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ABSTRACT

Hierarchical classification requires predicting an entire taxonomy tree rather than a
single flat level, which demands both accurate predictions at each level and consis-
tency across levels. However, solving hierarchical classification often compromises
fine-grained accuracy compared to flat classification because each level requires
distinct features, making it a multi-task problem. For example, the fine-grained
classification of “Green Hermit” and “Ruby-throated Hummingbird” demands
more specific details, while distinguishing between “bird” and “plant” at the coarse
level requires broader features. Prior methods address this by using separate blocks
for each level to learn distinct features. However, this approach struggles to resolve
inconsistencies, as classifiers tend to focus on different, unrelated regions.
Our key insight is that classifiers across levels should be grounded in consistent
visual cues. For example, the fine-grained classifier may focus on details such as
the beak and wings to identify a “Green Hermit”, and then the coarse classifier
identifies “bird” by grouping these details into the overall “bird” shape. Therefore,
we propose a novel hierarchical model that grounds fine-to-coarse semantic parsing
on consistent hierarchical visual segmentation. We also introduce a tree-path KL
divergence loss to enforce semantic consistency across levels. Our approach
significantly outperforms zero-shot CLIP and other state-of-the-art methods on
common hierarchical classification benchmarks.1

1 INTRODUCTION

Hierarchical classification (Silla & Freitas, 2011; Chang et al., 2021; Jiang et al., 2024) aims to
predict an entire taxonomy (e.g. “Birds”-“Hummingbird”-“Green Hermit”) rather than a single-level
label, and is crucial in real-world applications. For example, the required level of detail varies by user
expertise: non-experts may only need a coarse label like “Bird,” while experts, such as biologists,
require fine-grained predictions, “Green Hermit”. Moreover, flat fine-grained classification often fails
in ambiguous scenarios, such as when birds are observed from a distance or in motion. In such cases,
a model capable of multi-granularity predictions offers greater robustness and adaptability.

Hierarchical classification presents several challenges, primarily because it requires recognizing
objects at different levels of detail, turning it into a multitask problem. For example, the features
necessary to distinguish between coarse categories (e.g., “Birds” vs. “Plants”) may differ significantly
from those needed to differentiate fine-grained categories (e.g., “Green Hermit” vs. “Ruby-throated
Hummingbird”). At the coarse level, the model may need broader shapes, while at the fine-grained
level, it will need finer details like the bird’s beak or feather patterns. Thus, simply applying a loss
to match labels at each level can lead to conflicting optimization objectives, potentially harming
fine-grained performance compared to flat classification (Chang et al., 2021).

To address the reduced performance at the fine-grained level, state-of-the-art methods design separate
blocks for each level of the hierarchy (Chang et al., 2021; Chen et al., 2022; Wang et al., 2023a).
While these approaches achieve good results at the fine-grained level, using separate blocks for each
hierarchy level makes it difficult to resolve inconsistent predictions — where predictions do not adhere
to the hierarchical taxonomy. Figure 1 (b, c, d) shows the examples of inconsistent predictions from

1Code available at https://github.com/pseulki/hcast.
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(a) Coarse O & Fine O (b) Coarse O & Fine X (c) Coarse X & Fine O (d) Coarse X & Fine X

Figure 1: Inconsistent predictions in hierarchical classification often stem from classifiers at
different levels attending to entirely different regions. When coarse and fine-grained predictions
are inconsistent at test time, neither can be trusted without knowing the true label, making both
predictions unusable. Thus, ensuring consistency across all levels is crucial. We present examples
of predictions from training FGN (Chang et al., 2021) on BREEDS dataset (Entity-30) (Santurkar
et al., 2021). In inconsistent cases (b, c, d), Grad-CAM visualizations(Selvaraju et al., 2017) show
that classifiers focus on different regions (bottom). In contrast, in (a), both classifiers attend to
the same object, with the fine-grained classifier capturing specific details (e.g., tail) and the coarse
classifier covering broader context. From this observation, we propose a model with consistent
visual grounding, where both classifiers attend to the same target but capture different details. Our
model achieves correct predictions across all cases (a-d).

training FGN (Chang et al., 2021) on the 2-level hierarchy dataset, BREEDS (Entity-30) (Santurkar
et al., 2021). For example, in the top row of image (c), the coarse classifier predicts the image as a
“motor vehicle”, while the fine-grained classifier predicts it as a “feather boa”.

To understand the reasons behind these inconsistencies, we use Grad-CAM visualization (Selvaraju
et al., 2017) and discover that the coarse and fine-grained classifiers separately attend to different
areas (Figure 1, bottom). For instance, in case (c), the fine-grained classifier correctly attends to the
part of the “feather boa”, while the coarse classifier focuses on the bicycle’s handlebars and frame,
leading to a misprediction as “Motor vehicle”. In contrast, in the consistently correct prediction
case (Figure 1 (a)), the fine-grained classifier focuses on the tail and leg areas to distinguish the
“white stork” from other bird species, while the coarse classifier captures the overall shape of the bird,
including the leg area, which the fine-grained classifier also attends to. This trend was frequently
observed, and we provide quantitative validation in Appendix A.

From this observation, we argue that hierarchical classification can improve when coarse and fine-
grained classifiers maintain visual consistency, focusing on the same object at different levels of
detail. Based on this insight, we propose a novel method that align their focus areas, rather than
training them as separate blocks . This concept is illustrated in Figure 2 (right). For instance, while the
fine-grained classifier examines features such as the beak, wings, and tail to classify “Green Hermit”,
the coarse classifier differentiates between “birds” and “plants” by integrating these details into the
overall body of the bird. Therefore, we propose a new integrated model, which groups fine-grained
details into increasingly coarse shapes and transfers features learned at each hierarchy level to the next.
This progressive learning scheme can effectively address inconsistencies in hierarchical classification
compared to previous methods learning each feature at an independent block.

To identify and group the visual details in an image, we employ the recent unsupervised image
segmentation method, CAST (Ke et al., 2024). CAST has demonstrated the capability to group related
pixels consistently through internal parsing within images, without segmentation labels. Inspired
by this, we propose Hierarchical-CAST (H-CAST), which utilizes fine-to-coarse semantic parsing
to align the focus of different levels of classifiers on the same areas for hierarchical classification.
To the best of our knowledge, our work is the first to address visual consistency in hierarchical
classification by utilizing unsupervised semantic segments. Since our method is an integrated
model, if details initially captured at the fine-grained level are incorrect, it will receive negative
signals (errors) during the learning process toward coarser levels. As training processes, the model is
encouraged to capture accurate fine-grained details to improve learning at subsequent levels.
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Figure 2: While prior methods use separate blocks for different levels and struggle with
inconsistencies, our integrated model ensures consistent predictions by grouping fine-grained
details into coarser representations and promoting internal visual parsing. In the segmentation
images inside H-CAST, consistent groupings are represented by identical colors. The segmentation
images are the results of 32-way and 8-way, respectively. For instance, when observing the red bird
segments, we notice finer details such as wings, body, head, and tail in the fine level (32-way), while
in the subsequent level (8-way), it is grouped as the entire bird. By leveraging this consistent internal
parsing, we encourage the model to focus on the coherent regions within images.

Additionally, we propose Tree-path KL Divergence loss to further enhance semantic consistency by
considering label relationships across levels so that predictions at the fine-grained level and coarse
level align within the taxonomy. As a result, our proposed method can achieve consistently correct
predictions across all cases in Figure 1.

Firstly, we evaluate CLIP (Radford et al., 2021) and show that even vision foundation models
struggle with inconsistent hierarchical classification. Then, to assess both accuracy and consistency,
we evaluate our method with a new metric called Full-Path Accuracy (FPA), which measures the
proportion of samples in the dataset correctly predicted at all hierarchy levels. Validated on common
benchmarks for hierarchical recognition, our method consistently outperforms the state-of-the-art
methods with fewer parameters and training time. We empirically demonstrate its effectiveness
through extensive experiments and analysis. Furthermore, compared to the common segmentation
learned through a flat semantic taxonomy, we demonstrate that a hierarchical semantic taxonomy
also in turn improves image segmentation.

2 RELATED WORK

Hierarchical classification problem presents a unique challenge: the image remains the same, but
the output changes in the semantic (text) space (“bird” - “Green Hermit”). Due to this formulation,
prior research has primarily focused on embedding data into the semantic (text) space. For example,
approaches include using additional loss functions (Bertinetto et al., 2020; Zeng et al., 2022) or
representing entire taxonomies as flat, lengthy text inputs, as in BIOCLIP (Stevens et al., 2024). In
contrast, our work takes a novel approach by addressing the problem from the perspective of the
visual space. Specifically, we explore how hierarchical classification can be connected to visual
grounding, examining how images can be analyzed at varying levels of detail—either more fine-
grained or more holistic. This visual-grounding perspective is unique and has not been explored
in previous works.

Prior hierarchical classification works can be categorized into three approaches: 1) flat classi-
fication (bottom-up) approach, 2) local classifier (top-down) approach, and 3) global classifier
(multi-granularity) approach (Silla & Freitas, 2011).

1) The flat classification approach focuses on predicting fine-grained classes (e.g., leaf nodes) by
leveraging taxonomy (Deng et al., 2014; Bertinetto et al., 2020; Karthik et al., 2021; Zhang et al.,
2022; Zeng et al., 2022; Garg et al., 2022; Wang et al., 2023b; Stevens et al., 2024). This bottom-up
approach infers coarse classes from fine-grained predictions. While effective on clear and detailed
images, it faces challenges in real-world scenarios where fine-grained predictions at test-time are
challenging (e.g., birds at high altitudes). To address this, we propose a model that predicts across the
entire taxonomy, which we believe provides greater robustness in practical applications.
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2) The local classifier (top-down) approach leverages local information, such as higher-level
(coarse) class predictions, to make predictions at the next level. This design allows predictions at
arbitrary nodes by stopping the inference process when a certain decision threshold is met, leading
to more reliable predictions at higher levels (Deng et al., 2010; Wu et al., 2020; Brust & Denzler,
2019). As a result, these methods emphasize metrics such as the correctness-specificity trade-
off (Valmadre, 2022). However, a disadvantage of this top-down approach is the propagation of errors
from higher-level (coarse) predictions to lower (fine-grained) levels.

3) The global classifier (multi-granularity) approach aims to predict the entire taxonomy at once,
unlike prior approaches. Most popular and effective methods uses a shared backbone with separate
branches for each level (Zhu & Bain, 2017; Wehrmann et al., 2018; Chang et al., 2021; Liu et al.,
2022; Chen et al., 2022; Jiang et al., 2024; Zhang et al., 2024). A critical challenge in this approach
is maintaining consistency with the taxonomy in the predicted labels. To address this, Wang et al.
(2023a) proposed a consistency-aware method by adjusting prediction scores through coarse-to-fine
deduction and fine-to-coarse induction. However, we observed that using separate branches can lead
to inconsistency, as each branch processes the image independently. To address this, we propose a
model based on consistent visual grounding. To the best of our knowledge, no prior work has utilized
visual segments to resolve inconsistency in hierarchical classification.

Unsupevised/Weakly-supervised Semantic Segmentation aims to group pixels without pixel-level
annotations or using only class labels (Hwang et al., 2019; Ouali et al., 2020; Ke et al., 2022; 2024).
These works employ hierarchical grouping to achieve meaningful segmentation without pixel-level
labels. In this field, “hierarchical” refers to part-to-whole visual grouping, where smaller units
(e.g., a person’s face or arm) are grouped into larger regions (e.g., the whole body). Based on our
intuition that fine-grained classifiers need more detailed information, while coarse classifiers focus
on broader groupings, our approach leverages these varying types of visual grouping. To implement
this, we adopt the recently proposed CAST (Ke et al., 2024), whose graph pooling naturally supports
consistent visual grouping. Notably, our work introduces the novel insight that part-to-whole spatial
granularity can align with taxonomy hierarchies (e.g., finer segments for fine-grained labels, coarser
segments for coarse labels), a connection not previously explored.

More detailed related work, including Hierarchical Semantic Segmentation can be found in
Appendix B.

3 CONSISTENT HIERARCHICAL CLASSIFICATION

Our goal is to enhance the consistency of hierarchical recognition, thereby concurrently improving
the accuracy of the model. To this end, we design a progressive learning scheme for hierarchical
recognition, where the learning of each level contributes to the learning of the next level, instead of
training separate models focusing on each individual level. Specifically, we address two types of
inconsistency in hierarchical recognition. One is visual inconsistency, where classifiers at different
levels attend to different regions (Figure 2). To address this, we propose H-CAST in Section 3.1.
The other is semantic inconsistency, where predictions at different levels are not aligned within the
taxonomy (e.g., “Plant”-“Hummingbird”). For this, we propose a new Tree-path KL Divergence loss
that encodes parent-child relations to handle semantic inconsistency in Section 3.2. Figure 3 provides
an overview of our method.

3.1 H-CAST FOR VISUAL CONSISTENCY

The areas of focus within the image need to differ when conducting classification at the fine-grained
level compared to the coarse level. When distinguishing between similar-looking species (e.g., “Green
Hermit” vs. “Ruby-throated Hummingbird”), the fine-grained recognition requires attention to fine
details like the bird’s beak and wings; meanwhile, at the coarse level (e.g., “bird” vs. “plant”), the
attention shifts to larger parts such as the overall body of the bird. However, this shift in focus
towards larger objects does not imply a sudden disregard for the previously focused details and
a search for new larger objects. Rather, a natural approach involves combining detailed features
such as the bird’s beak, belly, and wings for accurate bird recognition. Therefore, we argue that the
hierarchical model should be grounded in consistent visual cues. From this insight, we design a
model where the details learned at the fine level (e.g., bird’s beak and wings) are transferred to the
coarse level as broader parts (e.g., bird’s body) through consistent feature grouping.

4



Figure 3: Our method consists of two parts: Visual Consistency and Semantic Consistency
module. In the Visual Consistency module, the parsed images using superpixels are grouped based
on related parts as they transition from fine to coarse levels. This guides that each hierarchical
classifier focuses on the same corresponding regions while capturing different details of granularity.
In the Semantic Consistency module, we incorporate hierarchical relationships between labels.
This approach allows us to achieve consistent learning across the entire hierarchy. By promoting
consistency, our method encourages classifiers at different levels to enhance overall performance,
rather than conflicting with each other.

For internally consistent feature grouping, we build upon recent work CAST (Ke et al., 2024).
CAST develops a hierarchical segmentation from fine to coarse, an internal part of the recognition
process. However, their segmentation is driven by a flat recognition objective at the very end of
visual parsing. We extend it by imposing fine-to-coarse semantic classification losses at different
stages of segmentations throughout the visual parsing process. Our design reflects the intuition that
finer segments can be helpful in capturing fine-grained details (e.g., beaks and wings) required for
fine-grained recognition, whereas coarser segments can be effective in representing broader features
(e.g., the body of a bird) needed for coarse-grained recognition. We have a single hierarchical
recognition grounded on internally consistent segmentations, each driven by a classification objective
at a certain granuality. We refer to our method as Hierarchical-CAST (H-CAST).

Consider a hierarchical recognition task where x denotes an image associated with hierarchical labels
y1, . . . yL, encompassing a total of L levels in the hierarchy. Level L is the finest level (i.e., leaf
node), and Level 1 is the coarsest level (i.e., root node). Then, given an image x, the hierarchical
image recognition task is to predict labels at all levels across the hierarchy.

Let Zl and Sl denote the feature and segments at l-th hierarchical level, respectively, Then, we obtain
superpixels for image x by using the off-the-shelf algorithm SEEDS (Van den Bergh et al., 2012) to
divide the image into regions with similar colors and local connectivity. These superpixels serve as
input for the Vision Transformer (ViT) instead of fixed-size patches and simultaneously become the
finest (initial) segments, SL+1. l-th feature tokens Zl is the concatenation of class tokens (Zclass

l ) and
segment tokens (Zseg

l ). Then, Graph pooling (Ke et al., 2024) aggregates segments with high feature
similarity, allowing feature Zl to progressively learn a more global visual context as it transitions
from ZL to Z1.

For hierarchical recognition, we add a classification head (fl) consisting of a single linear layer at
each level. Then, we define the Hierarchical Visual-consistency loss as the sum of L cross-entropy
losses (LCE), denoted as

LHV =

L∑
l=1

LCE(fl(Z
class
l ), yl). (1)

Our approach differs from CAST in that while CAST uses the class token as the final objective, we
design our model to incorporate hierarchical supervision during the training process. This ensures that
labels from different levels progressively contribute to each other. In the Experimental section 4.5, we
will demonstrate the effectiveness of our design, compared to alternative designs, including hierarchy
supervision in the coarse-to-fine direction.
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3.2 TREE-PATH KL DIVERGENCE LOSS FOR SEMANTIC CONSISTENCY

To improve semantic consistency, we propose a new loss function called Tree-path KL Divergence
loss, which directly incorporates hierarchical relationships between labels. Our idea is to encode the
entire hierarchical structure so that a model can learn the hierarchy by outputting the tree of hierarchy.
To this end, we first concatenate labels from all levels to create a distribution, as Y = 1

L [1yL
; . . . ; 1y1 ],

where 1yl
represents the one-hot encoding for level l. Next, we concatenate the outputs of each

classification head and then apply the log softmax function (LogSoftmax). We use Kullback–Leibler
divergence loss (KL) to align this output with the ground truth distribution Y . Then, TK loss is
calculated as follows.

LTK = KL(LogSoftmax([fL(Zclass
L ); . . . ; f1(Z

class
1 )]), Y ). (2)

This loss penalizes predictions that do not align with the taxonomy by simultaneously training on
multiple labels within the hierarchy. Therefore, despite the simplicity, TK loss enables the model
to enhance semantic consistency through this vertical encoding from the root (parent) node of
the hierarchy level to the leaf (children) node. Our final loss becomes as follows, where α is a
hyperparameter to control the weight of LTK ,

L = LHV + αLTK . (3)

4 EXPERIMENTS

We first demonstrate that hierarchical classification is a challenging problem that cannot be easily
solved by vision foundation models, which also experience inconsistent predictions. Next, we
compare our method against existing approaches and flat-level baselines on hierarchical classification
benchmark datasets, showing that our approach significantly outperforms them. In addition, we justify
the design of our method through ablation studies. Finally, we show that hierarchical supervision can
surprisingly improve semantic segmentation as well.

4.1 EXPERIMENTAL SETTINGS

Datasets. We use widely used benchmarks in hierarchical recognition: BREEDS (Santurkar et al.,
2021), CUB-200-2011 (Welinder et al., 2010), FGVC-Aircraft (Maji et al., 2013), and iNat21-
Mini (Van Horn et al., 2021). BREEDS, a subset of ImageNet (Russakovsky et al., 2015), includes
four 2-level hierarchy datasets with different depths/parts based on the WordNet (Miller, 1995)
hierarchy: Living-17, Non-Living-26, Entity-13, Entity-30. For BREEDS, we conduct training and
validation using their source splits. BREEDS provide a wider class variety and larger sample size than
CUB-200-2011 and FGVC-Aircraft, making it better suited for evaluating generalization performance.
CUB-200-2011 comprises a 3-level hierarchy with order, family, and species; FGVC-Aircraft consists
of a 3-level hierarchy including maker, family, and model (e.g., Boeing - Boeing 707 - 707-320 );
For experiments on a larger dataset, we used the 3-level iNat21-Mini. Details of the iNat21-Mini are
provided in Sec. E.4. Table 6 in Appendix summarizes a description of the datasets.

Evaluation Metrics. We evaluate our models using metrics for both accuracy and consistency.
• level-accuracy: the proportion of correctly classified instances at each level (Chang et al., 2021).
• weighted average precision (wAP) (Liu et al., 2022): wAP =

∑L
l=1

Nl∑L
k=1 Nk

Pl, where Nl and Pl

denote the number of classes and Top-1 classification accuracy at level l, respectively. This metric
considers the classification difficulty across different hierarchies.

• Tree-based InConsistency Error rate (TICE) (Wang et al., 2023a): TICE = nic/N , where nic
denotes the number of samples with inconsistent prediction paths, and N refers to the number of
all test samples. This tests whether the prediction path exists in the tree (consistency).

• Full-Path Accuracy (FPA): FPA = nac/N , where nac refers to the number of samples with all level
of labels correctly predicted. This metric evaluates both accuracy and consistency, ultimately
representing our primary metric of interest.

The difference between FPA and TICE is illustrated in Table 8 in Appendix.

Comparison methods. First, we evaluate our H-CAST with representative models in hierarchical
classification, FGN (Chang et al., 2021) and HRN (Chen et al., 2022). FGN uses level-specific heads
to avoid negative transfer across granularity levels, while HRN employs residual connections to
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(a) Coarse O & Fine O (b) Coarse O & Fine X (c) Coarse X & Fine O (d) Coarse X & Fine X

Figure 4: Consistent predictions for hierarchical classification cannot be easily solved using a
vision foundation model. We evaluate the performance of CLIP (Radford et al., 2021) on the 2-level
BREEDS dataset (top) and provide misclassification examples from Entity-13 for each case (bottom).
(a) CLIP struggles to make consistent and correct predictions, achieving about 50% accuracy on the
Entity-13 dataset. (c) Notably, CLIP has difficulty with coarse predictions with broader concepts. In
contrast, our H-CAST accurately predicts in all cases.

capture label relationships and a hierarchy-based probabilistic loss. We also compare TransHP (Wang
et al., 2023b), a ViT-based model that learns prompt tokens to represent coarse classes and injects
them into an intermediate block to enhance fine-grained predictions. Lastly, we compare Hier-ViT,
a variant without visual segments and TK loss. Like our approach, Hier-ViT trains each hierarchy
level using the class token from the last l blocks. To establish a ceiling baseline, we compare with flat
models trained at a single hierarchy level. Flat-ViT classifies one level using the ViT class token,
while Flat-CAST trains independent models for each level using the CAST architecture (Ke et al.,
2024). We also compare with Hierarchical Ensembles, HiE (Jain et al., 2023), which improves
fine-grained predictions via post-hoc correction using a coarse model. Note that flat models require
separate models for each hierarchy level, leading to increased storage and training costs. For baseline
methods, we use the official codebases and their reported optimal settings. All models are trained for
100 epochs, except TransHP, which is trained for 300 epochs as in the original paper. Details on the
architecture and hyperparameter settings for H-CAST can be found in Appendix D.

4.2 HIERARCHICAL CLASSIFICATION WITH VISION FOUNDATION MODELS

First, to demonstrate that longstanding hierarchical classification is not easily solved by today’s vision
foundation models, we evaluate CLIP (Radford et al., 2021)’s performance on the 2-level BREEDS
dataset. The top row of Figure 4 shows prediction rates on the test set, while the bottom row presents
examples from the Entity-13 dataset. Even considering the zero-shot prediction, Figure 4 (a) shows
that the overall ratio of correct predictions for both coarse and fine-grained classifications is low, with
only around 50% accuracy on the Entity-13 dataset. Figure 4 (c) further highlights significant errors
in coarse predictions when addressing broader concepts. Our findings support the recent study from
Xu et al. (2024) that VLMs excel at fine-grained prediction but struggle with general concepts. This
highlights the ongoing challenges of hierarchical classification, even with vision foundation models.
Furthermore, when we examine the misclassification examples in bottom row of Figure 4, we can see
that CLIP focuses on different object areas for coarse and fine-grained predictions. For example, in
(b), CLIP predicts “Equipment” in the coarse prediction but predicts “Miniskirt” in the fine-grained
prediction instead of “Monitor” (a child of Equipment). However, our model, based on consistent
visual segments, can make correct predictions in all cases.

4.3 CONSISTENT HIERARCHICAL CLASSIFICATION ON BENCHMARKS

Table 1 shows the comparison with baselines on BREEDS dataset. Our H-CAST outperforms not only
hierarchical classification baselines like FGN, HRN, TransHP, and Hier-ViT, but also flat baselines
such as ViT, CAST, and HiE. Notably, H-CAST surpasses ViT-baselines, Hier-ViT and TransHP, by
over 11 percentage points, demonstrating that its success can be attributed to our consistent visual
grounding and Tree-path Loss, rather than simplly applying hierarchy supervision to a ViT backbone.
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Table 1: H-CAST achieves both high consistency and accuracy, outperforming both hierarchical
and flat baselines on BREEDS. It achieves a 4.3-6.4 percentage point gain in FPA metric over HRN
with significantly fewer parameters. Additionally, H-CAST surpasses Hier-ViT and TransHP by over
11 percentage points, demonstrating that its success is due to our consistent visual grounding and
Tree-path Loss, rather than adding hierarchy supervision to a ViT backbone. (Higher the metric is the
best, except TICE.) ‘ViT-S’ refers to ViT-Small, while ‘RN-50’ denotes ResNet-50.

Living-17 (17-34) Non-Living-26 (26-52)

Backbone # Params FPA Coarse Fine wAP TICE FPA Coarse Fine wAP TICE

Fl
at

Flat-ViT ViT-S 65.0M 66.24 75.71 72.06 73.28 17.11 57.46 67.50 65.73 57.46 23.27
Flat-ViT + HiE ViT-S 65.0M 67.59 75.71 71.35 72.81 9.88 59.73 67.50 65.31 66.04 13.69
Flat-CAST ViT-S 78.5M 78.82 88.06 82.88 84.61 8.82 76.17 84.77 81.08 82.31 11.77
Flat-CAST + HiE ViT-S 78.5M 81.59 88.06 83.24 84.85 5.18 79.23 84.77 81.39 82.51 6.19

H
ie

ra
rc

hy

FGN RN-50 24.8M 63.82 72.59 68.00 69.53 12.12 60.81 69.46 65.77 67.00 16.46
HRN 2 RN-50 70.8M 79.18 87.53 81.47 83.49 6.29 76.31 82.38 80.15 80.90 9.54
Hier-ViT ViT-S 21.7M 74.06 80.94 74.88 76.90 10.50 72.04 73.31 68.39 70.03 12.45
TransHP ViT-S 21.7M 74.35 83.00 76.65 78.76 8.35 68.62 77.31 72.31 73.97 13.04
Ours (H-CAST) ViT-S 26.2M 85.12 90.82 85.24 87.10 3.19 82.67 87.89 83.15 84.73 5.26
Our Gains over SOTA +5.94 +3.29 +3.77 +3.61 +3.10 +6.36 +5.51 +3.00 +3.83 +4.28

Entity-13 (13-130) Entity-30 (30-120)

Backbone # Params FPA Coarse Fine wAP TICE FPA Coarse Fine wAP TICE

Fl
at

Flat-ViT ViT-S 65.0M 64.22 76.28 76.06 76.08 21.33 66.93 76.28 74.35 74.77 18.75
Flat-ViT + HiE ViT-S 65.0M 65.20 76.47 74.91 75.05 15.68 68.77 76.47 73.92 74.43 11.08
Flat-CAST ViT-S 78.5M 78.63 87.80 83.72 84.09 10.65 82.67 87.89 83.15 84.73 5.26
Flat-CAST + HiE ViT-S 78.5M 79.52 87.80 83.40 83.80 6.83 83.70 87.89 84.30 85.02 4.20

H
ie

ra
rc

hy

FGN RN-50 24.8M 74.23 85.35 78.00 78.67 9.43 68.52 77.47 73.18 74.04 13.62
HRN RN-50 70.8M 81.43 90.00 84.48 84.98 6.34 79.85 86.57 83.35 83.99 8.38
Hier-ViT ViT-S 21.7M 74.63 86.95 75.39 77.70 5.19 73.01 81.38 74.10 74.76 11.61
TransHP ViT-S 21.7M 73.45 86.28 76.23 77.14 8.80 72.00 80.78 75.63 76.66 12.20
Ours (H-CAST) ViT-S 26.2M 85.68 93.42 86.15 87.60 1.69 84.83 90.23 85.45 85.88 2.57
Our Gains over SOTA +4.25 +3.42 +1.67 +2.62 +4.65 +4.98 +3.66 +2.10 +1.89 +5.81

While TransHP learns coarse labels as prompts, its goal is to guide fine-grained predictions rather
than predict both levels simultaneously, likely leading to a lower consistency score. Also, H-CAST
achieves a 4.3-6.4 percentage point gain on the FPA metric, compared to the HRN, despite using
significantly fewer parameters.

It should be noted that flat models train a separate model for each hierarchy level, leading to
substantially greater memory and training time requirements. The superior performance of our model
compared to these flat models demonstrates its effectiveness in hierarchical classification. Similar
results are also observed in the Aircraft and CUB datasets in Appendix E.5. Also, we include the
evaluation on the larger-scale iNaturalist 2021-Mini dataset (Van Horn et al., 2021) in Appendix E.4.

4.4 ENHANCING SPATIAL FOCUS AND INTERPRETABILITY WITH H-CAST

H-CAST can guide consistent spatial focus and improve the interpretability of the model’s predictions.
To explore how our model learns segments with varying granularity from fine to coarse levels, we
visualize segments based on hierarchy levels on BREEDS Entity-30 dataset in Figure 5. In full-path
correct prediction cases, where predictions at all levels are correct (Figure 5, Left), visual details are
effectively captured at the fine level and consistently grouped to identify larger objects at the coarse
level. However, in full-path incorrect prediction cases, where predictions at all levels are incorrect
(Figure 5, Right), the model’s segments fail to recognize the object accurately. This underscores an
added benefit of incorporating segments in hierarchical recognition models, as it not only contributes
to consistent predictions but also enhances the interpretability of the model’s predictions.

In addition, the visualization of attention maps shows that H-CAST’s lower blocks focus on detailed
and localized regions. In contrast, the upper blocks attend to broader areas, supporting consistent
visual grounding for hierarchical classification. We show the results in Appendix E.2.

2HRN is trained with a larger input size (448 x 448) and a smaller batch size (8), following its optimal setting.
Increasing the batch size (64, 128) significantly reduced accuracy.
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Fine to coarse segments Fine to coarse segments

a) Full-Path Correct Predictions b) Full-Path Incorrect Predictions

Figure 5: H-CAST enhances the interpretability of the model’s predictions. We visualize
feature grouping from fine to coarse for full-path correct and incorrect predictions on the Entity-30
dataset. For full-path correct predictions (all levels correct), visual details are effectively grouped
to identify larger objects at coarser levels. In contrast, for full-path incorrect predictions (all levels
incorrect), segments fail to recognize the object. For example, in the first row, for the correctly
predicted shoe image, the shoe and ankle parts are grouped together in green, showing coherent
segmentation. In contrast, the incorrect prediction case shows highly fractured segments, failing
to capture the grouping of the shoe. This demonstrates the added benefit of using segments in
hierarchical recognition, providing both guidance on focus and improved interpretability.

4.5 ABLATION ANALYSIS OF ARCHITECTURE DESIGN AND LOSS FUNCTION IN H-CAST

Fine-to-Coarse vs. Coarse-to-Fine learning. Our model adopts a Fine-to-Coarse learning strategy,
where it first learns fine labels in the lower block and progressively integrates coarser labels. This
contrasts with prior methods, which typically learn coarse features first (Zhu & Bain, 2017; Yan
et al., 2015; Wang et al., 2023b). To evaluate the effectiveness of our Fine-to-Coarse architecture, we
compare it with two baselines.

Table 2: Coarse-to-Fine learning scheme achieves best
overall performance. We report the impact of hierarchi-
cal learning direction on FGVC-Aircraft.

Learning Direction FPA maker family model wAP

Coarse-to-Fine 82.01 93.16 89.92 84.10 87.50
Fine-Coarse merging 81.76 93.52 90.31 84.58 87.93

Fine-to-Coarse 82.66 94.27 90.19 84.40 87.91

The first baseline, Coarse-to-Fine, learns
coarse labels in the lower block and
fine labels in the upper block, follow-
ing a conventional hierarchy. The sec-
ond, Fine-Coarse Merging, combines the
class token from the lower block with
coarser segments from the upper block
for coarse labels and vice versa for fine
labels. This approach intuitively lever-
ages features of varying granularities.
For fairness, we do not use Tree-path KL Divergence loss in these comparisons. Table 2 sum-
marizes the results on the FGVC-Aircraft dataset. The results show that Coarse-to-Fine learning
shows the lowest fine-grained accuracy. Fine-Coarse Merging achieves slightly higher fine-grained
accuracy but with a significant increase in parameters due to the use of segment features in the
classification head. Our Fine-to-Coarse strategy balances simplicity and strong performance, making
it an effective choice for hierarchical classification.

Ablation Studies on the Proposed Losses. To evaluate the effectiveness of the proposed loss, we
conduct two ablation studies. First, we assess the individual contributions of Hierarchical Spatial-
consistency loss LHS and Tree-path KL Divergence loss LTK on Aircraft. Table 3 shows that both
losses significantly enhance performance, with their combined use achieving the best accuracy and
consistency.

Next, to examine how the choice of loss function affects performance, we replace our proposed KL
Divergence loss with two alternative losses: Binary Cross Entropy (BCE) loss and Flat Consistency
loss. BCE loss directly substitutes the KL divergence component in our setup. Flat Consistency loss,
inspired by a bottom-up approach, infers coarse predictions from fine-grained predictions, using BCE
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Table 3: Utilizing both losses yields best per-
formance on Aircraft.
LHS LTK FPA maker family model wAP

✗ ✓ 82.48 94.30 90.37 84.04 87.80
✓ ✗ 82.66 94.27 90.19 84.40 87.91
✓ ✓ 83.72 94.96 91.39 85.33 88.90

Table 4: KL Div. loss shows best performance
on Aircraft.
Sem. Consis. FPA maker family model wAP

Flat Consis. 82.87 94.63 90.94 84.97 88.51
BCE 82.18 94.21 90.13 84.88 88.11
KL Div. Loss 83.72 94.96 91.39 85.33 88.90
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Figure 6: H-CAST improves segmentation by leveraging hierarchical taxonomy. We visualize
segmentation results on BREEDS dataset and measure the region mIOU of fine-level objects for
samples with segmentation ground truth (GT) from ImageNet-S (Gao et al., 2022). In the visualized
images, we can observe that H-CAST better captures the overall shape in a more coherent manner
compared to CAST. In quantitative evaluation, H-CAST outperforms CAST in most datasets despite
using coarse-level supervision for the last-level segments whereas CAST employs fine-level supervi-
sion. It is surprising to find that the taxonomy hierarchy can help part-to-whole segmentation.

to match them with the ground truth. As shown in Table 4 on Aircraft dataset, KL Divergence loss
achieves the best FPA, demonstrating superior accuracy and consistency. Additional ablation results
on Living-17 are provided in the Appendix E.3.

4.6 ADDITIONAL BENEFITS OF HIERARCHICAL CLASSIFICATION FOR SEGMENTATION

Hierarchical semantic recognition enhances segmentation. Although our primary focus is hier-
archical recognition, we investigate whether incorporating hierarchical label information can also
improve segmentation. Figure and Table 6 provide a qualitative and quantitative comparison between
H-CAST and CAST. H-CAST, which uses varying granularity supervision for segments, outperforms
CAST, which employs fine-grained level supervision, on most datasets such as Living-17, Non-
Living-26, and Entity-13. The visualized results show that H-CAST better captures the overall shape
in a more coherent manner compared to CAST. These findings demonstrate that utilizing hierarchical
taxonomy benefits not only recognition but also segmentation. Details of the evaluation method and
more visualization comparison with CAST are included in the Appendix E.7 and Figure 9.

5 CONCLUSION AND DISCUSSIONS

In this work, we tackle the challenge of inconsistent predictions in hierarchical classification by
introducing consistent visual grounding. By leveraging varying granularity segments, our approach
guides hierarchical classifiers to focus on coherent and relevant regions across levels, guiding
alignment between coarse and fine-grained predictions. We demonstrates its effectiveness across
benchmark datasets. While our method shows strong performance, it currently faces limitations in
scaling to deep hierarchies, such as 10–20 levels. Extending the approach to handle such hierarchies
and exploring its scalability in highly imbalanced taxonomies are promising directions for future
research. Additionally, the computational overhead from superpixel generation and graph pooling
increases processing time, and optimizing these components will be an important step toward
improving efficiency.
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Appendix

A QUANTITATIVE EVIDENCE FOR CONSISTENT VISUAL GROUNDING

To quantitatively validate our observation that inconsistent predictions often occur when coarse and
fine-grained classifiers focus on different regions in Figure 2, we analyze the Grad-CAM (Selvaraju
et al., 2017) heatmaps of these classifiers. Specifically, we compute two metrics: the overlap score
and the correlation score.

The overlap score quantifies the degree to which the regions activated by the two classifiers coincide.
For each heatmap, we define a significant region as the set of pixels where activation values exceed a
threshold. Specifically, the overlap count (O) measures the number of overlapping pixels between
heatmaps A and B, where both values exceed a threshold (τ = 0.001). It is defined as:

O =
∑
i,j

[MA(i, j) ∧MB(i, j)] , (4)

where MA(i, j) and MB(i, j) are binary masks indicating significant regions in A and B, respectively.
These masks are defined as:

MA(i, j) =

{
1 if A(i, j) > τ,

0 otherwise,
MB(i, j) =

{
1 if B(i, j) > τ,

0 otherwise.
(5)

The correlation score measures the linear relationship between the activation values of the over-
lapping regions in the two heatmaps. Let Ak and Bk the values in the overlapping regions, then
correlation score is computed as:

R =

∑n
k=1(Ak − µA)(Bk − µB)√∑n

k=1(Ak − µA)2 ·
∑n

k=1(Bk − µB)2
, (6)

where n is the number of overlapping pixels, µA is the mean of {Ak}, and µB is the mean of {Bk}.

Higher overlap and correlation scores indicate stronger agreement between the regions attended to by
the two classifiers. Conversely, lower scores highlight a lack of alignment in their focus.

Interestingly, empirical results from the FGN model (Chang et al., 2021) on the Entity-30 dataset
show that when both classifiers make correct predictions, the overlap and correlation scores are
significantly higher. In contrast, incorrect predictions correspond to notably lower scores, as shown
in Table 5. These findings support our hypothesis that aligning the focus of coarse- and fine-grained
classifiers enhances both prediction accuracy and consistency.

Table 5: Overlap and correlation scores between coarse and fine-grained Grad-CAM heatmaps.
This shows that correct predictions correspond to higher overlap and correlation between coarse and
fine-grained classifiers, highlighting the importance of aligning classifier focus for accuracy and
consistency.

Overlap Fine-grained

True False

Coarse True 0.51± 0.20 0.25 ± 0.13

False 0.36 ± 0.18 0.37 ± 0.19

(a) Overlap Scores

Correlation Fine-grained

True False

Coarse True 0.70 ± 0.26 -0.02 ± 0.40

False 0.30 ± 0.42 0.35 ± 0.41

(b) Correlation Scores
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B ADDITIONAL RELATED WORK

Hierarchical Classification can be categorized into three approaches: 1) flat classification (bottom-
up) approach, 2) local classifier (top-down) approach, and 3) global classifier (multi-granularity)
approach (Silla & Freitas, 2011).

1) The flat classification approach focuses on predicting fine-grained classes (e.g., leaf nodes)
by leveraging taxonomy (Deng et al., 2014; Zhang et al., 2022; Zeng et al., 2022). It is often
referred to as a bottom-up method because higher-level coarse classes can be inferred from the
predicted fine-grained classes. Various methods have been proposed to effectively use hierarchical
information. For example, hierarchical cross-entropy (HXE) loss (Bertinetto et al., 2020) reweights
cross-entropy terms along the hierarchy tree based on class depth. Inspired by transformer prompting
techniques, TransHP (Wang et al., 2023b) introduced coarse-class prompt tokens to improve fine-
grained classification accuracy. Recently, BIOCLIP (Stevens et al., 2024), trained on large-scale
Tree of Life data, achieved superior few-shot and zero-shot performance using a CLIP (Radford
et al., 2021) contrastive objective on text combining fine-grained and higher-level classes. One of
the actively studied topics is minimizing “mistake severity” (e.g., the tree distance between incorrect
predictions and the ground truth) (Bertinetto et al., 2020; Karthik et al., 2021; Garg et al., 2022).

However, while effective on clear and detailed images, this approach struggles in real-world scenarios
where fine-grained predictions are challenging (e.g., birds flying at high altitude), leading to incorrect
predictions at higher levels. To address this, we propose a model that predicts across the entire
taxonomy, which we believe provides greater robustness in practical applications.

2) The local classifier (top-down) approach leverages local information, such as higher-level class
predictions, to make predictions at the next level. This design allows predictions at arbitrary nodes
by stopping the inference process when a certain decision threshold is met, leading to more reliable
predictions at higher levels (Deng et al., 2010; Wu et al., 2020; Brust & Denzler, 2019). As a result,
these methods emphasize metrics such as the correctness-specificity trade-off (Valmadre, 2022).
While a single model is commonly used, HiE (Jain et al., 2023) adjusts fine-level predictions post-hoc
using coarse predictions from independently trained classifiers. However, a disadvantage of this
top-down approach is the propagation of errors from higher-level predictions to lower levels.

3) The global classifier (multi-granularity) approach aims to predict the entire taxonomy at once,
unlike prior approaches. Most popular and effective methods uses a shared backbone with separate
branches for each level (Zhu & Bain, 2017; Wehrmann et al., 2018; Chang et al., 2021; Liu et al.,
2022; Chen et al., 2022; Jiang et al., 2024; Zhang et al., 2024). The key difference lies in how the
hierarchical relationships are modeled. For instance, in FGN (Chang et al., 2021), finer features
are concatenated to predict coarse labels, whereas in HRN (Chen et al., 2022), coarse features are
added to finer features through residual connections. A critical issue in this approach is maintaining
consistency with the taxonomy in the predicted labels. To address this, Wang et al. (2023a) proposed
a consistency-aware method by adjusting prediction scores through coarse-to-fine deduction and
fine-to-coarse induction. However, we observed that using separate branches can lead to inconsistency,
as each branch processes the image independently. To address this, we propose a model based on
consistent visual grounding. To the best of our knowledge, no prior work has utilized visual segments
to resolve inconsistency in hierarchical classification.

Hierarchical Semantic Segmentation aims to group and classify each pixel according to a class
hierarchy (Li et al., 2022; Singh et al., 2022; Li et al., 2023; He et al., 2023; Wang et al., 2024; Qi
et al., 2024), with pixel grouping varying based on the taxonomy used. However, these works require
pixel-level annotations, which are not available in hierarchical classification. In addition, while these
method focus on precise pixel-level grouping, our work leverage unsupervised segments of varying
granularities within the image for hierarchical clasification.

Unsupevised/Weakly-supervised Semantic Segmentation aims to group pixels without pixel-level
annotations or using only class labels (Hwang et al., 2019; Ouali et al., 2020; Ke et al., 2022; 2024).
These works employ hierarchical grouping to achieve meaningful segmentation without pixel-level
labels. Here, “hierarchical” refers to part-to-whole visual grouping, where smaller units (e.g., a
person’s face or arm) are grouped into larger regions (e.g., the whole body). Based on our intuition
that fine-grained classifiers need more detailed information, while coarse classifiers focus on broader
groupings, our approach leverages these varying types of visual grouping. To implement this, we
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adopt the recently proposed CAST (Ke et al., 2024), whose graph pooling naturally supports consistent
visual grouping. Notably, our work introduces the novel insight that part-to-whole segmentation can
align with taxonomy hierarchies (e.g., finer segments for fine-grained labels, coarser segments for
coarse labels), a connection not previously explored.

C BENCHMARK DATSET

Table 6: Benchmark Datasets.

Datasets L-17 NL-26 E-13 E-30 CUB Aircraft iNat21-Mini

# Levels 2 2 2 2 3 3 3
# of classes 17-34 26-52 13-130 30-120 13-38-200 30-70-100 273-1,103-10,000
# Train images 44.2K 65.7K 167K 154K 5,994 6,667 500K
# Test images 1.7K 2.6K 6.5K 6K 5,794 3,333 100K

D HYPERPARAMETERS FOR TRAINING.

For a fair comparison, we use ViT-Small and CAST-Small models of corresponding sizes. As in
CAST, we train both ViT and CAST using DeiT framework (Touvron et al., 2021), and segmentation
granularity is set to 64, 32, 16, 8 after 3, 3, 3, 2 encoder blocks, respectively. Our training progresses
from fine to coarse levels, with each segment corresponding accordingly. The initial number of
superpixels is set to 196, and all data is trained with a batch size of 256. Following the literature (Chen
et al., 2022), we use ImageNet pre-trained models for the Aircraft, CUB, and iNat datasets. For the
ImageNet subset BREEDS dataset, we train the models from scratch. We show hyper-parameter
settings in Table 7.

Table 7: Hyper-parameters for training H-CAST and ViT on FGVC-Aircraft, CUB-200-2011,
BREEDS, and iNaturalist datasets. We follow mostly the same set up as CAST (Ke et al., 2024).

Parameter Aircraft CUB, BREEDS, iNaturalist

batch size 256 256
crop size 224 224
learning rate 1e−3 5e−4

weight decay 0.05 0.05
momentum 0.9 0.9
total epochs 100 100
warmup epochs 5 5
warmup learning rate 1e−4 1e−6

optimizer Adam Adam
learning rate policy Cosine decay Cosine decay
augmentation (Cubuk et al., 2020) RandAug(9, 0.5) RandAug(9, 0.5)
label smoothing (Szegedy et al., 2016) 0.1 0.1
mixup (Zhang et al., 2017) 0.8 0.8
cutmix (Yun et al., 2019) 1.0 1.0
α (weight for TK loss) 0.5 0.5

ViT-S: # Tokens [196]×11

CAST-S: # Tokens [196]×3, [64]×3, [32]×3, [16]×2
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E ADDITIONAL EXPERIMENTS

E.1 COMPARISON BETWEEN FPA AND TICE.

FPA evaluates both accuracy and consistency, while TICE focuses solely on consistency. Achieving
high FPA is the primary goal in hierarchical classification. The distinction between FPA and TICE is
shown in Table 8.

Table 8: FPA considers both correctness and consistency. While TICE (Wang et al., 2023a)
measures only consistency, FPA marks predictions as positive only when they are both correct and
consistent.

TICE ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

FPA ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

E.2 VISUALIZATION OF ATTENTION MAP

To validate our claim that the model guides classifiers toward consistent visual grounding, we visualize
attention maps from H-CAST in Figure 7. The visualizations demonstrate that as we progress from
lower to upper blocks, the model increasingly attends to similar regions. In the lower blocks, attention
is more detailed and localized, while in the upper blocks, attention expands to cover broader regions,
including those highlighted by the lower blocks. These patterns align with our intended design for
visual grounding in hierarchical classification.

Image Level 2 Level 3 Level 4

Figure 7: Visualizations of Attention maps from H-CAST. We align the attention weights with
superpixels and average them across all heads. Darker red areas represent regions with higher attention
weights. At the lower level (level 2), the attention is more focused on specific regions, such as the
snake’s head and parts of its body, emphasizing these as critical features for fine-grained classification
(e.g., “Hypsiglena torquata”). In contrast, at the upper level (level 4), the attention expands to
encompass the entire body of the snake, suggesting a shift towards a more holistic understanding
of the object for coarse label (e.g., “snake”). This progression from localized to broader attention
illustrates how H-CAST hierarchically integrates information across layers, supporting consistent
visual grounding for hierarchical classification.
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E.3 ADDITIONAL EXPERIMENTS FOR LOSS ABLATION

Similar to the results on the Aircraft dataset, the Living-17 dataset also shows consistent performance
trends, with our proposed loss achieving strong results (Table 9, Table 10). Interestingly, for
TICE, which measures only semantic consistency, the TK loss alone (Table 9) and the BCE or Flat
Consistency loss achieved better performance (Table 10). However, when considering both accuracy
and consistency (i.e., FPA), our proposed loss delivered the best overall performance.

Table 9: Utilizing both losses yields best
performance on Living-17.
LHS LTK FPA Coarse Fine wAP TICE

✗ ✓ 84.00 90.71 84.30 86.43 1.71
✓ ✗ 84.21 90.24 84.59 86.78 2.59
✓ ✓ 85.12 90.82 85.24 87.10 3.19

Table 10: KL Div. loss shows best perfor-
mance on Living-17.
Sem. Consis. FPA Coarse Fine wAP TICE
Flat Cons. 82.82 88.88 83.53 85.31 2.51
BCE 83.65 89.76 84.00 85.92 1.76
KL Div. 85.12 90.82 85.24 87.10 3.19

E.4 EVALUATION ON THE LARGE-SCALE INATURALIST DATASETS.

We present the results of our experiments on the large-scale dataset, iNaturalist21-mini (Van Horn
et al., 2021) and iNaturalist-2018 (Horn et al., 2018). First, iNaturalist21-mini contains 10,000 classes,
500,000 training samples, and 100,000 test samples, organized within an 8-level hierarchy. For our
experiments, we focused on a 3-level hierarchy consisting of name, family, and order. This selection
was motivated by the need for models with practical and meaningful granularity for real-world
applications.

The number of classes at each hierarchical level is as follows: Kingdom (3), Supercategory (11),
Phylum (13), Class (51), Order (273), Family (1,103), Genus (4,884), Name (10,000)

We excluded coarse-grained levels such as kingdom (3 classes), Supercategory (11 classes), because
their minimal granularity adds little value for classification tasks. Similarly, overly fine-grained
levels such as genus (4,884 classes), where many species are represented by only one or two samples,
offer limited differentiation from direct name-level classification. Instead, we focused on order
(273 classes), family (1,103 classes), and name (10,000 classes) to ensure that each higher-level
class represents a meaningful subset of lower-level classes, allowing for interpretable and consistent
predictions.

The results are shown in Table 11. Compared to Hier-ViT, which uses the same ViT-small backbone,
our method achieves a 7.29% improvement in fine-grained accuracy and an 8.3% improvement in the
FPA metric, demonstrating a significant performance advantage.

Table 11: Our H-CAST outperforms ViT-backbone baselines, Hier-ViT and TransHP, on the
large-scale iNaturalist2021-Mini dataset, achieving significantly higher accuracy and consis-
tency.

iNaturalist2021-Mini (273 - 1,103 - 10,000)

FPA Order Family Name wAP TICE

Hier-ViT 56.73 87.54 79.79 62.81 65.05 24.34
TransHP 58.94 83.49 82.15 68.82 70.46 24.63
Ours (H-CAST) 65.03 89.84 84.12 70.09 71.92 15.92

Our Gains +6.09 +2.30 +1.97 +1.27 +6.88 +8.42
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We further compare our method with single-level approaches that utilize hierarchical labels to enhance
fine-grained accuracy (e.g., Guided (Garnot & Landrieu, 2020), HiMulConE (Zhang et al., 2022),
and TransHP (Wang et al., 2023b)). The comparison is conducted on the large-scale iNaturalist-
2018 dataset, following TransHP. iNaturalist-2018 includes two-level hierarchical annotations with
14 super-categories and 8,142 species, comprising 437,513 training images and 24,426 validation
images. We use the same H-CAST-small and the model is trained for 100 epochs, using the same
hyper-parameters in Table 7. As shown in Table 12, our method achieves strong fine-grained accuracy,
demonstrating the effectiveness of consistent visual grounding.

Table 12: H-CAST outperforms methods leveraging hierarchical labels for fine-grained accuracy
on the large-scale iNaturalist-2018 dataset, demonstrating the effectiveness of visual consistency.
The results are reported from TransHP (Wang et al., 2023b).

iNaturalist-2018 (Acc.)

Guided 63.11
HiMulConE 63.46
TransHP 64.21

H-CAST 67.13

E.5 EVALUATION ON CUB-200-2011 AND FGVC-AIRCRAFT DATASETS.

Table 13 and 14 presents results on CUB and Aircraft datasets. In our experimental results, we
first observe a significant performance drop of Hier-ViT compared to Flat-ViT. This highlights a
common challenge in hierarchical recognition, where training coarse and fine-grained classifiers
simultaneously results in performance degradation, as observed in previous ResNet-based hierarchical
recognition models (Chang et al., 2021). Our experiments reveal that this problem also exists in ViT
architectures. This indicates that hierarchical recognition is a challenging problem that cannot be
solely addressed by providing hierarchy supervision to class tokens. On the other hand, our method
consistently outperforms most Flat models.

Compared to ViT-backbone models, Hier-ViT and TransHP, our approach achieves significantly
better performance. Specifically, using the FPA metric, which captures both accuracy and consistency
across all levels, our model outperforms TransHP by +8.2%p on the Aircraft dataset and +2.6%p on
the CUB dataset.

We also evaluate BIOCLIP (Stevens et al., 2024), a foundation model for biology, on the CUB dataset,
as it focuses on bird categories. BIOCLIP operates as a flat-based hierarchical model, concatenating
the entire taxonomy into a single text representation. As a result, all higher-level classes are directly
determined by the fine-grained species predictions, resulting in a TICE (Taxonomy-Inconsistency
Error) of 0. While BIOCLIP achieves strong performance, its reliance on fine-grained predictions to
define coarse classes introduces limitations in accurately predicting higher-level classes.

As Vision Transformer backbone models, when the training dataset is small, such as Aircraft and CUB
with around 6K images, HRN, ResNet-based models, demonstrates better performance. However,
HRN’s method is highly sensitive to batch size, with a significant drop in performance observed
when increasing the batch size from 8 to 64. This sensitivity makes it less suitable for training on
large-scale datasets.
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Table 13: Ours consistently shows the best performance on CUB-200-2011. H-CAST outperforms
ViT-backbone models, Hier-ViT and TransHP, by over 6.3 and 2.6 percentage points, respectively.
Additionally, it achieves a 3.2 percentage point gain in the FPA metric over the ResNet-based HRN
while using significantly fewer parameters. (A higher metric indicates better performance, except for
TICE.) Flat models require training three separate models.

CUB-200-2011 (13 - 38 - 200)

Backbone # Params Input image Batch size FPA Order Family Species wAP TICE

Fl
at Flat-ViT ViT-S 65.1M 224x224 256 82.30 98.50 94.84 84.78 87.01 5.76

Flat-CAST ViT-S 78.5M 224x224 256 81.50 98.38 94.82 83.78 86.21 6.14

H
ie

ra
rc

hy

FGN RN-50 24.8M 224x224 128 76.08 97.05 91.44 79.29 82.05 7.73
HRN RN-50 94.5M 448x448 64 80.07 98.17 93.75 83.14 85.52 6.51
HRN RN-50 94.5M 448x448 8 84.15 98.58 95.39 86.13 88.18 4.62

BIOCLIP (zeroshot) ViT-B 149.6M - - 78.18 78.18 78.18 78.18 78.18 0.0
Hier-ViT ViT-S 21.7M 224x224 256 77.03 98.40 92.94 79.43 82.46 8.72
TransHP ViT-S 21.7M 224x224 128 80.70 96.70 94.15 84.59 86.66 7.16
Ours (H-CAST) ViT-S 26.2M 224x224 256 83.28 98.65 95.12 84.86 87.13 4.12
Our Gains over SOTA -0.87 +0.07 -0.27 -1.27 -1.05 +0.50

Table 14: Evaluation on FGVC-Aircraft. On the smaller Aircraft dataset, ResNet-based models
such as FGN and HRN show good performance. However, our H-CAST achieves better results
in the consistency metric (TICE) and performs comparably in the FPA metric. Notably, H-CAST
outperforms ViT-backbone models, Hier-ViT and TransHP, by over 11 and 8 percentage points,
respectively, in the FPA metric.

FGVC-Aircraft (30 - 70 - 100)

Backbone # Params Input image Batch size FPA Maker Family Model wAP TICE

Fl
at Flat-ViT ViT-S 65.1M 224x224 256 76.99 94.27 91.93 80.14 86.39 10.98

Flat-CAST ViT-S 78.5M 224x224 256 78.22 92.95 88.93 82.39 86.26 10.77

H
ie

ra
rc

hy

FGN RN-50 24.8M 224x224 128 85.48 92.44 90.88 88.39 89.87 7.50
HRN RN-50 94.5M 448x448 64 83.56 94.93 92.68 86.59 89.97 7.26
HRN RN-50 94.5M 448x448 8 91.39 97.15 95.65 92.32 94.21 3.36
Hier-ViT ViT-S 21.7M 224x224 256 72.10 92.35 86.26 75.94 82.01 15.75
TransHP ViT-S 21.7M 224x224 128 75.49 90.16 87.46 81.46 84.86 13.95
Ours (H-CAST) ViT-S 26.2M 224x224 256 83.72 94.96 91.39 85.33 88.90 5.01

Our Gains over SOTA -7.67 -2.18 -4.26 -6.99 -5.31 -1.65

E.6 ADDITIONAL VISUALIZATIONS OF SEGMENTS

We visualize additional examples of feature grouping from fine to coarse for full-path correct and
incorrect predictions on the Entity-30 dataset in Figure 8. For full-path correct predictions (all levels
correct), visual details are effectively grouped to identify larger objects at coarser levels. In contrast,
for full-path incorrect predictions (all levels incorrect), segments fail to recognize the object.
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Fine to coarse segments Fine to coarse segments

a) Full-Path Correct Predictions b) Full-Path Incorrect Predictions

Figure 8: Additional examples of the differences in visual grouping between cases where predictions
at all levels are correct and where they are not. Correct predictions show better clustering, while
incorrect predictions often exhibit fractured or misaligned groupings.

E.7 COMPARISON OF IMAGE SEGMENTATION WITH CAST

To quantitatively evaluate the segmentation results in Figure 6, we use the ImageNet segmentation
dataset, ImageNet-S (Gao et al., 2022), to obtain the ground-truth segmentation data for BREEDS
dataset. The number of samples in the BREEDS validation data for which ground-truth segmentation
data can be obtained from ImageNet-S is 381 for Living-17, 510 for Non-Living-26, 1,336 for
Entity-30, and 1,463 for Entity-13. To calculate the region mIOU for fine-level objects, we use the
last-level segments (8-way) for segmentation. Following CAST, we name the 8-way segmentations
using OvSEG (Liang et al., 2023).

Also, we further visualize the segmentation results on Entity-30 in Figure 9, and show that additional
taxonomy information improves segmentation. For example in the first ‘bird’ image, H-CAST is able
to segment meaningful parts such as the face, belly, and a branch, with less fractured compared to the
CAST. Thus, H-CAST delivers an improvement in segmentation with the benefits of hierarchy.
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image CAST: Fine to coarse segments H-CAST: Fine to coarse segments

Figure 9: Additional visual results on segmentation show that H-CAST with additional taxonomy
information improves segmentation. H-CAST successfully segments meaningful parts with fewer
fractures compared to CAST.
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