
Under review as submission to TMLR

Emergent representations in networks trained with the
Forward-Forward algorithm

Anonymous authors
Paper under double-blind review

Abstract

The Backpropagation algorithm has often been criticised for its lack of biological realism.
In an attempt to find a more biologically plausible alternative, the recently introduced
Forward-Forward algorithm replaces the forward and backward passes of Backpropagation
with two forward passes. In this work, we show that the internal representations obtained
by the Forward-Forward algorithm can organise into category-specific ensembles exhibiting
high sparsity – composed of a low number of active units. This situation is reminiscent of
what has been observed in cortical sensory areas, where neuronal ensembles are suggested
to serve as the functional building blocks for perception and action. Interestingly, while this
sparse pattern does not typically arise in models trained with standard Backpropagation, it
can emerge in networks trained with Backpropagation on the same objective proposed for
the Forward-Forward algorithm.

1 Introduction

Deep Learning is a highly effective approach to artificial intelligence, with tremendous implications for science,
technology, culture, and society. At its core, there is the Backpropagation (Backprop) algorithm (Rumelhart
et al., 1986), which efficiently computes the gradients necessary to optimise the learnable parameters of an
artificial neural network. Backprop, however, lacks biological plausibility (Stork, 1989) – leading to many
attempts to address the issue. The most recent of such, the Forward-Forward algorithm (Hinton, 2022),
eliminates the need to store neural activities and propagate error derivatives along the network.
In a standard classification context, the application of Forward-Forward requires the designation of positive
and negative data. For example, to classify images, one could assign positive (or negative) data to those
images having their correct (or incorrect, respectively) class embedded via one-hot encoding at the border
(as shown in Figure 1, Panel A). The Forward-Forward algorithm then learns to discriminate between
positive and negative data by optimising a goodness function (e.g., the ℓ2 norm of the activations), akin
to contrastive learning (Chen et al., 2020). Satisfactory results have been observed (Hinton, 2022) for
classification tasks on Mnist (Lecun et al., 1998), a standard benchmark dataset. This work takes a step
beyond performance evaluation, delving into the structure of the hidden representations learned by the
Forward-Forward algorithm, uncovering their spontaneously sparse nature and drawing parallels to neural
ensembles observed in the brain (Miller et al., 2014), (Yuste et al., 2024).

We organise this paper as follows. In section 2 we set the stage providing a brief overview of the Forward-
Forward algorithm and of neuronal ensembles. Then, section 3 is dedicated to the description of the models
and datasets investigated and the methods used to analyse representations. Our analysis of the Forward-
Forward representations begins in section 4, where we present our key findings. Specifically, in subsection 4.2,
we show that the Forward-Forward algorithm spontaneously learn sparse representations, organised into arti-
ficial ensembles, i.e., small sets of highly specialised neurons that consistently co-activate for data in a given
class. In subsection 4.3, we demonstrate that these ensembles can overlap, with individual units contributing
to multiple ensembles when visual features are shared. Further, subsection 4.4 reveals that ensembles can
form on previously unseen categories, indicating a robust generalization of this representational mechanism.
Notably, these ensembles can share units with those associated with seen categories, demonstrating effective
integration of new information with concepts learned during training. Finally, in subsection 4.5, we examine
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the structure of the weights and show that the observed sparsity and ensemble formation arise from suppres-
sion mechanisms, analogous to the inhibitory processes mediated by biological neurons (Yuste, 2015). These
findings are particularly striking because the Forward-Forward algorithm achieves these properties without
requiring explicit regularization to induce sparsity –unlike representations produced by Backprop, which lack
such features entirely. We observe that, although optimising the cross-entropy loss for the same classification
task does not appear to produce the sparse ensembles we observe, the phenomenon may not solely be due
to the use of the Forward-Forward algorithm. In fact, similar results are obtained by optimising the same
goodness function of Forward-Forward, with Backprop instead. This suggests that more focus should be
put on the purpose and biological meaning of the loss function rather than the training algorithm (Richards
et al., 2019). We discuss our results in section 5.

2 Related Work

In the section that follows, we summarise key aspects of the Forward-Forward algorithm and the main
findings pertaining identification and characterisation of biological neuronal ensembles in the brain.

2.1 Forward-Forward

The Forward-Forward algorithm (Hinton, 2022) is a recently proposed learning algorithm for artificial neural
networks, whose main premise is the ability to overcome the notorious biological implausibility of Backprop
(Rumelhart et al., 1986). In fact, while the effectiveness of Backprop makes it the standard algorithm for
training neural networks, it is based on biologically unrealistic assumptions, such as the need to propagate
information forwards and backwards through the network (Richards et al., 2019).
Forward-Forward owes its name to the fact that it replaces the backward pass with an additional forward pass.
The two forward passes are executed on different data, named positive and negative data. During training,
the objective of Forward-Forward is to maximise a so-called goodness function of the neural activations (e.g.,
the ℓp norm) on positive data and minimise it on negative data. In a simple image classification setting, such
as the one we adopt in this paper, one could encode a class label at the border of images, by one-hot encoding
it with a white pixel (as shown in Figure 1, Panel A). Then, following the definition from Hinton (2022),
positive data are those for which the encoded label matches the ground truth label, while the opposite holds
for negative data.
Layers are trained separately and sequentially, and learn to discriminate between positive and negative
data by maximising and minimising their goodness, according to the data presented. Crucially, activations
are normalised before being passed to the subsequent layer, to prevent layers from relying on the goodness
computed by their predecessors. From the biological point of view, normalisation is known to be a “canonical
neural computation” (Carandini & Heeger, 2011). At test time, when a new unlabelled sample has to be
categorised, many copies of the image are created, each with a different one-hot encoded label. These are
then fed into the neural network to obtain a goodness score. Finally, the image gets classified in the category
that produced the maximum goodness value.
In the seminal Forward-Forward paper (Hinton, 2022), satisfactory classification results are reported on the
standard handwritten digit recognition dataset Mnist, with the definition of positive and negative data
described above, and using the ℓ2 or ℓ1 norm of activations as goodness function.
In a recent theoretical work, it has been analytically shown that under somewhat mild assumptions sparsity
emerges in Forward-Forward layers (Yang, 2023) as a consequence of optimising the Forward-Forward loss.
While these theoretical results are derived for a single layer, they bolster the reliability of our experimental
findings.

Recent studies inspired by the Forward-Forward learning procedure have expanded its applicability across
various architectures, notably achieving enhanced performance in Convolutional Neural Networks (CNNs)
(Papachristodoulou et al., 2024). Additionally, other works have proposed alternative goodness functions
and explored the specific contributions of individual neurons to the classification process, shedding light on
the interpretability and adaptability of the approach (Terres-Escudero et al., 2024).
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Figure 1: Activation patterns in a Multi-Layer Perceptron trained with the Forward-Forward algorithm, on
the Mnist dataset.
Panel A Examples of activation patterns in response to a positive input. Images show the activation value
for network units, arranged as a matrix only for the sake of clarity; darker squares represent more active
neurons.
Panel B Activation value of each neuron in the first hidden layer (Layer 1), averaged on all images of a
given class. Neuron index on the x axis; average activation on the y axis. Blue dots indicate units that are
considered active according to the leave-one-out (LOO) method described in subsection 3.5.
Panel C Activation map for neurons in Layer 1 for all images, grouped by class. A blue dot in position
(x, y) indicates that neuron x is activated by input y; colour scale represents the intensity of such activation.
Horizontal bands mark different categories; blue vertical stripes mark active, category-specific neurons. Each
input category activates consistently a specific sets of neurons (ensemble).

We illustrate properties of representations obtained in Forward-Forward networks, that are reminiscent of
what is found the neocortex and hippocampus, where ensembles of a few number of units activate consistently
in response to similar stimuli. We discuss properties of neural ensembles in the following section.
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2.2 Neuronal ensembles

In Neuroscience, neuronal ensembles are defined as sparse groups of neurons that co-activate either spontan-
eously or in response to sensory stimuli. These ensembles, rather than individual neurons, have long been
proposed as emergent functional units of cortical activity, playing critical roles in sensory processing, memory,
and behaviour (Yuste, 2015; Hebb, 2005; Harris, 2005; György, 2010; Hopfield, 1982; Carrillo-Reid et al.,
2019). Recent reviews, such as Yuste et al. (2024), provide a comprehensive overview of the concept and
its implications. The importance of ensembles has been increasingly corroborated by experimental studies,
enabled by advances in techniques like calcium imaging, which allow simultaneous recording of large-scale
neural activity at single-cell resolution (Carrillo-Reid & Calderon, 2022). For example, Miller et al. (2014)
demonstrated that during visual processing, cortical spiking activity is dominated by ensembles whose prop-
erties cannot be explained by the independent activity of individual neurons. These ensembles are activated
both by sensory stimuli (e.g., , visual inputs) and by spontaneous network activity, suggesting that they
represent intrinsic functional building blocks of cortical responses. Notably, single neurons often participate
in multiple ensembles, thereby enhancing the network’s encoding potential. Further evidence from Yoshida
& Ohki (2020) showed that sparse ensembles in the primary visual cortex (V1) are elicited by visual stimuli.
Images could be decoded reliably from the activity of a small subset of highly responsive neurons, with
additional neurons either failing to improve or even degrading decoding performance. These findings un-
derscore the efficiency of sparse representations, likely facilitated by partially overlapping receptive fields.
This arrangement enables robust and efficient encoding of visual information, making sparse ensembles an
optimal strategy for downstream processing.

The presence and functionality of ensembles are not limited to specific species or sensory modalities. Studies
in various animal models have revealed their role in diverse neural processes (Dupre & Yuste, 2017; Liu &
Baraban, 2019), and recent findings suggest they may even contribute to conscious experience (Boyce et al.,
2023). Moreover, ensembles have demonstrated remarkable stability over time. For instance, Pérez-Ortega
et al. (2021) showed that neuronal ensembles can persist for weeks, supporting their potential involvement
in long-term representations of perceptual states or memories.

Technological advancements have also enabled not just the visualization but the direct stimulation of en-
sembles allowing to “play the piano” with ensembles of neurons Carrillo-Reid & Yuste (2020). All-optical
approaches, such as those described by Packer et al. (2015) and Carrillo-Reid et al. (2019), have shown that
repeatedly stimulating specific groups of neurons in V1 can imprint ensembles that remain spontaneously
active even after a day. These imprinted ensembles exhibit pattern completion, where activating a subset
of neurons can recall the entire ensemble. Remarkably, this effect persists long after the initial stimulation,
and experiments have demonstrated causal links between ensemble activation and behaviour (Carrillo-Reid
& Yuste, 2020).

Finally, the concept of neuronal ensembles has inspired computational models. For instance, Doi & Lewicki
(2004) demonstrated that sparse and redundant representations are optimal for encoding natural images,
particularly when neurons are unreliable, a result corroborated by earlier studies (Field, 1994; Olshausen
& Field, 2004). These computational frameworks align with biological observations, suggesting that sparse
ensemble representations are both efficient and robust mechanisms for encoding sensory information.

3 Methods

In this work, we investigate and compare the representations produced by three models 1:

• A classifier in the style of that used by Hinton (2022), trained with Forward-Forward (FF);

• A classifier identical to the above, but trained end-to-end with Backprop to optimise the same
goodness function (BP/FF);

• A classifier trained with Backprop on the categorical cross-entropy loss, as customary (BP).

1From this point on, we use the term model to refer to the combination of network architecture and optimisation algorithm.
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Such different scenarios are described individually in subsection 3.2, subsection 3.3 and subsection 3.4,
respectively.

3.1 Data

The datasets we use to train and test the models described so far are Mnist (Lecun et al.,
1998),FashionMnist (Xiao et al., 2017), Svhn (Netzer et al., 2011) and Cifar10 (Alex, 2009). Details
on these datasets are provided in the Appendix B.

3.2 Model trained with Forward-Forward (FF)

Our FF model is inspired by the architecture proposed by Hinton (2022) – and likewise trained according
to the Forward-Forward algorithm. It consists of three fully-connected layers, each composed by 1000 units
in the case of Mnist and FashionMnist, and 3072 units in the case of Svhn and Cifar10. Each linear
layer is followed by elementwise ReLU non-linearities. Both during training and inference, the layer-wise
ℓ2 norm is used as the goodness function of choice; correspondingly, ℓ2 normalisation is performed between
subsequent layers.
To define positive and negative data, a one-hot-encoded class vector is embedded at the top-left corner of
images. Prior to such embedding, these pixels are set to black colour. Then, in the case of positive data,
the pixel corresponding to the true class is switched to the maximum value elsewhere observed in the image,
while in the case of negative examples such value is randomly assigned to one of the other pixels of the
embedding vector.
During training, the weights are optimised by minimising the loss function L = log(1 + eGneg−Gpos), where
Gneg and Gpos are, respectively, the goodness value for negative and positive data. At inference time, for
each layer, the goodness values corresponding to every possible label are converted into a probability using
softmax. By performing this step for each layer, they can contribute equally to the prediction.

For comprehensive details on the training procedures of the models discussed in this section and the next
two sections, we direct the reader to Appendix C.

3.3 Model trained with Backpropagation on the goodness objective (BP/FF)

The architecture of the FF model, while designed to be optimised using the Forward-Forward algorithm, can
be trained seamlessly with Backprop on the same goodness maximisation/minimisation objective. Indeed,
keeping the definition of positive and negative data introduced for FF, one could simply use Backprop to
optimise the goodness-based loss from the Forward-Forward algorithm.
In detail, positive and negative data are fed to the network during the forward step, and the overall goodness
of the internal representation is evaluated. The backward pass is then executed, and parameters are optimised
to achieve the same goal as the FF model. It is worth pointing out that, in this case, the goodness is
maximised globally instead of layer-by-layer (i.e., locally).

3.4 Model trained with Backpropagation on the cross-entropy loss (BP)

The FF and BP/FF models are also compared to a standard neural classifier, serving as a baseline. For such
purpose, a multi-layer perceptron is employed. The model shares the same number of layers, layerwise neuron
count, and non-linear activation function choice with FF and BP/FF. The only architectural difference
between the BP model and the other two is the addition of a final softmax layer, to suitably shape and scale
the output for the classification task. The model is trained end-to-end with Backprop on the categorical
cross-entropy loss.

3.5 Analysis of representations

For each model described, we analyse the internal representation emerging at each layer. We limit our
analysis to data belonging to the test set (i.e., not seen during training) and correctly classified by the
respective model. Concretely, the representation of a single image is a n-dimensional vector composed by
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the activations (after the ReLU non-linearity) of all the units in the layer. For each layer, we extract a
representation matrix X of size (M, n), where M is the total number of test images (correctly classified) and
n is the number of neurons in the layer considered.

Sparsity

For each representation vector x we assign a sparsity measure following the notion of sparsity introduced in
Hoyer (2004):

S(x) =
√

n − ∥x∥1
∥x∥2√

n − 1

With this definition, when S(x) = 1 the vector x contains only one non-zero component representing the
case of an extreme sparsity. The other limiting case is the one in which all the components of x are equal
in magnitude, in this case S(x) = 0. The sparsity function S interpolates smoothly between these two
extremes. The sparsity of a layer representation is obtained by averaging the sparsity of its component
vectors S = 1

M

∑M
i=1 S(xi).

Ensembles

To detect the emergence of category-specific ensembles, within each model and dataset combination, we
adopt the following method. The idea is that a neuron should be considered active and part of an ensemble
if it activates consistently and selectively when the network receives input data that belongs to that category.
We start by defining a category-specific representation matrix Xc, of shape (Mc, n), where Mc is the number
of correctly classified test images of the given category. Then, we compute the average activation of each
hidden unit across all samples: xj = 1

Mc

∑Mc

i=1(Xc)ij ; and the leave-one-out average of the averages LOOj =
1

n−1
∑

i ̸=j xj . We then classify a neuron i as active (i.e., part of an ensemble) if xi > LOOi. Examples of
average activation profiles and of ensembles are reported in Figure 1.
The output of the ensemble computation is a set of active units for each category: Ec =

{
ec

1, ec
2, . . . ec

nc

}
, ∀c ∈

{1, 2, . . . , C}, where nc is the number of active units for category c. Once the ensembles are defined, it is
possible to look at units that are shared across categories c and c′ by considering Ec ∩ Ec′ . The size of the
shared units is naturally measured by | Ec ∩ Ec′ |.
We can also measure the similarity between two ensembles using the Jaccard similarity index (intersection
over union): J(Ec, Ec′) = |Ec∩Ec′

|
|Ec∪Ec′ | . Examples of shared units are reported in Figure 3.

When the sparsity S of a representation is low, ensembles are typically ill-defined as too many neurons are
significantly active simultaneously and the notion of active unit tend to blur. To set a threshold, we will
consider values of S below 0.5 as not-sparse, and in these cases, we do not define ensembles out of the
representation.

4 Results

In this section, we describe our findings for the three models introduced, on the Mnist, FashionMnist,
Svhn and Cifar10 datasets. In particular, we focus on the properties of representations obtained within the
FF model, i.e., a model trained with Forward-Forward on its natural goodness objective. Such properties –
e.g., the emergence of category-specific ensembles and the presence of shared units across them – establish a
link between neural networks trained with the Forward-Forward algorithm and biological cortical networks
described in subsection 2.2.

4.1 Classification accuracy

Before we present the main results of this work, we evaluate the performances of our models on the classi-
fication tasks at hand. Table 1 contains results in terms of test set classification accuracy for all models we
employed – FF, BP/FF and BP – on Mnist, FashionMnist, Svhn and Cifar10. While some of these
accuracy values are far from the state-of-the-art (i.e., respectively, 0.997 (Cireşan et al., 2010), 0.931 (Xiao
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et al., 2017), 0.860 (Pitsios, 2017) and approximately 0.7 (Lin et al., 2015), for fully-connected networks), they
are a solid ground on which to build our subsequent investigations. Training details and hyperparameters
for all models are reported in Appendix C.

Table 1: Test-set classification accuracy for the models considered in our investigation. Results expressed as
mean ± std. dev. over 10 runs with independent randomised weight initialisation.

Dataset FF BP/FF BP
Mnist 0.94 ± 0.008 0.969 ± 0.001 0.982 ± 0.001

FashionMnist 0.849 ± 0.002 0.877 ± 0.002 0.892 ± 0.004
Svhn 0.716 ± 0.002 0.799 ± 0.004 0.793 ± 0.145

Cifar10 0.484 ± 0.004 0.521 ± 0.006 0.564 ± 0.004

4.2 Forward-Forward elicits sparse neuronal ensembles

Figure 2: Sparsity of category-specific representations. We report the sparsity of representations - computed
as described in subsection 3.5 - for the three models FF, BP/FF and BP on the Mnist dataset (same
models as in the first row of Table 1). Sparsity values are the average on 10 runs.

The FF and BP/FF models – based on the original Forward-Forward network architecture, and trained
according to the goodness objective (subsection 3.2 and subsection 3.3) – exhibit typically high sparsity
levels in their representations, in clear contrast with BP (see Figure 2 and Table 2).
When the sparsity level is sufficiently high (S > 0.5) we are able to identify small sets of neurons (ensembles)
that consistently co-activate across all the samples of the same class, similar to what has been observed in
cortical representations (Yuste, 2015; Miller et al., 2014; Harris, 2005).
Figure 1 (Panels B, C) shows an example of average neuron activations for each class in Layer 1 of the
FF model trained on Mnist, and showcases the emergence of sparse, category-specific, ensembles (see the
Appendix D for a similar visualisation for Layers 2 and 3 of the same model and Appendix E for Layer 1 in
all the models).
These representations typically activate only a small fraction of units: ensembles consisting of just a few
percent of the neurons in a layer are commonly observed, whether working with simpler datasets (e.g.,
MNIST, FashionMNIST) or more complex ones (Svhn, Cifar10), with a slight tendency of the FF
model to create larger ensembles in the latter case (Table 3).

4.3 Semantically similar classes can elicit ensembles with shared neurons

Drawing a parallel with a phenomenon observed in Neuroscience (Yoshida & Ohki, 2020), related categories
can be expected to share units of their ensembles. This is indeed what we observe, as shown in Figure 3.
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Table 2: Average sparsity for all combinations of model, dataset and layer, according to the definition given
in subsection 3.5. Results are expressed as mean ± std. dev. computed over 10 runs with independent
random weights initialization.

Model Layer Mnist FashionMnist Svhn CIFAR10
1 0.922 ± 0.001 0.85 ± 0.002 0.83 ± 0.001 0.77 ± 0.001

FF 2 0.813 ± 0.019 0.605 ± 0.015 0.706 ± 0.001 0.728 ± 0.002
3 0.618 ± 0.074 0.628 ± 0.013 0.489 ± 0.004 0.566 ± 0.002
1 0.895 ± 0.005 0.81 ± 0.007 0.783 ± 0.003 0.753 ± 0.004

BP/FF 2 0.747 ± 0.013 0.851 ± 0.007 0.95 ± 0.003 0.932 ± 0.003
3 0.131 ± 0.011 0.065 ± 0.009 0.133 ± 0.011 0.135 ± 0.009
1 0.315 ± 0.003 0.352 ± 0.003 0.47 ± 0.02 0.478 ± 0.016

BP 2 0.193 ± 0.004 0.241 ± 0.005 0.524 ± 0.212 0.3 ± 0.18
3 0.225 ± 0.006 0.248 ± 0.006 0.232 ± 0.106 0.164 ± 0.006

Table 3: Average fraction of units taking part in ensembles, for all combinations of dataset and layers, in
the FF and BP/FF models. Ensemble sizes are averaged across all categories, divided by the number of
neurons in a layer, and then expressed in %. Ensembles are defined according to the LOO method presented
in subsection 3.5. Results expressed as mean ± std. dev.. In the third layer of BP/FF, as well as in BP,
the representation is not-sparse.

Model Layer Mnist FashionMnist Svhn CIFAR10
1 3.69 ± 0.09 5.02 ± 0.14 10.3 ± 0.15 16.08 ± 0.09

FF 2 5.31 ± 0.35 18.46 ± 0.66 21.28 ± 0.23 21.2 ± 0.3
3 1.36 ± 0.36 20.59 ± 0.63 4.48 ± 0.52 4.86 ± 0.51
1 8.58 ± 0.23 13.24 ± 0.31 15.07 ± 0.16 13.3 ± 0.13

BP/FF 2 13.18 ± 0.67 8.45 ± 0.47 5.08 ± 0.19 5.55 ± 0.28
3 - - - -

Results are reported for FashionMnist, where different classes of clothes or shoes may contain a common
share of visual features. In this regard, we observe a clear tendency to share units between similar classes –
e.g., across representations of pullover, coat and shirt.
In the following section, we provide evidence that a unit can be shared across two ensembles even if one of
these refers to an unseen category (i.e., excluded from the training set but whose representation, extracted
at test time, generates a valid ensemble), as we show in Figure 4 (Panel C).

4.4 Representations of unseen categories can elicit well-defined ensembles

We investigate the ability of a trained FF model to respond to unseen categories with a coherent activation
pattern which is typical of the ensembles we found on the categories seen at training time. To this end, we
repeatedly train FF on FashionMnist, removing one category at a time. Then, we extract the representa-
tion of the missing category, and verify if a valid ensemble is formed. We find that in all the ten cases, a new
ensemble is formed, sharing the same characteristics of the ones emerging for seen categories, apparently
with the only exception of a lower average activation of their constituent units (see Figure 4 for one example,
and the Appendix F for a more detailed account).
In several cases, we also find that the ensembles of unseen categories share units with the ensembles of seen
categories, when endowed with similar visual features or semantics (Figure 4, Panel C). A more extensive
exploration of these cases is also reported in the Appendix F.
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Figure 3: Semantically similar classes in FashionMnist can elicit ensembles with shared neurons.
Panel A The ensembles elicited in the first hidden layer of FF by two example inputs. Red circles indicate
the active units which are shared between the two categories.
Panel B Element i, j of the matrix indicates how many units are shared between the ensembles of category i

and category j (normalised by the ensemble sizes), by using the Jaccard similarity index: J(E i, Ej) = |Ei∩Ej |
|Ei∪Ej | .

The results are referred to a single training run.

Figure 4: The representations of an unseen category form a valid ensemble in FF trained on FashionMnist.
Panel A Activation patterns in response to the different categories in the first hidden layer. The unseen
category (Sandal), surrounded by red lines, produces a relatively weaker but well-defined ensemble-like
activation pattern.
Panel B Activation value of each neuron, averaged on all images of the unseen category. Neuron index on
the x axis; average activation on the y axis. Blue dots indicate units that are considered active according to
the method described in subsection 3.5.
Panel C Ensembles of unseen categories can share units with the ensembles of the other categories. Element
i, j of the matrix indicates how many units are shared between the ensembles of category i and category j:
| E i ∩ Ej |. The results are referred to a single training run.
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4.5 Distribution of excitatory and inhibitory connections

As we observed in subsection 4.2, FF and BP/FF have comparable sparsity levels and, when they are
defined, the ensembles have comparable sizes. The presence of sparse ensembles suggests that a strong
inhibition mechanism is at work, leaving only a few neurons active for each data sample. Inhibition in these
architectures is the result of an interplay between the sign and magnitude of the weights and the those of the
biases. Therefore it is natural to wonder whether FF and BP/FF are similar also in this interplay between
weights and biases. We find that the answer is no: the FF and BP/FF are indeed two profoundly different
models that create sparse representations and ensembles with different mechanisms.

To show this, we consider for each neuron i in a layer with width n the fraction of its positive weights w.r.t.
the total number of its input connections (ϱ+

i in the following), and its bias βi. From these neuron-level
quantities we construct their layer averages: ϱ+ = 1

n

∑
i ϱ+

i and β = 1
n

∑
i βi. The neuron’s weights are

strongly imbalanced towards inhibition when ϱ+
i ≈ 0 and, viceversa, strongly imbalanced towards excitation

when ϱ+
i ≈ 1; when its ϱ+

i ≈ 0.5 we will say that the neuron’s weights are almost perfectly balanced; similar
considerations holds for the biases, where a large and negative βi means strong inhibition for the i-th unit.

Focusing on the second hidden layer, we observe macroscopic differences in the empirical distribution of ϱ+
i

among the three models (see Figure 5), with 1) a dominance of positive weights in the case of FF, 2) a
bimodal distribution of ϱ+

i in BP/FF, with two populations of imbalanced units in opposite directions, and
3) a unimodal and approximately balanced distribution for all the neurons in the BP model.

In FF we find that the bias distribution is strongly imbalanced towards inhibition with a mean ± std.dev.
value of −1.66 ± 1.534. On the contrary, BP/FF and and BP show a substantial balance (−0.017 ± 0.015
and 0.003 ± 0.018, respectively).

Therefore, although the weights of the FF model appear imbalanced towards excitation, the average bias β
is very large and negative, and this might explain why, for this model, we observe such high sparsity values.
Conversely, the BP/FF model has substantially zero bias (within very small fluctuations), therefore the
inhibitory mechanism at work here does not rely upon a negative bias, but on the weights’ configuration.
From these results, we conclude that not only the training objective (i.e., goodness-based vs. categorical
cross-entropy minimisation), but the specific training protocols (FF vs BP/FF) are determinant in shaping
a different interplay between excitation and inhibition, even when similar sparsity levels are observed.

Figure 5: Distribution of ϱ+
i in Layer 2 (Mnist dataset). In FF, the distribution is imbalanced, with most of

the population of neurons having ≈ 65 − 75% of excitatory weights. In BP/FF the distribution is bimodal
with two populations of neurons: one inmbalanced towards excitation (right mode) and the other towards
inhibition (left mode). The BP model is almost perfectly balanced between excitation and inhibition.

We report the summary statistics ϱ+, β for all the combinations of models, layers and datasets in Table 4
and Table 5. In all settings, we observe a similar picture, with the inhibition mechanisms dominated by
negative biases in FF and negative weights in BP/FF.
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Table 4: Average fraction of positive weights (ϱ+) for each combination of models, datasets and layers.
Results are expressed as mean ± std. dev. over a single training run.

Dataset Layer FF BP/FF BP
1 0.661 ± 0.031 0.534 ± 0.028 0.486 ± 0.022

Mnist 2 0.688 ± 0.014 0.445 ± 0.099 0.523 ± 0.019
3 0.882 ± 0.078 0.535 ± 0.071 0.52 ± 0.021
1 0.457 ± 0.099 0.509 ± 0.018 0.491 ± 0.021

FashionMnist 2 0.602 ± 0.074 0.423 ± 0.065 0.52 ± 0.02
3 0.416 ± 0.191 0.433 ± 0.019 0.52 ± 0.02
1 0.487 ± 0.062 0.499 ± 0.009 0.499 ± 0.006

Svhn 2 0.521 ± 0.033 0.427 ± 0.042 0.504 ± 0.011
3 0.583 ± 0.096 0.422 ± 0.031 0.522 ± 0.023
1 0.493 ± 0.027 0.502 ± 0.011 0.501 ± 0.009

CIFAR10 2 0.489 ± 0.044 0.43 ± 0.038 0.513 ± 0.012
3 0.612 ± 0.046 0.408 ± 0.034 0.523 ± 0.02

Table 5: Average bias (β) for each combination of models, datasets and layers. Results expressed as mean
± std. dev. over one single run.

Dataset Layer FF BP/FF BP
1 −1.57 ± 2.029 −0.007 ± 0.019 0.001 ± 0.021

Mnist 2 −1.66 ± 1.534 −0.017 ± 0.015 0.003 ± 0.018
3 −0.313 ± 0.151 −0.071 ± 0.02 0.002 ± 0.018
1 −0.694 ± 0.706 −0.007 ± 0.018 0.003 ± 0.021

FashionMnist 2 −1.858 ± 0.489 −0.011 ± 0.018 0.003 ± 0.019
3 −1.437 ± 1.213 −0.028 ± 0.009 0.003 ± 0.019
1 −0.662 ± 0.219 −0.033 ± 0.012 −0.004 ± 0.013

Svhn 2 −0.959 ± 0.089 −0.005 ± 0.011 0.003 ± 0.012
3 −0.962 ± 0.271 −0.001 ± 0.016 0.003 ± 0.011
1 −0.402 ± 0.1 −0.022 ± 0.008 −0.001 ± 0.016

CIFAR10 2 −0.703 ± 0.132 −0.006 ± 0.01 0.003 ± 0.016
3 −0.873 ± 0.076 −0.004 ± 0.013 0.002 ± 0.013

5 Discussion and conclusions

The main finding of our work is that artificial neural networks – trained with the Forward-Forward algorithm
– can elicit biologically plausible representations in the form of sparse neuronal ensembles (Yuste, 2015; Miller
et al., 2014).

We started our investigation by collecting and analysing representations from FF networks trained on Mnist,
FashionMnist, Svhn, and Cifar10, and defined, separately for each category, subsets of units (ensembles)
that prominently and consistently activated in response to data in such category (subsection 4.2). These
category-specific ensembles turned out to be composed of a few units, which is consistent with experimental
findings on the sensory cortex (Miller et al., 2014). Furthermore, when image categories were characterised
by a certain degree of visual similarity, the corresponding ensembles often shared one or more units (Figure 3,
Panel B).

These results are consistent with phenomena observed in the neocortex and the hippocampus (Yuste et al.,
2024) – as discussed in detail in subsection 2.2 – where ensembles are defined.
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We then tested the ability of trained FF models to cope with new data, and we observed that the activations
in response to an unseen input category formed, in many cases, a new ensemble with similar characteristics
of sparsity to those formed for other classes during training (Figure 4, Panels A and B). Furthermore, we
noticed that the ensembles of unseen categories often showed a high level of similarity and integration with
the ensembles of the categories of data encountered during training, realised through the sharing of units
(see Figure 4, Panel C and also the results in Appendix F). These findings suggest that FF can perform
well in zero-shot classification tasks, which is particularly relevant in view of the importance of zero/few-shot
learning in human and animal cognitive performances (Lake et al., 2015).

While absent in the BP model, the existence of ensembles composed of a few units is not unique to FF. It was
indeed observed also in BP/FF (subsection 4.2), where the ensembles turned out to be of comparable size.
However, despite their similarity, the FF and BP/FF models are profoundly different, as demonstrated by
the different interplay between inhibition and excitation in these models (see subsection 4.5). We observed
in this regard that the excitatory/inhibitory (E/I) balance play a key role in the stability of cortical networks
and in brain dynamics (Gerstner & Kistler, 2002; Deco et al., 2014).

The sparsity of representations has computational benefits in sensory processing. Olshausen & Field (2004)
emphasised that sparsity may be the optimal encoding strategy for neural networks because it is energy
efficient. This is especially important for biological neural networks, which operate under metabolic con-
straints. Sparsity also increases the memory-storage capacity and eases readout at subsequent processing
layers. Babadi & Sompolinsky (2014) showed that sparse and expansive coding (i.e., from a lower dimen-
sional sensory input space to a higher dimensional neural representation) reduced the intra-stimulus vari-
ability, maximised the inter-stimulus variability, and allowed optimal and efficient readout of downstream
neurons. This is the reason why sparse and expansive transformations are widespread in biology, e.g., in
rodents (Mombaerts et al., 1996) or flies (Turner et al., 2008).

Many questions are left open and will be addressed in future works. A closer inspection of the activation
patterns within each category will be necessary to test for the co-existence of multiple patterns, with one
dominant and possibly many subdominant patterns. We have not yet investigated this microstructure (Galán,
2008), leaving it to possible extensions of this work.

Based on experimental results indicating the presence of small category-specific ensembles, a promising
avenue for future research in this field encompasses exploring model compression through pruning (Blalock
et al., 2020), with the design of new strategies based on the relevance of the ensembles, as well as investigating
the dynamic evolution of ensemble size and organization throughout the training process. Such inquiries
hold the potential to shed light on the formation, evolution, interactions, and persistence or replacement of
ensembles in artificial neural networks.

In conclusion, starting from the analysis of representations learned by the Forward-Forward algorithm, our
work suggests novel directions for comparing artificial and biological representations (Barrett et al., 2019),
(Schrimpf et al., 2018) – particularly for biologically plausible learning algorithms – by leveraging a well-
established concept in Neuroscience: that of neural ensembles.
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A Computational resources

Training and subsequent experiments were conducted on an NVIDIA DGX A100 system. The system is
equipped with 8 NVIDIA A100 GPUs, interconnected by NVLink technology, two AMD EPYC 7742 64-core
CPUs, 1TB of RAM, and a 3TB NVME storage configured in RAID-0. Each GPU is equipped with 6912
CUDA cores, 432 Tensor cores and 40 GB of high-bandwidth memory.

B Data

The Mnist dataset consists of pictures of handwritten Arabic numerals, from 0 to 9, each represented as
a grayscale image of size 28 × 28. FashionMnist has been designed as a drop-in replacement to Mnist,
offering a more challenging classification task. It consists of ten classes of clothing items, still represented as
grayscale images with a resolution of 28 × 28. Both datasets provide 60000 training and 10000 test images,
balanced in terms of per-class numerosity.
Svhn contains coloured images of digits from house numbers, captured by Google StreetView. The images
are composed of 32 × 32 RGB-encoded pixels. This dataset is slightly larger than the previous two, as it
contains 73257 data-points in the training set and 26032 in the test set.
The Svhn images have been cropped in order to center the digit of interest within the frame. However,
the presence of adjacent digits and other distracting elements, that have been kept within the images,
introduces an additional layer of complexity when compared to Mnist and FashionMnist, where the
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subjects are prominently displayed against a uniform black background. The CIFAR10 consists of 60000
coloured natural images categorised in 10 balanced classes. The dataset is split in 50000 training images
and 10000 test images. Each image, like Svhn has a resolution of 32 × 32 for each channel. Compared to
previous datasets, this is the most challenging one for a fully connected network. The dataset split employed
is provided by the TorchVision framework (TorchVision maintainers and contributors, 2016).

C Training details

All our models (FF, BP/FF and BP), on all datasets (Mnist, FashionMnist, Svhn and Cifar10), have
been optimised using Adam (Kingma & Ba, 2017) with β1 = 0.9 and β2 = 0.999 implemented in PyTorch
(Paszke et al., 2019). A hyperparameter search has been performed to achieve sufficient accuracy for each
model across all datasets. Every model was trained using batches of size 1024.

Table 6: Hyperparameters selected to train our models.
Model Mnist FashionMnist Svhn CIFAR10

Epochs 1200 100 1000 1000
FF Learning rate 0.01 0.01 0.0001 0.0001

Epochs 300 300 200 200
BP/FF Learning rate 0.0001 0.0001 0.0001 0.0001

Epochs 80 80 80 80
BP Learning rate 0.0001 0.0001 0.0001 0.0001

D Activation patterns in deeper layers

In subsection 4.2 we claimed that in FF and BP/FF the images of a given category activate consistently a
small set of units that we named ensembles, that share similarities to what is observed in sensory cortices.
We reported in Figure 1 the activation map for Layer 1 (the first hidden layer) of FF trained on the Mnist
dataset, and observed that very sparse ensembles emerge. In this section we show, in a similar fashion, the
representations for Layers 2 and 3 (Figure 6 and Figure 7, respectively). We found that high sparsity also
for deeper layers of this specific network; a qualitatively similar conclusion is reached for FF models trained
on FashionMnist, Svhn and Cifar10. In BP/FF models a similar sparsity levels are observed, with the
exception of the last layer that turns out to be not-sparse in each of the datasets we considered (see Table 3).

E Activation patterns in different models

In Figure 1 Panel C we show the activation patterns in Layer 1 of FF trained on Mnist. For the purpose of
a qualitative comparison, we show here analogous patterns for BP/FF and BP (see Figure 8 and Figure 9).

F Further results on representations of unseen categories and their ensembles

We showed in subsection 4.4 that a FF model trained on the FashionMnist dataset – deprived of one
category – can respond at test time to this unseen category with a valid ensemble (Figure 4).
We report here the results of similar experiments, removing one category at a time. It turns out that, in each
of the ten possible cases (we performed a single run for each category), the representations of the unseen
category form a valid ensemble; we show three examples in Figure 10, different from the example shown in
(Figure 4). It is with this situation in mind that we refer to “the ensembles related to unseen categories”.

When an unseen category forms a valid ensemble, it generally exhibits a high level of integration with the
ensembles associated with the categories encountered during training. This integration implies that it can
share common units with ensembles belonging to related categories. We show in Figure 11 how the ensembles
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Figure 6: Activation patterns in a Multi-Layer Perceptron trained with the Forward-Forward algorithm, on
the Mnist dataset. The image represents the activation map for neurons in Layer 2 for all images, grouped
by class. A blue dot in position (x, y) indicates that neuron x is activated by input y; colour scale represents
the intensity of such activation (incorrectly classified samples have been removed). Horizontal bands mark
different categories; dark blue vertical lines mark active neurons. Each input category activates consistently
a specific sets of neurons (ensemble). The sparsity measured according with the definition provided in
subsection 3.5 is 0.84.

Figure 7: Activation reported as in Figure 6, for Layer 3. Notice that there are only few units that activates
significantly and does not play a role in discriminating categories. The role of this layer, in this experiment
seems, not related to the classification task. Despite the low number of active units, the sparsity level of the
representation is lower than that of Layer 2 (S = 0.67), due to the noise of the inactive units.

of missing categories (same examples as in Figure 10) integrate – by sharing units – with the other ensembles.
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Figure 8: Activation pattern in Layer 1 of the BP/FF model trained on the Mnist dataset. The sparsity
measure is 0.89, comparable with the correspondent first layer of the FF model, reported in Figure 1, Panel
C.

Figure 9: Activation pattern in Layer 1 of the BP model trained on the Mnist dataset. The sparsity measure
is 0.32 (non-sparse representation), about 1

3 of the sparsity level measured in the analogous experiment with
FF and BP/FF.

Overall, these result relates to biological neural networks (Yoshida & Ohki, 2020; Yuste, 2015), where en-
sembles appear to be the functional building block of brain representations even in the absence of known
stimuli.

G Limitations

The limitations of the present work could be addressed by applying similar analyses to more complex datasets
and a variety of tasks. To scale to a more challenging dataset may require the replacement of a fully
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Figure 10: Ensembles elicited by the FF model trained on FashionMnist deprived of one category (we show
three examples: Pullover, Coat and Ankle boot). We report for the three categories, the activation value
of each neuron in the first hidden layer (Layer 1), averaged on all images of the unseen category. Neuron
index on the x axis; average activation on the y axis. Blue dots indicate units that are considered active
according to the method described in subsection 3.5.

Figure 11: Shared units between the ensembles of unseen categories and the ensembles of categories seen
during training (stripes delimited by the red lines). The results for Pullover, Coat and Ankle boot are
shown.

connected network with more suitable architectures trainable with the Forward-Forward protocol, e.g., the
CNNs recently introduced in Papachristodoulou et al. (2024). This approach could provide insights into
how data characteristics influence sparsity levels and the resulting ensemble-like structures. Moreover, as
highlighted in Yang (2023), the choice of hyperparameters potentially affects representation sparsity, as well
as the goodness function of choice. Future work should explore the effects of these factors to further address
the limitations identified.
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