
Learnable Graph Convolutional Attention Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Existing Graph Neural Networks (GNNs) compute the message exchange between1

nodes by either aggregating uniformly (convolving) the features of all the neighbor-2

ing nodes, or by applying a non-uniform score (attending) to the features. Recent3

works have shown the strengths and weaknesses of the resulting GNN architectures,4

respectively, GCNs and GATs. In this work, we aim at exploiting the strengths5

of both approaches to their full extent. To that end, we first introduce a graph6

convolutional attention layer (CAT), which relies on convolutions to compute the7

attention scores. Unfortunately, as in the case of GCNs and GATs, we then show8

that there exists no clear winner between the three—neither theoretically nor in9

practice—since their performance directly depends on the nature of the data (i.e.,10

of the graph and features). This result brings us to the main contribution of this11

work, the learnable graph convolutional attention network (L-CAT): a GNN archi-12

tecture that allows us to automatically interpolate between GCN, GAT and CAT13

in each layer, by only introducing two additional (scalar) parameters. Our results14

demonstrate that L-CAT is able to efficiently combine different GNN layers across15

the network, outperforming competing methods in a wide range of datasets, and16

resulting in a more robust model that needs less cross-validation.17

1 Introduction18

In recent years, Graph Neural Networks (GNNs) [25] have become ubiquitous in machine learning,19

emerging as the standard approach in many settings. For example, they have been successfully20

applied for tasks such as topic prediction in citation networks [26]; molecule prediction [11]; and21

link prediction in recommender systems [33]. These applications typically make use of message-22

passing GNNs [11], whose idea is fairly simple: in each layer, nodes are updated by aggregating the23

information (messages) coming from their neighboring nodes.24

Depending on how this aggregation is implemented, we can define different types of GNN layers.25

Two important and widely adopted layers are graph convolutional networks (GCNs) [18], which26

uniformly average the neighboring information; and graph attention networks (GATs) [30], which27

instead perform a weighted average, based on an attention score between receiver and sender nodes.28

More recently, a number of works have shown the strengths and limitations of both approaches from29

a theoretical [2, 3, 10], and empirical [19] point of view. These results show that their performance30

depends on the nature of the data at hand (i.e., the graph and the features), thus the standard approach31

is to select between GCNs and GATs via computationally demanding cross-validation.32

In this work, we aim to exploit effectively and efficiently the benefits of both convolution and33

attention operations in the design of GNN architectures. To that end, we first introduce a novel graph34

convolutional attention layer (CAT), which extends existing attention layers by taking the convolved35

features as inputs of the score function, thus taking advantage of both operations. Following [10],36

we rely on a contextual stochastic block model to theoretically compare GCN, GAT, and CAT37
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architectures. Our analysis shows that, unfortunately, no free lunch exists among these three GNN38

architectures since their performance, as expected, is fully data-dependent.39

This result motivates the main contribution of the paper, the learnable graph convolutional attention40

network (L-CAT): a novel GNN which, in each layer, is capable of automatically interpolating41

between the three operations during training by introducing only two additional (scalar) parameters.42

As a result, L-CAT is able to learn the proper operation to apply at each layer, thus combining different43

layer types in the same GNN architecture while overcoming the need to cross-validate—a process44

that was prohibitively expensive prior to this work. Our extensive empirical analysis demonstrates the45

capabilities of L-CAT on a wide range of datasets, outperforming existing baseline GNNs in terms of46

both performance, and robustness to input noise and network initialization.47

2 Preliminaries48

Assume we are given as an input an undirected graph G = (V,E), where V = [n] denotes the set49

of vertices of the graph, and E ⊆ V × V the set of edges. Each node i ∈ [n] is represented by a50

d-dimensional feature vector Xi ∈ Rd, and the goal is to produce a set of predictions {ŷi}ni=1.51

To this end, a message-passing GNN layer yields, for each node i, a representation h̃i ∈ Rd′
, by52

collecting the information from each of its neighbors; aggregating them into a single message; and53

using the aggregated message to update its representation from the previous layer, hi ∈ Rd. For the54

purposes of this work, we can define this operation as the following:55

h̃i = f(h′
i) where h′

i
def
=

∑
j∈N∗

i

γijWvhj , (1)

where N∗
i = Ni ∪ {i}, and Ni denotes the set of neighbors of node i, Wv ∈ Rd′×d a learnable56

weight matrix, f an elementwise function, and γij ∈ [0, 1] are coefficients such that
∑

j∈N∗
i
γij = 157

for each node i.58

Let the input features be h0
i = Xi, and the predictions be hL

i = ŷi, we can readily define a message-59

passing GNN [11] as a sequence of L layers as defined above. Depending on the way the coefficients60

γij are computed, we can identify different GNN flavors.61

Graph convolutional networks (GCNs) [18] are a simple (yet effective) type of layers. In short,62

GCNs simply compute the average of the messages, i.e., they assign the same coefficient γij = 1/|N∗
i |63

to every neighbor:64

h̃i = f(h′
i) where h′

i
def
=

1

|N∗
i |

∑
j∈N∗

i

Wvhj , (2)

Graph attention networks take a different approach. Instead of assigning a fixed value to each65

coefficient γij , they dynamically compute it as a function of the sender and receiver nodes. A general66

formulation for these models can be written as follows:67

h̃i = f(h′
i) where h′

i
def
=

∑
j∈N∗

i

γijWvhj and γij
def
=

exp(Ψ(hi,hj))∑
ℓ∈N∗

i
exp(Ψ(hi,hℓ))

. (3)

Here, Ψ(hi,hj)
def
= α(Wqhi,Wkhj) is known as the score function (or attention architecture), and68

measures the similarity between the messages hi and hj (or more generally, between a learnable69

mapping of the messages). From these scores, the (attention) coefficients are obtained by normalizing70

them, such that
∑

j γij = 1. We can find in the literature different attention layers. Throughout this71

work, we focus on two types, the original GAT [30], and its extension GATv2 [5]:72

GAT: Ψ(hi,hj) = LeakyRelu
(
a⊤[Wqhi||Wkhj ]

)
, (4)

GATv2: Ψ(hi,hj) = a⊤LeakyRelu (Wqhi +Wkhj) , (5)
where the learnable parameters are now the attention vector a; and the matrices Wq, Wk, and Wv.73

Following previous work [5, 30], we assume that these matrices are coupled, i.e., Wq = Wk = Wv .74

Note that the difference between the two layers lies in the position of the vector a: by taking it out of75

the nonlinearity, Brody et al. [5] increased the expressiveness of GATv2. Now, the product of a and a76

weight matrix does not collapse into another vector. More importantly, the addition of two different77

attention layers will help us show the versatility of the proposed models later in §6.78
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3 Previous work79

In recent years, there has been a surge of research in GNNs. Here, we discuss other GNN models,80

attention mechanisms, and the recent findings on the limitations of GCNs and GATs.81

The literature on GNNs is extensive [4, 14, 21, 34], and more abstract definitions of a message-82

passing GNN are possible, leading to other lines of work trying different ways to compute messages,83

aggregate them, or update the final message [7, 13, 35]. Alternatively, another line of work fully84

abandons message-passing, working instead with higher-order interactions [22]. While some of this85

work is orthogonal—or directly applicable—to the proposed model [7, 13, 35], here we focus on86

convolutional and attention graph layers, as they are the most widely used (and cited) as of today.87

While we consider the original GAT [30] and GATv2 [5], our work can be directly applied to any88

attention model that sticks to the formulation in Eq. 3. For example, some works propose different89

metrics for the score function, like the dot-product [5], cosine similarity [28], or a combination of90

various functions [17]. Other works introduce transformer-based mechanisms [29] based on positional91

encoding [9, 20] or on the set transformer [31]. Finally, there also exist attention approaches designed92

for specific type of graphs, such as relational [6, 37] or heterogeneous graphs [16, 32].93

3.1 On the limitations of GCN and GAT networks94

In [2], the authors study classification on a Gaussian mixture, where the data correspond to the node95

features of a stochastic block model. They showed that when the graph is neither too sparse nor noisy,96

applying one layer of graph convolution increases the regime in which the data is linearly separable.97

Namely, if the distance between the means of the classes is not too small, the convolved features are98

linearly separable, whilst the original features are not. However, the above result is highly sensitive99

to the graph structure. Indeed, even if the distance between the means is large, the convolution cannot100

make the data linearly separable when the graph is noisy, since the convolution operation essentially101

collapses the means of the two classes to the same value.102

More recently, Fountoulakis et al. [10] showed that GAT is able to remedy the above issue, and103

provide perfect node separability regardless of the noise level in the graph. Specifically, they showed104

that if the distance between the means is large compared to the standard deviation, then GAT achieves105

perfect node separability with high probability. However, a classical argument (see [1]) states that106

in this setting graph-based models are unnecessary, since a simple linear classifier already achieves107

perfect separability (see Proposition 4 in [10]). In addition, when the distance between the means108

is small compared to σ, no score function Ψ can drop inter-class edges (the noisy edges), and thus109

might not achieve perfect node separability (see Conjecture 7 in [10]).110

The above discussion implies that for some datasets, GAT might not work as well as expected.111

However, it leaves open the question of which architecture (GCN or GAT) is preferable in terms of112

performance.113

4 Convolved attention: benefits and hurdles114

In this section, we propose to combine attention with convolution operations. To motivate it, we115

complement the results of [10], providing a synthetic dataset for which any 1-layer GCN fails, but116

1-layer GAT does not. Thus, proving a clear distinction between GAT and GCN layers. Besides, we117

show that convolution helps GAT as long as the graph noise is reasonable. The proofs for the two118

statements in this section appear in Appendix A and follow similar arguments as in [10].119

This synthetic dataset is based on the contextual stochastic block model (CSBM) [8]. Let ε1, . . . , εn120

be i.i.d uniform samples from {−1, 0, 1}. Let Ck = {j ∈ [n] | εj = k} for k ∈ {−1, 0, 1}.121

We set the feature vector Xi ∼ N (εi · µ, I · σ2) where µ ∈ Rd, σ ∈ R, and I ∈ {0, 1}d×d122

is the identity matrix. For a given pair p, q ∈ [0, 1] we consider the stochastic adjacency matrix123

A ∈ {0, 1}n×n defined as follows: for i, j ∈ [n] in the same class (i.e., intra-edge), we set124

aij ∼ Ber(p);1 for i, j in different classes (i.e., inter-edge), we set aij ∼ Ber(q). We denote by125

(X,A) ∼ CSBM(n, p, q,µ, σ2) a sample obtained according to the above random process. Our task126

is then to distinguish (or separate) nodes from C0 vs. C−1 ∪ C1.127

1Ber(·) denote the Bernoulli distribution.
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Note that it is impossible to separate C0 from C−1∪C1 with a linear classifier (with high probability).128

In addition, by applying similar arguments as in [2], using one convolutional layer is detrimental for129

node classification on the CSBM.2 This follows from the fact that although the convolution brings130

the means closer and shrinks the variance, the geometric structure of the problem does not change.131

On the other hand, we prove that GAT is able to achieve perfect node separability when the graph is132

not too sparse:133

Theorem 1. Suppose that p, q = Ω(log2 n/n) and ∥µ∥2 = ω(σ
√
log n). Then, there exists a134

choice of attention architecture Ψ such that, with probability at least 1 − on(1) over the data135

(X,A) ∼ CSBM(n, p, q,µ, σ2), GAT separates nodes C0 from C1 ∪ C−1.136

Moreover, we show using methods from [2], that the above classification threshold ∥µ∥ can be137

improved when the graph noise is reasonable. Specifically, by applying convolution prior to the138

attention score, the variance of the data is greatly reduced, and if the graph is not too noisy, the139

operation dramatically lowers the bound on ∥µ∥ in Theorem 1. Motivated by this, we introduce the140

graph convolutional attention layer (CAT), which formalizes this idea:141

Ψ(hi,hj) = α(Wh̃i,Wh̃j) where h̃i =
1

|N∗
i |

∑
ℓ∈N∗

i

hℓ , (6)

and where h̃i are the convolved features of the neighborhood of node i. As we show now, CAT142

improves over GAT by combining convolutions with attention, when the graph noise is low.143

Corollary 2. Suppose p, q = Ω(log2 n/n) and ∥µ∥ ≥ ω
(
σ
√

(p+2q) logn
n(p−q)2

)
. Then, there is a choice144

of attention architecture Ψ such that, with probability at least 1 − o(1) over the data (X,A) ∼145

CSBM(n, p, q,µ, σ2), CAT separates nodes C0 from C1 ∪ C−1.146

The above proposition shows that under the CSBM data model, convolving prior to attention changes147

the regime for perfect node separability by a factor of |p− q|
√

n/(p+ 2q). This is desirable when148

|p− q|
√
n/(p+ 2q) > 1, since the regime for perfect classification is increased. Nonetheless, when149

|p − q|
√
n/(p+ 2q) < 1, applying convolution prior to attention reduces the regime for perfect150

separability. Therefore, it is not always clear whether convolving prior to attention is beneficial.151

5 L-CAT: Learning to interpolate152

From the previous analysis, we can conclude that it is hard to know a priori whether attention,153

convolution, or convolved attention, will perform the best. In this section, we argue that this issue can154

be easily overcome by learning to interpolate between the three.155

First, notice that the formulations of GCN and GAT only differ in that GCN weighs all neighbors156

equally (Eq. 2) and, the more similar the attention scores are (Eq. 3), the more uniform the coefficients157

γij will be. Thus, we can interpolate between GCN and GAT by introducing a learnable parameter158

λ1 ∈ [0, 1]. Similarly, the formulation of GAT (Eq. 3) and CAT (Eq. 6) differ in the convolution159

within the score, which can be interpolated by another learnable parameter λ2 ∈ [0, 1].160

Following this observation, we propose the learnable convolutional attention layer (L-CAT), which161

can be formulated as an attention layer with the following score:162

Ψ(hi,hj) = λ1 · α(Wh̃i,Wh̃j) where h̃i =
hi + λ2

∑
ℓ∈Ni

hℓ

1 + λ2|Ni|
, (7)

and where λ1, λ2 ∈ [0, 1]. As mentioned before, this formulation lets L-CAT learn to interpolate163

between GCN (λ1 = 0), GAT (λ1 = 1 and λ2 = 0), and CAT (λ1 = 1 and λ2 = 1).164

Despite its simplicity, L-CAT enables a number of non-trivial benefits. Not only can it switch between165

existing layers, but it can also learn to use the amount of attention necessary for each use-case.166

Moreover, by comprising the three layers in a single learnable formulation, it removes the necessity167

of cross-validating the type of layer, since their performance is data-dependent (see §§3.1 and 4).168

More importantly, it eases the task of combining different layer types within the same architecture.169

2We note that this problem can be easily solved by two layers of GCN [3].
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Figure 1: Synthetic data results. In the two left-most figures, we show how the accuracy varies with
the noise level q for ∥µ∥ = 0.1 and ∥µ∥ = 4.3. In the two right-most figures, we show how the
accuracy varies with the norm of the means ∥µ∥ for q = 0.1 and q = 0.3. We use two vertical lines
to present the classification threshold stated in Theorem 1 (solid line) and Corollary 2 (dashed line).

6 Experiments170

In this section, we assess the performance of the proposed models, CAT and L-CAT. First, we171

validate our theoretical findings on synthetic data (§6.1). Second, we compare all methods in various172

small-scale node classification tasks (§6.2). And finally, we evaluate the proposed models on more173

realistic scenarios from the Open Benchmark Graph [15] framework, assessing their performance174

and robustness to feature noise and network initialization (§6.3).175

6.1 Synthetic data176

In this section, we empirically validate our theoretical results (Theorem 1 and Corollary 2). We aim177

to better understand the behavior of each layer as the properties of the data change, i.e., the noise178

level q (proportion of inter-edges) and the distance between the means of consecutive classes ∥µ∥.179

We provide in Appendix B extra results and additional experiments.180

Experimental setup. As data model, we use the proposed CSBM (see §4) with n = 10000, p = 0.5,181

σ = 0.1, and d = n/
(
5 log2(n)

)
. All results are averaged over 50 runs, and parameters are set as182

described in Appendix A. To assess the sensitivity to structural noise, we perform two experiments.183

First, we vary the noise level q between 0 and 0.5, leaving the mean vector µ fixed. We test two values184

of ∥µ∥: the first corresponds to the easy regime (∥µ∥ = 10σ
√
2 log n) where classes are far apart;185

and the second correspond to the hard regime (∥µ∥ = σ) where the distance between the clusters is186

small. In the second experiment we modify instead the distance between the means, sweeping ∥µ∥ in187

the range
[
σ/20, 20σ

√
2 log n

]
, and thus covering the transition from the hard setting (small ∥µ∥) to188

the easy one (large ∥µ∥). Here, we fix q to 0.1 (low noise) and 0.3 (high noise). In both cases, we189

compare the behavior of 1-layer GAT and CAT, and include GCN as the baseline.190

Results. The two left-most plots of Fig. 1 show the node classification performance for the hard191

and easy regimes, respectively, as we vary the noise level q. In the hard regime, we observe that192

GAT is unable to achieve separation for any value of q, whereas CAT achieves perfect classification193

when q is small enough. This exemplifies the advantage of CAT over GAT as stated in Corollary 2.194

When the distance between the means is large enough, we see that GAT achieves perfect results195

independently of q, as stated in Theorem 1. In contrast, as we increase q, CAT fails to satisfy the196

condition in Corollary 2, and therefore achieves inferior performance.197

The results for the second set of experiments, where we fix q and sweep ∥µ∥, are shown in the198

right-most part of Fig. 1. In these two plots, we can appreciate the transition in the accuracy of199

both GAT and CAT as a function of ∥µ∥. We observe that GAT achieves perfect accuracy when200

the distance between the means satisfies the condition in Theorem 1 (solid vertical line in Fig. 1).201

Moreover, we can see the improvement CAT obtains over GAT. Indeed, when ∥µ∥ satisfies the202

conditions of Corollary 2 (dashed vertical line in Fig. 1), the classification threshold is improved. As203

we increase q we see that the gap between the two vertical lines decreases, which means that the204

improvement decreases as q increments, exactly as stated in Corollary 2.205

These results—along with empirical evidence in the next sections—reinforce the idea that there is a206

priori no way to tell which layer to use, as their performance highly depend on the properties of the207

data. Prior to this work, this has been solved by cross-validating the layer type. In the next sections,208
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Table 1: Test accuracy (%) of the considered convolution and attention models for different datasets
(sorted by their average node degree), and averaged over ten runs. Bold numbers are statistically
different to their baseline model (α = 0.05). Best average performance is underlined.

Dataset Amazon
Computers

Amazon
Photo GitHub Facebook

PagePage
Coauthor
Physics TwitchEN

Avg. Deg. 35.76 31.13 15.33 15.22 14.38 10.91

GCN 90.59 ± 0.36 95.13 ± 0.57 84.13 ± 0.44 94.76 ± 0.19 96.36 ± 0.10 57.83 ± 1.13

GAT 89.59 ± 0.61 94.02 ± 0.66 83.31 ± 0.18 94.16 ± 0.48 96.36 ± 0.10 57.59 ± 1.20
CAT 90.58 ± 0.40 94.77 ± 0.47 84.11 ± 0.66 94.71 ± 0.30 96.40 ± 0.10 58.09 ± 1.61
L-CAT 90.34 ± 0.47 94.93 ± 0.37 84.05 ± 0.70 94.81 ± 0.25 96.35 ± 0.10 57.88 ± 2.07

GATv2 89.49 ± 0.53 93.47 ± 0.62 82.92 ± 0.45 93.44 ± 0.30 96.24 ± 0.19 57.70 ± 1.17
CATv2 90.44 ± 0.46 94.81 ± 0.55 84.10 ± 0.88 94.27 ± 0.31 96.34 ± 0.12 57.99 ± 2.02
L-CATv2 90.33 ± 0.44 94.79 ± 0.61 84.31 ± 0.59 94.44 ± 0.39 96.29 ± 0.13 57.89 ± 1.53

we empirically demonstrate that L-CAT can automatically perform layer selection during training,209

completely removing the need of cross-validating and, thus, saving computational resources.210

6.2 Real data211

In this section, we study the performance of the proposed models in a comprehensive set of real-world212

experiments, in order to gain further insights into the settings in which they excel. Specifically, we213

found CAT and L-CAT to outperform their baseline models as the average node degree increases. For214

a detailed description of the datasets and additional results, refer to Appendices C and D.215

Models. We consider as baselines a simple GCN layer [18] where all neighbors are uniformly216

weighted, as well as the original GAT layer [30] and its recent extension, GATv2 [5]. See §2 for an217

introduction. Based on the two attention models, we consider their CAT-extensions, CAT and CATv2,218

as well as their interpolatable counterparts, L-CAT and L-CATv2. To ensure fair comparisons, all219

layers use the same number of parameters and share the same implementation, appropriately setting220

λ1 and λ2 (see Eq. 7) for each model.221

Datasets. We take six node classification datasets. The FacebookPagePage/GitHub/TwitchEN datasets222

relate to social-network graphs [24], whose nodes represent verified pages/developers/streamers; and223

where the task is to predict the topic/expertise/explicit language usage of the node. The Coauthor224

Physics dataset [27] represents a co-authorship network whose nodes represent authors, and the task225

is to infer their main research field. Finally, the Amazon Computers/Amazon Photo datasets represent226

two product-similarity graphs [27], where each node is a product, and the task is to infer its category.227

Experimental setup. To ensure the best results, we cross-validate all optimization-related hyperpa-228

rameters for each model using GraphGym [36]. All models use four GNN layers with hidden size229

of 32, and thus have an equal number of parameters. For evaluation, we take the best-validation230

configuration during training, and report test-set performance. For further details, refer to Appendix D.231

Results are presented in Table 1, averaged over 10 runs. In contrast with §6.1, we here find GCN to232

be a strong contender, reinforcing its viability in real-world data despite its simplicity. Moreover, we233

observe both CAT and L-CAT not only holding up the performance with respect to their baselines234

models for all datasets, but in most cases they also improve the test accuracy in a statistically235

significant manner. These results validate the effectiveness of CAT as a GNN layer, and show the236

viability of L-CAT as a drop-in replacement, achieving good results on all datasets.237
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As explained in §4, CAT differs from a usual GAT in that the score238

is computed with respect to the convolved features. Intuitively,239

this means that CAT should excel in those settings where nodes240

are better connected, allowing CAT to extract more information241

from their neighborhoods. Indeed, there exists a positive correlation242

between performance improvement and average degree of the graph.243

In the inset figure, we can observe the improvement in accuracy of244

CAT with respect to its baseline model, as a function of the average245

node degree of the datasets, and the linear regression of these results246
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Table 2: Test performance of the considered convolutional and attention layers on four OGB datasets,
averaged over five runs. Bold numbers are statistically different to their baseline model (α = 0.05).
Best average performance is underlined. Left table: accuracy (%); right table: AUC-ROC (%).

Dataset arxiv products mag

GCN 71.58 ± 0.20 74.12 ± 1.20 32.77 ± 0.36

GAT 71.58 ± 0.16 78.53 ± 0.91 32.15 ± 0.31
CAT 72.14 ± 0.21 77.38 ± 0.36 31.98 ± 0.46
L-CAT 71.99 ± 0.08 77.19 ± 1.11 32.47 ± 0.38

GATv2 71.73 ± 0.24 76.40 ± 0.71 32.76 ± 0.18
CATv2 72.03 ± 0.09 74.81 ± 1.12 32.43 ± 0.22
L-CATv2 71.97 ± 0.22 76.37 ± 0.92 32.68 ± 0.50

proteins

80.10 ± 0.55

79.08 ± 1.47
73.26 ± 1.65
79.63 ± 0.71

78.65 ± 1.44
74.33 ± 0.94
79.07 ± 0.98

(dashed line). This plot includes all datasets (from the manuscript and Appendix D), and shows a247

positive trend between node connectivity and improved performance by CAT.248

6.3 Open Graph Benchmark249

In this section, we assess the robustness of the proposed models, in order to fully understand their250

benefits. For further details and additional results, refer to Appendix E.251

Datasets. We consider four different datasets from the Open Graph Benchmark (OGB) suite [15]:252

proteins, products, arxiv, and mag. Note that these datasets are significantly larger than those from253

§6.2 and correspond to more difficult tasks, e.g., arxiv is a 40-class classification problem (see Table 4254

for details). This makes them more suitable for the proposed analysis.255

Experimental setup. We adopt the same experimental setup as Brody et al. [5] for the proteins,256

products, and mag datasets. For the arxiv dataset, we use instead the example code from OGB [15], as257

it yields better performance than that of Brody et al. [5]. Just as in §6.2, we compare with GCN [18],258

GAT [30], GATv2 [5], and their CAT and L-CAT counterparts. We cross-validate the number of259

heads (1 and 8), repeat each experiment five times, and select the best-validation models during260

training. All models share the network architecture, number of parameters, and network initialization.261

Results are summarized in Table 2, averaged over 5 runs. Here we do not observe a clear preferred262

baseline: GCN performs really well in proteins and mag; GAT excels in products; and GATv2 does263

well in arxiv and mag. Let us now focus on the proposed models. While CAT obtains the best results264

on arxiv, its performance on proteins and products is significantly worse than the baseline model.265

Presumably, an excessive amount of inter-edges could explain why convolving the features prior to266

computing the score is harmful, as seen in §6.1. As we explore in §6.3.2, however, CAT improves267

over its baseline for most proteins scenarios, specially with a single head. In stark contrast, L-CAT268

performs remarkably well, improving the baseline models in all datasets but products—even on those269

in which CAT fails—demonstrating the adaptability of L-CAT to different scenarios.270

In order to better understand the training dynamics of the different models, we plot in Fig. 2a the test271

accuracy of GCN and the GATv2 models during training on the arxiv dataset. Interestingly, this plot272

shows that while all models obtained similar final results, CATv2 and L-CATv2 drastically improved273

their convergence speed and stability with respect to GATv2, matching that of GCN. To understand274

the behavior of L-CATv2, we show in Fig. 2b the evolution of the parameters λ1, λ2. We observe275

that to achieve these results, L-CATv2 converged to a GNN network that combines three types of276

layers: the first layer is a CATv2 layer, taking advantage of the neighboring information; the second277

layer is a quasi-GCN layer, in which scores are almost uniform and some neighboring information278

is still used in the score; and the third layer is a pure GCN layer, in which all scores are uniformly279

distributed. It is important to remark that these dynamics are fairly consistent, as L-CATv2 reached280

the same λ1, λ2 values over all five runs.281

7



0 100 200 300 400 500
Epoch

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y

ArXiv

GCN
GATv2
CATv2
L-CATv2

(a) Test accuracy.

0 250 500 750 1000 1250 1500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1,
2 v

al
ue

s

ArXiv - L-CATv2

L1
L2
L3

1

2

(b) Evolution of λ1, λ2.

Figure 2: Behavior of GCN and GATv2 models during training on the arxiv dataset. (a) CAT and
L-CAT converge quicker and are more stable than their baseline model. (b) L-CAT consistently
converges to the same type of layers during training: a CAT →quasi-GCN→GCN network.

6.3.1 Robustness to noise282

One intrinsic aspect of real world data is the existence of noise. In this section, we explore the283

robustness of the proposed models to different levels of homoscedastic noise in the features. That is,284

we attempt to simulate scenarios where there exist measurement inaccuracies in the input features.285

Experimental setup. For these experiments we consider the arxiv dataset, and the same experimental286

setup as in §6.3. To simulate homoscedastic noise, we introduce to the node features additive noise287

of the form x′ = x + ε, where ε ∼ N (0,1σ), and where we consider different levels of noise,288

specifically, we take σ ∈ {0, 0.25, 0.5, 0.75, 1}.289
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Results can be seen in the inset figure, which shows test accuracy290

as a function of the feature noise level σ. This plot summarizes291

the performance of all considered models, over five runs and292

two numbers of heads (1 and 8). We can observe that baseline293

attention models exhibit high variance and are quite sensitive294

to small perturbations. GCNs, instead, exhibit better robustness295

to noise and small variance. In concordance with the synthetic296

experiments (see §§4 and 6.1), we observe that CAT is able to297

leverage convolutions as a variance-reduction technique, boosting298

the performance of the attention mechanisms, and reducing their299

variance. Moreover, L-CAT proves to be strictly more robust than all other models: it boosts the300

performance and reduces the uncertainty—like CAT—and it is more effective than other approaches301

as it can adapt the amount of attention used in each layer, outperforming competing methods.302

6.3.2 Robustness to network initialization303

Another important aspect of real-world applications is that of robustness to network initialization,304

i.e., the ability to obtain satisfying performance independently of the initial parameters. Otherwise,305

a practitioner could waste lots of resources trying different initilizations or, even worse, give up on306

a model just because they did not try the initial parameters that would yield great results. In this307

section, we test such a scenario using the proteins dataset as an example setting.308

Experimental setup. We follow once again the same setup for proteins as in §6.3. We consider two309

different network initializations. The first one, uniform, uses uniform Glorot initilization [12] with a310

gain of 1, which is the standard initialization used throughout this work. The second one, normal,311

uses instead normal Glorot initialization [12] with a gain of
√
2. This is the initialization employed312

on the original GATv2 paper [5] exclusively for the proteins dataset.313

GCN

uniform 61.08 ± 2.56
normal 80.10 ± 0.55

average 70.59 ± 10.21

Results—segregated by number of heads—are shown in Table 3, while314

the results for GCN appear in the inset table. These results show that the315

baseline models perform poorly on the uniform initialization. However,316

this is somewhat alleviated when using 8 heads in the attention models.317

Moreover, all baselines significantly improve with normal initialization,318
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Table 3: Test AUC-ROC (%) on the proteins dataset for attention models with two different network
initializations (see §6.3.2), using 1 head (top) and 8 heads (bottom).

GAT CAT L-CAT GATv2 CATv2 L-CATv2
1h

uniform 59.73 ± 3.61 64.32 ± 2.33 77.77 ± 1.28 59.85 ± 2.73 64.32 ± 2.33 79.08 ± 0.95
normal 66.38 ± 6.94 73.26 ± 1.65 78.06 ± 1.25 69.13 ± 8.48 74.33 ± 0.94 79.07 ± 0.98

8h

uniform 72.23 ± 2.86 73.60 ± 1.14 78.85 ± 1.57 75.21 ± 1.61 74.16 ± 1.30 78.77 ± 0.97
normal 79.08 ± 1.47 74.67 ± 1.15 79.63 ± 0.71 78.65 ± 1.44 73.40 ± 0.56 79.30 ± 0.49

average 69.36 ± 8.52 73.93 ± 1.35 78.58 ± 1.48 70.71 ± 8.70 71.55 ± 4.54 79.05 ± 0.91
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Figure 3: Distribution of λ1, λ2 on proteins dataset for L-CAT across initializations.

being GCN the best model, and attention models obtaining 79% accuracy on average with 8 heads.319

Compared to the baselines, CAT does a good job and improves the performance in all cases except320

for normal with 8 heads. Remarkably, L-CAT consistently obtains a high accuracy in all scenarios321

and runs. This can be further appreciated by looking at the average accuracy (bottom row), showing322

that L-CAT is clearly more robust to parameter initialization than competing models.323

To understand this performance, we inspect the distribution of λ1, λ2 for L-CAT in Fig. 3. Here,324

we can spot a few interesting patterns. First, the first and last layers are always GCNs, while the325

inner layers progressively admit less attention. Second, the number of heads affects the amount of326

attention allowed in the network; the more heads, the more expressive the layer tends to be, and the327

more attention that is permitted. Third, L-CAT adapts to the initialization used: in uniform, it stays328

competitive by allowing more attention in the second layer; in normal, it allows more attention in the329

score inputs. Table 3 and Fig. 3 thus consolidate the effectiveness and flexibility of L-CAT.330

7 Conclusions and future work331

In this work, we studied how to combine the strengths of convolution and attention layers in GNNs.332

We proposed CAT, which computes attention with respect to the convolved features, and analyzed its333

benefits and limitations on a new synthetic dataset. This analysis revealed different regimes where334

one model is preferred over the others, reinforcing the idea that selecting between GCNs, GATs, and335

now CATs, is a difficult task, as their performance directly depend on the data. For this reason, we336

proposed L-CAT, a model which is able to interpolate between the three via two learnable parameters.337

Extensive experimental results demonstrated the effectiveness of L-CAT, yielding great results while338

being more robust than other methods due to its adaptability. As a result, L-CAT proved to be a viable339

drop-in replacement that removes the need to cross-validate the layer type.340

We do not consider this work adds any societal concerns. On the contrary, L-CAT eases the applica-341

bility of GNNs to the practitioner, and removes the need of cross-validating the layer type, which can342

potentially benefit other areas and applications, as GNNs have already proven.343

We strongly believe learnable interpolation can get us a long way, and we hope L-CAT to motivate344

new and exciting work. For example, it would be interesting to see L-CAT applied to other GCN and345

GAT variants, such as those in [17, 28, 35]. Specially, we are eager to see L-CAT in real applications,346

and thus finding out what combining different GNN layers across a model (without the annoyance of347

cross-validating all combinations) can lead to in the real-world.348
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[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua423

Bengio. Graph attention networks. In International Conference on Learning Representations424

(ICLR), 2018.425

[31] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural426

networks. In International Joint Conference on Artificial Intelligence (IJCAI), 2021.427

[32] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heteroge-428

neous graph attention network. In The World Wide Web Conference (WWW), 2019.429

[33] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-430

mender systems: a survey. ACM Computing Surveys (CSUR), 2020.431

[34] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A432

comprehensive survey on graph neural networks. IEEE transactions on neural networks and433

learning systems, 32, 2020.434

[35] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural435

networks? In International Conference on Learning Representations (ICLR), 2019.436

[36] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances437

in Neural Information Processing Systems (NeurIPS), 33, 2020.438

[37] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph439

transformer networks. Advances in Neural Information Processing Systems (NeurIPS), 32,440

2019.441

11



Checklist442

1. For all authors...443

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s444

contributions and scope? [Yes] In both, the abstract and introduction, we faithfully445

reflect the contributions of this work: i) the introduction of a new GNN layer, CAT; ii) a446

theoretical analysis on a new synthetic data model; and iii) the introduction of L-CAT,447

a model that is capable of learning to interpolate between GCN, GAT and CAT.448

(b) Did you describe the limitations of your work? [Yes] Throuhgout all the manuscript449

we discuss on the strenghts and limitations of the considered models. As of L-CAT, we450

discuss possible extensions (and thus current limitations) in the future work.451

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Societal452

impact of our work is mentioned in the conclusions.453

(d) Have you read the ethics review guidelines and ensured that your paper conforms to454

them? [Yes]455

2. If you are including theoretical results...456

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We describe457

the data model used for all our theoretical results in §4 and Appendix A458

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs can be459

found in Appendix A460

3. If you ran experiments...461

(a) Did you include the code, data, and instructions needed to reproduce the main exper-462

imental results (either in the supplemental material or as a URL)? [Yes] We include463

in the supplementary material the necessary anonymized code and scripts required to464

reproduce our experiments. All required datasets are freely available.465

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they466

were chosen)? [Yes] Complete details about the experimental setup can be found in467

Appendices B, D and E468

(c) Did you report error bars (e.g., with respect to the random seed after running exper-469

iments multiple times)? [Yes] In all our results we report the mean and standard470

deviation computed using five trials or more. In addition, we highlight in bold the471

results that are statistically significant.472

(d) Did you include the total amount of compute and the type of resources used (e.g., type473

of GPUs, internal cluster, or cloud provider)? [Yes] We include complete details of474

the experimental setup as well as computational resources used for the three sets of475

experiments in Appendix B, Appendix D and Appendix E respectively.476

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...477

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the baseline478

models [5, 18, 30], the creators of the datasets we use [15, 24, 27], and the programming479

framework we use to run our experiments [15, 36]480

(b) Did you mention the license of the assets?[N/A]481

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]482

We provide the code needed for running the experiments in the supplementary material.483

(d) Did you discuss whether and how consent was obtained from people whose data you’re484

using/curating? [N/A] Datasets are publicly available at the Torch Geometric 3 or the485

Open Graph Benchmark 4 frameworks.486

(e) Did you discuss whether the data you are using/curating contains personally identifiable487

information or offensive content? [N/A] The datasets used do not contain personally488

identifiable information nor offensive content.489

5. If you used crowdsourcing or conducted research with human subjects...490

(a) Did you include the full text of instructions given to participants and screenshots, if491

applicable? [N/A]492

3https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
4https://ogb.stanford.edu/

12

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://ogb.stanford.edu/


(b) Did you describe any potential participant risks, with links to Institutional Review493

Board (IRB) approvals, if applicable? [N/A]494

(c) Did you include the estimated hourly wage paid to participants and the total amount495

spent on participant compensation? [N/A]496

13


	Introduction
	Preliminaries
	Previous work
	On the limitations of GCN and GAT networks

	Convolved attention: benefits and hurdles
	L-CAT: Learning to interpolate
	Experiments
	Synthetic data
	Real data
	Open Graph Benchmark

	Conclusions and future work
	Appendix
	 Appendix
	Theoretical Results
	Hard example for GCN
	A solution using GAT and 

	Synthetic Experiments
	Vary Q ANSATZ
	Several plots
	Vary Q LEARN
	Vary  ANSATZ
	Vary  LEARN
	Other results

	Dataset statistics
	Additional results node classification
	Additional results big datasets


