
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELECTIVE LORA FOR DOMAIN-ALIGNED DATASET
GENERATION IN URBAN-SCENE SEGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper addresses the challenge of data scarcity in semantic segmentation by
generating datasets through fine-tuned text-to-image generation models, reducing
the costs of image acquisition and labeling. Segmentation dataset generation faces
two key challenges: 1) aligning generated samples with the target domain and 2)
producing informative samples beyond the training data. Existing methods often
overfit and memorize training data, limiting their ability to generate diverse and
well-aligned samples. To overcome these issues, we propose Selective LoRA, a
novel fine-tuning approach that selectively identifies and updates only the weights
associated with necessary concepts (e.g. style or viewpoint) for domain align-
ment while leveraging the pretrained knowledge of the image generation model to
produce more informative samples. Our approach ensures effective domain align-
ment and enhances sample diversity. We demonstrate its effectiveness in gener-
ating datasets for urban-scene segmentation, outperforming baseline and state-of-
the-art methods in in-domain (few-shot and fully-supervised) settings, as well as
domain generalization tasks, especially under challenging conditions such as ad-
verse weather and varying illumination, further highlighting its superiority.

1 INTRODUCTION

The amount of labeled data is crucial for achieving high performance in semantic segmentation.
However, acquiring diverse image samples, especially in rare or complex scenarios, and providing
pixel-wise annotations are labor-intensive and time-consuming. Recent advances in text-to-image
generation models (T2I models) (Rombach et al., 2022; Saharia et al., 2022; Podell et al., 2023)
have significantly improved the image quality, enabling their use in data creation for perception tasks
such as segmentation with minimal human effort. Existing studies (Zhang et al., 2021; Baranchuk
et al., 2022; Wu et al., 2023a;b) leverage these models, such as Stable Diffusion (Rombach et al.,
2022), pretrained on large-scale datasets (Schuhmann et al., 2022). Utilizing rich generative features
from the T2I model, label generation modules can be trained with minimal labeled data, effectively
parsing semantic regions. Furthermore, these models also provide controllability through text in-
put, allowing for the generation of underrepresented distributions. These approaches have proven
particularly effective in augmenting labeled datasets (Zhang et al., 2021; He et al., 2022a; Azizi
et al., 2023; Wu et al., 2023a), addressing data scarcity, and creating desired distributions, such as
long-tailed class distributions (Shin et al., 2023) or adverse weather condition (Jia et al., 2023).

There are two primary challenges in generating segmentation datasets using image generation mod-
els: 1) aligning with the target domain, and 2) generating informative datasets beyond existing train-
ing data. However, previous approaches have overlooked key aspects of these issues. Existing meth-
ods (Zhang et al., 2021; Li et al., 2022; Baranchuk et al., 2022; Park et al., 2023) typically produce
domain-aligned but non-informative samples, as they train image generation models from scratch
using only segmentation datasets, resulting in images that closely resemble the training data. To
overcome this, leveraging T2I models such as Stable Diffusion, pretrained on large-scale datasets,
is crucial for generating more diverse and informative samples. However, recent methods (Wu et al.,
2023a;b; Yang et al., 2024; Jia et al., 2023) often use these pretrained models without fine-tuning
for segmentation tasks, leading to poor alignment with the target domain.

Full fine-tuning or Low-Rank Adaptation (LoRA) (Hu et al., 2022) of pretrained T2I models are
potential solutions to the two challenges discussed above. However, as shown in Fig. 1, even LoRA
fine-tuning often overfits and memorizes the training data, limiting the generation of informative
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Figure 1: Motivation of our paper: Pretrained T2I models can generate informative images but often
struggle with viewpoint alignment. LoRA fine-tuning on Cityscapes enables T2I models to gener-
ate driving-viewpoint images but leads to overfitting to the Cityscapes style and content. We aim
to exclusively learn the desired concept (e.g., viewpoint) from the source dataset for generating
domain-aligned and informative samples.

samples beyond the training dataset because the model learns every concept (e.g., viewpoint, style,
object shape, layout, etc.) present in the training data. Therefore, we need a method to selectively
learn only the necessary concepts (e.g., viewpoint or style) for aligning with the target domain, while
leveraging the pretrained knowledge of the T2I model to generate more informative samples.

The target domain can vary depending on the problem settings (e.g., in-domain or domain gener-
alization), which means the necessary concepts for fine-tuning also vary. In in-domain settings, the
model needs to learn the style from the training data. However, in domain generalization (DG) set-
tings, where the model is evaluated on an unknown target domain, it is more beneficial to learn only
the viewpoint. For example, when the target domain is ACDC (Sakaridis et al., 2021), which includes
driving-scene viewpoints and adverse weather, but the training dataset is Cityscapes (Cordts et al.,
2016), which consists of driving-scene viewpoints with only clear-day conditions, a diverse weather FIX
conditional dataset (informative) combined with a driving-viewpoint (domain-aligned) could serve
as the optimal dataset for the problem. However, as shown in Fig. 1, pretrained model often fails to
generate a driving viewpoint while the LoRA fine-tuned model generates only the clear-day style of
the Cityscapes, even if ‘foggy’ or ‘night-time’ conditions are added as text prompts, highlighting the
need for a method that can selectively learn only the viewpoint from Cityscapes training data.

To the best of our knowledge, our research is the first to comprehensively address these issues. We
propose Selective LoRA that identifies and updates only the weights related to desired concepts
(e.g., viewpoint or style) while preserving the rest to leverage the knowledge of pretrained T2I mod-
els. This approach enables the model to effectively capture and learn the specific concepts necessary
for aligning with the target domain, resulting in generated images that are not only well-aligned but
also more diverse and informative. For instance, if the desired concept is driving-scene viewpoints,
the model learns that viewpoint alone and generates images that extend beyond the original training
data by incorporating various styles, object shapes, layouts, etc. Additionally, the model’s text con-
trollability allows for generating specific styles from user input, making it highly effective in DG
settings (Choi et al., 2021; Peng et al., 2022; Lee et al., 2022a; Zhong et al., 2022; Hoyer et al.,
2022b;a), such as those requiring diverse conditions like adverse weather or varying illumination.

We demonstrate the effectiveness of our approach in urban-scene segmentation, comparing it to
baselines (Hoyer et al., 2022a;b) and other dataset generation methods (Wu et al., 2023a; Jia et al.,
2023) in both few-shot and fully-supervised settings, as well as in DG setting.
Our contributions are threefold:

1. We propose Selective LoRA, a novel fine-tuning method that selectively identifies and up-
dates only the weights related to the necessary concepts (e.g., viewpoint or style) for domain
alignment, reducing overfitting and preserving pretrained knowledge.

2. Applying Selective LoRA to T2I models generates well-aligned and informative datasets
beyond existing training data. This addresses data scarcity by generating image-label pairs
from underrepresented distributions (e.g., adverse weather), improving segmentation tasks.

3. Our method demonstrates state-of-the-art performance across various tasks, with improve-
ments of +2.30 mIoU in few-shot, +1.34 mIoU in fully supervised settings on Cityscapes,
and +1.53 mIoU in DG benchmarks (ACDC, Dark Zurich, BDD100K, Mapillary Vistas).
It consistently generates higher-quality image-label pairs compared to existing methods.
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Figure 2: Overview of the proposed framework for generating an urban-scene segmentation dataset
by learning the Cityscapes viewpoint. (Stage 1, Section 3.2) we identify sensitive layers to the spe-
cific concept (e.g., style, viewpoint). (Stage 2, Section 3.3) we selectively fine-tune the identified
sensitive layers using LoRA to learn only the specific concept. (Stage 3, Section 3.4) to produce a
corresponding segmentation map, we train a label generator that takes generative features from the
T2I model. (Stage 4, Section 3.4 we generate diverse image-label pairs with textual augmentation
based on the problem settings (e.g., in-domain, domain generalization).

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION AND PARAMETER-EFFICIENT FINE-TUNING

Recent advancements in diffusion architectures (Ho et al., 2020; Rombach et al., 2022) and large-
scale image-text dataset (Schuhmann et al., 2022) have enabled high-quality text-to-image genera-
tion models (T2I models) (Saharia et al., 2022; Ramesh et al., 2022; Podell et al., 2023; Esser et al.,
2024). The quality of images generated by these models has led researchers to personalize them to
produce specific concepts or styles(Ruiz et al., 2023; Gal et al., 2022). To achieve better customiza-
tion, parameter-efficient fine-tuning (PEFT) methods (Hu et al., 2022; Liu et al., 2024; Hayou et al.,
2024; Kopiczko et al., 2023; Ding et al., 2023; He et al., 2022b) have been proposed.

While existing PEFT methods aim to prevent overfitting and enable efficient training, they struggle
to disentangle irrelevant concepts during fine-tuning, as they may still equally affect all layers. Thus,
several studies (Guo et al., 2019; Choi et al., 2022; Lee et al., 2022b) have shown that fine-tuning
manually selected layers outperforms full fine-tuning, especially with smaller datasets. Additionally,
recent work on Stable Diffusion (Wang et al., 2024; Xing et al., 2024; Basu et al., 2024) identifies
control blocks for specific visual attributes by ablating each block manually. In contrast, our ap-
proach automates this process, enabling more precise and fine-grained updates to only the most
crucial weights, leading to more efficient fine-tuning.

2.2 SEGMENTATION DATASET GENERATION

Generating segmentation datasets is challenging due to the need for pixel-wise annotations (Zhang
et al., 2021; Li et al., 2022; Baranchuk et al., 2022; Park et al., 2023). To generate segmentation
maps for the generated images, segmentation dataset generation frameworks typically use generative
features from T2I models as input to the label generator, as shown in Fig. 2 (Stage 3). By leveraging
these rich generative features, the label generator requires minimal labeled data, particularly for
parsing semantic regions. However, when T2I models are trained from scratch with only the provided
segmentation datasets, they often produce non-informative outputs resembling the training data.

More recently, several studies have focused on leveraging the extensive prior knowledge embedded FIX
in pretrained T2I diffusion models (Wu et al., 2023a;b; Nguyen et al., 2024; Benigmim et al., 2023;
Gong et al., 2023). However, they often overlook the alignment of the generated images with the
target domain (e.g., style, viewpoint). In this paper, we investigate the impact of fine-tuning T2I
models for segmentation dataset generation, with a focus on ensuring better alignment.
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Figure 3: Overview of measuring concept sensitivity. (a) We design the concept loss (LConcept) with
the concept-augmented captions (cAug), and the original diffusion loss (LDiffusion) with the added
noise ϵ. The concept-augmented captions can be changed according to the desired concept (e.g.,
style, viewpoint). (b) While each concept gradient represents the reaction of the concept, it has to be
normalized with the original diffusion gradient to assess the increased ratio of each layer.

3 METHOD

3.1 OVERALL FRAMEWORK

Our proposed dataset generation framework for urban-scene segmentation is shown in Fig. 2. The
process begins with identifying sensitive weights according to the desired concept in the source
dataset (Stage 1), as illustrated in Section 3.2. Next, we selectively fine-tune the top-k% sensitive
weights of the text-to-image (T2I) generation model using LoRA (Stage 2), as discussed in Sec-
tion 3.3. Then, a label generator is trained with a labeled dataset by using rich generative features FIX
from the T2I model as input (Stage 3), as described in Section 3.4. Finally, diverse image-label pair
datasets are generated by modifying textual conditions based on the problem settings (in-domain or
domain generalization) (Stage 4).

3.2 IDENTIFYING SENSITIVE WEIGHTS TO THE DESIRED CONCEPT

To identify the sensitive weights for a specific concept (e.g., style, viewpoint), we first design an
objective function called Concept loss (LConcept) which can be flexibly changed according to the
desired concept. As shown in Fig. 3 (a), Concept loss is provided to the noisy image to enforce
modifying the concept, such as style or viewpoint of the generation process. For example, when the
Concept loss forces the T2I model to modify the style (e.g., photorealistic → sketch), the gradient
of the Concept loss can be used to identify style-sensitive weights.

For the Concept loss input, we prepare a few generated images x0 with the pretrained T2I model
ΦT2I parameterized by θ and the original text prompt c. Random Gaussian noise ϵ is added to the
generated images based on the pre-defined timestep t and the timestep scheduling coefficient ᾱt. 1

x0 = ΦT2I(c; θ), xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

Then, we prepare the simply augmented prompts of the original text prompt (c) according to style
(cAug(Style)) and viewpoint (cAug(Viewpoint)).

c = “Photorealistic first-person urban street view” (2)
cAug(Style) ∈

“Sketch of first-person urban street view”,
“Watercolor of first-person urban street view”,
“Pop-art of first-person urban street view”


cAug(Viewpoint) ∈

“Photorealistic urban street in top-down view”,
“Photorealistic urban street in high angle view”,
“Photorealistic urban street in low angle view”

 (3)

We then use the denoising prediction with the augmented captions as pseudo-ground truth, guiding
the modification of the image based on a specific concept. Concept loss (LConcept) is defined by the
following equation, similar to the original diffusion loss.

LConcept := ∥ϵθ(xt, c)− sg[ϵθ(xt, cAug)]∥2 , (4)
1While we add a random noise with a DDPM (Ho et al., 2020) scheduler, any scheduler can be used for this

process. Additionally, the x0 will be replaced to latent for the latent diffusion models (Rombach et al., 2022).
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Figure 4: Illustration of Selective LoRA. Unlike the original LoRA method, which applies LoRA
layers to all projection layers, we selectively attach LoRA layers to high-sensitivity projection layers
based on the desired concept.

where sg indicates the stop-gradient operation. Initially, we calculate the gradient of concept loss
(∥∇θLConcept∥2) to capture the sensitivity of the concept. However, we observe critical bias in the FIX
gradients of each layer depending on its position, as discussed in Appendix A.4. To address this,
we scale the gradient magnitude for each layer. We calculate the ratio of the gradients between the
concept loss and the original diffusion loss (∥∇θLDiffusion∥2), referred to as concept sensitivity. FIX

LDiffusion := ∥ϵθ(xt, c)− ϵ∥2 (5)

Concept Sensitivity(θ) := Ex0,ϵ,cAug

[ ∥∇θLConcept∥2
∥∇θLDiffusion∥2

]
(6)

As illustrated in Eq. 6, we average the ratio between the gradients across the generated images (x0),
added noise (ϵ), and the augmented prompts (cAug). While the concept sensitivity can be grouped in
various ways, we conduct it in multi-head projection-wise, which we illustrate in Appendix A.3. In
summary, the proposed concept sensitivity identifies sensitive layers to the desired concept, which
can rapidly learn the target concept by leveraging the reaction of changing the ground truth.

3.3 SELECTIVE LORA
Based on the identified sensitive weights to desired concepts in Section 3.2, we propose a novel
parameter-efficient fine-tuning method, which can selectively update only the high-sensitivity lay-
ers to maintain the prior knowledge of pretrained T2I models of the other concepts. To achieve
this, we start with the Low-Rank Adaptation (LoRA) (Hu et al., 2022), which effectively adapts
all the attention layers in the pretrained T2I model with the source dataset. However, while LoRA FIX
parameter-efficiently fine-tunes large-scale models, it cannot specify target learning concepts (e.g.,
style or viewpoint) from the source datasets. Additionally, the follow-up studies of LoRA also have NEW
focused on improving the LoRA adapter itself (e.g., architectures) (Wu et al., 2024; Zhao et al.,
2024; Renduchintala et al., 2024), little has been explored for identifying which layers are effective
for LoRA fine-tuning to learn a specific target concept, especially in urban-scene segmentation.

In contrast, we propose Selective LoRA, which selectively adapts a subset of the pretrained layers.
As shown in Fig. 4, we select top k% weights of the entire pretrained model, which will be LoRA
fine-tuned based on the concept sensitivity scores (Eq. 6). The key distinction of Selective LoRA lies FIX
in selectively fine-tuning only the crucial layers based on an automatically computed score, termed
concept sensitivity, for the desired concept in the source dataset, while previous LoRA studies update
all projection layers. The adapted layers and selected ratios can be adjusted based on the concept,
allowing for increased control, as illustrated in Fig. 4. In the following sections, we refer to Style-
Selective LoRA and Viewpoint-Selective LoRA as Selective LoRA fine-tuning methods based on
style and viewpoint sensitivity, respectively.

3.4 TRAINING LABEL GENERATOR AND GENERATING DIVERSE SEGMENTATION DATASETS

Training Label Generator We train an additional lightweight label generator to produce a seg- NEW
mentation label corresponding to the image, following DatasetDM (Wu et al., 2023a). To train the
label generator, we add noise to the given labeled image and denoise the image with the fine-tuned
T2I model, which can provide semantically rich intermediate multi-level feature maps and cross-
attention maps. Then, the label generator receives the feature maps and cross-attention maps as input
to predict the label map, as illustrated in Stage 3 of Fig. 2. Distinct from DatasetDM, we train the
label generator based on the fine-tuned T2I model using Selective LoRA. The added fine-tuning pro-
cess causes a significant difference in image-label alignment, which we discussed in Appendix A.6.
Furthermore, due to the difference between the base T2I model, architecture details slightly changed
as described in Appendix A.1.
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Figure 5: (a) Visualization of the concept sensitivity across the attention layers. We highlight style-
and viewpoint-sensitive weights in red and blue, respectively. Each column represents the layer po-
sition, ranging from shallow to deep, while each row corresponds to the multi-head projection layers
for query, key, value, and output in the attention module. (b, c) Qualitative comparison between
the pretrained T2I model and fine-tuned models using original LoRA, Style-Selective LoRA, and
Viewpoint-Selective LoRA. The pretrained model often misaligns with the viewpoint and style of
the source domain, while the original LoRA memorizes the training examples. In contrast, the pro-
posed Style- and Viewpoint-Selective LoRA selectively learn style and viewpoint concepts from the
source dataset (Cityscapes), respectively.

Generating Diverse Dataset Lastly, we introduce the diverse image-label pair generation process NEW
by modifying text prompts. Generating adverse weather conditions (e.g., foggy, night-time) partic-
ularly important to improve domain generalization for urban-scene segmentation, as described in
DGInStyle (Jia et al., 2023). Therefore, we simply add a weather condition to the default prompt
e.g., “photorealistic first-person urban street view” to “... in foggy weather”, as illustrated in Stage
4 in Fig. 2. Our Selective LoRA plays a critical role in generating diverse image-label pairs. As
described in Fig. 1, fine-tuning a T2I model with original LoRA often causes overfitting to the unde-
sired concept from the source dataset (e.g., clear-day style from the Cityscapes (Cordts et al., 2016)).
In contrast, fine-tuning only the viewpoint-sensitive weights can provide an exclusive learning view-
point concept from the source dataset, which can effectively preserve the text adherence of the T2I
model except for viewpoint (e.g., do not memorize clear-day style). Additionally, regarding the in-
domain scenario, we can generate diverse images by varying the class names used as arguments in
the prompt template (e.g., “... with car, person, etc.”).

4 EXPERIMENTS

The following sections present extensive experiments to improve urban-scene segmentation in both NEW
in-domain and domain generalization (DG) settings. Section 4.1 describes the experimental setup
and implementation details. Then, Section 4.2 presents extensive urban-scene segmentation exper-
iments across in-domain and DG settings. Finally, Section 4.3 provides an in-depth analysis of the
Selective LoRA, including a comprehensive ablation study.

4.1 EXPERIMENTAL SETUP

Datasets For the training dataset, we utilize the Cityscapes (Cordts et al., 2016) as a source dataset
for all urban-scene segmentation experiments, including in-domain and DG settings. Regarding the
experiments for the in-domain few-shot setting, we only utilize a subset of Cityscapes images for
the few-shot samples. For the evaluation, we test on Cityscapes validation set for in-domain, and
ACDC (Sakaridis et al., 2021), Dark Zurich (DZ) (Sakaridis et al., 2019), BDD100K (BDD) (Yu
et al., 2020), and Mapillary Vistas (MV) (Neuhold et al., 2017) for DG settings. Notably, ACDC and
DZ are constructed with adverse weather conditions. We also conducted experiments with a general NEW
segmentation dataset using Pascal-VOC, which we included the results in Appendix A.8.

In-Domain Semantic Segmentation For the baseline model, we train Mask2Former (Cheng et al., FIX
2022) using subsets of the Cityscapes (Cordts et al., 2016) dataset at various fractions (0.3%, 1%,
3%, 10%). For the 100% (fully-supervised), we utilize the pretrained Mask2Former checkpoint.
Then, we generated a total of 500 image-label pairs for all few-shot settings and used them as an
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Table 1: In-domain segmentation performance across various fractions of the Cityscapes dataset
(mIoU). In the first row, we trained Mask2Former on various fractions of the Cityscapes dataset
(Baseline). Then, we fine-tuned the baseline on DatasetDM and our generated datasets with 30K
iterations and evaluated the performance of the fine-tuned segmentation models. Additionally, we
include an additional fine-tuned baseline (Baseline (FT)) that is solely fine-tuned on the same real
dataset for a fair comparison in terms of the total iterations.

Method
Training Dataset Total

Iterations
Fraction of the Cityscapes Dataset

Real Generated 0.3% 1% 3% 10% 100%

Baseline ✓ ✗ 90K 41.83 49.15 59.07 69.02 79.40
For a fair comparison, we fine-tune the baseline for additional 30K iterations using real or generated datasets.

Baseline (FT) ✓ ✗ 120K 42.00 (+0.17) 49.18 (+0.03) 59.06 (-0.01) 68.68 (-0.34) 80.05 (+0.65)
DatasetDM ✓ ✓ 120K 42.82 (+0.99) 49.71 (+0.56) 60.31 (+1.24) 69.04 (+0.02) 80.45 (+1.05)

Ours ✓ ✓ 120K 44.13 (+2.30) 51.90 (+2.75) 61.29 (+2.22) 70.29 (+1.27) 80.74 (+1.34)

DatasetDM
(Pretrained)

Original
LoRA

Style-
Selective 

LoRA

Viewpoint-
Selective 

LoRA

Cityscapes
Classes

Road Sidewalk Building Wall Fence Pole Traffic Light
Traffic Sign Vegetation Terrain Sky Person Rider Car

Truck Bus Train Motorcycle Bicycle Unlabeled

Figure 6: Qualitative comparison of image-label alignment between DatasetDM, Original LoRA,
and our Viewpoint- and Style-Selective LoRA in a few-shot setting (Cityscapes 0.3%).

additional dataset to fine-tune the baseline model trained on each Cityscapes fraction, where we
generated 3000 pairs for the fully-supervised setting. To avoid overfitting to the generated data,
we mix real (i.e., the dataset used during pretraining) and generated samples in each mini-batch in
equal numbers. We have compared our proposed approach with the segmentation dataset generation
approach, DatasetDM (Wu et al., 2023a), which utilizes the pre-trained text-to-image generation
model (T2I model) without any fine-tuning. We also include an additional baseline (Baseline (FT)) FIX
that fine-tunes the pretrained Mask2Former exclusively on the same real dataset, ensuring a fair
comparison in terms of computational cost.

Domain Generalization in Semantic Segmentation We improve the DG performance for urban-
scene segmentation upon the existing DG methods ColorAug, DAFormer (Hoyer et al., 2022a)
and HRDA (Hoyer et al., 2022b), following the DGInStyle experimental setup (Jia et al., 2023).
We have compared our proposed approach with the recent dataset generation approaches, DGIn-
Style (Jia et al., 2023), DatasetDM (Wu et al., 2023a), DATUM (Benigmim et al., 2023), and NEW
InstructPix2Pix (Brooks et al., 2023). 2 To show the effectiveness of the generated dataset, we train
a semantic segmentation model with each DG method on a combination of the 2975 Cityscapes
image-label pairs and the 2500 generated image-label pairs (500 images for 5 weather conditions
including clear, foggy, night-time, rainy, and snowy) from scratch.
Implementation Details Throughout the experiments, we utilize Stable Diffusion XL (Podell et al.,
2023) as the pretrained T2I model. The implementation is based on HuggingFace Diffusers library
code (von Platen et al., 2022). We fix the rank of both the original LoRA and Selective LoRA at

2For DATUM, we provide an additional image for each weather condition to meet the requirements of its
One-shot UDA setting. For InstructPix2Pix, we modify the weather conditions of the images using instruction
prompts (e.g., “change the weather condition to {...}”) while preserving the original segmentation maps.
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Table 2: Comparison of generated datasets for domain generalization (DG) in urban-scene segmen-
tation (Cityscapes → ACDC, Dark Zurich, BDD100K, Mapillary Vistas). The experiments are con-
ducted upon various DG methods (ColorAug (Xie et al., 2021), DAFormer (Hoyer et al., 2022a), and
HRDA (Hoyer et al., 2022b)). We employ the Viewpoint-Selective LoRA to generate our generated
dataset. * The gray color indicates the reported score from the DGInStyle authors.3†DATUM addi-
tionally leverages a single target domain image for each weather condition from the ACDC dataset.

DG Method Generated Dataset ACDC DZ BDD MV Average

ColorAug* ✗ 52.38 23.00 53.33 60.06 47.19
ColorAug* DGInStyle 55.19 26.83 55.18 59.95 49.29 (+2.10)

ColorAug ✗ 53.12 25.69 53.00 59.81 47.91
ColorAug DatasetDM 53.80 27.70 53.54 60.75 48.95 (+1.04)
ColorAug InstructPix2Pix 56.02 26.92 54.03 60.44 49.35 (+1.44)
ColorAug Ours 56.07 29.75 54.35 61.40 50.39 (+2.49)

DAFormer* ✗ 55.15 28.28 54.19 61.67 49.82
DAFormer* DGInStyle 57.74 28.55 56.26 62.67 51.31 (+1.48)

DAFormer ✗ 53.98 27.82 54.29 62.69 49.70
DAFormer DatasetDM 55.24 28.44 54.40 63.18 50.32 (+0.62)
DAFormer InstructPix2Pix 55.13 26.93 54.61 62.36 49.76 (+0.06)
DAFormer† DATUM 54.06 27.10 54.74 62.40 49.58 (-0.12)
DAFormer Ours 55.83 31.68 54.68 63.09 51.32 (+1.63)

HRDA* ✗ 59.70 31.07 58.49 68.32 54.40
HRDA* DGInStyle 61.00 32.60 58.84 67.99 55.11 (+0.71)

HRDA ✗ 58.48 29.46 56.12 64.27 52.08
HRDA DatasetDM 58.11 31.51 55.74 64.49 52.46 (+0.38)
HRDA InstructPix2Pix 58.50 29.56 56.10 64.10 52.07 (-0.01)

HRDA† DATUM 58.11 30.18 56.94 64.29 52.38 (+0.30)
HRDA Ours 58.93 34.41 56.56 64.54 53.61 (+1.53)

64 and set 10k training iterations for a fair comparison. While DatasetDM necessitates 20 hours FIX
for training the label generator in Stage 3, fine-tuning Selective LoRA only takes one hour on a
single Tesla V100 GPU, which is a minimal amount of time compared to the entire training time.
The selected proportion of Selective LoRA has been searched across 1%, 2%, 3%, 5%, and 10%.

The diffusion timestep for identifying the desired concept is 81 across the 1000 timesteps. The
results of our hyper-parameter search are reported in Appendix A.5. Additional implementation
details, including the label generator architecture, hyper-parameters, number of generated pairs, and
pseudo-code, are provided in Appendices A.1, A.2 and A.3.

4.2 MAIN RESULTS ON THE SEMANTIC SEGMENTATION BENCHMARKS

This section demonstrates the superiority of Selective LoRA in improving urban-scene segmen- FIX
tation performance through both quantitative and qualitative analyses. For the main results on the
in-domain semantic segmentation benchmark, we use the Style-Selective LoRA with a 2% layer pro-
portion, trained to adapt to the Cityscapes-style images by aligning image distributions. Conversely,
for DG, we employ the Viewpoint-Selective LoRA with a 3% layer proportion, as it needs to pro-
duce not only Cityscapes-style images but also examples reflecting adverse weather conditions, such
as foggy or night-time scenes, which the Style-Selective LoRA cannot handle.

In-Domain Semantic Segmentation As shown in Tab. 1, the proposed Selective LoRA consis-
tently outperforms all other methods across various data ratios. Specifically, the proposed method
improves 2.30 mIoU for the 0.3% data ratio, significantly surpassing DatasetDM, which achieves
only a 0.99 mIoU increase. This demonstrates the efficiency of Selective LoRA, particularly in
low-data regimes. Furthermore, our method improves the fully-supervised performance (i.e., 100%
data ratio) by 1.34 mIoU, further enhancing strong Mask2Former performance. The consistent
gains across different data ratios highlight the robustness of Selective LoRA, making it a highly
effective approach for urban-scene segmentation in both few-shot and fully-supervised scenarios.
Additionally, we observe Selective LoRA achieves enhanced image-label alignment compared to FIX
the baseline methods, as shown in Fig. 6, and we quantitatively evaluate the image-label alignment
in Appendix A.6 due to the page limit of the main paper. We made an in-depth analysis of image-
label alignment, a crucial factor to confirm when performing segmentation dataset generation.

3Due to the absence of the source code with the generated datasets in Cityscapes as a source dataset, we
cannot reproduce the reported results. However, we will update the table when the code is available.
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Table 3: Image domain alignment between the generated and training real images using CMMD (↓)
(Jayasumana et al., 2024). The Style-Selective LoRA consistently shows better alignment than the
Viewpoint-Selective LoRA across the various proportions of the selected layers.

Desired
Concept

Proportion of T2I Model Layers for Selective Fine-tuning

0% (Pretrained) 1% 2% 3% 5% 10% 100% (Original LoRA)

Style 5.063 1.618 1.420 1.021 1.105 0.686 0.644Viewpoint 2.650 2.313 1.580 1.733 1.476

Table 4: Fidelity of the augmented prompts for generating adverse weather conditions (e.g., foggy,
night-time, rainy, and snowy) measured using CLIP Score (↑). The Viewpoint-Selective LoRA con-
sistently outperforms across the various proportions of the selected layers.

Desired
Concept

Proportion of T2I Model Layers for Selective Fine-tuning

0% (Pretrained) 1% 2% 3% 5% 10% 100% (Original LoRA)

Style 25.72 21.44 19.92 20.74 19.72 19.86 22.66Viewpoint 25.03 24.69 25.88 25.52 24.76

Domain Generalization in Semantic Segmentation As shown in Tab. 2, the proposed method
consistently outperforms all other segmentation dataset generation methods across multiple DG
methods. Specifically, Viewpoint-Selective LoRA effectively learns only the viewpoint from the
source dataset (Cityscapes) while maintaining the ability to generate diverse styles from the pre-
trained T2I model. As a result, our method significantly improves generalization performance, par-
ticularly on challenging datasets such as ACDC and Dark Zurich, where conditions such as adverse
weather play a critical role. We emphasize that DGInStyle and InstructPix2Pix only change the NEW
styles of given images while keeping fixed label maps, which introduces limited manipulation of the
scene. Since DAFormer and HRDA already employ strong image augmentation techniques (Hoyer
et al., 2022a;b), the additional image augmentations from DGInStyle and InstructPix2Pix are largely
redundant, as shown in their performance. In contrast, the improvement of the proposed approach
is notable not only in comparison to the simple baseline (ColorAug), but also in its effectiveness on
the advanced DG methods (DAFormer and HRDA), further proving the robustness of our approach.

4.3 ANALYSIS

This section presents an in-depth analysis of the Selective LoRA finetuned models (style and view-
point), comparing them to the pretrained model and the original LoRA finetuned model. First, we
evaluate the effective style adaptation of the Style-Selective LoRA. Next, we test the preservation
of conditional image generation ability of the Viewpoint-Selective LoRA. Finally, we show a com-
prehensive ablation study for in-domain and DG for urban-scene segmentation across the pretrained
model, Selective LoRA finetuned models (style, viewpoint), and the original LoRA finetuned model.
Additional experimental studies of the concept sensitivity are available in Appendices A.7 and A.9. NEW

Image Domain Alignment In this section, we evaluate the image domain alignment of the pre-
trained and finetuned T2I models, which is crucial for in-domain dataset generation. Since our
analysis involves few-shot experiments (e.g., 0.3%), we adopt CMMD (Jayasumana et al., 2024)
for image alignment metric due to its consistent performance on small datasets. Tab. 3 shows that
the pretrained T2I model exhibits a significant domain gap between real and generated images. In
contrast, fine-tuning the T2I model on the Cityscapes dataset effectively reduces the domain gap.
Among the Selective LoRAs, Style-Selective LoRA achieves competitive image domain alignment
with only a 10% proportion compared to the original LoRA. While the original LoRA achieves the
best alignment in the CMMD metric, Fig. 1 highlights its memorization problem, which we analyze
further in the following ablation study to demonstrate the inferiority of the memorized dataset.
Image Generation for Various Weather Scenarios Since we generate diverse weather condi-
tions (e.g., foggy, night-time, rainy, and snowy) to improve the DG performance, preserving the
conditional image generation ability is crucial. Thus, we measure the diverse weather conditional
image generation performance by leveraging CLIP-Score (Radford et al., 2021), which can assess
the similarity between the generated images and their input text prompts. We measure the average
CLIP-Score across the four diverse weather conditions by generating 100 images for each weather
condition. As shown in Tab. 4, the pretrained model shows a high CLIP score for generating adverse
weather conditions, while the original LoRA cannot generate the weather conditions. Furthermore,
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Table 5: Ablation study of the selected layers on the few-shot segmentation (Cityscapes 0.3% of
labeled samples). The Style-Selective LoRA with a 2% proportion of the selected layers has shown
the best performance.

Desired
Concept

Proportion of T2I Model Layers for Selective Fine-tuning

0% (Pretrained) 1% 2% 3% 5% 10% 100% (Original LoRA)

Style 42.82 43.77 44.13 43.94 43.05 43.36 42.97Viewpoint 43.13 43.01 42.37 42.08 42.52

Table 6: Ablation study of the Selective LoRA in domain generalization. We utilize color augmenta-
tion additional to our generated dataset when performing domain generalization using Cityscapes as
the source domain and ACDC, Dark Zurich, BDD100K, and Mapillary Vistas as the target domains.

DG Method Additional Generated Dataset ACDC DZ BDD MV Average

ColorAug - 53.12 25.69 53.00 59.81 47.91
ColorAug Pretrained (DatasetDM) 53.80 27.70 53.54 60.75 48.95 (+1.04)
ColorAug Original LoRA 54.25 28.42 54.34 61.42 49.61 (+1.70)
ColorAug Selective LoRA (Style) 52.55 26.42 54.04 61.81 48.71 (+0.80)
ColorAug Selective LoRA (Viewpoint) 56.07 29.75 54.35 61.40 50.39 (+2.48)

the Style-Selective LoRA scores even worse than the original LoRA since it aims to learn the style
from the source dataset, which includes the source weather (e.g., clear-day weather). In contrast, the
Viewpoint-Selective LoRA effectively preserves the adverse weather conditional generation perfor-
mance while learning the viewpoint from the source dataset.

Ablation Study We conduct the ablation study of the Selective LoRA on the few-shot segmen-
tation (0.3% Cityscapes) and also show the hyperparameter impact across selected ratios (1%, 2%,
3%, 5%, and 10%) and desired concepts (style and viewpoint). As shown in Tab. 5, the pretrained
model and original LoRA show poor performance due to domain misalignment and memoriza-
tion, respectively. In contrast, the style-selective LoRA consistently improves the performance than
viewpoint-selective LoRA, and the 2% selected layer proportion of the style-selective LoRA shows
the best performance across the variants.

Furthermore, we conduct an ablation study of the Selective LoRA on the simple DG method (Col-
orAug), with the fixed 3% proportion of the selected layers of Selective LoRA. As shown in Tab. 6,
Viewpoint-Selective LoRA shows significant improvements on average. While the original LoRA
and style-selective LoRA show competitive performance improvements on BDD100K and Mapil-
lary Vistas, viewpoint-selective LoRA has significantly improved ACDC and Dark Zurich, which
contain images under challenging weather conditions. These results also show the strength of the
viewpoint-selective LoRA in synthesizing adverse weather conditions.

5 CONCLUSION AND FUTURE WORK

This paper proposes Selective LoRA, a novel fine-tuning method designed to learn only the de-
sired concepts (e.g., viewpoint or style) from the training dataset to generate semantic segmenta-
tion datasets. Our method effectively identifies and updates only the weights relevant to the desired
concepts, enabling the fine-tuned image generation model to produce well-aligned and informa-
tive samples. Although the additional information provided by the generated datasets is constrained FIX
by the pretrained T2I model, we demonstrated notable improvements in segmentation performance
across various settings, including in-domain (few-shot and fully-supervised) and domain generaliza-
tion tasks. Our fine-tuning method shows great potential for learning only the desired concepts from
training data, even when it includes unnecessary concepts, contributing to the field of dataset gener-
ation. The following are potential future directions for our work. First, while our primary focus was FIX
on reducing domain shifts in a pretrained T2I model for urban scene segmentation, extending seg-
mentation dataset generation to more general datasets (e.g., Pascal-VOC (Everingham et al., 2010),
COCO (Lin et al., 2014)) remains an important challenge, as briefly explored in Appendix A.8.
Second, while our experiments with Selective LoRA focus on segmentation dataset generation,

this approach also shows potential for extracting specific concepts beyond style and viewpoint for
personalized image generation, presenting a promising direction for future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our method, we present the experimental setup for each problem
setting in Section 4.3. Additionally, details on implementation and evaluation can be found in Ap-
pendix A.1. The pseudocode for the overall training and testing scheme is provided in Appendix A.2.
Along with relevant references and publicly available code, we believe our paper offers sufficient
information for reimplementation.
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A.1 IMPLEMENTATION DETAILS

Hyperparameters (Tables 14, 15, 16 and 17) We provide all hyperparameters to support repro-
ducibility. In the first stage, we fine-tune Stable Diffusion XL (Podell et al., 2023) using the Hug-
gingFace Diffusers library (von Platen et al., 2022). The specific hyperparameters for fine-tuning
Stable Diffusion XL on the Cityscapes dataset are listed in Tab. 14, while the training configurations
for the label generator can be found in Tab. 15.

Next, we train segmentation models for both in-domain and domain generalization scenarios. The
hyperparameters for in-domain fine-tuning are provided in Tab. 16, while those for domain gener-
alization, based on the DGInStyle (Jia et al., 2023) method, are included in Tab. 17. We hope these
provided hyperparameters will facilitate reproducibility.

Label Generator Architecture (Fig. 7) We build the label generator based on the recent seg-
mentation dataset generation framework, DatasetDM (Wu et al., 2023a). The label generator in
DatasetDM, called P-Decoder, is derived from the Mask2Former (Cheng et al., 2022) decoder ar-
chitecture. It takes intermediate features from the T2I model, including feature maps and cross-
attention maps. The label generator then concatenates features of the same resolution and reduces
the feature dimensions using predefined projection layers. The multi-resolution feature maps are
passed through the pixel decoder and the transformer decoder sequentially, which outputs the seg-
mentation predictions. Finally, we calculate the loss function of the label decoder, which mirrors
that of Mask2Former, incorporating binary cross-entropy, dice loss, and classification loss. How- FIX
ever, several modifications exist between the original DatasetDM P-Decoder and our label generator
due to architectural differences between Stable Diffusion v1.5 (Rombach et al., 2022) and Stable
Diffusion XL (Podell et al., 2023).

Since DatasetDM is built on top of Stable Diffusion v1.5 (Rombach et al., 2022), we simply adjust NEW
the feature dimensions in the projection layers to accommodate Stable Diffusion XL (Podell et al.,
2023). The detailed label generator architecture is illustrated in Fig. 7. However, if all feature maps
and cross-attention maps are used, the total number of channels increases significantly, leading to an
unmanageable number of parameters in the projection layers during concatenation and projection.
In summary, the feature maps are extracted from the last feature block at each resolution of the up-
sampling blocks, while cross-attention maps are sampled at equal intervals (every 7 blocks) from
the total 36 up-sampling blocks (i.e., 1st, 8th, ... 29th, 36th).
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Figure 7: The detailed label generator architecture. The whole framework includes a text-to-image
generation model (Stable Diffusion XL), pixel decoder, and transformer decoder, followed by
DatasetDM (Wu et al., 2023a). Due to the change in the architecture of the text-to-image generation
model, the following pixel decoder and transformer decoder minorly changed (e.g., the number of
input channels and the number of blocks).

Multi-head
Self-Attention

Q1 Q2 Q3 Q4 K1 K2 K3 K4 V1 V2 V3 V4

O1 O2 O3 O4

Output Feature

Projection (Q,K,V)

𝑊 ∈ℝ!!"×
!#$%
# ×#

Projection (Out)

𝑊 ∈ℝ
!!"
# ×# ×!#$%

(b) Head-wise LoRA

Projection
Layers (Q,K,V)

Projection
Layer (Out)

Input Feature

Base weights
Selected weights

Type B) Input projection layer (Q, K, V), e.g., 2nd, 3rd heads are selected.

Base weights
𝐴

𝐵! 𝐵" 𝐵#𝐵$

Selective LoRA (Type B)

Base weights

𝐵

𝐴#𝐴$𝐴! 𝐴"

Selective LoRA (Type A)

Type A) Output projection layer (Out), e.g., 4th head is selected.

(a) Selective Fine-tuning

Multi-head 
Features

Type B

Type A

𝐴

𝐵
Projection (Q,K,V)
𝑊 ∈ ℝ!!"×!#$%

Base weights

Original LoRA

𝑑%& , 𝑑'() Input/Output dimension

ℎ Head dimension

Original LoRA

Figure 8: The detailed architecture of the Selective LoRA. We conduct head-wise Selective LoRA
that can attach the LoRA layer for each head-wise projection layer.

Furthermore, as shown in Fig. 7, Stable Diffusion XL has only three resolution levels, compared NEW
to four resolution levels of the Stable Diffusion v1.5 architecture in the original DatasetDM. In the
Mask2Former structure, feature maps from the pixel decoder, excluding the largest resolution, are
fed into the transformer decoder. While the original design used three-resolution feature maps, only
two were utilized in this case. Thus, while DatasetDM provides three-resolution feature maps three
times for 9 transformer decoder blocks, we provide two-resolution feature maps five times, leading
to a total of 10 transformer decoder blocks. Importantly, to ensure a fair comparison, the reported
scores for DatasetDM were obtained using a re-implemented version based on SDXL with the same
modifications.

A.2 PSEUDOCODE

We also provide PyTorch-like pseudocode (Paszke et al., 2019) for key algorithms to effectively sup-
port reproducibility. Concept sensitivity (Algorithms 1 and 2) The concept sensitivity algorithm
is demonstrated in Algorithm 1. Conducting concept sensitivity requires several helper functions,
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as shown in Algorithm 2. Selective LoRA (Algorithms 3 and 4) The Selective LoRA algorithm
is divided into two parts: the forward function and the declaration function. The forward pass of
Selective LoRA is presented in Algorithm 3, while the declaration function, along with the selected
layers, is illustrated in Algorithm 4.

While we provide the PyTorch-like pseudocode is based on HuggingFace Diffusers library (von
Platen et al., 2022), HuggingFace PEFT-based implementation (Mangrulkar et al., 2022) can reduce
the training time of the Selective LoRA.

A.3 DETAILED ARCHITECTURE OF SELECTIVE LORA

Overview (Fig. 8 (a)) The basic cluster of weights to measure the concept sensitivity is the pro-
jection layer. We selectively adapt the pretrained weights layer by layer within the projection layers.
Since the LoRA layers are connected to the multi-head attention layers, the projection layers must
be split head-wise to structurally distinguish their weights. Consequently, we also split the LoRA
layers head-wise, as shown in Fig. 8.

Head-wise Selective LoRA (Fig. 8 (b)) There are two types of Selective LoRA: output LoRA
projection layers (Type A: Output (OUT)) and input LoRA projection layers (Type B: Query (Q),
Key (K), Value (V)). To split the original LoRA layer (∆W = BA) in head-wise, the output projec-
tion LoRA layers (∆WOUT) split the A weights row-wise, while the input projection LoRA layers
(∆WIN) split the B weights column-wise, as illustrated in the following equations.

∆WOUT = B


A1

A2

...
Ah

 , ∆WIN =

[
B1 B2 · · · Bh

]
A. (7)

The head-wise LoRA projection layer is represented in Fig. 8 and Algorithm 4.

A.4 THE IMPLICIT BIAS OF GRADIENTS ACROSS THE LAYERS

Observation (Fig. 9) (left) We compute the sensitivity scores for each layer by using the norm of
the gradient. However, the gradient norm cannot be uniformly scaled across different head types (Q,
K, V, OUT), attention types (self, cross), and layers (shallow, deep). To address this, we construct a
base gradient to scale the concept loss gradient by referencing the gradient of the original diffusion
loss, as described in Section 3.2. We visualize the gradients of both the concept losses and the orig-
inal diffusion loss in Fig. 9. In this visualization, we separate the self-attention and cross-attention
layers to provide clearer distinctions, which differs from the approach in the main paper.

Normalizing Gradients (Fig. 9) (right) Therefore, we normalize the gradients using the gradients
calculated from the original diffusion loss, as discussed in Section 3.2 and shown in Fig. 3. As shown
in Fig. 9 (left), the gradients calculated from the style concept loss and viewpoint concept loss are
similar. However, the gradient increase ratio can differ significantly, as illustrated in Fig. 9 (right).

A.5 CONCEPT SENSITIVITY ACCORDING TO THE NOISE TIMESTEP

The amount of added noise (defined by the timestep, t) is the most crucial hyperparameter for con-
cept sensitivity. We conduct extensive experiments to assess concept sensitivity in relation to the
noise timestep. Visualizations of concept sensitivity across different noise timesteps, along with
qualitative and quantitative results, are provided. These experimental results offer insights into the
behavior of concept sensitivity.

Visualization (Fig. 10) According to our experiment, calculating concept sensitivity at large
timesteps (noisy images) does not yield meaningful information about concept sensitivity. For ex-
ample, style and viewpoint sensitivities appear similar when the timestep is set to 481 out of 1000,
as shown in the first column of Fig. 10. This occurs because concept-sensitive layers are less re-
sponsive to noisy inputs, which have a high potential to generate any image. Conversely, extremely
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Figure 9: The implicit bias of the gradients across the layers (left). Concept sensitivity is calculated
by normalizing each gradient with the gradient of the original diffusion loss (right).
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Figure 10: Visualizing concept sensitivity across different noise timesteps (481, 201, 81, and 1)
shows that the 81st timestep stands out with a significantly distinct concept sensitivity score between
style and viewpoint sensitivity compared to the other timesteps.

small timesteps (e.g., 1) also fail to capture concept sensitivity, as the loss from almost clean images
does not provide sufficient generative information. Therefore, we explored intermediate timesteps
(e.g., 201, 81) and found that the 81st timestep reveals distinct concept sensitivities for style and
viewpoint.

Qualitative Results (Fig. 11) Additionally, we fine-tuned 2% of the selected ratio using each
concept sensitivity and generated images to qualitatively compare results across different noise
timesteps. As shown in Fig. 11, the images generated using intermediate timesteps (201, 81) bet-
ter align with the intended style and viewpoint.

Quantitative Results (Tab. 7) Finally, we quantitatively compared the intermediate timesteps us-
ing the image domain alignment metric, CMMD (↓) (Jayasumana et al., 2024), to evaluate the 201st
and 81st timesteps. The results indicate that the 81st timestep is the most effective for measuring
concept sensitivity, as shown in Tab. 7.

While our approach selects a single timestep to measure concept sensitivity, averaging multiple
timesteps could improve the precision and robustness of concept sensitivity, which may be a promis-
ing direction for future research.
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Figure 11: According to the various noise timestep, 81st timestep represents the best concept sensi-
tivity, qualitatively. The style of the generated images by style-selective LoRA is well-aligned, while
the generated images by viewpoint-selective LoRA contain diverse styles.

Table 7: The CMMD (↓) (Jayasumana et al., 2024) of the 2% concept-selective LoRA (style, view-
point) is evaluated across the extracted timesteps.

Extracted Timestep 481 201 81 1

Style 1.920 1.556 1.420 2.383
Viewpoint 1.626 2.132 2.313 2.555

A.6 COMPARISON OF IMAGE-LABEL ALIGNMENT

Quantitative Comparison (Tab. 8) Since the generated images lack ground-truth label maps, we
measure image-label alignment using predictions from a pretrained segmentor. Specifically, we use
the predictions from the pretrained Mask2Former model, which was fully supervised on the 100%
Cityscapes dataset and achieves a 79.40 mIoU, as a proxy for the ground truth mask. Since this
method is valid only when the pre-trained segmentor significantly outperforms the label generator,
we conduct the image-label alignment experiment in a 0.3% few-shot setting.

Analysis of the Qualitative Comparison (Fig. 6) We compare not only image quality but also
image-label alignment across DatasetDM (Wu et al., 2023a), original LoRA, and our Viewpoint- and
Style-selective LoRA in the 0.3% few-shot segmentation setting. As shown in the generated labels in
Fig. 6, DatasetDM fails to generate corresponding labels, while our Style-Selective LoRA generates
high-quality corresponding labels. We suppose the reason is grounded by the domain gap between NEW
the pretrained T2I model (SDXL (Podell et al., 2023)) and the source dataset (Cityscapes (Cordts
et al., 2016)). As mentioned Section 3.4, DatasetDM trains a label generator using the images of the
source domain (e.g., Cityscape images) without performing domain adaptation of the pre-trained
T2I model. In other words, the domain gap exists between the label generator and the text-to-image
model since the label generator is updated with the Cityscapes images while the original pretrained
text-to-image model is not. Due to this domain gap, the intermediate features extracted from the
original text-to-image model often fail to reflect the knowledge required for generating label maps
of Cityscapes when used as input for the label generator. On the other hand, Style-Selective LoRA
effectively adapts the T2I model to generate Cityscapes-style images. Therefore, Style-Selective
LoRA can generate high-quality labels by reducing the domain gap between the intermediate fea-
tures. However, although the image-label alignment has increased according to the increasing pro-
portions of the selected layers, it does not always provide a better dataset, as shown in our ablation
study Tab. 5 due to the image memorization problem.
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Table 8: Image-Label Alignment (mIoU) (↑) across the segmentation dataset generation approaches
in a few-shot setting (0.3%).

Desired
Concept

Proportion of T2I Model Layers for Selective Fine-tuning

0% (Pretrained) 1% 2% 3% 5% 10% 100% (Original LoRA)

Style 25.18 37.01 39.37 40.94 47.84 48.86 60.10Viewpoint 33.27 29.42 31.44 34.94 38.28

Sketch style Watercolor style Pop-art style Line art style Oil painting style

Top-down viewpoint High angle viewpoint Low angle viewpoint Eye-level viewpoint Close-up viewpoint

Style
Sensitivity

OUT

V

K

Q

Viewpoint
Sensitivity

OUT

V

K

Q

Shallower Deeper

Attention Layers

Shallower Deeper Shallower Deeper Shallower Deeper Shallower Deeper

Attention Layers Attention Layers Attention Layers Attention Layers

Figure 12: Measured concept sensitivity according to the various prompt augmentation. The high-
lighted concept-sensitive layers for each concept (style and viewpoint) remained largely consistent
regardless of the prompt augmentation, demonstrating the robustness of concept sensitivity to vari-
ations in prompt design.

A.7 CONCEPT SENSITIVITY ACCORDING TO THE PROMPT AUGMENTATION

In this section, we conduct an additional analysis of the robustness of defining desired concepts NEW
(Section 3.2) by showing measured sensitivity across the various prompt augmentations. Specifi-
cally, we provide five prompt augmentations from the original prompts, as shown in the following.

cAug(Style) ∈
“Sketch of first-person urban street view”,
“Watercolor of first-person urban street view”,
“Pop-art of first-person urban street view”,
“Line art of first-person urban street view”,
“Oil painting of first-person urban street view”



cAug(Viewpoint) ∈
“Photorealistic urban street in top-down view”,
“Photorealistic urban street in high angle view”,
“Photorealistic urban street in low angle view”,
“Photorealistic urban street in eye-level view”,
“Photorealistic urban street in close-up view”

 (8)

Then, we calculate the style and viewpoint sensitivity for each prompt augmentation, as shown in NEW
Fig. 12. As illustrated in the figure, our proposed method consistently demonstrates high sensitivity
to similar regions across all prompt augmentations for styles. Similarly, for viewpoints, augmenta-
tions such as top-down, high-angle, and low-angle were applied, and the results indicate that our
method highlights similar regions regardless of the specific viewpoint prompt. Based on these find-
ings, we manually select the first three prompts for each desired concept. However, developing an
automated approach to search for prompt augmentations could be a promising direction for enhanc-
ing concept sensitivity.

A.8 IN-DOMAIN EXPERIMENTS FOR THE GENERAL DOMAIN DATASET (PASCAL-VOC)

Since our primary goal is to cover urban-scene segmentation, we focused on style and viewpoint NEW
as the desired concepts and conducted experiments exclusively on urban-scene datasets such as
Cityscapes. However, the Selective LoRA methodology is not limited to urban-scene datasets. It can
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DatasetDM
(Pretrained)

Ours

Background Aero plane Bicycle Bird Boat Bottle Bus

Car Cat Chair Cow Dining-Table Dog Horse

Motorbike Person Potted-Plant Sheep Sofa Train TV/Monitor
Void/Unlabeled

Pascal-VOC
Classes

Pascal VOC
Examples

Figure 13: Qualitative comparison for generating Pascal-VOC dataset. Although both DatasetDM
and ours are trained on the 100 labeled samples, our generated dataset shows better image domain
alignment with the original Pascal-VOC examples and also shows better image-label alignment.

also be applied to general datasets for in-domain segmentation dataset generation. In this section,
we demonstrate experiments on the Pascal-VOC dataset (Everingham et al., 2010), showcasing how
our approach improves few-shot semantic segmentation performance.

Experimental setup In this experiment, we trained on a total of 100 real image-label pairs and NEW
evaluated the model using the 1,449 images in the Pascal-VOC validation set. For the text-to-image
generation model, we applied the same style sensitivity score used in the Cityscapes experiment,
setting the selected proportion to 10%. During the training of the text-to-image generation model, the
prompt ”a photo” was used. For training the label generator and generating the dataset, the prompt ”a
photo of a {class names}” was employed. The label generator was trained with a batch size of 4 for
90K iterations, ultimately producing 2,000 image-label pairs. When utilizing the generated dataset,
the process was consistent with the in-domain semantic segmentation experiments. Specifically,
Mask2Former was trained on the real dataset for 90K iterations (Baseline), followed by fine-tuning
on the combined real and generated dataset for an additional 30K iterations. Additionally, we include
an additional fine-tuned baseline (Baseline (FT)) that is solely fine-tuned on the same real dataset for
a fair comparison in terms of the total iterations. All other hyper-parameters remained identical to
those used in the Cityscapes in-domain semantic segmentation experiment, as detailed in Tables 14
to 16.

Quantitative (Tab. 9) and Qualitative Results (Fig. 13) As shown in Tab. 9, using Style- NEW
Selective LoRA on the Pascal-VOC dataset resulted in a performance improvement of 0.93 mIoU. In
contrast, DatasetDM, which omitted the fine-tuning process for the text-to-image generation model,
showed a performance drop of 8.43 mIoU. This highlights the importance of selective fine-tuning for
style, even in general datasets beyond urban-scene datasets. Fig. 13 provides further insight into the
role of style information. A significant image domain gap is evident between the images generated
by the pretrained text-to-image generation model and the dataset generated using Pascal-VOC. This
demonstrates the impact of image domain alignment. Quantitatively, the CMMD, which was 1.46
for the pretrained model, decreased to 0.81 after alignment, illustrating the reduced domain gap and
its contribution to performance improvement.

A.9 COMPARISON WITH HAND-CRAFTED LAYER SELECTION APPROACHES

In this section, we aim to evaluate how effectively our sensitive weights identification method cap-
tures the desired concepts by comparing its performance with hand-crafted selected layers. This
comparison is conducted by observing the improvement in in-domain semantic segmentation per-
formance.
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Table 9: In-domain segmentation performance (mIoU) of the Pascal-VOC dataset in the few-shot
setting (100 image-label pairs). In the first row, we trained Mask2Former on various fractions of the
Cityscapes dataset (Baseline). Then, we fine-tuned the baseline on DatasetDM and our generated
datasets with 30K iterations and evaluated the performance of the fine-tuned segmentation models.
Additionally, we include an additional fine-tuned baseline (Baseline (FT)) that is solely fine-tuned
on the same real dataset for a fair comparison in terms of the total iterations.

Method
Training Dataset Total

Iterations Segmentation Performance (mIoU)
# Real # Generated

Baseline 100 ✗ 90K 44.59

For a fair comparison, we fine-tune the baseline for 30K iterations using the following datasets.

Baseline (FT) 100 ✗ 120K 44.39 (-0.20)
DatasetDM 100 2,000 120K 36.16 (-8.43)

Ours 100 2,000 120K 45.52 (+0.93)

Proportion of T2I Model Layers for Selective Fine-tuning (%, Log-scale)
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Fine-tuning T2I Model with LoRA

SA-Only (All Self-Attention Layers)

CA-Only (All Cross-Attention Layers)

Original LoRA (All Layers)

DatasetDM (Pretrained)

Style-Selective LoRA (Style-Sensitive Layers)

Viewpoint-Selective LoRA (Viewpoint-Sensitive Layers)

Segmentation Performance Improvements Across Various Selective Fine-tuning Methods

Figure 14: In-domain few-shot semantic segmentation comparison (0.3% Cityscapes) with the hand-
crafted layer selection approaches. SA-Only and CA-Only indicate Selective LoRA fine-tuning ap-
proaches for all self- and cross-attention layers, respectively.

Experimental setup The experimental setup is identical to the in-domain semantic segmentation NEW
experiment, presented in Section 4.2. We aim to improve performance by generating a segmenta-
tion dataset using 0.3% of the labeled Cityscapes dataset. For the hand-crafted manual selection
baselines, we include “SA-Only,” which fine-tunes only the self-attention layers with LoRA, and
“CA-Only,” which fine-tunes only the cross-attention layers with LoRA. To ensure a comprehensive
comparison, we also evaluate the performance of “DatasetDM,” which uses the pretrained model
without fine-tuning, and “Original LoRA,” which applies LoRA fine-tuning to all attention layers.
Since the Stable Diffusion XL has self-attention and cross-attention layers equally, each hand-crafted
layer selection method fine-tunes 50% of the total layers.

Quantitative (Fig. 14) and Qualitative Result (Fig. 15) As shown in Fig. 14, SA-Only and CA- NEW
Only methods outperform DatasetDM and Original LoRA. However, their performance does not
reach the level of our Style-Selective LoRA, which specifically targets the Style-Sensitive Layers
in Cityscapes. To analyze this, we provide examples of bus samples generated using the prompt
“photorealistic first-person urban street view with bus.” for SA-Only, CA-Only, Original LoRA,
and our Style-Selective LoRA. As illustrated in Fig. 15, the images of buses seen during training
are limited to the top two examples. In the case of SA-Only, CA-Only, and Original LoRA, the
generated buses closely resemble those seen during training, showing minimal variation. In contrast,
our Style-Selective LoRA, which selectively fine-tunes only the Style-Sensitive Layers, is capable
of generating a diverse range of buses while maintaining the Cityscapes style. We suppose that
the diversity in the generated dataset of our method significantly contributed to the superior final
performance improvements in semantic segmentation.
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SA-Only

CA-Only

Ours

Original
LoRA

Training 
Bus Images

(only 2)

Figure 15: Qualitative comparison with the hand-crafted layer selection approaches by generating
“bus” class. While SA-Only, CA-Only, and Original LoRA generate similar bus images with the
training bus images, we can generate diverse bus images with well-aligned label maps.

A.10 CLASS-WISE SEGMENTATION PERFORMANCE ANALYSIS

In this section, we present a detailed analysis of class-wise improvements, highlighting the effec- NEW
tiveness of the proposed method, particularly for rare classes. Additionally, we introduce a class-
balanced performance improvement strategy tailored to specific classes.

Class-wise Performance Improvements (Fig. 16) Urban-scene segmentation has distinct chal- NEW
lenges, including class imbalance and co-occurrence issues (Kim et al., 2024), making class-wise
analysis particularly important. We present the class-wise IoU improvements in Fig. 16. As shown
in Fig. 16 (a), our proposed dataset generation approach proves especially effective for rare classes
such as “bus”, “fence”, and “bicycle”. However, the generated dataset often fails to improve perfor-
mance in certain classes, such as “person” and “rider”. As illustrated in Fig. 16 (b), this degradation
is primarily due to the insufficient number of generated samples for the “person” class. Since the
synthetic dataset is generated randomly, disparities in label proportions can occur. To mitigate this,
we propose a simple yet effective technique to increase the proportion of the target class.

Segmentation Dataset Generation Focused on a Specific Class (Figures 16 and 17) As detailed NEW
in Section 3.4 and Tab. 14, we generated the dataset using the prompt “photorealistic first-person
urban street view with [Class names]”, where the class names were extracted from the label map of
the training set by retrieving the names of all classes present in the label map. While the synthesized
text prompt partially reflects the label proportions of the training set, it does not strictly enforce these
proportions. As a result, the proposed generated dataset may exhibit misaligned label proportions,
as illustrated in Fig. 16 (b).

To address this issue, we propose a class-specific generation approach that manually increases NEW
the target class by modifying the generation prompts. Specifically, we generated an additional 500
samples using the prompt “photorealistic first-person urban street view with people” to increase
the proportion of the “person” class.4 Since we selectively fine-tuned the LoRA to learn only the NEW
style from Cityscapes, it enables effective manipulation using the text prompt, which the original

4We also experimented with “photorealistic first-person urban street view with person”, but using “people”
as the test prompt proved to be more effective in increasing the label proportion for the “person” class.
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Figure 16: (a) Class-wise performance improvements (IoU) and (b) Label proportions for the orig-
inal Cityscapes, Ours, and “Ours (+ More Person Samples)”. “Ours (+ More Person Samples)”
includes an additional 500 samples for the “person” class to balance the label proportions. (The
additional baseline, “Ours”, trained with the same number of images to match the size of the gener-
ated dataset, will be updated in the camera-ready version.) As shown in the class-wise performance,
significant improvements were achieved for rare classes such as “bus”, “fence”, and “bicycle”, as
highlighted by the blue dotted lines. While some classes, such as “person” and “rider”, showed
degradation (indicated by red dotted lines), this was due to the lower number of generated samples
for these classes. By generating additional samples for these specific classes, a more balanced per-
formance improvement can be achieved, ultimately increasing the overall average performance.

Original LoRA Style-Selective LoRA (Ours)

“Photorealistic first-person urban street view with people”

Figure 17: Qualitative comparison between the original LoRA and our Style-Selective LoRA for
generating the “person” class to increase the label proportion. While the original LoRA can gen-
erate the “person” class, it is limited in producing informative samples beyond the training set,
with generated images often resembling those from the training set. In contrast, the Style-Selective
LoRA generates diverse scenes for the “person” class, as it exclusively learns the style from the
source dataset.

LoRA cannot achieve, as demonstrated in Fig. 17. As illustrated in Fig. 16 (b), this approach suc-
cessfully increased the proportion of the “person” class and mitigated its performance degradation.
Furthermore, as shown in Fig. 16 (a), this adjustment led to additional performance improvements,
increasing the average IoU from 44.12 to 44.59.
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… Sedan car … … SUV car …

… Convertible car … … Hatchback car …

… Sedan car … … SUV car …

… Convertible car … … Hatchback car …

Original LoRA Style-Selective LoRA (Ours)

Figure 18: Generated image-label pairs showcasing various styles of cars, including sedan, SUV,
convertible, and hatchback. Unlike the Original LoRA, since the Style-Selective LoRA exclusively
learned only the style from the Cityscapes, we can generate various types of cars in Cityscapes-style.

Table 10: In-domain segmentation performance of datasets incorporating the diverse cars dataset.
Incorporating the diverse cars dataset especially improved performance for vehicle classes such as
“car”, “bus”, and “motorcycle”, leading to overall performance improvements. Since we generated
an additional 400 image-label pairs (100 images per vehicle type), the total number of the generated
samples is 900. (The additional baseline, “Ours”, trained with the same number of images to match
the size of the generated dataset, will be updated in the camera-ready version.)

Method
Training Dataset Total

Iterations
IoU

mIoU
# Real # Generated Car Bus Motorcycle

Baseline 9 ✗ 90K 84.02 12.51 16.11 41.83

For a fair comparison, we fine-tune the baseline for 30K iterations using the following datasets.

Baseline (FT) 9 ✗ 120K 83.98 13.37 15.96 42.00
Ours 9 500 120K 85.03 30.59 15.26 44.12
Ours (+ Diverse Cars) 9 900 120K 85.34 32.48 17.77 44.95

A.11 GENERATING DATASETS WITH DIVERSE CLASS NAMES

Since the Style-Selective LoRA selectively fine-tuned only the style from the in-domain Cityscapes NEW
dataset, it retains its generalization ability for text prompts such as objects. Leveraging this capabil-
ity, we aim to generate a broader variety of images using more diverse class names beyond those
provided in the dataset. In this experiment, we refined the prompts for generating images previ-
ously created with the simple class name “car” by subdividing them into “sedan car”, “SUV car”,
“convertible car”, and “hatchback car”, as shown in Fig. 18. As illustrated in the figure, while the
original LoRA fine-tuned text-to-image generation model struggles to produce diverse styles of cars,
our approach reliably generates a wide variety of cars that align with the test prompts.

We then conducted an in-domain few-shot experiment (Cityscapes 0.3%) using the additional di- NEW
verse cars dataset, following the experimental setup described in Section 4.1. As shown in Tab. 10,
incorporating the diverse cars dataset significantly improves segmentation performance, particularly
for vehicle classes. Beyond generating diverse cars, applying textual augmentations to other class
names for dataset creation represents a promising direction for advancing segmentation dataset gen-
eration.

A.12 ADDITIONAL ANALYSIS OF OUR GENERATED DATASET ON THE DOMAIN
GENERALIZATION SETTING

In this section, we aim to compare and analyze the performance of the Viewpoint-Selective LoRA NEW
against other baselines that have been applied to urban-scene segmentation in domain generaliza-
tion. This analysis comprises qualitative assessments (Fig. 19) alongside quantitative evaluations of
image domain alignment (Tab. 11) and image-label alignment (Tab. 13), similar to Section 4.3 and
Appendix A.6, respectively.
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Table 11: Comparison of image domain alignment with image generation baselines on four adverse
weather conditions. The alignment is measured between the generated images and the ACDC dataset
for each weather condition (CMMD ↓). †DATUM trained 4 models for each weather condition in
the ACDC dataset, using an additionally provided single target domain image per condition.

Method Foggy Night-time Rainy Snowy Average

DATUM† 2.41 2.46 2.91 2.10 2.47
InstructPix2Pix 3.43 3.13 2.99 3.32 3.22

DatasetDM 4.90 5.52 5.34 4.96 5.18
Ours 2.43 2.55 2.62 2.63 2.56

Ours

Foggy Night-time Rainy Snowy

Real
ACDC

DatasetDM

Instruct-
Pix2Pix

No
Label
Map

No
Label
Map

No
Label
Map

No
Label
Map

DATUM

Figure 19: Qualitative results for generating image-label pairs in domain generalization settings.
The proposed approach demonstrates its efficacy in both image domain alignment and image-label
alignment.

Image Domain Alignment (Tab. 11 and fig. 19) For domain generalization in urban-scene NEW
segmentation, we generated urban-scene images under various adverse weather conditions (e.g.,
“foggy”, “night-time”, “rainy”, and “snowy”). In this section, we assess the domain gap between
our generated adverse weather conditions and the real ACDC (Sakaridis et al., 2021) dataset. Quali-
tatively, as shown in Fig. 19, our approach generates images that are more realistic and better aligned
compared to DatasetDM and InstructPix2Pix, which rely on pretrained models without fine-tuning.
When compared to DATUM (Benigmim et al., 2023), our method achieves a similar level of image
domain alignment while generating more diverse scenes. Quantitatively, we used CMMD (Jaya-
sumana et al., 2024) to measure image domain alignment, and the results are presented in Tab. 11.
These results show that the proposed generated dataset demonstrates a significant performance gap
over DatasetDM and InstructPix2Pix. More importantly, it achieves competitive performance with
DATUM, which requires training individual models separately for each weather condition using a
target domain image from the ACDC dataset.

Image-Label Alignment (Fig. 19 and tables 12 and 13) We compare image-label alignment to NEW
evaluate how reliably label maps are generated for datasets aimed at domain generalization. Qualita-
tively, as shown in Fig. 19, DATUM generates only images and sets them as pseudo-target domains
to apply UDA methods, meaning that no labels are generated. In the case of InstructPix2Pix, style
transfer is performed on Cityscapes image-label pairs, using the labels from Cityscapes directly.
While this ensures high-quality labels, severe editing can occasionally cause alignment issues, as

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 12: Segmentation performance of the Pretrained and Finetuned Mask2Former (M2F) (Cheng
et al., 2022) on the adverse weather condition dataset (ACDC (Sakaridis et al., 2021)). Starting with
the pretrained M2F model trained on the Cityscapes dataset (Cordts et al., 2016), we further fine-
tuned the model on the ACDC training set for each individual weather condition (learning rate is
3e-6, the batch size is 2, and the number of iterations is 30K). This approach resulted in highly
effective segmentation models tailored to specific weather conditions, serving as pseudo ground-
truth masks for evaluating image-label alignment in domain generalization settings.

Method Foggy Night-time Rainy Snowy Average

Pretrained M2F 67.66 23.17 51.94 47.55 47.58
Finetuned M2F 78.54 52.16 66.23 74.79 67.93

Table 13: Comparison of image-label alignment with baselines. While InstructPix2Pix provides re-
liable image-label alignment by fixing Cityscapes labels and applying style transfer only to the
weather conditions of the images, its ability to generate diverse scenes is constrained by the fixed
labels. In contrast, when comparing methods that generate labels, our approach demonstrates better
image-label alignment than DatasetDM.

Method Foggy Night-time Rainy Snowy Average

InstructPix2Pix 25.98 48.60 63.04 40.66 44.57
DatasetDM 40.84 35.90 47.43 44.02 42.05

Ours 41.55 43.07 48.69 39.47 43.20

seen in the foggy examples. Finally, comparing DatasetDM and our method, both of which gen-
erate labels directly, shows that our approach achieves significantly better label generation quality
compared to DatasetDM.

We then proceed to evaluate image-label alignment quantitatively. As discussed in Appendix A.6, NEW
the generated images lack actual ground truth for domain generalization datasets. Therefore, we rely
on pseudo ground truth generated by a highly accurate segmentor. Since no off-the-shelf urban-scene
semantic segmentation model consistently performs well across diverse domains, we took several
steps to develop a more reliable segmentor. First, as described in Appendix A.6, we began with a
pretrained Mask2Former (M2F) model trained on the full Cityscapes dataset. However, as shown in
Tab. 12, this model is susceptible to adverse weather conditions. To address this limitation, we fine-
tuned the pretrained M2F model individually for each of the four adverse weather conditions in the
ACDC training set. Since this dataset is not accessible to DatasetDM or our method, the fine-tuned
M2F models are guaranteed to outperform those methods. The specific performance improvements
on the ACDC validation set are detailed in Tab. 12.

The results of measuring image-label alignment using the fine-tuned M2F models are presented NEW
in Tab. 13. As shown in the table, InstructPix2Pix, which directly uses Cityscapes labels and only
slightly edits the weather conditions of the images, demonstrates an advantage in image-label align-
ment. Despite its high image-label alignment, we highlighted the limited performance improvements
of InstructPix2Pix in Tab. 2 and Section 4.2, attributing this to the lack of scene diversity caused by
its reliance on fixed segmentation label maps. When comparing methods that generate labels, our
approach achieves better image-label alignment than DatasetDM. This improvement stems from our
text-to-image generation model learning viewpoints from Cityscapes. As a result, even with the same
label generator architecture, our finetuned text-to-image generation model provides representations
with a smaller domain gap when generating images based on the Cityscapes dataset.

A.13 ADDITIONAL QUALITATIVE RESULTS

Additional examples (Figures 20, 21 and 22) We illustrate the changes in generated images NEW
using Style- and Viewpoint-Selective LoRA as the proportion of selected layers varies (1%, 2%, 3%,
5%, and 10%). As shown in Fig. 20, both Selective LoRAs effectively focus on the target concept
with a small proportion of selected layers. However, as the proportion increases, other concepts
are gradually learned, as demonstrated in the 10% layer selection. For example, the Viewpoint-
Selective LoRA shows a slight adaptation to the Cityscapes style. This flexibility allows for manual
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Style-Selective LoRA Viewpoint-Selective LoRA
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Selected Layers

Figure 20: Qualitative results of Style- and Viewpoint-Selective LoRA according to the layer pro-
portions (1%, 2%, 3%, 5%, and 10%). While the Style and Viewpoint-Selective LoRA effectively
disentangle with the small proportions of the selected layers, it has been entangled according to the
increased proportion of the selected layers. This flexibility allows for manual adjustment of the ex-
tent to which other concepts are learned, depending on the specific problem settings or datasets.

Style-Selective LoRA (In-domain) Viewpoint-Selective LoRA (DG)

Night-timeFoggy

Rainy Snowy

Figure 21: Qualitative examples of the generated image-label pairs for in-domain and domain gener-
alization settings. Style-Selective LoRA effectively generates a Cityscapes-style dataset. Viewpoint-
Selective LoRA can control the weather condition of the generated images with corresponding label
maps since it selectively learns the Cityscapes-viewpoint.

adjustment of the extent to which other concepts are learned, depending on the specific problem
settings or datasets.

Furthermore, we provide additional examples of the generated datasets used to improve segmenta-
tion performance in fully supervised and domain generalization settings. The additional examples
of our generated datasets are available in Figures 21 and 22.
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Foggy

Night-
time

Rainy

Snowy

(a) Generated segmentation dataset for in-domain settings.

(b) Generated segmentation datasets for domain generalization.

Clear-day

Figure 22: Additional examples of our generated datasets for fully supervised and domain general-
ization scenarios.
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Table 14: Hyperparameters to fine-tune Stable Diffusion XL (Podell et al., 2023). The class names
are extracted from the label map in the training set by retrieving the names of all classes that appear
in the label map.

Hyperparameter Value

Rank 64
Learning rate 1e-4
Batch size 1
Training iteration 10K
Data augmentation Random horizontal flip, Random crop
Resolution (1024, 1024)
Learning rate scheduler constant
Optimizer AdamW (Loshchilov & Hutter, 2019)
Adam beta1 0.9
Adam beta2 0.999
Adam weight decay 0.01
Training prompt “photorealistic first-person urban street view”

Test-time hyperparameters

Num. inference steps 25
Guidance scale 5.0
Test prompt augmentation (In-domain) “... with [Class names]”5

Test prompt augmentation (DG) “... in [Weather Condition] with [Class names]”

Table 15: Hyperparameters to train label generator followed by DatasetDM (Wu et al., 2023a).

Hyperparameter Value

Architecture Mask2Former-shaped label generator (Wu et al., 2023a)
Learning rate 1e-4
Batch size 2 for all few-shot, 8 for fully-supervised
Training iteration (few-shot) 12k, 24k, 24k, and 48k for 0.3%, 1%, 3%, and 10%, respectively
Training iteration (fully-supervised) 90K
Data augmentation Random horizontal flip, Random resized crop (0.5, 2.0)
Resolution (1024, 1024)
Learning rate scheduler PolynomialLR(power=0.9)
Optimizer Adam (Kingma, 2014)
Adam beta1 0.9
Adam beta2 0.999
Adam weight decay 0.0
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Table 16: Hyperparameters to fine-tune Mask2Former (Cheng et al., 2022). We modify the learning
rate, batch size and training iteration from the original Mask2Former training configuration.

Hyperparameter Value

Model Architecture Mask2Former (Cheng et al., 2022)
Num. generated images 500 for all few-shot, and 3,000 for fully-supervised
Learning rate 3e-6
Batch size 2 for all few-shot, and 8 for fully-supervised
Mixed batch real:syn = 1:1
Training iteration 30K
Data augmentation Random horizontal flip, Random resized crop (0.5, 2.0)
Resolution (512, 1024)
Learning rate scheduler PolynomialLR(power=0.9)
Optimizer AdamW (Loshchilov & Hutter, 2019)
Adam beta1 0.9
Adam beta2 0.999
Adam weight decay 0.05

Table 17: Hyperparameters to train domain generalization in segmentation including ColorAug,
DAFormer (Hoyer et al., 2022a), and HRDA (Hoyer et al., 2022b), followed by DGInStyle (Jia
et al., 2023).

Hyperparameter Value (ColorAug)
(Xie et al., 2021)

Value (DAFormer)
(Hoyer et al., 2022a)

Value (HRDA)
(Hoyer et al., 2022b)

Model Architecture SegFormer DAFormer HRDA
Backbone MiT-B5 (Xie et al., 2021)
Num. generated images 500 for each weather condition (clear, foggy, night-time, rainy, and snowy)
Learning rate 6e-5
Batch size 2
Training iteration 40K
Data augmentation for Gen. Random horizontal flip, PhotoMetricDistortion
Data augmentation for Real Random horizontal flip, Random crop, DACS (Tranheden et al., 2021)
Resolution (512, 512) (512, 512) (1024, 1024)
Learning rate scheduler PolynomialLR(power=0.9)
Learning rate warmup Linear
Learning rate warmup iteration 1500
Learning rate warmup ratio 1e-6
Optimizer AdamW (Loshchilov & Hutter, 2019)
Adam beta1 0.9
Adam beta2 0.999
Adam weight decay 0.01
SHADE False True True
RCS (Hoyer et al., 2022a;b) False

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Algorithm 1 PyTorch-like Pseudocode of Concept Sensitivity
# pipe: text-to-image generation diffusers pipeline
# c: str = "photorealistic first-person urban street view"
# c augs: List[str] = List of the augmented prompts
# t: int = pre-defined timestep
# n img: int = number of generated images for average

unet = pipe.unet
unet = unet.requres grad (True)
optimizer = torch.optim.AdamW(list(filter(lambda p: p.requires grad,
unet.parameters()))) # optimizer for clear gradients

imgs = [pipe(c).images[0] for in n img] # generate images

sensitivity = []

for img in imgs: # average over generated images
for c aug in c augs: # average over augmented captions

latent = pipe.vae.encode(img)
noise = torch.randn like(latent)
noisy latent = pipe.scheduler.add noise(latent, noise, t)

prompt embeds = encode prompt(c)
model pred = unet(noisy latent, t, prompt embeds)

gt diff = noise

with torch.no grad():
prompt embeds aug = encode prompt(c aug)
gt concept = unet(noisy latent, t, prompt embeds aug)

loss diff = torch.nn.functional.mse loss(model pred, gt diff)
loss concept = torch.nn.functional.mse loss(model pred, gt concept)

loss diff.backward(retain graph=True)
grads diff = get unet grads(unet) # Algorithm 2
optimizer.zero grad()

loss concept.backward()
grads concept = get unet grads(unet) # Algorithm 2
optimizer.zero grad()

sensitivity.append(grads concept / grads diff)
sensitivity avg = average gradients(sensitivity) # Algorithm 2
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Algorithm 2 PyTorch-like Helper Functions for Concept Sensitivity
def getattr recursive(module, attrs: List[str]):

target module = module
for attr in attrs:

target module = getattr(target module, attr)
return target module

def get unet grads(unet):
grads = {’to q’: [], ’to k’: [], ’to v’: [], ’to out.0’: []}
for attn name in unet.attn processors.keys():

attn module = getattr recursive(unet, attn name.split(’.’)[:-1])

for proj name in grads.keys():
proj = getattr recursive(attn module, proj name.split(’.))
head dim = 1 if proj name == ’to out.0’ else 0
grads chunk = torch.chunk(proj.weight.grad.cpu(),
attn module.heads, dim=head dim)
grads[proj name].append([(grad ** 2).mean().sqrt().item() for
grad in grads chunk])

return grads

def average gradients(grads):
grad avg = {’to q’: [], ’to k’: [], ’to v’: [], ’to out.0’: []}

for key in grad avg:
for grad in grads:

grad avg[key].append(grad[key])
grad avg[key] = torch.mean(torch.tensor(grad avg[key]), dim=0)

return grad avg
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Algorithm 3 PyTorch-like Pseudocode of Modifying forward function of Selective LoRA
# F: torch.nn.functional

def modify to selective lora(layer, reduced layer):
# layer: diffusers.models.LoRACompatibleLinear
# reduced layer: ’A’ or ’B’

def selective lora set lora layer(self: LoRACompatibleLinear):
def set lora layer(lora layer, indices):

self.lora layer = lora layer
if indices is not None:

self.indices = indices
return set lora layer

def selective lora set forward(self: LoRACompatibleLinear):
def forward(hidden states: torch.Tensor, scale: float = 1.0):

if self.lora layer is None:
return F.linear(hidden states, self.weight, self.bias)

else:
if self.indices is not None:

# Selective LoRA (start)
org = F.linear(hidden states, self.weight, self.bias)
if reduced layer == ’B’:

org[:, :, self.indices] += scale *
self.lora layer(hidden states)

else:
org += scale * self.lora layer(hidden states[:, :,
self.indices])

return org
# Selective LoRA (end)

else:
return F.linear(hidden states, self.weight, self.bias) +
scale * self.lora layer(hidden states)

return forward

layer.set lora layer = selective lora set lora layer(layer)
layer.forward = selective lora set forward(layer)

return layer
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Algorithm 4 PyTorch-like Pseudocode of selecting projection layers for Selective LoRA
def apply selective lora(unet, selected layers, rank):

for attn processor name in unet.attn processors.keys():
selected layers = [selected layer for selected layer in
selected layers if ’.’.join(attn processor name.split(’.’)[:-1])
in selected layer]
if len( selected layers) == 0:

continue
attn module = getattr recursively(unet, attn processor name.split(’.’)[:-1])
# getattr recursively: Algorithm 2
dim head = attn module.out dim // attn module.heads
for layer type in (’to q’, ’to k’, ’to v’, ’to out.0’):

selected layers proj = [selected layer for selected layer in
selected layers if layer type in selected layer] is out =
layer type == ’to out.0’
if len(selected layers proj) == 0:

continue
projection layer = getattr recursively(attn module,
layer type.split(’.’))
# getattr recursively: Algorithm 2

# Head-wise Selective LoRA (start)
head indices = sorted([int(selected layer.split(’.’)[-1][1:]) for
selected layer in selected layers proj])
indices = sum([list(range(dim head * head idx, dim head *
(head idx + 1))) for head idx in head indices], [])
# Indices are split grouped by the dim head
# Head-wise Selective LoRA (end)

projection layer = modify to selective lora linear(projection layer,
reduced layer=’A’ if is out else ’B’)
# modify to selective lora linear: Algorithm 3

if is out:
projection layer.set lora layer(
LoRALinearLayer(
in features=len(indices),
out features=projection layer.out features,
rank=rank),

indices)
else:

projection layer.set lora layer(
LoRALinearLayer(
in features=projection layer.in features,
out features=len(indices),
rank=rank),

indices)
return unet
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