically
around 5). This eliminates the need for 1D convolution to extract local temporal features. To adapt the
DiT backbone for temporal generation, we make minimal structural adjustments following [8]. For
conditional sampling, we utilize CFG instead of CG, as the slow gradient computation process of CG
reduces the frequency of decision-making. During the training phase, at each gradient step, we sample
a batch of H0-length trajectories, slice each of them into L sub-trajectories [x0:H0:1, · · · ,x0:HL−1:1],
evaluate their properties C(x0:Hl:1) as an estimation of C(x0:Hl:Il) for condition at each level, and
then slice the sub-trajectories into evenly spaced training samples x0:Hl:Il for training the diffusion
models. During the inference phase, as shown in fig. 3, diffusion models generate multiple candidate
plans level by level from 0 to L− 1, and the optimal one is selected by the critic C.

Critic design: The Critic C in DiffuserLite plays two important roles: providing generation conditions
during the diffusion training process and selecting the optimal plan from the candidates generated by
the diffusion model during inference. In the context of Offline RL, both Diffuser and DD adopt the
cumulative reward of a trajectory as the condition:

C(x) =
H−1∑
t=0

r(ot, at), (9)

where H is the temporal horizon. This design allows rewards from the offline RL dataset to be
utilized as a ground-truth critic for acquiring generation conditions during training. During inference,
an additional trained reward function is required to serve as the critic. The critic then helps select
the plan that maximizes the cumulative reward, as depicted in the lower part of fig. 3. However,
this design poses challenges in tasks with sparse rewards, as it can confuse diffusion models when
distinguishing better-performing trajectories, especially for short-horizon plans. To address this
challenge, we introduce an option to use the sum of discounted rewards and the value of the last state
as an additional property design:

C(x) =
H−2∑
t=0

γtr(ot, at) + γH−1V (oH−1), (10)

where V (ot) = maxEπ[
∑∞

τ=t γ
τ−trτ] represents the optimal value function [47] and can be

estimated by a neural network through various offline RL methods. In the context of other domains,
properties can be flexibly designed as needed, as long as the critic C can evaluate trajectories of
variable lengths. It is worth noting that previous diffusion planning algorithms widely support this
flexibility. In addition, it is even possible to skip the critic selection during inference, which is
equivalent to using a uniform critic, as used in DD.

Action extraction: After obtaining the optimal trajectory from the last level through critic selection,
we utilize an additional inverse dynamic model at = h(ot, ot+1) to extract the action to be executed.
This approach is suggested in [1].

Further speedup with rectified flow: DiffuserLite aims to achieve real-time diffusion planning
to support its application in real-world scenarios. Therefore, we introduce Rectified flow [30] for
further increasing the decision-making frequency. Rectified flow, an ODE on the time interval
[0, 1], causalizes the paths of linear interpolation between two distributions. If we define the two
distributions as trajectory distribution and standard Gaussian, we can directly replace the Diffusion
ODE with rectified flow to achieve the same functionality. The most significant difference is that
rectified flow learns a straight-line flow and can continuously straighten the ODE through reflow.
This straightness property allows for consistent and stable gradients throughout the flow, enabling the
generation of trajectories with very few sampling steps (in our experiments, we found that one-step

5

Table 1: Time consumption per step and frequency in D4RL. All results are obtained over 5 random seeds.
DiffuserLite achieves an average decision frequency of about 122Hz on the R2 backbone and 81Hz averaging
over three variations, which meets the requirements of real-time inference. Since the code for HDMI is not
open-source, we make every effort to reproduce HDMI with the original settings to test its runtime cost and thus
mark its results with underlines.

Environment Metric Diffuser DD HDMI DiffuserLite-D DiffuserLite-R1 DiffuserLite-R2

MuJoCo Runtime (s) 0.665 2.142 0.405 0.015 0.013 0.005
Frequency (Hz) 1.5 0.47 2.5 68.2 79.7 200.7

Kitchen Runtime (s) 0.790 2.573 0.407 0.017 0.015 0.010
Frequency (Hz) 1.3 0.4 2.5 58.7 66.0 103.2

Antmaze Runtime (s) 0.791 2.591 0.410 0.027 0.015 0.010
Frequency (Hz) 1.3 0.39 2.4 37.3 65.7 101.7

Average Runtime (s) 0.749 2.435 0.407 0.020 0.014 0.008
Average Frequency (Hz) 1.34 0.41 2.46 51.26 69.90 122.44

sampling is sufficient to produce good results). We consider rectified flow an optional backbone
for cases that prioritize decision frequency. In appendix B, we offer comprehensive explanations of
trajectory generation and training with rectified flow.

5 Experiments

0.08

0.86

1.0

1.0

0.12

0.80

0.96

1.0

0.06

0.66

0.88

1.0 0.20 0.97

0.77

0.44

233x faster

300x faster

228x faster

Figure 4: Runtime and performance comparison in
FrankaKitchen. The y-axis represents the number of
completed tasks (maximum of 4), and the x-axis repre-
sents the required wall-clock time. Task success rates
are presented in colored circles. All results are averaged
over 250 rollouts. DiffuserLite demonstrates significant
advantages in both wallclock time and success rate.

We explored the performance of the DiffuserLite
on various tasks on D4RL, Robomimic, and
FinRL [12, 34, 41], and aimed to answer the
following research questions (RQs): 1) To what
extent can DiffuserLite reduce the runtime cost?
2) How is the performance of DiffuserLite on
offline RL tasks? 3) Can DiffuserLite serve as a
flexible plugin for other diffusion planning al-
gorithms? 4) Can we summarize a list of simple
and clear design choices for DiffuserLite?

5.1 Experimental Setup

Benchmarks: We evaluate the algorithm on
various offline RL domains, including locomo-
tion in Gym-MuJoCo [4], real-world manipu-
lation in FrankaKitchen [13] and Robomimic
[34], long-horizon navigation in Antmaze [12],
and real-world stock trading in FinRL [41]. We
train all models using publicly available datasets
(see appendix A.1 for further details).

Baselines: Our comparisons mainly include the basic imitation learning algorithm BC, existing
offline RL methods CQL [25] and IQL [24], as well as two pioneering diffusion planning frameworks,
Diffuser [20] and DD [1]. Additionally, we compare with a state-of-the-art algorithm, HDMI [27],
which is improved based on DD. (Further details about each baseline and the sources of performance
results for each baseline across the experiments are presented in appendix A.2).

Backbones: As mentioned in Section 4, we implement three variations of DiffuserLite, based on
different backbones: 1) diffusion model, 2) rectified flow, and 3) rectified flow with an additional
reflow step. These variations will be used in subsequent experiments and indicated by the suffixes D,
R1, and R2, respectively. All backbones utilize three levels, with a total temporal horizon of 129 in
MuJoCo and Antmaze, and 49 in Kitchen. For more details about the hyperparameters selection for
DiffuserLite, please refer to appendix D.

Computing Power: All runtime results across our experiments are obtained on a server equipped
with an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz and an NVIDIA GeForce RTX3090.

6

Table 2: D4RL Performance. Results for DiffuserLite correspond to the mean and standard error over 5 random
seeds. We detail the sources for the performance of prior methods in appendix A.2. Following Diffuser [20], we
emphasize in bold scores within 5 percent of the maximum per task (≥ 0.95 · max).

Dataset Environment BC CQL IQL Diffuser DD HDMI DiffuserLite-D DiffuserLite-R1 DiffuserLite-R2

Medium-Expert
HalfCheetah 55.2 91.6 86.7 79.8 90.6 92.1 88.5± 0.4 90.8± 0.9 84.0± 2.9
Hopper 52.5 105.4 91.5 107.2 111.8 113.5 111.6± 0.2 110.3± 0.3 110.1± 0.5
Walker2d 107.5 108.8 109.6 108.4 108.8 107.9 107.1± 0.6 106.4± 0.3 106.1± 0.7

Medium
HalfCheetah 42.6 44.0 47.4 44.2 49.1 48.0 48.9± 1.1 48.6± 0.7 45.3± 0.5
Hopper 52.9 58.5 66.3 58.5 79.3 76.4 100.9± 1.1 99.5± 0.7 96.8± 0.3
Walker2d 75.3 72.5 78.3 79.7 82.5 79.9 88.8± 0.6 85.1± 0.5 83.7± 1.0

Medium-Replay
HalfCheetah 36.6 45.5 44.2 42.2 39.3 44.9 41.6± 0.4 42.9± 0.4 39.6± 0.4
Hopper 18.1 95.0 94.7 96.8 100.0 99.6 96.6± 0.3 97.8± 1.3 93.2± 0.7
Walker2d 26.0 77.2 73.9 61.2 75.0 80.7 90.2± 0.5 84.6± 1.7 78.2± 1.7

Average 51.9 77.6 77 75.3 81.8 82.6 86.0 85.1 81.9

Mixed Kitchen 51.5 52.4 51.0 50.0 65 69.2 73.6± 0.7 71.9± 1.4 64.8± 1.8
Partial Kitchen 38.0 50.1 46.3 56.2 57 − 74.4± 0.6 69.9± 0.7 71.4± 1.2

Average 44.8 51.3 48.7 53.1 61.0 − 74.0 70.9 68.1

Play Antmaze-Medium 0.0 65.8 65.8 0.0 0.0 − 78.0± 2.2 88.0± 2.2 88.8± 3.2
Antmaze-Large 0.0 20.8 42.0 0.0 0.0 − 72.0± 6.2 72.4± 2.3 69.4± 6.5

Diverse Antmaze-Medium 0.8 67.3 73.8 0.0 0.0 − 92.4± 3.2 89.2± 2.0 87.6± 2.0
Antmaze-Large 0.0 20.5 30.3 0.0 0.0 − 68.0± 2.8 80.4± 5.1 75.2± 3.5

Average 0.2 43.6 53.0 0.0 0.0 − 77.6 82.5 80.3

Runtime per action (second) − − − 0.749 2.435 − 0.020 0.014 0.008

Table 3: Robomimic Performance.
Dataset BC CQL BCQ IRIS DiffuserLite-D

Lift-PH 100.0 92.7 100.0 100.0 100.0
Can-PH 95.3 38.0 88.7 100.0 100.0
Square-PH 78.7 5.3 50.0 78.7 81.8

Average 91.3 45.3 79.6 92.9 93.9

Table 4: FinRL Performance.
Dataset BC CQL MB-PPO DD HDMI DiffuserLite-D

FinRL-H-999 270 444 787 782 801 796
FinRL-M-999 504 621 698 712 754 762

Average 387 533 743 747 778 779

5.2 Runtime Cost (RQ1)

The primary objective of DiffuserLite is to increase the decision-making frequency. Therefore, we
first test the wall-clock runtime cost (time consumption for one action inference) of DiffuserLite
under three different backbones, compared to Diffuser, DD, and HDMI, to determine the extent of
the advantage gained. We present the test results in table 1 3, which shows that the runtime cost
of DiffuserLite with D, R1, and R2 backbones is only 1.23%, 0.89%, and 0.51% of the average
runtime cost of Diffuser and DD, respectively. The remarkable improvement in decision-making
frequency does not harm its performance. As shown in fig. 4, compared to the average success
rates of Diffuser (purple line) and DD (grey line) on four FrankaKitchen sub-tasks, DiffuserLite
improves them by [41.5%, 56.2%, 55.3%, 8.7%], respectively, while being 200-300 times faster.
These improvements are attributed to ignoring redundant information in PRP, which reduces the
complexity of the distribution that the backbone generative model needs to fit, allowing us to employ
a light neural network backbone and use fewer sampling steps to conduct perfect-enough planning. Its
success in FrankaKitchen, a realistic robot manipulation scenario, also reflects its potential application
in real-world settings.

5.3 Performance (RQ2)

DiffuserLite is then evaluated on various popular domains in D4RL, Robomimic, and FinRL, to
test how well it can maintain the performance when significantly increasing the decision-making
frequency. All results are presented in table 2, table 3, and table 4, and the detailed descriptions of
the sources of all baseline results are listed in appendix A.2. Results in D4RL table show significant
performance improvements across all benchmarks with high decision-making frequency. This
advantage is particularly pronounced in FrankaKitchen and Antmaze environments, indicating that
the structure of DiffuserLite enables more accurate and efficient planning in long-horizon tasks, thus
yielding greater benefits. In the MuJoCo environments, more notable advantages are shown on
sub-optimal datasets, i.e., “medium” and “medium-replay” datasets. This sub-optimal advantage can
be attributed to the PRP planning structure, which does not require one-shot generation of a consistent
long trajectory, but explicitly demands stitching. This allows for better utilization of high-quality
segments in low-quality datasets, leading to improved performance. Results in Robomimic and

3Since the code for HDMI is not open-source, we make every effort to reproduce HDMI with the original
settings to test its runtime cost and thus underline its results in table 1.

7

Table 5: Integrate with DiffuserLite as a plugin. We refer to AlignDiff with DiffuserLite plugin as AlignDiff-
Lite. A larger value of MAE Area indicates a stronger alignment capability. AlignDiff-Lite greatly increases
decision-making frequency, while only experiencing a small performance drop.

Metric GC AlignDiff AlignDiff-Lite

MAE Area 0.319± 0.005 0.621± 0.023 0.601± 0.018 (3.2% ↓)
Frequency (Hz) − 6.9 45.5 (560% ↑)

Table 6: Performance of DiffuserLite with various PRP design choices. The left part shows a comparison
with 2/3/4 planning levels and the right part shows a comparison with 4 temporal horizon designs. Results
correspond to the mean and standard error over 5 random seeds, the highest scores are emphasized in bold, and
the default design choices used across other experiments are underlined.

Temporal horizon of each level
Planning horizon=129 [9,17] [5,5,9] [5,3,5,5] [3,5,17] [5,5,9] [9,5,5] [17,5,3]

HalfCheetah-me 75.6± 8.3 88.5 ± 0.4 88.3± 0.5 85.6± 0.6 88.5± 0.4 88.6± 0.7 89.0± 1.7
Antmaze-ld 0.0± 0.0 68.0± 2.8 69.3± 3.4 34.7± 4.1 68.0 ± 2.8 67.3± 3.4 34.0± 4.3

Planning horizon=49 [7,9] [4,5,5] [3,4,3,5] [3,3,13] [4,5,5] [5,5,4] [13,3,3]

Kitchen-p 72.8± 0.5 74.4 ± 0.6 72.3± 1.9 66.7± 1.7 74.4 ± 0.6 74.2± 0.6 31.7± 2.7

FinRL table are obtained by models trained on real-world datasets, and demonstrate that DiffuserLite
continues to exhibit its superiority in these real-world tasks, achieving performance comparable to
SOTA algorithms. This illustrates the potential application of DiffuserLite in real-world scenarios.

5.4 Flexible Plugin (RQ3)

To test the capability of DiffuserLite as a flexible plugin to support other diffusion planning algorithms,
Aligndiff [8] is selected as a non-reward-maximizing algorithm backbone, and integrated with
DiffuserLite plugin, referred to as AlignDiff-Lite. AlignDiff aims to customize the agent’s behavior
to align with human preferences and introduces an MAE area metric to measure this alignment
capability (refer to appendix A.3 for more details), where a larger value indicates a stronger alignment
capability. The comparison of AlignDiff and AlignDiff-Lite is presented in table 5, showing that
AlignDiff-Lite achieves a 560% improvement in decision-making frequency compared to AlignDiff,
while only experiencing a small performance drop of 3.2%. This result demonstrates the potential of
DiffuserLite serving as a plugin to accelerate diffusion planning across various domains.

5.5 Ablations (RQ4)

How to choose the number of planning levels L and the temporal horizons Hl? We compared
the performance of DiffuserLite with 2/3/4 planning levels and with four different temporal horizon
designs, and reported the results in the left and right part of table 6, respectively. The list in the
first row represents the temporal horizon for each level, with larger values on the left indicating
more planning at a coarser granularity, while larger values on the right indicate more planning at a
finer granularity. For planning level design, results show a performance drop with 2 planning levels,
particularly in Antmaze, and a consistently excellent performance with 3 or 4 planning levels. This
suggests that for longer-horizon tasks, it is advisable to design more planning levels. For temporal
horizon design, results show a performance drop when the temporal horizon of one level becomes
excessively long. This suggests the temporal horizon of each level is supposed to be similar and stay
close. We summarized and presented a design choice list in appendix C.

Has the last level (short horizon) of DiffuserLite already performed well in decision making?
This is equivalent to the direct use of the shorter planning horizon. If it is true, key points generated
by former levels may not have an impact, making PRP meaningless. To address this question, we
conduct tests using a one-level DiffuserLite with the same temporal horizon as the last level of the
default model, referred to as Lite w/ only last level. The results are presented in table 7, column 2.
The notable performance drop demonstrates the importance of a long-enough planning horizon.

Can decision-making be effectively accomplished without progressive refinement planning
(PRP)? To address this question, we conduct tests using a one-level DiffuserLite with the same
temporal horizon as the default model, referred to as Lite w/o PRP. This model only supports
one-shot generation at the inference phase. We also test a “smaller” DD with the same network
parameters and sampling steps as DiffuserLite, to verify whether one can speed up DD by simply

8

Table 7: Ablation tests conducted to examine the effectiveness of PRP. Lite w/ only last level and Lite w/o
PRP are two ablated versions of DiffuserLite, while DD-small is a version of DD that uses the same network
parameters and sampling steps as DiffuserLite. All results are obtained over 5 seeds. The varying degrees of
performance drop observed in each experiment highlight the importance of PRP.

Environment Oracle Lite w/ Lite w/o DD
only last level PRP small

Hopper-me 111.6± 0.2 27.8± 10.2 96.6± 1.0 67.9± 24.7
Hopper-m 100.9± 1.1 19.4± 2.0 66.4± 20.2 16.7± 8.0
Hopper-mr 96.6± 0.3 2.0± 0.2 62.5± 31.3 1.0± 0.4

Average 103.1 16.4 (84.1% ↓) 75.2 (27.1% ↓) 28.5 (72.3% ↓)
Kitchen-m 73.6± 0.7 48.2± 1.4 26.9± 1.0 0.0± 0.0
Kitchen-p 74.4± 0.6 38.6± 3.1 23.9± 0.5 1.8± 0.8

Average 74.0 43.4 (41.3% ↓) 25.4 (65.7% ↓) 0.8 (98.8% ↓)

reducing the parameters, referred to as DD-small. The results are presented in Table 7, column
3-4. The large standard deviation and the significant performance drop provide strong evidence for
the limitations of one-shot generation planning, having difficulties in modeling the distribution of
detailed long-horizon trajectories. However, DiffuserLite can maintain high performance with fast
decision-making frequency due to its lite architecture and simplified fitted distribution.

More ablations. We conducted further ablation studies on model size, sampling steps, planning
horizon, with or without value condition, and visual comparison to better elucidate DiffuserLite.
Please refer to appendix E for these sections.

6 Related Works
Diffusion models are a type of score-based generative model [46]. Two pioneering frameworks,
Diffuser [20] and DD [1], were the first to attempt using diffusion models for trajectory generation
and planning in decision-making tasks. Based on these two frameworks, diffusion planning has been
continuously improved and applied to various decision-making domains [36, 10, 54, 8, 17, 26, 21].
However, long-horizon estimation and prediction often suffer from potential exponentially increasing
variance concerning the temporal horizon, called the “curse of horizon” [42]. To address this, HDMI
[27] is the first algorithm that proposed a hierarchical decision framework to generate sub-goals at
the upper level and reach goals at the lower level, achieving improvements in long-horizon tasks.
However, HDMI is limited by cluster-based dataset pre-processing to obtain high-quality sub-goal
data for upper training. Another concurrent work, HD-DA [5] introduces a similar hierarchical
structure and allows the high-level diffusion model to automatically discover sub-goals from the
dataset, achieving better results. However, the motivation behind DiffuserLite is completely different,
which aims to increase the decision-making frequency of diffusion planning. Also, DiffuserLite
allows for more hierarchy levels and refines only the first interval of the previous layer using PRP.
Since HD-DA does not ignore redundant information, it fails to achieve a notable frequency increase.
Compared to related works, DiffuserLite has more clean plugin design and undoubtedly contributes
to increasing decision-making frequency and performance. We believe it can serve as a reference for
the design of future diffusion planning frameworks.

7 Conclusion

In this paper, we introduce DiffuserLite, a super fast and lightweight diffusion planning framework
that significantly increases decision-making frequency by employing the plan refinement process
(PRP). PRP enables coarse-to-fine-grained trajectory generation, reducing the modeling of redundant
information. Experimental results on various D4RL benchmarks demonstrate that DiffuserLite
achieves a super-high decision-making frequency of 122.2Hz (112.7x faster than previous mainstream
frameworks) while maintaining SOTA performance. DiffuserLite provides three generative model
backbones to adapt to different requirements and can be flexibly integrated into other diffusion
planning algorithms as a plugin. However, DiffuserLite currently has limitations mainly caused by
the classifier-free guidance (CFG). CFG sometimes requires adjusting the target condition, which
becomes more cumbersome on the multi-level structure of DiffuserLite. In future works, designing
better guidance mechanisms, devising an optimal temporal jump adjustment, or integrating all levels
in one diffusion model to simplify the framework is worth considering. DiffuserLite may also have
some societal impacts, such as expediting the deployment of robotic products that could be utilized
for military purposes.

9

8 Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62422605,
92370132, 62106172), the National Key R&D Program of China (Grant No. 2022ZD0116402) and
the Xiaomi Young Talents Program of Xiaomi Foundation.

References
[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit

Agrawal. Is conditional generative modeling all you need for decision making? In The Eleventh
International Conference on Learning Representations, ICLR, 2023.

[2] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, 1989. URL
http://www.worldcat.org/isbn/0471500232.

[3] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
1607.06450, ArXiv, 2016.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. In arXiv preprint 1606.01540, ArXiv, 2016.

[5] Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchi-
cal planning with diffusion. In arXiv preprint 2401.02644, ArXiv, 2024.

[6] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings
of Robotics: Science and Systems, RSS, 2023.

[7] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image
synthesis. In Advances in Neural Information Processing Systems, NIPS, 2021.

[8] Zibin Dong, Yifu Yuan, Jianye Hao, Fei Ni, Yao Mu, Yan Zheng, Yujing Hu, Tangjie Lv,
Changjie Fan, and Zhipeng Hu. Aligndiff: Aligning diverse human preferences via behavior-
customisable diffusion model. In The Twelfth International Conference on Learning Represen-
tations, ICLR, 2024.

[9] J. R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of
Computational and Applied Mathematics, 1980.

[10] Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale
Schuurmans, and Pieter Abbeel. Learning universal policies via text-guided video generation.
In Thirty-seventh Conference on Neural Information Processing Systems, NIPS, 2023.

[11] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is
essential for offline RL via supervised learning? In International Conference on Learning
Representations, ICLR, 2022.

[12] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. In arXiv preprint 2004.07219, ArXiv, 2020.

[13] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Proceedings
of the Conference on Robot Learning, PMLR, 2020.

[14] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, ICML, 2019.

[15] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In International Conference on Machine Learning, ICML, 2022.

10

http://www.worldcat.org/isbn/0471500232

[16] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,
and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning. In Thirty-seventh Conference on Neural Information Processing Systems,
NIPS, 2023.

[17] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,
and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning. arXiv preprint arXiv:2305.18459, 2023.

[18] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, NIPS, 2021.

[19] Mineui Hong, Minjae Kang, and Songhwai Oh. Diffused task-agnostic milestone planner. arXiv
preprint 2312.03395, ArXiv, 2023.

[20] Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. In International Conference on Machine Learning, ICML, 2022.

[21] Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou, Dragomir Anguelov,
et al. Motiondiffuser: Controllable multi-agent motion prediction using diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9644–9653, 2023.

[22] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2023.

[23] Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
In Advances in Neural Information Processing Systems, NIPS, 2021.

[24] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In The Tenth International Conference on Learning Representations, ICLR, 2022.

[25] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. In Advances in Neural Information Processing Systems, NIPS,
2020.

[26] Kyowoon Lee, Seongun Kim, and Jaesik Choi. Refining diffusion planner for reliable behavior
synthesis by automatic detection of infeasible plans. In Advances in Neural Information
Processing Systems, NIPS, 2023.

[27] Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline
decision making. In Proceedings of the 40th International Conference on Machine Learning,
ICML, 2023.

[28] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptd-
iffuser: Diffusion models as adaptive self-evolving planners. In International Conference on
Machine Learning, ICML, 2023.

[29] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In
Proceedings of the 40th International Conference on Machine Learning, ICML, 2023.

[30] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, ICLR, 2023.

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR, 2019.

[32] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Advances in
Neural Information Processing Systems, NIPS, 2022.

11

[33] Cong Lu, Philip J. Ball, and Jack Parker-Holder. Synthetic experience replay. In Workshop on
Reincarnating Reinforcement Learning at ICLR, 2023.

[34] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning
from offline human demonstrations for robot manipulation. In Conference on Robot Learning,
CoRL, 2021.

[35] Diganta Misra. Mish: A self regularized non-monotonic activation function. In 31st British
Machine Vision Conference, BMVC, 2020.

[36] Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadiffuser:
Diffusion model as conditional planner for offline meta-rl. International Conference on Machine
Learning, ICML, 2023.

[37] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models, 2021.

[38] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin.
Imitating human behaviour with diffusion models. In The Eleventh International Conference on
Learning Representations, ICLR, 2023.

[39] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin.
Imitating human behaviour with diffusion models. In The Eleventh International Conference on
Learning Representations, ICLR, 2023.

[40] William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
2212.09748, ArXiv, 2022.

[41] Rong-Jun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang,
and Yang Yu. NeoRL: A near real-world benchmark for offline reinforcement learning. In
Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, NIPS, 2022.

[42] Tongzheng Ren, Jialian Li, Bo Dai, Simon S Du, and Sujay Sanghavi. Nearly horizon-free offline
reinforcement learning. Advances in neural information processing systems, 34:15621–15634,
2021.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. arXiv preprint 1505.04597, ArXiv, 2015.

[44] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR,
2023.

[45] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In 9th
International Conference on Learning Representations, ICLR, 2021.

[46] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, ICLR, 2021.

[47] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Trans.
Neural Networks, 1998.

[48] Lei Tai, Jingwei Zhang, Ming Liu, Joschka Boedecker, and Wolfram Burgard. A survey of deep
network solutions for learning control in robotics: From reinforcement to imitation. In arXiv
preprint 1612.07139, ArXiv, 2018.

[49] Thomas George Thuruthel, Egidio Falotico, Federico Renda, and Cecilia Laschi. Model-based
reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE
Transactions on Robotics, 2019.

12

[50] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. In The Eleventh International Conference on
Learning Representations, ICLR, 2023.

[51] Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspiar
Singh, Clayton Tan, Dee M, Jodilyn Peralta, Brian Ichter, Karol Hausman, and Fei Xia. Scaling
robot learning with semantically imagined experience. In Proceedings of Robotics: Science and
Systems, RSS, 2023.

[52] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, ICCV, 2023.

[53] Siyuan Zhou, Yilun Du, Shun Zhang, Mengdi Xu, Yikang Shen, Wei Xiao, Dit-Yan Yeung, and
Chuang Gan. Adaptive online replanning with diffusion models. In arXiv preprint 2310.09629,
ArXiv, 2023.

[54] Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano
Ermon, and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. In
arXiv preprint 2305.17330, ArXiv, 2023.

[55] Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, and Weinan
Zhang. Diffusion models for reinforcement learning: A survey. In arXiv preprint 2311.01223,
ArXiv, 2023.

13

Figure 5: Part of selected benchmarks. From left to right, they are HalfCheetah, Hopper, Walker2d, FrankaK-
itchen, Robomimic, and Antmaze.

A Details of Experimental Setup

A.1 Test Domains

Gym-MuJoCo [4] on D4RL consists of three popular offline RL locomotion tasks (Hopper, HalfChee-
tah, Walker2d). These tasks require controlling three Mujoco robots to achieve maximum movement
speed while minimizing energy consumption under stable conditions. D4RL provides three different
quality levels of offline datasets: “medium” containing demonstrations of “medium” level perfor-
mance, “medium-replay” containing all recordings in the replay buffer observed during training until
the policy reaches “medium” performance, and “medium-expert” which combines “medium” and
“expert” level performance equally.

FrankaKitchen [13] requires controlling a realistic 9-DoF Franka robot in a kitchen environment to
complete several common household tasks. In offline RL testing, algorithms are often evaluated on
“partial” and “mixed” datasets. The former contains demonstrations that partially solve all tasks and
some that do not, while the latter contains no trajectories that completely solve the tasks. Therefore,
these datasets place higher demands on the policy’s “stitching” ability. During testing, the robot’s task
pool includes four sub-tasks, and the evaluation score is based on the percentage of tasks completed.

Antmaze [12] requires controlling the 8-DoF “Ant” quadruped robot in MuJoCo to complete maze
navigation tasks. In the offline dataset, the robot only receives a reward upon reaching the endpoint,
and the dataset contains many trajectory segments that do not lead to the endpoint, making it a difficult
decision task with sparse rewards and a long horizon. The success rate of reaching the endpoint is
used as the evaluation score, and common model-free offline RL algorithms often struggle to achieve
good performance.

Robomimic [34] requires learning policies to complete complex manipulation tasks from a small
number of human demonstrations. Due to the non-Markovian nature of human demonstrations and the
demonstration quality variance, learning from human datasets is significantly more challenging than
learning from machine-generated datasets. In our experiments, we used a dataset of PH (Proficient-
Human) type, which consists of 200 demonstrations collected through teleoperation by one single
experienced teleoperator.

FinRL [41] provides a way to build a trading simulator that replicates the real stock market and
supports backtesting with important market frictions such as transaction costs, market liquidity, and
investor risk aversion, among other factors. In the FinRL environment, one trade can be made per
trading day for the stocks in the pool (30 stocks). The reward function is the difference in the total
asset value between the end of the day and the day before. The environment may evolve itself as time
elapses. In our experiments, the dataset has two suffixes, where “H” and “M” respectively indicate
the quality of the dataset (“High” and “Medium”), and 999 indicates that the dataset includes 999
rollouts.

A.2 Baselines

A.2.1 Runtime Testing

• We run Diffuser 4 using the official repository from the original paper with default hyperpa-
rameters.

4https://github.com/jannerm/diffuser

14

https://github.com/jannerm/diffuser

• We run DD 5 using the official repository from the original paper with default hyperparame-
ters.

• Since the code for HDMI has not been released, we made every effort to reproduce HDMI
based on the DiffuserLite codebase, strictly adhering to every detail mentioned in the paper.

All runtime results are obtained on a server equipped with an Intel(R) Xeon(R) Gold 6326 CPU @
2.90GHz and an NVIDIA GeForce RTX3090.

A.2.2 Reward-maximizing

• The performance of BC, CQL [25] and IQL [24] in table 2 is reported in the D4RL [12],
Table 2;

• The performance of Diffuser [20] in table 2, MuJoCo, is reported in [20], Table 1; The
performance in Kitchen is reported in [5], Table 2; And the performance in Antmaze is
obtained by the official repository from the original paper with default hyperparameters.

• The performance of DD [1] in table 2, MuJoCo and Kitchen, is reported in [1], Table 1; And
the performance in Antmaze is reported in [19], Table 1;

• The performance of HDMI [27] in table 2 is reported in [27], Table 3.

A.2.3 Behavior-customizing

• The performance of GC (goal conditioned BC) [11] and AlignDiff [8] in table 5 is reported
in [8], Table 2.

A.3 Details of AlignDiff

Why AlignDiff? Since DiffuserLite can be seen as integrating PRP into DD, the main experiments in
the paper can be considered as results obtained when DiffuserLite is used as a reward-maximizing
algorithm plugin. Therefore, to evaluate the more general plugin capability of DiffuserLite, a non-
reward-maximizing algorithm backbone must be selected. AlignDiff, unlike the common setting in
Offline RL, uses diffusion planning for behavior-customizing, which aligns with our requirements.

AlignDiff [8] is a diffusion planning algorithm used for behavior-customizing. In our experiments, we
integrate DiffuserLite as a plugin into AlignDiff, achieving a significant increase in decision-making
frequency of approximately 560% with minimal performance loss (around 3.2%). This demonstrates
the flexibility and effectiveness of DiffuserLite serving as a plugin. In this section, we provide a
detailed description of the problem setting for AlignDiff and the evaluation metric used to assess the
algorithm’s performance, aiming to help the understanding of the experimental content.

Problem setting: AlignDiff considers a reward-free Markov Decision Process (MDP) denoted as
M = ⟨S,A, P,α⟩. Here, S represents the set of states, A represents the set of actions, P : S ×A×
S → [0, 1] is the transition function, and α = {α1, · · · , αk} represents a set of k predefined attributes
used to characterize the agent’s behaviors. Given a state-only trajectory τ l = {s0, · · · , sl−1}, it
assumes the existence of an attribute strength function that maps the trajectory to a relative strength
vector ζα(τ l) = vα = [vα1 , · · · , vαk] ∈ [0, 1]k. Each element of the vector indicates the relative
strength of the corresponding attribute. A value of 0 for vαi implies the weakest manifestation
of attribute αi, while a value of 1 represents the strongest manifestation. Human preferences are
formulated as a pair of vectors (vα

targ,m
α), where vα

targ represents the target relative strengths, and
mα ∈ {0, 1}k is a binary mask indicating which attributes are of interest. The objective is to find
a policy a = π(s|vα

targ,m
α) that minimizes the L1 norm ||(vα

targ − ζα(Eπ[τ
l])) ◦mα||1, where ◦

denotes the Hadamard product.

Area metric: To evaluate the algorithm’s performance, the authors suggest that one can conduct
multiple trials to collect the mean absolute error (MAE) between the evaluated and target relative
strengths. For each trial, we need to sample an initial state s0, a target strengths vα

targ, and a mask
mα, as conditions for the execution of each algorithm. Subsequently, the algorithm runs for T steps,
resulting in the exhibited relative strengths vα evaluated by ζ̂θ. Then we can calculate the percentage
of samples that fell below pre-designed thresholds to create an MAE curve. The area enclosed by

5https://github.com/anuragajay/decision-diffuser/tree/main/code

15

https://github.com/anuragajay/decision-diffuser/tree/main/code

the curve and the axes can be used to define an area metric. A larger metric value indicates better
performance in matching. By integrating DiffuserLite, AlignDiff can maintain almost the same level
of performance with only a 3.2% decrease. The overall performance is nearly twice as good as the
goal-conditioned behavior clone (GC) while achieving a significant increase in decision frequency of
560%.

B Details of Rectified Flow

Similar to DMs, rectified flow [30] is also a probability flow-based generative model that learns a
transfer from q0 to q1 through an ODE. In trajectory generation, we can define q1 as the distribution
of trajectories and q0 as the standard Gaussian. The learned ODE can be represented as:

dxs = v(xs, s)ds, initialized from x0 ∼ q0, such that x1 ∼ q1 (11)

where v : Rd× [0, 1]→ Rd is a velocity field, learned by minimizing a simple mean square objective:

min
v

E(x0,x1)∼γ [

∫ 1

0

|| d
ds

xs − v(xs, s)||2ds], with xs = (1− s)x0 + sx1 (12)

where γ is any coupling of (q0, q1), and v is parameterized as a deep neural network and eq. (12) is
solved approximately with stochastic gradient methods. A key property of rectified flow is its ability
to learn a straight flow, which means:

Straight flow: xs = sxs + (1− s)x0 = x0 + sv(x0, 0),∀s ∈ [0, 1] (13)

A straight flow can achieve perfect results with fewer sample steps (even a single step).

Reflow is an iterative procedure to straighten the learned flow without modifying the marginal
distributions, hence allowing faster sampling at inference time. Assume we have an ODE model
dxs = vk(xs, s)ds with velocity field vk at the k-th iteration of the reflow procedure; denote by
x1 = ODE[vk](x0) the xs we obtained at t = 1 when following the vk-ODE starting from 0. A reflow
step turns vk into a new vector field vk+1 that yields straighter ODEs while xnew

1 = ODE[vk+1](x0)
has the same distribution as x1 = ODE[vk](x0),

vk+1 = argmin
v

Ex0∼q0 [

∫ 1

0

||(x1 − x0)− v(xs, s)||2ds],

with x1 = ODE[vk](x0) and xs = s · x1 + (1− s) · x0, (14)

where vk+1 is learned using the same rectified flow objective eq. (12), but with the linear interpolation
of (x0,x1) pairs constructed from the previous ODE[vk]. For conditional sampling, rectified flow also
supports classifier-free guidance, in which we can train a conditional velocity field v(xs, s|c) and
apply CFG by:

vw(xs, s|c) = wv(xs, s|c) + (1− w)v(xs, s), (15)

where w is the guidance strength. In this way, we can directly replace diffusion models with rectified
flow as the backbone of DiffuserLite. In our experiments, we find that rectified flow achieves similar
performance to the diffusion backbone when using the same number of sampling steps and neural
network size. By further conducting a reflow procedure, the planning of the model becomes more
stable under the same number of sampling steps (as evidenced by a decrease in the variance of
experimental results). It is even possible to reduce the number of sampling steps to just one, resulting
in only a small performance drop.

C PRP Design Insights

As the core planning framework of DiffuserLite, PRP design choices are crucial. Through experimen-
tal results and discussions in section 5.5, some simple, stable, and effective PRP design insights can
be summarized:

• The planning horizon T is supposed to be determined by the nature of the task. The sparser
the rewards and the longer the episodes, the longer the planning horizon should be used.

16

• The number of planning levels L is supposed to be designed based on the planning horizon,
with longer horizon tasks requiring more planning levels. One can start from 3 or 4 planning
levels.

• The temporal horizon of each level Hl is supposed to be similar and limited to within 10 to
increase decision-making frequency.

• Once the number of planning levels and temporal horizon are determined, the temporal
jump is also determined.

Throughout our experiments, we consistently applied this set of design choices, achieving consistently
excellent performance without the need for carefully adjusting parameters.

D Implementation Details

We introduce the implementation details of DiffuserLite in the section:

• We utilize DiT [40] as the neural network backbone for all diffusion models and rectified
flows, with an embedding dimension of 256, 8 attention heads, and 2 DiT blocks. We
progressively reduce the model size from DiT-S [40] until the current size setting, and there
is still no significant performance drop. This suggests that future works could even explore
further reduction of network parameters to achieve faster decision speeds.

• Across all the experiments, we employ DiffuserLite with 3 levels. In Kitchen, we utilize a
planning horizon of 49 with temporal jumps for each level set to 16, 4, and 1, respectively.
In MuJoCo and Antmaze, we use a planning horizon of 129 with temporal jumps of 32, 8,
and 1 for each level, respectively.

• For diffusion models, we use cosine noise schedule [37] for αs and σs with diffusion steps
T = 1000. We employ DDIM [45] to sample trajectories. In MuJoCo and Kitchen, we use
3 sampling steps, while in Antmaze, we use 5 sampling steps.

• For rectified flows, we use the Euler solver with 3 steps for all benchmarks. After one
reflow procedure, we can further reduce it to 1 step for MuJoCo and 2 steps for Kitchen and
Antmaze.

• All models utilize the AdamW optimizer [31] with a learning rate of 2e − 4 and weight
decay of 1e− 5. We perform 500K gradient updates with a batch size of 256. We do not
employ the exponential moving average (EMA) model, as used in [20, 1]. We found that
using the EMA model did not yield significant gains in our experiments. For reflow training,
we first use the trained rectified flow to generate a 2M dataset with 20 sampling steps. Then
we use the same optimizer, but with a learning rate of 2e− 5, to train the model for 200K
gradient steps.

• For conditional sampling, we tune the guidance strength w within the range of [0, 1]. In
general, a higher guidance strength leads to better performance but may result in unrealistic
plans and instability. On the other hand, a lower guidance strength provides more stability
but may lead to a decrease in performance. In our implementation of DiffuserLite, we
observe that the earlier levels are more closely related to decision-making. In contrast,
the later levels only need to ensure reaching the key points provided by the previous
levels. Therefore, we only apply conditional sampling to level 0, while the other levels
are not guided.

• In MuJoCo, we only utilize the cumulative rewards as the generation condition. However,
in Kitchen and Antmaze, we employ the discounted cumulative return and the value of
the last generated state as the generation condition. The values are evaluated using a pre-
trained IQL-value function [24]. We have found that this generation condition is beneficial
for training models in reward-sparse environments, as it helps to prevent the model from
becoming confused by suboptimal or poor trajectories.

• The inverse dynamic model is implemented as a 3-layer MLP. The first two layers consist of
a Linear layer followed by a Mish activation [35] and a LayerNorm [3]. And, the final layer
is followed by a Tanh activation. This model utilizes the same optimizer as the diffusion
models and is trained for 200K gradient steps.

17

Table 8: Performance of DiffuserLite under four different model sizes. All results are obtained over 5 seeds.
The results under default choice are underlined and the highest scores are emphasized in bold.

Environment Model sizes

0.68M 1.53M 2.7M 4.22M

HalfCheetah-me 75.4± 5.1 86.9± 0.6 88.5± 0.4 90.6± 1.1
Runtime (s) 0.0153 0.0154 0.0155 0.0156

Antmaze-ld 0.3± 0.5 60.7± 2.5 68.0± 2.8 73.0± 3.6
Runtime (s) 0.0262 0.0268 0.0270 0.0271

Kitchen-p 64.5± 0.8 74.8± 0.2 74.4± 0.6 75.0± 0.0
Runtime (s) 0.0163 0.0169 0.0170 0.0172

Table 9: Performance of DiffuserLite with different sampling steps. All results are obtained over 5 seeds.
The results under default choice are underlined and the highest scores are emphasized in bold.

Environment Sampling steps

1 3 5 10

HalfCheetah-me 74.4± 15.7 88.5± 0.4 89.0± 0.7 89.2± 1.3
Runtime (s) 0.0065 0.0155 0.026 0.048

Antmaze-ld 0.7± 0.9 16.7± 2.5 68.0± 2.8 74.3± 5.4
Runtime (s) 0.0068 0.0167 0.0270 0.050

Kitchen-p 5.7± 1.2 74.4± 0.6 73.8± 0.8 74.7± 0.5
Runtime (s) 0.0068 0.0170 0.029 0.053

E Additional Experiment Results

E.1 Performance with Different Model Sizes

We compare the performance of DiffuserLite using four different model sizes. Due to the use of
DiT as the backbone, we fix the dimensions of each attention head, and the parameter design of the
Transformer is as follows: [hidden size, n heads, depth] respectively set to [128, 4, 2] (0.68M),
[192, 6, 2] (1.53M), [256, 8, 2] (2.7M), and [320, 10, 2] (4.22M). The results are presented in table 8,
which shows that slightly increasing the model size does not significantly decrease the inference
speed, but it does improve the performance. This suggests that increasing the model parameter size
can further enhance the performance of DiffuserLite.

E.2 Performance with Different Sampling Steps

We compare the performance of DiffuserLite using four different sampling steps. The results are
presented in table 9, which shows a natural trade-off: more sampling steps lead to better performance
but at the cost of slower decision-making speed. DiffuserLite strikes a balance between performance
and speed by offering the choice of 3 or 5 sampling steps. Researchers can flexibly adjust the
sampling steps based on the specific requirements of their tasks.

E.3 Performance under Different Planning Horizon Choices

The planning horizon is an essential parameter that influences the performance of planning algorithms.
To investigate the performances of DiffuserLite under different temporal horizon choices, we test it
using three temporal horizon choices: 49, 129, and 257. The results are presented in table 10. In
Hopper environment, a longer planning horizon is required to avoid greedy and rapid jumps that
may lead to falls. Consequently, the performance of DiffuserLite is slightly poorer under the 49
temporal horizon compared to the other two choices (129 and 257), where no significant performance
differences are observed. For Kitchen environment, the total length of the episode (280 time steps)
in the dataset poses a limitation. An excessively long planning horizon can confuse the model, as it
may struggle to determine the appropriate actions to take after completing all tasks. As a result, the
performance of DiffuserLite is poor under the 257 temporal horizon, while no significant performance
differences are observed under the 49 and 129 temporal horizons.

18

t=0 t=32 t=64 t=96

Figure 6: Visual comparison between one-shot generated plans (upper) and PRP (lower) in Hopper. The
figure showcases 100 diffusion-generated plans starting from the same initial state. The one-shot generated plans
directly generate all states from t = 0 to t = 96, while PRP utilizes three levels with temporal horizons of 97,
33, and 9, and temporal jumps of 32, 8, and 1, respectively. For ease of observation, only Hopper motion every
4 steps is displayed in the figure.

Table 10: Performance of DiffuserLite under three different temporal horizon choices. All results are
obtained over 5 seeds and the results of default choice are emphasized in bold scores.

Environment Temporal Horizon - 1

48 128 256

Hopper-me 101.1± 0.5 111.6± 0.2 110.0± 0.4
Hopper-m 96.6± 10.9 100.9± 1.1 98.9± 0.4
Hopper-mr 74.5± 27.2 96.6± 0.3 98.2± 2.1

Average 90.7 103.1 102.4

Kitchen-m 73.6± 0.7 72.7± 1.0 25.1± 0.2
Kitchen-p 74.4± 0.6 75.0± 0.0 25.2± 0.4

Average 74.0 73.9 25.2

E.4 Performance with or without Value Condition

DiffuserLite offers two optional generation conditions, resulting in two different critics, as introduced
in section 4. To determine the suitability of these two approaches in different tasks, we conduct
ablation experiments and present the results in table 11. We find that in dense reward tasks, such
as Hopper and HalfCheetah, the performance of both conditions is nearly identical. However, in
sparse reward scenarios, such as Kitchen and Antmaze, the use of values demonstrates a significant
advantage. We present a visual comparison in Antmaze in fig. 7, which shows 100 generated plans.
With a pure-rewards condition, it is difficult to discern the endpoint location, as the planner often
desires to stop at a certain point on the map. However, when using values, the planner indicates a
desire to move towards the endpoint. This suggests that sparse reward tasks are prone to confusing the
conditional generative model, leading to poor planning. The introduction of value-assisted guidance
can address this issue.

E.5 Visual Comparison between One-shot Generated Plans and PRP

We visually compare the one-shot generation and PRP in Hopper, presenting the results in ap-
pendix E.5. Regarding efficiency, PRP significantly reduces the length of sequences that need to be
generated due to each level refining only the first jumpy interval of the previous level. This results
in a noticeable increase in the forward speed of neural networks, especially for transformer-based
backbone models like DiT [40]. Visually, we can more clearly perceive the difference in generated
sequence lengths, and this advantage will further expand as the total planning horizon increases.
In terms of quality, PRP narrows down the search space of planning, leading to better consistency
among different plans, while the one-shot generated plans exhibit more significant divergence in the
far horizon.

19

Algorithm 1 DiffuserLite Training
Input: number of planning levels L, temporal horizon Hl, temporal jump Il and noise estimators
ϵθl for each level l ∈ {0, 1, · · · , L− 1}, dataset D = {x}, where x is the sequence of state-action
pairs, critic C, diffusion steps T , condition mask probability 1− p;
while not done do

sample a batch of (x, C(x)) from dataset D
for l = 0 to L− 1 do

extract x0,Hl,1 and x0,Hl,Il from x

Ĉ(x0,Hl,Il)← C(x0,Hl,1)
sample sl ∼ Uniform(T), ϵl ∼ N (0, I)
first state of ϵl ← first state of x0,Hl,Il
if l > 0 then

last state of ϵl ← last state of x0,Hl,Il
end if
xs
0:Hl:Il

← αsx0:Hl:Il + σsϵl
update θl by minimizing
||ϵθl(xs

0:Hl:Il
, s, C(x0:Hl:Il))− ϵ||2 with probability p else

||ϵθl(xs
0:Hl:Il

, s))− ϵ||2
end for

end while

Algorithm 2 DiffuserLite Inference
Input: number of planning levels L, temporal horizon Hl, temporal jump Il and noise estimators
ϵθl for each level l ∈ {0, 1, · · · , L − 1}, critic C, inverse dynamic h, diffusion steps T , current
state ot;
for l = 0 to L− 1 do

sample ϵl ∼ N (0, I).
first state of ϵl ← ot
if l > 0 then

last state of ϵl ← last state of x0:Hl−1:Il−1

end if
obtain x0:Hl:Il by solving diffusion ODE with DDIM solver

end for
extract ot, ot+1 from x0:HL−1:1

at = h(ot, ot+1)

Table 11: Performance of DiffuserLite using conditions with or without values. Present only average
performance on varying-quality datasets, which are obtained over 5 seeds.

Condition Hopper HalfCheetah Kitchen Antmaze

w/ Value 103.6 60.7 74.0 77.6
w/o Value 103.1 59.7 54.1 19.7

20

② w/ V

④ w/o V

① w/ V

③ w/o V

Figure 7: Visual comparison of DiffuserLite using conditions with (upper) or without (lower) values. It
displays 100 plans generated at the current state, where darker colors indicate closer proximity to the current
state, and lighter colors indicate further. With the pure-rewards condition, we can observe that the planned states
in lighter colors tend to cluster together at a certain point on the map, indicating the planner tries to stop at that
non-endpoint. However, with the introduction of values, the planner can make correct long-term plans that lead
to the endpoint.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract’s last three sentences and the introduction’s last paragraph in
Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the conclusion in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

22

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have the code and model checkpoints ready for release. Besides, in
Appendix D, we provide sufficient implementation details for researchers to reproduce the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and model checkpoints have been released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided full details in Section 5.1, Appendix A.1 and Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided the mean and standard error over several random seeds in the
experimental results to demonstrate statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detailed the compute resources used for the experiments in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See the conclusion in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

25

https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For all the datasets and algorithm baselines used in the paper, we have cited
the original papers and provided the license, copyright information, and terms of use in the
package in our code repository.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

26

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the paper are well documented and the documentation
is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

27

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Preliminaries
	Efficient Planning via Refinement
	A Lite Architecture for Real-time Diffusion Planning
	Experiments
	Experimental Setup
	Runtime Cost (RQ1)
	Performance (RQ2)
	Flexible Plugin (RQ3)
	Ablations (RQ4)

	Related Works
	Conclusion
	Acknowledgements
	Details of Experimental Setup
	Test Domains
	Baselines
	Runtime Testing
	Reward-maximizing
	Behavior-customizing

	Details of AlignDiff

	Details of Rectified Flow
	PRP Design Insights
	Implementation Details
	Additional Experiment Results
	Performance with Different Model Sizes
	Performance with Different Sampling Steps
	Performance under Different Planning Horizon Choices
	Performance with or without Value Condition
	Visual Comparison between One-shot Generated Plans and PRP

