
Rendering-Aware Reinforcement Learning for
Vector Graphics Generation

Juan A. Rodriguez1,2,3,
∗
, Haotian Zhang5,∗, Abhay Puri1, Aarash Feizi1,2,11,

Rishav Pramanik7, Pascal Wichmann6, Arnab Mondal2,8, Mohammad Reza Samsami2,9

Rabiul Awal1,2, Perouz Taslakian1, Spandana Gella1, Sai Rajeswar1,2

David Vazquez1, Christopher Pal1,2,4,10, Marco Pedersoli1,2,3

1ServiceNow Research 2Mila 3ÉTS Montréal 4Polytechnique Montréal
5Columbia University 6Independent Scholar 7Stony Brook University 8Apple

9Google Research 10Canada CIFAR AI Chair 11McGill University

Abstract

Scalable Vector Graphics (SVG) offer a powerful format for representing visual
designs as interpretable code. Recent advances in vision-language models (VLMs)
have enabled high-quality SVG generation by framing the problem as a code
generation task and leveraging large-scale pretraining. VLMs are particularly
suitable for this task as they capture both global semantics and fine-grained visual
patterns, while transferring knowledge across vision, natural language, and code
domains. However, existing VLM approaches often struggle to produce faithful
and efficient SVGs because they never observe the rendered images during training.
Although differentiable rendering for autoregressive SVG code generation remains
unavailable, rendered outputs can still be compared to original inputs, enabling
evaluative feedback suitable for reinforcement learning (RL). We introduce RLRF
(Reinforcement Learning from Rendering Feedback), an RL method that enhances
SVG generation in autoregressive VLMs by leveraging feedback from rendered
SVG outputs. Given an input image, the model generates SVG roll-outs that are
rendered and compared to the original image to compute a reward. This visual
fidelity feedback guides the model toward producing more accurate, efficient, and
semantically coherent SVGs. RLRF significantly outperforms supervised fine-
tuning, addressing common failure modes and enabling precise, high-quality SVG
generation with strong structural understanding and generalization.

1 Introduction

Generating structured visual code from perceptual inputs, known as the inverse rendering code gener-
ation problem, aims to translate images or text into executable code that reproduces the target visual
content [Rodriguez et al., 2025b, Baulé et al., 2021]. This task has gained momentum with the rise of
vision-language models (VLMs) capable of visual-symbolic reasoning and autoregressive sequence
generation. Among symbolic formats, Scalable Vector Graphics (SVG) [Ferraiolo et al., 2000, Quint,
2003] offer a uniquely expressive target: they are compact, editable, and resolution-independent, and
align naturally with the token-based generation processes of language models [Brown et al., 2020].
Recent works successfully frame SVG generation as a code synthesis problem [Wu et al., 2023, Cai
et al., 2023, Xing et al., 2024, Zhang et al., 2023, Nishina and Matsui, 2024]. StarVector [Rodriguez
et al., 2025b] proposes a model that combines a CLIP vision encoder with a pretrained LLM to
directly predict SVG code from images. Other works [Cai et al., 2023, Yang et al., 2025b, Zhang
et al., 2023] have explored editing, reasoning, and style control using similar architectures. These
models are typically trained using supervised learning on tokenized SVG sequences, achieving strong

∗Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



SVG Pre-Trained

VLM

ImageText

SVG

SVG

SVG

Image

Image

Image

Predicted Rendered

"Reconstruct this 
image in SVG"

RLRF  Training Progress
SVG-SFT

SVG Image

... ...

Step 400

Rewards

Autoregressive 

SVG Generation
Step 10 Step 50 Step 200

Figure 1: RLRF Overview. We present an RL approach for inverse rendering code generation
tasks, focused on SVG generation in VLMs. (Left) Given a text or image input, the model generates
multiple SVG rollouts, which are rendered and compared to the input to compute rewards based on
reconstruction, semantics, and code efficiency. Non-differentiable steps (marked with stop signs)
are handled through RL. (Right) A challenging out-of-distribution example with no ground truth
SVG. While the base model (SVG-SFT) fails, RLRF enables progressive generalization, producing a
meaningful SVG that captures key elements like shadows using gradients.

syntactic and visual accuracy on short examples. However, they suffer from consistency issues over
long sequences and often fail to generalize to more diverse or out-of-distribution inputs. We recognize
that they operate with a critical limitation: they do not observe or evaluate the rendered visual output
of the code during training. Token-level losses ensure syntactic correctness but fail to incorporate
visual feedback from rendered outputs, causing models to hallucinate, loop, or lose grounding when
handling complex inputs (see Figure 1).

This limitation arises from the non-differentiability of the SVG rendering process in the context of
autoregressive code generation, a challenge that differs from settings addressed by differentiable
rasterizers such as DiffVG [Li et al., 2020]. DiffVG makes raster-space losses trainable by expressing
an SVG as a small set of continuous primitives, and backpropagating the gradients from the rendered
image to those primitive parameters. Autoregressive VLMs, in contrast, emit SVGs one discrete token
at a time, making the generation path non-differentiable due to discrete sampling at each decoding
step. As gradients cannot flow through discrete sampling steps, differentiable rendering approaches
such as DiffVG cannot be applied directly, leaving a critical gap in autoregressive SVG generation.

To address this, we propose RLRF (Reinforcement Learning from Rendering Feedback), a method
for refining the SVG generation capabilities of pretrained VLMs using feedback from rendered code
outputs (images), as depicted in. Figure 1. Our key insight is that rendering, though non-differentiable,
can still provide valuable evaluative feedback: rendered outputs can be directly compared to the
ground-truth image using automatic and high-quality reward functions. For each input image, the
model samples multiple SVG roll-outs, renders them into images, and compares the results to the
original.

We design a novel composite reward function integrating complementary reward signals to guide
learning: (1) image reconstruction, measured using metrics like L2 distance, (2) semantic similarity,
computed using models such as DreamSim [Fu et al., 2023] or CLIP [Radford et al., 2021]; and
(3) code efficiency, based on deviations in SVG token length. This hybrid reward setup encourages
the model to improve SVG generation along multiple axes. RLRF delivers substantial gains over
supervised fine-tuning, addressing common failure modes and enabling models to acquire a deeper
understanding of SVG, producing accurate and well-structured vector graphics across diverse inputs.

Our contributions are as follows:

1. We introduce RLRF, a reinforcement learning method for SVG generation that leverages
rendering rewards to optimize the model, marking the first use of an online RL algorithm for
inverse rendering code generation tasks.

2



2. We introduce a set of rewards for vector graphics rendering that combine pixel-level similarity,
semantic alignment, and code efficiency to effectively guide models in SVG generation tasks.

3. We demonstrate state-of-the-art improvements in SVG generalization, fidelity, and code
compactness across tasks and model sizes, supported by extensive analysis.

2 Related Work

SVG Generation SVG generation methods typically fall into three categories: classical image
processing, latent variable models, and large language model (LLM)-based methods. Traditional
methods [Vision Cortex, 2023, Selinger, Peter, 2024, Weber, Martin, 2024] rasterize images by tracing
contours and clustering regions, effectively extracting shapes but generating verbose, semantically
unstructured code. Latent variable models [Carlier et al., 2020, Wang and Lian, 2021, Ma et al., 2022,
Li et al., 2020, Cao et al., 2023] enable better interpolation and style transfer but are bounded by
simplified SVG subsets, resulting in less readable code. Recent LLM-based approaches [Rodriguez
et al., 2025b] capture the full SVG syntax by treating SVG generation as code generation tasks.
Subsequent studies [Zhang et al., 2023, Nishina and Matsui, 2025, Yang et al., 2025b] explored
structured generation, editing, and reasoning. However, because these models never validate outputs
visually, they often generate inefficient or inaccurate SVG code. To address these limitations, we
introduce RLRF, a reinforcement learning-based post-training strategy that incorporates visual
feedback into the learning loop, improving visual fidelity, semantic alignment, and code quality.

Vision-Language Models (VLMs) In parallel, vision-language models [Li et al., 2022, Liu et al.,
2023, OpenAI, 2023] and code-generating LLMs [Nijkamp et al., 2022, Li et al., 2023b] have
advanced significantly, enabling tasks that span both modalities – such as inverse rendering where
model generates SVG, TikZ, and CAD code from visual inputs [Belouadi et al., 2024, Rodriguez
et al., 2025a, Belouadi et al., 2025, Wang et al., 2025]. However, these models often hallucinate or
fail to generalize. Our work addresses this issue by providing visual feedback from the rendered
output, which improves both downstream performance and generalization in code-driven visual tasks.

Reinforcement Learning Post-Training Reinforcement learning (RL)[Schulman et al., 2017,
Zelikman et al., 2024, Rafailov et al., 2023] has recently emerged as a powerful framework for
post-training, particularly in aligning large language models (LLMs) with human or programmatic
feedback. GRPO[Shao et al., 2024] has shown that online RL can be both efficient and scalable for
LLM alignment. However, most RL applications in code generation remain focused on execution
correctness, largely ignoring visual or structural outcomes. For example, CodeRL [Le et al., 2022]
uses an actor-critic framework to optimize for functional correctness, while RLEF [Gehring et al.,
2024] improves code quality by iteratively refining it based on execution signals. In contrast, our
work introduces a composite reward that incorporates rendering feedback, enabling optimization
for visual fidelity, semantic alignment, and code efficiency in SVG generation. A more detailed
discussion of related work is provided in Appendix D.

3 Method

Autoregressive SVG Code Generation Autoregressive VLMs have recently been applied to
generate SVG code from images. StarVector [Rodriguez et al., 2025b] trains a VLM by encoding
images with a CLIP Vision Transformer [Radford et al., 2021] and projecting features to the language
model’s dimension. Using next token prediction, it learns to generate SVG code that shows strong
semantic understanding and effective primitive identification, leveraging primitives like <text>,
<circle>, and <polygon>, and enhancing visuals via color gradients. However, the model struggles
with complex images requiring longer SVGs, often hallucinating or looping. This likely stems from a
lack of direct visual feedback during training, as it never sees rendered SVGs, limiting accuracy.

Overcoming the Non-Differentiable Rendering Problem In the autoregressive VLM setting,
the model learns to translate pixel images into SVG code. However, at inference time, it can easily
drift off-distribution, leading to poor visual outputs. Unlike other code generation tasks, inverse
rendering tasks like SVG generation offer a unique advantage: the generated code can be rendered
into a pixel image and directly compared to the input, enabling precise and inexpensive feedback.

3



While differentiable SVG renderers such as DiffVG [Li et al., 2020] exist, they rely on latent path
representations and are not compatible with our general, token-based approach to code generation.
Moreover, because SVG generation involves sampling discrete tokens, gradients cannot be directly
propagated. To address this, we propose RLRF (Reinforcement Learning from Rendering Feedback).
The model generates SVG code, which is rendered and evaluated using a composite reward that
reflects visual fidelity, semantic alignment, and code efficiency. These rewards are used to optimize the
model using reinforcement learning techniques [Schulman et al., 2017, Shao et al., 2024], effectively
incorporating rendering-based feedback into the training process.

3.1 Two-Stage Training

Our training method first adapts the VLM to the SVG domain through supervised fine-tuning on
the Im2SVG task (SVG-SFT), and then further enhances its SVG generation capabilities using
reinforcement learning on visual renderings of its own SVG predictions (RLRF).

Stage1: Supervised Fine-Tuning on Images and SVGs (SVG-SFT) Let xc denote the condition-
ing input (an image or a text prompt) and let xs = (xs,1, . . . , xs,L) be the ground-truth SVG token
sequence. We adapt the base VLM by minimising the negative log-likelihood

LSFT (θ) = Exc∼D [− log pθ(xs | xc)] = Exc∼D

[
−

L∑
l=1

log pθ(xs,l | xs,<l, xc)

]
. (1)

where θ are the model parameters. Equation(1) corresponds to teacher forcing; it trains the model to
complete every prefix in parallel and is therefore highly efficient. After SFT the model can generate
plausible SVG code, but it is still unaware of the visual quality of its outputs because no feedback is
provided on the rendered image. This model shall be denoted as pθsft(· | xc).

Stage2: Reinforcement Learning from Rendering Feedback (RLRF) The conditional distribu-
tion pθ(· | xc) from Equation (1) is subsequently reinterpreted as the stochastic policy during the
RL stage. Ground-truth SVG tokens are labeled xs during SFT, whereas a sampled SVG sequence
during RL is denoted o ∼ pθ(· | xc) to differentiate it from ground truth. After the model learns to
write SVG code through SFT, we train it to evaluate this code by defining a scalar reward R(xc, o)
calculated from the rendered images (details in Section 3.2). For this stage, we want to maximize the
objective for a given condition input xc:

JRL(θ) = Eo∼pθ

[
R(xc, o)

]
− βDKL(pθ ∥ pθsft). (2)

where pθsft is the frozen SFT model and β controls the strength of the KL regularization to prevent
catastrophic forgetting. This can be optimized by any policy gradient method with a baseline to
reduce variance. However, learning a baseline or value network for lengthy, discrete SVG sequences
can be costly and unstable. Therefore, we adopt Group Relative Policy Optimization (GRPO) [Guo
et al., 2025], which eliminates the external baseline by centering rewards within a batch and maintains
proximity between successive policies using PPO’s [Schulman et al., 2017] clipped-ratio method.

We draw G roll-outs {o1, o2, . . . , oG} conditioned on the same input xc using the policy pθold(.|xc).
The group-centered advantage and probability ratio for roll-out i is:

Ai = R(xc, oi)−
1

G

G∑
j=1

R(xc, oj), and ri =
pθ(oi | xc)

pθold(oi | xc)
(3)

Our final GRPO objective to update the current policy pθ over the conditioning data is given by:

JGRPO(θ) = Exc∼D

[
1

G

G∑
i=1

min (riAi, clip(ri, 1− ϵ, 1 + ϵ)Ai)− β DKL(pθ ∥ pθsft)

]
(4)

where ϵ is a hyperparameter to clip the ratio.

3.2 Rewards for Vector Graphics Rendering

We carefully design reward functions that automatically evaluate SVG generation quality across
multiple dimensions. A key advantage of this setup is that we have access to fully automated, high-
quality reward signals, eliminating the need to learn one using human annotations. We focus our

4



Input Image Qwen2.5VL-7B
RLRF (ours)

Qwen2.5VL-7B 
SVG-SFT GPT-4o LIVE

Figure 2: Im2SVG Reconstruction. Left: input
pixel image. Right: rendered SVG predictions.

Input Text
Qwen3-8B

RLRF (ours) Qwen3-32B GPT-4o Gemini 1.5 Pro

People sitting
around a
campfire
at night

Construction
workers on
scaffolding

working on a
building.

A man
climbing a
mountain.

Figure 3: Text2SVG Generation. Left: input
text. Right: generated SVG renderings.

reward design on two core aspects of SVG generation: the visual fidelity of the rendered output
and the efficiency of the SVG code in terms of compression. To capture both, we implement a
suite of complementary reward functions that assess the rasterized image and the underlying SVG
code. These include image reconstruction accuracy, semantic alignment, and code efficiency. By
combining these rewards with tunable weights, our framework provides rich and targeted feedback
that drives the model to produce SVGs that are both visually faithful and structurally compact. We
utilize CairoSVG [Kozea, 2023] as our SVG renderer.

Image Reconstruction Rewards To measure how accurately the generated SVG reproduces the
input image, we define a pixel-level reward (L2) that is both scale-invariant and robust to exposure.
Given the input image Iin and rendered prediction Ipred, we first normalize both to zero mean and unit
variance, then compute the L2 distance and convert it into a clipped reward:

Rimg = clip

(
1− 1

N

∥∥Inorm
in − Inorm

pred

∥∥2
2
, −1, 1

)
, (5)

where Inorm = (I − µ)/σ, and clip(x, a, b) = min(max(x, a), b) bounds the reward within [−1, 1].
This normalization ensures the reward emphasizes structural and color discrepancies relevant to
vectorization, rather than large uniform regions or exposure artifacts. We also define an edge-aware
variant, L2 Canny, where we apply a Canny Edge Detector [Canny, 1986] to both Iin and Ipred,
followed by dilation (3× 3 kernel, 1 iteration) and Gaussian blur (size 13), which enhances structural
alignment based on visual fidelity.

Semantic Similarity Rewards For semantic-level rewards, we use DreamSim [Fu et al., 2023],
which encodes each image using three ViT-B/16 backbones: CLIP, OpenCLIP [Cherti et al., 2023],
and DINOv2 [Oquab et al., 2023]. Their feature vectors are concatenated, passed through a linear
projection, and compared using cosine similarity. The DreamSim score is computed as sim =
1 − cos(·, ·) ∈ [0, 2]. This provides a strong semantic similarity signal for the Im2SVG task. For
shape-focused feedback, we apply DreamSim Canny, which uses an edge detector on both prediction
and target images before computing DreamSim. A comparison of edge maps emphasizes crisp
contours and geometric accuracy while remaining insensitive to variation in color or texture. We
convert sim to a reward using Rsim = 1 − sim ∈ [−1, 1], where higher values indicate stronger
semantic alignment. For the Text2SVG task, we use CLIP as a reward to compute the cosine similarity
between the text prompt and the rendered SVG image in the embedding space. We also utilize VLM
as a judge to assess generation quality (see details for Text2SVG rewards in Appendix A.2).

Code Efficiency Rewards. To encourage compact SVG generation, we define SVG Length Devia-
tion as a reward that penalizes excessive token length relative to the ground truth SVG. Let Lpred and
Lgt denote the predicted and ground truth SVG token lengths, respectively. The reward is defined as:

Rlen = 1−
(

1

Lgt
max

(
0, Lpred −

Lgt

2

))2

, (6)

5



0 20 40 60 80 100 120 140

Step

0.065

0.070

0.075

0.080

M
et

ric
 V

al
ue

MSE (Test)

Temperature
Temp = 1.0
Temp = 0.5
Temp = 0.7

0 20 40 60 80 100 120 140

Step

0.6

0.7

0.8

0.9

1.0

Reward (Test)

0 20 40 60 80 100 120 140

Step

1250

1500

1750

2000

2250

2500

2750

SVG Length (Train)

Figure 4: Ablation on Sampling Temperature. Keeping the sampling temperature high is critical
for promoting roll-out diversity. Test MSE, Reward, and SVG Length measurements consistently
improve. We find that increasing the temperature up to 1.2 improves exploration, but values beyond
this lead to unstable behavior and diverged outputs.

0 25 50 75 100 125 150 175 200

Step

7

8

9

10

11

M
et

ric
 V

al
ue

MSE (Train)

Rollout Settings
64 Rollouts (Best MSE)
32 Rollouts
16 Rollouts
8 Rollouts

0 25 50 75 100 125 150 175 200

Step

0.0

0.2

0.4

0.6

0.8

1.0

Reward (Train)

0 25 50 75 100 125 150 175 200

Step

1200

1400

1600

1800

2000

2200

SVG Length (Train)

Figure 5: Ablation on the Number of Roll-outs. Increasing the number of roll-outs consistently
improves MSE, reward, and SVG length. We report training curves, which offer clearer visibility by
averaging over a large number of roll-outs.

which applies a quadratic penalty when the predicted length exceeds half the ground truth. This
formulation allows moderate variation while discouraging overly long or redundant SVG sequences.
We then apply clipping to constrain the reward within the interval [−1, 1].

Final Reward Aggregation We integrate multiple reward signals by computing a weighted sum
of individual components. Let Ri be the ith reward function and wi its corresponding weight, for
i = 1, . . . ,K. The final reward is given by Rtotal =

∑K
i=1 wiRi. This formulation allows fine-tuning

the contribution of each component, ensuring a balanced and flexible training signal.

4 Experiments

4.1 Experimental Setup

The main paper focuses primarily on the Im2SVG experiments, as this setting offers a well-defined
and visually grounded framework for evaluating the SVG performance gains achieved with RLRF. We
also explore the Text2SVG setting, presented primarily in Appendix A.2, where RLRF demonstrates
strong generalization beyond image-conditioned generation. All experiments are conducted using
publicly available vision-language models (VLMs), specifically the Qwen2.5-VL [Bai et al., 2025]
and Qwen3 [Yang et al., 2025a] families (the latter used only for Text2SVG). We also include the
StarVector-1B model [Rodriguez et al., 2025b], which is trained specifically for the Im2SVG task, and
a fixed input resolution of 224× 224. In contrast, Qwen2.5-VL supports adaptive input resolutions
and benefits from broad pretraining, enabling stronger general knowledge. However, Qwen models
still exhibit limited performance on SVG-specific tasks without targeted fine-tuning.

Supervised Fine-Tuning on SVGs (SVG-SFT) We fine-tune Qwen2.5-VL models (3B and 7B) on
the Im2SVG task using a cleaned subset of 1.7M image-SVG pairs from the SVG-Stack dataset [Ro-
driguez et al., 2025b], resulting in the SVG-SFT models. Training runs used 4×8 H100 GPUs (3B
model) or 8×8 H100 GPUs (7B model) for ∼ 4 days over 3 epochs, with learning rate 1e−5, batch

6



size 1024, and context length 32k tokens. Although Qwen2.5-VL supports up to 128k tokens, we
limit it to 32k to fit 90% of the data given memory constraints.

Reinforcement Learning from Rendering Feedback (RLRF) on SVGs For the Im2SVG task,
we further post-train the Qwen2.5-VL models, as well as StarVector-1B (which can be viewed
as an SVG-SFT model), using RLRF. We begin by filtering the SVG-Stack dataset to select 20k
high-entropy samples that are rich in visual detail and SVG complexity (each with over 500 tokens).
Details of this data curation process are provided in Appendix B.2. During training, we use the
GRPO algorithm with a rollout batch size of 32 images per step. For each image, 64 rollouts are
generated, resulting in 2,048 rollouts per training step. We train for 500 steps in total, covering 16k
unique images, significantly fewer than the 1.7M samples used in SVG-SFT. Training was completed
in approximately 3 days using 4 nodes, each with 8×H100 GPUs. For Text2SVG, we use Qwen3-8B,
a text-only model, and train it using image caption datasets (Flickr30k and MM-Icons), using only
the captions as inputs (no SVG supervision). The model is prompted to <think> before generating
SVG code. We train on a single node with 8×A100 GPUs for 4 days, using a rollout size of 16 and a
batch size of 32 per step, for 1000 steps, corresponding to 16k unique captions. Across all RLRF
experiments, we use a learning rate of 1e−5 with 70% decay every 100 steps. KL regularization is
disabled (KL coefficient = 0), with a clipping threshold ϵ = 0.4 and sampling temperature set to 1.1.

Exploration of Rendering-Based Rewards and Hyperparameters Starting from a Qwen2.5-
VL-3B model fine-tuned with SVG-SFT, we apply RLRF. We use the smallest model to reduce
exploration cost, while ensuring that the findings generalize to larger models. We run 800 steps
(25.6k images) to study the impact of different rendering-based reward functions, and 150 steps
(4.6k images) for hyperparameter ablations involving sampling temperature, KL divergence, and the
number of rollouts per input.

4.2 Evaluation

Baselines. We compare our approach against image processing methods (Vtracer [Vision Cortex,
2023], Potrace [Selinger, Peter, 2024], PyAutoTrace [Weber, Martin, 2024]), deep learning methods
(LIVE [Ma et al., 2022], DiffVG [Li et al., 2020]), and LLMs and VLMs including Claude3.7
Sonnet [Anthropic, 2024], GPT-4o [Hurst et al., 2024], Gemini Family [Georgiev et al., 2024] and
open-source models like Qwen2.5VL [Bai et al., 2025] or Llama4 [Meta, 2025] families. These
baselines span a wide range of modeling approaches, scales, and architectures.

Benchmarks. For Im2SVG, we report results on SVG-Stack-Hard, a curated subset of 500 visually
complex and diverse SVGs selected from the original SVG-Stack (see Appendix B.2 for more
details on datasets). We also evaluate on additional benchmarks including SVG-Emoji, SVG-Fonts,
and SVG-Icons [Rodriguez et al., 2025b]. For Text2SVG evaluation, we use the MM-Icon and
MM-Illustration [Yang et al., 2025b], as well as Flickr30k Captions [Young et al., 2014].

Metrics. For Im2SVG, we use MSE and SSIM for pixel-level fidelity, and DINO Score [Oquab
et al., 2023] and LPIPS Zhang et al. [2018] for perceptual similarity. Code Efficiency is the negated
mean difference between ground truth and predicted SVG token counts. Positive values indicate
more compact outputs. Ideally, the score is near zero, reflecting compression without loss of fidelity.
For Text2SVG, we evaluate with CLIP similarity and an LLM-based judge (Qwen2.5-VL-72B) for
text–image alignment. Additional details on metrics are provided in Appendix B.1.

5 Results

5.1 Main Results

Im2SVG Results. Table 1 presents the Im2SVG results. Image processing methods like LIVE
and VTracer achieve strong reconstruction scores, especially in MSE, by densely fitting paths to the
image. However, this leads to artifacts and extremely long SVGs, often exceeding 7k tokens and
reaching up to 100k, as reflected in their low code efficiency. Closed-source VLMs perform well
overall. While they do not achieve perfect reconstructions, their performance improves with scale
and benefits from SVG-rich pertaining. Open-source VLMs lag behind. Smaller Qwen2.5VL models
(3B and 7B) require heavy prompting and struggle to generate SVGs. Larger versions (32B and 72B)
can produce SVGs, but still fail at accurate reconstruction.

7



Table 1: RLRF Boosts SVG Generation Performance. We compare baselines on the Im2SVG
task using the SVG-Stack-Hard test set. Lower MSE/LPIPS and higher DINO/SSIM indicate better
performance. Code Efficiency reflects token compactness, with values near zero being ideal. Open
VLMs lag behind, while closed models perform well without SVG-specific tuning. Image processing
methods achieve strong scores but generate verbose, inefficient code. LIVE scores highest but with
high sampling cost. RLRF sets a new state-of-the-art with consistent gains across all metrics.

Model ↓ MSE ↑ SSIM ↑ DINO ↓ LPIPS Code Eff. Time(s)
VLMs (Open-Source)

Qwen2.5VL-32B-Instruct 23.62 55.46 82.38 35.83 +1.3k 58
Qwen2.5VL-72B-Instruct 23.20 55.72 81.68 34.14 +1.4k 62
Llama4-Scout (109B) 20.98 58.58 83.72 33.37 +1.4k 57
Llama4-Maverick (400B) 20.67 59.26 85.61 31.75 +1.3k 61

VLMs (Closed-Source)
Gemini-Flash-1.5 20.38 59.65 84.70 33.27 +1.2k 59
Gemini-Flash-2.0 19.31 60.21 86.53 32.10 +1.1k 63
Gemini-1.5-Pro 20.19 60.75 84.17 33.02 +1.2k 58
Claude 3.7 Sonnet 17.73 69.33 79.80 28.42 +1.4k 62
GPT-4o-1120 16.92 66.91 89.00 27.55 +1.3k 60

Image Processing Methods
Im2VEC 18.10 76.50 69.20 29.10 -4.3k <1
Potrace 8.15 77.28 89.23 19.10 -7.3k 12
DiffVG 6.64 81.23 86.12 20.5 -19.7k 31
PyAutoTrace 4.71 87.44 95.68 10.71 -99.7k <1
VTracer 4.25 87.94 95.75 11.66 -12.9k <1
SuperSVG 3.05 83.30 82.70 13.50 -65.6k <1
LIVE 2.22 88.11 93.45 7.23 -18.3k 1,243

RLRF Results on SVG Base Models
StarVector-1B-Base 4.60 87.00 96.00 9.22 -800 64
+RLRF (ours) 3.46 88.00 98.00 7.51 -127 23
∆ Improvement -1.14 +1.0 +2.0 -1.71 +763 -41

Qwen2.5VL-3B-Instruct 23.31 62.28 69.26 35.30 +1.5k 24
+SVG-SFT (ours) 9.48 78.40 92.60 17.44 -2.5k 67
+RLRF (ours) 4.79 88.76 95.97 10.97 199 48
∆ Improvement -4.69 +10.36 +3.37 -6.47 +2.7k -19

Qwen2.5-VL-7B-Instruct 23.10 61.40 78.00 33.80 +765 37
+SVG-SFT (ours) 8.60 79.40 93.00 16.58 -2.8k 73
+RLRF (ours) 1.03 95.10 98.70 3.08 -334 63
∆ Improvement -7.57 +15.70 +5.70 -13.50 +2.5k -10

RLRF significantly boosts the SVG capabilities of StarVector-1B, Qwen2.5VL 3B and 7B,
improving both reconstruction accuracy and code efficiency. Qualitative examples in Figure 2
highlight the notable gains achieved with RLRF: it consistently generates coherent and well-aligned
SVGs, while other methods often exhibit misalignments due to their lack of rendering awareness.

Text2SVG Results. Figure 3 presents qualitative samples from four models: Qwen3-7B with RLRF,
Qwen3-32B, GPT-4o, and Gemini 1.5 Pro. Using only 16k natural captions from Flickr30k and
MM-Icons, with no paired SVG supervision, and our text-image alignment rewards, RLRF enables
Qwen3-8B to generalize to the Text2SVG task, consistently producing SVGs that closely align
with user prompts (see Table 4 and Figures 3, 9). Qwen3-32B, despite its larger size, lacks the SVG
generation capabilities and rendering awareness required for high-quality outputs. It often produces
results that are misaligned or semantically incorrect. GPT-4o and Gemini 1.5 Pro generate more
coherent SVGs, but frequently rely on oversimplified representations and struggle with spatial layout
and fine-grained detail. While Qwen3-8B with RLRF achieves strong performance, it still faces

8



0 25 50 75 100 125 150 175 200

Step

0.060

0.065

0.070

0.075

0.080

0.085

M
SE

 V
al

ue

MSE (Test)

KL = 0.01
No KL

0 25 50 75 100 125 150 175 200

Step

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

L2
 C

ol
or

 R
ew

ar
d

Reward (Test)

0 25 50 75 100 125 150 175 200

Step

1000

1200

1400

1600

1800

2000

2200

2400

N
um

be
r o

f T
ok

en
s

SVG Length (Train)

Figure 6: Ablation of the KL Term. Removing the KL term improves reward learning by avoiding
early saturation. We attribute this to the conditional distribution p(SVG | image) already being
well-regularized by the rewards. RLRF benefits from this added flexibility without instability.

Table 2: Ablation on the importance of SFT for RLRF. We evaluate the Qwen2.5VL-7B model
under different training configurations to assess the role of supervised fine-tuning on the Im2SVG
task (SVG-SFT). The baseline is the instruction-tuned model, which has limited SVG capabilities.
Applying SVG-SFT provides a strong performance boost. Running RLRF directly on the instruction-
tuned model yields poor results, while the best performance is achieved by combining SVG-SFT
followed by RLRF.

Method MSE ↓ SSIM ↑ DINO ↑ LPIPS ↓ Code Eff.
Baseline (Instruct) 23.10 61.40 78.00 33.80 -765
Instruct + SVG-SFT 8.60 79.40 93.00 16.58 +2,827
Instruct + RLRF 14.23 67.23 81.12 26.32 -321
Instruct + SVG-SFT + RLRF 4.42 89.09 96.12 10.41 +173

challenges with precise Bezier curves and often relies on basic geometric primitives. These limitations
could be addressed through further model scaling and more diverse training data. Additional results
and analysis are provided in Appendix A.

Models trained with RLRF demonstrate strong SVG generalization. We stress-test these models
on out-of-distribution benchmarks, including SVG-Emoji, SVG-Fonts, and SVG-Icons, and show in
Table 7 that performance improves despite no exposure to these datasets during training. Qualitative
examples, such as the “apple” and “strawberry” cases in Figures 1 and 2, further illustrate this effect.
These samples include visual styles with shadows and layered effects that were never encountered
during training and differ significantly from the training distribution. While the SVG-SFT baseline
fails to produce coherent outputs under such shifts, RLRF enables the model to develop a deeper
understanding of SVG structure, allowing it to generate well-aligned and reasonable outputs, even if
not perfect. The generated SVGs are not only visually faithful to the input but also syntactically clean,
editable (Figure 12), and practical for downstream applications. Additional results and discussion are
provided in Appendix A.

5.2 Ablation Studies

SVG Exploration Matters. As shown in Figures 4 and 5, using a sampling temperature of 1.0
encourages diverse roll-outs, resulting in richer reward signals and more effective learning. Increasing
the number of roll-outs per input, from 8 to 64, consistently improves performance. We observe
no signs of reward saturation, suggesting that even more roll-outs could further enhance results.
Figure 6 shows the effect of removing the KL divergence penalty in the GRPO objective. We find
that excluding the KL term improves reward progression, avoids early saturation, and reduces
computation, by eliminating the need to query the reference model. Our interpretation is that the
conditional SVG distribution p(xs | xc) is naturally narrow, thanks to the structured SVG syntax and
strong reward signals. The KL term thus provides limited benefit and may unnecessarily constrain
exploration. In addition, omitting the KL penalty improves computational efficiency by eliminating
the need to evaluate the reference model during each training step.

9



Running RLRF directly on instruction-tuned checkpoints fails, as shown in Table 2. These
models lack the SVG proficiency needed to select appropriate primitives and explore effectively.
SVG-SFT is essential to build baseline SVG fluency, while RLRF sharpens these skills for reliable
Im2SVG and Text2SVG generation.

Ablation of Rewards. The choice of reward has a significant impact on learning speed. Figure 13
shows that combining L2 and L2-Canny accelerates convergence compared to using either alone.
Adding DreamSim further accelerates convergence. While L2-based rewards favor precise recon-
struction (lower MSE), they lack semantic coherence, as reflected in lower DINO scores. The best
performance is achieved by combining pixel-level and semantic rewards, along with a length penalty
for code compactness. More detailed analysis is provided in Appendix A.4.

6 Conclusion

We have shown that reinforcement learning (RL) can be highly effective for inverse rendering
tasks, where models generate code that is rendered into images. By designing tailored rewards, we
significantly enhance SVG reconstruction and generation capabilities in vision-language models
(VLMs). We introduced RLRF (Reinforcement Learning from Rendering Feedback), a novel approach
for fine-tuning autoregressive VLMs on SVG generation using RL. RLRF equips models with a
stronger understanding of the SVG code space, enabling them to produce more efficient, semantically
aligned, and visually accurate outputs, even on benchmarks and SVG types not seen during training.
We first apply supervised fine-tuning (SFT) to give models a strong foundation in SVG generation.
RLRF then drives exploration through rendered rollouts, computes automatic rewards, and optimizes
generation accordingly. This results in a fully automated, high-quality training signal powered by a
composite reward that balances pixel-level accuracy, semantic alignment, and code efficiency. The
results are compelling: models trained with RLRF consistently generate SVGs with deeper structural
understanding, improved visual fidelity, and significantly better code efficiency.

Broader Impact While our focus is on SVGs, the core idea behind RLRF generalizes in principle
to other inverse rendering code generation tasks. This includes HTML/CSS/JavaScript for web
development, LaTeX/TikZ for scientific visualizations, 3D rendering code, and CAD modeling. We
believe RLRF offers a general framework for improving structured, code-driven visual synthesis.

Acknowledgements We sincerely thank Ghazwa Darwiche, Christian Hudon, Fanny Rancourt,
and Marie-Ève Marchand for their invaluable administrative and technical support. This work was
supported by the Natural Sciences and Engineering Research Council of Canada and Mitacs. Chris
Pal acknowledges the Canada CIFAR AI Chair. This work was partially supported by the MITACS
program, which we gratefully acknowledge.

References
Saba Ahmadi, Rabiul Awal, Ankur Sikarwar, Amirhossein Kazemnejad, Ge Ya Luo, Juan A Ro-

driguez, Sai Rajeswar, Siva Reddy, Christopher Pal, Benno Krojer, et al. The promise of rl for
autoregressive image editing. arXiv preprint arXiv:2508.01119, 2025.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www.anthropic.com/
index/claude-3-model-family, 2024. Accessed May 2025.

Rabiul Awal, Mahsa Massoud, Zichao Li, Aarash Feizi, Suyuchen Wang, Christopher Pal, Aishwarya
Agrawal, David Vazquez, Siva Reddy, Juan A Rodriguez, et al. Webmmu: A benchmark for
multimodal multilingual website understanding and code generation. In ICLR 2025 Third Workshop
on Deep Learning for Code, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,

10

https://www.anthropic.com/index/claude-3-model-family
https://www.anthropic.com/index/claude-3-model-family


Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Daniel Baulé, Christiane Gresse von Wangenheim, Aldo von Wangenheim, Jean CR Hauck, and
Edson C Vargas Júnior. Automatic code generation from sketches of mobile applications in
end-user development using deep learning. arXiv preprint arXiv:2103.05704, 2021.

Patrice Bechard, Chao Wang, Amirhossein Abaskohi, Juan Rodriguez, Christopher Pal, David
Vazquez, Spandana Gella, Sai Rajeswar, and Perouz Taslakian. Starflow: Generating structured
workflow outputs from sketch images. arXiv preprint arXiv:2503.21889, 2025.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. Automatikz: Text-guided synthesis of scientific
vector graphics with tikz. arXiv preprint arXiv:2310.00367, 2023.

Jonas Belouadi, Simone Paolo Ponzetto, and Steffen Eger. Detikzify: Synthesizing graphics programs
for scientific figures and sketches with tikz. arXiv preprint arXiv:2405.15306, 2024.

Jonas Belouadi, Eddy Ilg, Margret Keuper, Hideki Tanaka, Masao Utiyama, Raj Dabre, Steffen Eger,
and Simone Paolo Ponzetto. Tikzero: Zero-shot text-guided graphics program synthesis. arXiv
preprint arXiv:2503.11509, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mu Cai, Zeyi Huang, Yuheng Li, Haohan Wang, and Yong Jae Lee. Leveraging large language
models for scalable vector graphics-driven image understanding. arXiv preprint arXiv:2306.06094,
2023.

John Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis
and machine intelligence, 8(6):679–698, 1986.

Defu Cao, Zhaowen Wang, Jose Echevarria, and Yan Liu. Svgformer: Representation learning for
continuous vector graphics using transformers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10093–10102, 2023.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg: A hierarchical
generative network for vector graphics animation. Advances in Neural Information Processing
Systems, 33:16351–16361, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2818–2829, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024a.

Shihan Dou et al. Stepcoder: Improving code generation with reinforcement learning from compiler
feedback. arXiv preprint arXiv:2402.01391, 2024b.

Aarash Feizi, Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Kaixin Li, Rabiul Awal, Xing Han
Lù, Johan Obando-Ceron, Juan A Rodriguez, Nicolas Chapados, et al. Grounding computer use
agents on human demonstrations. arXiv preprint arXiv:2511.07332, 2025.

11



Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable vector graphics (SVG) 1.0 specification.
iuniverse Bloomington, 2000.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and Phillip
Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic data. arXiv
preprint arXiv:2306.09344, 2023.

Jonas Gehring et al. Rlef: Grounding code llms in execution feedback with reinforcement learning.
arXiv preprint arXiv:2410.02089, 2024.

Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Reza Kakooee and Benjamin Dillenburger. Reimagining space layout design through deep reinforce-
ment learning. Journal of Computational Design and Engineering, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of permissively
licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Kozea. Cairosvg. https://cairosvg.org/, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

Hung Le et al. Coderl: Mastering code generation through pretrained models and deep reinforcement
learning. In NeurIPS, 2022.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference on
Machine Learning, pages 12888–12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023a.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. Differentiable vector
graphics rasterization for editing and learning. ACM Transactions on Graphics (TOG), 39(6):1–15,
2020.

12

https://cairosvg.org/


Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang,
Chenchen Zhang, Ge Zhang, Jiebin Zhang, et al. A comprehensive survey on long context
language modeling. arXiv preprint arXiv:2503.17407, 2025.

Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev, Nikita Orlov, Yun Fu, and Humphrey
Shi. Towards layer-wise image vectorization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16314–16323, 2022.

Ahmed Masry, Juan A Rodriguez, Tianyu Zhang, Suyuchen Wang, Chao Wang, Aarash Feizi,
Akshay Kalkunte Suresh, Abhay Puri, Xiangru Jian, Pierre-André Noël, et al. Alignvlm: Bridging
vision and language latent spaces for multimodal understanding. arXiv preprint arXiv:2502.01341,
2025.

AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, april
2025, 2025.

Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A Rodriguez, Montek Kalsi, Rabiul Awal,
Nicolas Chapados, M Tamer Özsu, Aishwarya Agrawal, David Vazquez, et al. Ui-vision: A desktop-
centric gui benchmark for visual perception and interaction. arXiv preprint arXiv:2503.15661,
2025.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Kunato Nishina and Yusuke Matsui. Svgeditbench: A benchmark dataset for quantitative assessment
of llm’s svg editing capabilities. arXiv preprint arXiv:2404.13710, 2024.

Kunato Nishina and Yusuke Matsui. Svgeditbench v2: A benchmark for instruction-based svg editing.
arXiv preprint arXiv:2502.19453, 2025.

OpenAI. GPT-4V(ision) System Card. https://cdn.openai.com/papers/GPTV_System_Card.
pdf, September 2023. Accessed: 2023-11-05.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Long Ouyang et al. Training language models to follow instructions with human feedback. In
NeurIPS, 2022.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Antoine Quint. Scalable vector graphics. IEEE MultiMedia, 10(3):99–102, 2003.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Figgen: Text
to scientific figure generation. arXiv preprint arXiv:2306.00800, 2023a.

Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. Ocr-vqgan:
Taming text-within-image generation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 3689–3698, 2023b.

13

https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf


Juan A. Rodriguez, Xiangru Jian, Siba Smarak Panigrahi, Tianyu Zhang, Aarash Feizi, Abhay Puri,
Akshay Kalkunte Suresh, François Savard, Ahmed Masry, Shravan Nayak, Rabiul Awal, Mahsa
Massoud, Amirhossein Abaskohi, Zichao Li, Suyuchen Wang, Pierre-Andre Noel, Mats Leon
Richter, Saverio Vadacchino, Shubham Agarwal, Sanket Biswas, Sara Shanian, Ying Zhang,
Sathwik Tejaswi Madhusudhan, Joao Monteiro, Krishnamurthy Dj Dvijotham, Torsten Scholak,
Nicolas Chapados, Sepideh Kharaghani, Sean Hughes, M. Özsu, Siva Reddy, Marco Pedersoli,
Yoshua Bengio, Christopher Pal, Issam H. Laradji, Spandana Gella, Perouz Taslakian, David
Vazquez, and Sai Rajeswar. Bigdocs: An open dataset for training multimodal models on document
and code tasks. In The Thirteenth International Conference on Learning Representations, 2025a.
URL https://openreview.net/forum?id=b1ivBPLb1n.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Pedersoli. Starvector: Generating scalable vector
graphics code from images and text. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2025b. URL https://arxiv.org/abs/2312.11556.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Selinger, Peter. Potrace. https://github.com/tatarize/potrace, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023a.

Parshin Shojaee et al. Execution-based code generation using deep reinforcement learning. arXiv
preprint arXiv:2301.13816, 2023b.

Davit Soselia et al. Learning ui-to-code reverse generator using visual critic without rendering. arXiv
preprint arXiv:2305.14637, 2023.

Nisan Stiennon et al. Learning to summarize with human feedback. In NeurIPS, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Vision Cortex. VTracer. https://www.visioncortex.org/vtracer-docs, 2023.

Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-to-cad generation through infusing visual
feedback in large language models. arXiv preprint arXiv:2501.19054, 2025.

Yizhi Wang and Zhouhui Lian. Deepvecfont: Synthesizing high-quality vector fonts via dual-modality
learning. ACM Transactions on Graphics (TOG), 40(6):1–15, 2021.

Weber, Martin. Autotrace. https://github.com/autotrace/autotrace, 2024.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-based vector icon synthesis
with autoregressive transformers. arXiv preprint arXiv:2304.14400, 2023.

Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering llms to
understand and generate complex vector graphics. arXiv preprint arXiv:2412.11102, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

14

https://openreview.net/forum?id=b1ivBPLb1n
https://arxiv.org/abs/2312.11556
https://github.com/tatarize/potrace
https://www.visioncortex.org/vtracer-docs
https://github.com/autotrace/autotrace


Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Jiaxu Zhang, Liao Wang, Gang Yu, Xingjun
Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation model. arXiv
preprint arXiv:2504.06263, 2025b.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions
of the association for computational linguistics, 2:67–78, 2014.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 586–595, 2018.

Tianyu Zhang, Suyuchen Wang, Chao Wang, Juan Rodriguez, Ahmed Masry, Xiangru Jian, Yoshua
Bengio, and Perouz Taslakian. Scope: Selective cross-modal orchestration of visual perception
experts. arXiv preprint arXiv:2510.12974, 2025.

Tong Zhang, Haoyang Liu, Peiyan Zhang, Yuxuan Cheng, and Haohan Wang. Beyond pixels:
Exploring human-readable svg generation for simple images with vision language models, 2023.
URL https://arxiv.org/abs/2311.15543.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
Easyr1: A modular toolkit for reinforcement learning with language models. In Proceedings of the
41st International Conference on Machine Learning (ICML). PMLR, 2025.

Daniel M. Ziegler et al. Fine-tuning language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

15

https://arxiv.org/abs/2311.15543
http://arxiv.org/abs/2403.13372


Appendix
This appendix provides additional details and analyses for the RLRF approach. It is organized as
follows:

• Appendix A presents extended quantitative and qualitative results, including visualizations
of SVGs generated from both image and text inputs. These results demonstrate how RLRF
outperforms supervised fine-tuning (SVG-SFT) and other strong baselines.

• Appendix B details the experimental setup, including datasets, evaluation metrics, and
implementation specifics.

• Appendix C provides further elaboration on the RLRF approach, covering architectural
choices, training objectives, implementation techniques, and limitations.

• Appendix D offers a comprehensive overview of related work in SVG generation and
reinforcement learning for structured code output.

Table of Contents

A Additional Experiments and Results 17

A.1 Im2SVG Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2 Text2SVG Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.3 Generalization across SVG Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 18

A.4 Ablation Study: Impact of Rewards . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.5 Cases of Reward Hacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.6 User Study on Editability and Fidelity . . . . . . . . . . . . . . . . . . . . . . . . 25

B Experimental Setup 26

B.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C RLRF Method 27

C.1 Multimodal Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C.2 Reward Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.3 Implementation Strategies for Stable and Robust RLRF Training . . . . . . . . . . 30

C.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D Extended Related Work 30

D.1 SVG Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D.2 Vision-Language Models (VLMs) . . . . . . . . . . . . . . . . . . . . . . . . . . 31

D.3 Reinforcement Learning Post-Training . . . . . . . . . . . . . . . . . . . . . . . . 32

16



Input Image Qwen2.5VL-7B
RLRF (ours)

Qwen2.5VL-7B 
SVG-SFT

Qwen2.5VL-70B
Instruct Gemini 1.5 Pro Input Image Qwen2.5VL-7B

RLRF (ours)
Qwen2.5VL-7B 

SVG-SFT
Qwen2.5VL-70B

Instruct Gemini 1.5 Pro

Figure 7: Im2SVG Results Visualization. We present qualitative comparisons of our RLRF outputs
on test samples from the SVG-Stack-Hard benchmark, alongside generations from Qwen2.5VL-7B
(finetuned on SVGs via SVG-SFT), Qwen2.5VL-70B (not specifically trained on SVGs but proficient
at SVG code generation), and Gemini 1.5 Pro. Our RLRF significantly enhances the performance of
Qwen2.5VL-7B, enabling it to produce SVGs that are more geometrically accurate, color-consistent,
and visually aligned with the input images.

A Additional Experiments and Results

This section provides additional experiments and results. Specifically, we present visualizations of the
generated SVGs for both the Im2SVG and Text2SVG tasks, along with comprehensive quantitative
scores. We also evaluate the generalization ability of RLRF by analyzing its performance on out-of-
distribution test sets. Finally, we include an ablation study to assess the impact of different reward
configurations.

A.1 Im2SVG Results

We show visualizations of results for Im2SVG in Figure 7, where we compare outputs from our
RLRF with those from the SVG-SFT version of the Qwen2.5VL-7B model, as well as larger baselines
including Qwen2.5VL-70B and Gemini 1.5 Pro. The examples are drawn from the challenging SVG-
Stack-Hard test set. The SVG-SFT model often exhibits common failure modes such as misaligned
shapes, incorrect spatial composition, or missing visual elements. In contrast, our RLRF significantly
improves geometric accuracy and semantic alignment. For instance, in several samples requiring
intricate spatial layouts or multiple object parts, RLRF consistently generates well-structured and
complete SVGs, correcting the errors of the baseline models. Surprisingly, even compared to much
larger models like Qwen2.5VL-70B and Gemini 1.5 Pro, our fine-tuned 7B model produces outputs
that are more visually faithful and aligned with the input images. This highlights the impact of our
reinforcement learning approach in improving structured image-to-code generation.

A.2 Text2SVG Results

Table 4 presents quantitative results for the Text2SVG task across three benchmarks: Flickr30k
(proposed here), MM-Icons, and MM-Illustrations [Yang et al., 2025b]. These datasets allow for
broad comparison across a wide range of methods. For our RLRF models, Flickr30k and MM-
Icons captions are used during training, meaning the prompts are in-distribution. However, the
corresponding SVGs are not used, making the generation task itself zero-shot. MM-Illustrations
serves as an out-of-distribution evaluation set.

We compare both open-source and closed-source VLMs, none of which were explicitly trained
on these benchmarks. For baseline models, we report the best available results, including those
from MM-Icons and MM-Illustrations as documented in [Yang et al., 2025b]. We are actively
working to expand the set of evaluated models and report additional scores. We also introduce a
new metric, Accurate, which is computed only on results for which ground-truth comparisons are

17



Input Text

Qwen3-8B
RLRF (ours)

Qwen3-32B

GPT-4o

Gemini 1.5 Pro

A girl in a yellow
bathing suit from a

cliff looks at a
person in the water

A woman wearing
a white smock and
a woman wearing

a red smock

Two young girls
riding red tricycles

A gray silhouette of
a person is

overlapped with a
large X symbol

A purple clipboard
with yellow and
orange accents
represents task
management

Colorful pie chart
with blue, red and
yellow segments

Black bars of
varying widths

arranged in parallel
form a barcode-like

pattern

A yellow emoji
wears a light blue

face mask,
conveying health

and safety

A gray and blue
smartphone icon
displaying four

square applications
on its screen

Figure 8: Text2SVG Results Visualization. We present qualitative comparisons of our RLRF outputs
on test samples from the Text2SVG benchmark, alongside generations from Qwen3-32B, GPT-4o,
and Gemini 1.5 Pro. Our method effectively aligns Qwen3-8B to produce high-quality, semantically
rich, and visually coherent SVGs.

feasible. The results show that while RLRF does not yet outperform the OmniSVG baseline, it
demonstrates strong generalization and SVG generation capabilities. Notably, our method approaches
OmniSVG’s performance despite not being trained on any paired SVGs from the target datasets.
Among all models, Claude 3.7 achieves the strongest results, potentially due to specific tuning for
SVG tasks. Nonetheless, RLRF showcases a promising path toward rendering-aware, reward-driven
SVG generation.

We show Text2SVG visualizations in Figure 8, where we compare our method (Qwen3-8B RLRF)
with larger baseline models, including Qwen3-32B, GPT-4o, and Gemini 1.5 Pro. Our approach
consistently produces SVGs that are both semantically aligned with the input text and visually
coherent. For example, in the “girl in a yellow bathing suit” prompt, our model captures the full
scene with correct composition and multiple characters, whereas other models either omit key
elements or fail to structure the layout meaningfully. Similarly, for more abstract prompts like the
“purple clipboard with yellow and orange accents”, our method generates a recognizable object with
the correct semantic attributes, while others produce vague or incorrect outputs. Notably, models
like GPT-4o and Gemini often misinterpret structural or compositional cues, especially in prompts
requiring multiple interacting objects. Figure 9 presents two qualitative examples that illustrate the
model’s reasoning process after applying RLRF, as well as the alignment between the generated
SVGs and the input prompts. While the outputs are not yet fully aesthetic, it is remarkable that the
model demonstrates such strong generalization despite being trained only with text captions
from natural image datasets, i.e., without paired SVG supervision. The reward signal is provided
solely by a VLM (Qwen2.5VL-7B), which evaluates the rendered SVGs, as detailed in Appendix C.2.
Notably, the model has never seen an image during training (it does not have an image encoder), yet
it learns to produce visually coherent graphics through this reward signal. These results demonstrate
that RLRF enables smaller models to outperform larger baselines in structured visual grounding tasks.
We also tested RLRF on Qwen3-3B but found it ineffective, as the small size of the model makes it
lack the SVG proficiency required to benefit from reinforcement learning.

A.3 Generalization across SVG Benchmarks

We tested the generalization capabilities of our trained RLRF models and found that the reinforcement
learning stage equips them with strong out-of-distribution robustness. RLRF models can handle new
visual domains and vector styles that were never seen during training. This is shown in Table 3,
presenting results on three out-of-distribution datasets (SVG-Emoji, SVG-Fonts, and SVG-Icons)
which were entirely excluded from training. Rows marked “RLRF (ours)” correspond to models
first instruction-tuned on SVG-Stack (1.7M samples), then refined with RLRF using a curated subset

18



<svg wi dt h=" 800"  hei ght =" 600"  
xml ns=" ht t p: / / www. w3. or g/ 2000/ svg" > 

<! - -  Backgr ound Sky - - > 
<r ect  wi dt h=" 100%"  hei ght =" 100%"  f i l l =" #1A0A2E"  / > 

<! - -  Sunset  Gr adi ent  - - > 
<r ect  x=" 0"  y=" 0"  wi dt h=" 800"  hei ght =" 200"  
f i l l =" ur l ( #skyGr adi ent ) "  / > <def s> <l i near Gr adi ent  
i d=" skyGr adi ent "  x1=" 0"  y1=" 0"  x2=" 0"  y2=" 1" > <st op 
of f set =" 0%"  st op- col or =" #FF6B6B"  / > <st op of f set =" 50%"  
st op- col or =" #FFA500"  / > <st op of f set =" 100%"  
st op- col or =" #6A0DAD"  / >  

( . . . )  <el l i pse cx=" 350"  cy=" 190"  r x=" 12"  r y=" 8"  
f i l l =" #FF00FF"  opaci t y=" 0. 5"  / > <el l i pse cx=" 620"  
cy=" 240"  r x=" 10"  r y=" 6"  f i l l =" #00FFCC"  opaci t y=" 0. 5"  / > 
</ svg>

<think> Okay, the user wants a cyberpunk cityscape at 
sunset. Let me break this down. Cyberpunk usually has 
neon lights, high- tech elements, and a gritty urban 
environment. Sunset adds warm colors against the city's 
usual cool tones. First, the cityscape needs tall buildings 
with lots of verticality. Maybe some skyscrapers with 
glowing signs. Neon signs are a must? think pink, blue, 
green. Maybe some holographic elements f loating around. 
(...) Let me start structuring the SVG elements: background, 
buildings, neon signs, sky, rain, fog, maybe some f lying 
vehicles. Ensure all elements are vector-based and clean. 
</ think>

Create an SVG of a cyberpunk cityscape at sunset

<svg wi dt h=" 200"  hei ght =" 200"  v i ewBox=" 0 0 200 200"  
xml ns=" <ht t p: / / www. w3. or g/ 2000/ svg>" > 

<! - -  Backgr ound - - > 
<r ect  wi dt h=" 100%"  hei ght =" 100%"  f i l l =" #0d0d2b"  / > 

<! - -  Or b Base - - > 
<el l i pse cx=" 100"  cy=" 100"  r x=" 80"  r y=" 80"  
f i l l =" ur l ( #gr adi ent Or b) "  / > 

<! - -  Gl ow Ef f ect  - - > 
<el l i pse cx=" 100"  cy=" 100"  r x=" 90"  r y=" 90"  
f i l l =" r gba( 0, 255, 0, 0. 3) "  opaci t y=" 0. 6"  / > <el l i pse 
cx=" 100"  cy=" 100"  r x=" 100"  r y=" 100"  
f i l l =" r gba( 0, 255, 0, 0. 1) "  opaci t y=" 0. 4"  / > ( . . . )

<! - -  Gr adi ent  Def i ni t i ons - - > 
<def s> <r adi al Gr adi ent  i d=" gr adi ent Or b"  cx=" 50%"  
cy=" 50%"  r =" 50%" > <st op of f set =" 0%"  st op- col or =" #004d00"  
st op- opaci t y=" 0. 9" / > <st op of f set =" 50%"  
st op- col or =" #00f f 00"  st op- opaci t y=" 0. 8" / > <st op 
of f set =" 100%"  st op- col or =" #006600"  st op- opaci t y=" 0. 6" / > 
</ r adi al Gr adi ent > </ def s> </ svg>

<think>  Okay, the user wants a sleek and mysterious icon 
of a glowing green orb with a high- tech aesthetic. Let me 
break down the key elements. First, the orb needs to be 
glowing green. I should use a gradient to create that 
vibrant look. Maybe start with a dark green base and 
blend into a brighter lime green. Then add some highlights 
with white or light yellow to make it pop. 
(...). Energy emanating from within: maybe some faint 
lines or rays coming out from the orb, but not too intense. 
Maybe use very light blue or white lines with transparency 
to suggest energy without overpowering the main green. 
Overall, the design should be simple but detailed enough 
to convey the high- tech and mysterious vibe. Keep the 
lines clean and the colors vibrant but not overwhelming. 
Make sure the SVG is scalable and the details are clear at 
any size. </ think>

Icon of a glowing green orb, with vibrant highlights 
and a polished, high- tech aesthetic

Figure 9: Text2SVG Generation Examples from RLRF. We show samples generated by the Qwen3-
8B model after applying RLRF training. Each example begins with a reasoning-style planning phase,
followed by the generation of SVG code. The two prompts—one describing a cyberpunk scene at
sunset and another depicting a mysterious green orb—are rendered into long and complex SVGs that
closely match the inputs. Notably, the model achieves this despite its relatively small size (8B), and
such quality was not attainable before reinforcement learning. Larger models and more training data
are expected to further improve results, as current trends show no signs of saturation.

of 16k images (SVG supervision is not used in this stage, only rendered rollouts are rewarded).
Across all perceptual fidelity metrics (lower MSE and LPIPS, higher SSIM and DINO), RLRF
delivers significant improvements over its own supervised (SVG-SFT) baseline and over all
other open-source or commercial VLMs. For example, on SVG-Emojis, the Qwen2.5VL-7B
SVG-SFT model improves from 6.39 MSE and 90.99 DINO to 4.93 MSE and 93.50 DINO, while
reducing the average SVG length by approximately 1,500 tokens. A similar improvement is observed
on SVG-Fonts, where the MSE drops from 7.1 to 4.73, despite no fine-tuning on that domain. These
results demonstrate that reward signals derived from rendered images generalize effectively to unseen
domains, even without direct supervision on those categories during optimization. In contrast, models
like StarVector require explicit fine-tuning on each target dataset to achieve comparable performance,
as shown by their task-specific tuning on SVG-Fonts and SVG-Icons.

We further observe that RLRF consistently outperforms SVG-SFT across all metrics on both SVG-
Emojis and SVG-Fonts. However, on SVG-Icons, RLRF only improves perceptual metrics such as
DINO and LPIPS, while MSE and SSIM scores are slightly worse. This discrepancy is likely due to
the nature of the dataset, which is heavily skewed toward sparse line drawings on white backgrounds.
In such cases, small misalignments in thin black strokes can cause large changes in pixel-based
metrics, making MSE and SSIM less reliable indicators of perceptual quality. Notably, traditional
image processing methods perform quite well in general, as they are highly optimized for this style of
imagery. However, this comes at the cost of producing extremely verbose SVGs with unnecessarily
long token sequences, which lack semantic structure and often result in less efficient, non-sharp
outputs and with artifacts [Rodriguez et al., 2025b].

We show qualitative visualizations in Figures 10 and 11, highlighting the generalization capabilities
of RLRF. Despite never being trained on these datasets, models fine-tuned with RLRF produce SVGs
that closely match the input in both shape and style, often achieving near-perfect reconstructions.
SVG-SFT provides a reasonable baseline and captures basic structure, confirming the importance of
the supervised pretraining stage. However, it frequently exhibits notable misalignments. For example,
in the “disk” icon, RLRF preserves overlapping circular segments more accurately, whereas SVG-SFT
distorts the occlusion geometry. In the “dress” example, RLRF leverages symmetry more effectively,
producing a more coherent and balanced shape. Other models, including GPT-4o, Claude 3.7, and
Gemini 1.5 Pro, perform inconsistently and often fail to reconstruct fine details or preserve shape
semantics. This highlights the advantage of reinforcement learning from rendering feedback, which

19



Qwen2.5VL-7B
RLRF (ours)

Qwen2.5VL-7B 
SVG-SFT Gemini 1.5 ProInput Image GPT-4o

NA

Claude 3.7
Sonnet

Qwen2.5VL-32B
Instruct

Figure 10: Results on the SVG-Emoji test set. The task is Im2SVG, where the first column shows
the pixel-based input image and the remaining columns show generations from different models.
This benchmark tests out-of-distribution generalization, as neither RLRF nor SVG-SFT models were
trained on this dataset. RLRF shows clear improvements over SVG-SFT, with more coherent and
visually accurate outputs. Other strong models like GPT-4o and Claude 3.7 also demonstrate notable
generalization

enables RLRF to develop a stronger understanding of structure and style across out-of-distribution
examples.

A limitation we observe on RLRF is the model’s tendency to “give up"" on very complex inputs,
producing code that diverges and then falls into loops. This likely stems from difficulty approximating
intricate visual content. We believe this can be mitigated by scaling up the diversity and complexity
of training data, especially images that require longer and more challenging SVG sequences.

Image processing methods still excel at pixel error. Vectorization pipelines like VTracer and
LIVE achieve the lowest MSE values on inputs that are simple single-color glyphs with white
backgrounds, where exact pixel reconstruction is relatively easy. However, these methods score lower
on perceptual metrics like DINO, which emphasize sharpness and human-perceived fidelity. They
also produce SVG code that is orders of magnitude longer and less efficient than any learning-based
approach, lacking semantic alignment and practicality for editing or deployment.

RLRF offers the best balance. While image processing methods remain strong on raw pixel
metrics, RLRF is the only approach that consistently improves pixel fidelity, structural similarity,
semantic alignment, and code compactness. By combining reconstruction-based and efficiency-based
rewards, RLRF learns to generate SVGs that are visually accurate, semantically meaningful, and
compact, making it a strong candidate for real-world deployment where models must generalize to
new domains and produce editable, efficient code.

A.4 Ablation Study: Impact of Rewards

Figure 13 and Table 5 present an ablation study on the impact of different reward configurations
introduced in Section 3.2. We begin with the Qwen2.5VL-3B model after completing the SVG-SFT
stage. At this point, the model is already capable of generating valid SVGs that resemble the input

20



Qwen2.5VL-7B
RLRF (ours)

Qwen2.5VL-7B 
SVG-SFT Gemini 1.5 ProInput Image GPT-4o Claude 3.7

Sonnet
Qwen2.5VL-32B

Instruct

Figure 11: Results on the SVG-Fonts test set. The task is Im2SVG, with the first column showing
the pixel-based input and subsequent columns displaying SVG generations from different models.
This benchmark evaluates out-of-distribution generalization, as the models were not trained on font-
like images. RLRF demonstrates strong vectorization capabilities, producing accurate and structurally
clean SVGs. In contrast, the SVG-SFT model struggles with alignment and consistency, and all other
models perform poorly on this dataset, often failing to capture basic shape.

Figure 12: Im2SVG Vectorization Result: Apple Example This challenging sample highlights the
effectiveness of RLRF. The image contains complex shapes, lighting effects, and semantic cues that
require multiple SVG primitives: rectangles for the background, paths for the main structure, and
gradients for shadows and highlights. Such examples are not present in the SVG-Stack dataset, which
primarily contains simpler icons and logos. While SFT alone fails to reproduce this image, RLRF
enables the model to generalize and successfully generate high-fidelity SVGs for out-of-distribution
samples like this.

21



Table 3: RLRF Generalization Results. We test our RLRF models are evaluated on out-of-
distribution datasets that were not used at any point during training. Despite not being exposed to
these datasets, the models perform surprisingly well, demonstrating strong generalization capabilities.
This is a notable improvement over previous SFT-based approaches, such as the StarVector-1B and
8B models, which only achieved good results when fine-tuned directly on each target dataset. Image
processing methods also perform well in these settings, as they are specifically optimized for such
domains. In contrast, other VLMs struggle to generalize beyond the SVG distributions seen during
their pretraining, resulting in significantly lower performance on these out-of-distribution tasks.

Model ↓ MSE ↑ SSIM ↑ DINO ↓ LPIPS Code Eff. ↓ MSE ↑ SSIM ↑ DINO ↓ LPIPS Code Eff. ↓ MSE ↑ SSIM ↑ DINO ↓ LPIPS Code Eff.

SVG-Emoji SVG-Fonts SVG-Icons

VLMs (Open-Source)
Qwen2.5VL-32B-Instruct 16.96 57.01 78.78 46.19 -1850 30.44 61.40 78.68 25.76 -1852 17.55 62.14 82.18 30.08 -3864
Qwen2.5VL-72B-Instruct 17.94 58.25 74.38 45.83 -2171 24.76 67.74 81.20 22.69 -1906 24.50 60.97 79.50 26.55 -3975
Llama4-Maverick (400B) 16.25 58.02 78.69 43.90 -2106 22.82 67.35 82.81 22.11 -1869 16.04 68.15 85.86 23.61 -3968
Llama4-Scout (109B) 15.76 58.86 78.69 44.71 -2188 23.75 65.85 80.25 23.25 -1938 13.74 67.76 83.62 25.95 -3948

VLMs (Closed-Source)
Gemini-Flash-1.5 15.42 59.47 80.31 44.57 -1841 28.41 60.74 81.24 24.84 -1823 18.29 63.10 83.93 27.86 -3827
Gemini-Flash-2.0 15.31 60.95 76.31 44.41 -1866 23.31 65.98 83.88 23.11 -1698 12.28 69.18 87.61 24.37 -3662
Gemini-1.5-Pro 15.93 59.41 78.23 46.05 -1842 27.19 62.92 81.11 24.11 -1770 19.71 63.65 83.09 26.89 -3815
GPT-4o-1120 13.44 63.32 81.99 39.62 -2122 20.73 69.13 86.39 21.22 -1806 9.52 74.24 89.82 20.66 -3884
Claude 3.7 Sonnet 11.43 64.95 89.10 35.86 -1828 16.60 73.88 89.77 18.62 -1695 7.83 76.79 93.30 17.57 -3707

Image Processing Methods
Potrace 6.70 78.00 88.20 26.70 -9700 0.20 98.80 96.70 0.90 -4200 0.40 97.30 97.20 2.30 -12000
VTracer 0.80 89.40 98.10 7.40 -15700 0.90 88.80 96.40 2.70 -4500 1.70 91.40 94.00 6.20 -20000
PyAutoTrace 1.10 90.20 97.50 7.70 -94000 0.60 96.80 95.40 2.50 -30800 1.40 93.70 94.60 5.30 -56700
DiffVG 3.40 77.60 81.40 24.20 -19700 0.70 95.90 82.10 5.10 -19700 1.50 95.60 95.20 5.60 -19800
LIVE 0.20 95.80 96.90 6.00 -18300 0.10 97.70 95.60 1.30 -18300 0.40 97.30 95.90 3.50 -18200

RLRF Results on SVG Base Models
StarVector-1B 6.30 82.00 92.90 21.70 -4800 2.20 96.10 97.80 2.20 -2400 2.60 93.10 97.50 4.00 -3500
StarVector-8B 5.20 82.90 94.30 19.30 -6700 2.90 94.60 98.20 3.00 -3000 1.20 97.50 98.40 3.50 -2800

Qwen2.5VL-3B-Instruct 20.25 59.84 68.84 46.32 -2268 25.97 65.27 75.36 22.90 -1939 21.43 65.60 77.41 24.53 -4024
+SVG-SFT (ours) 6.74 81.38 89.34 25.78 -2581 7.42 89.20 90.00 10.22 -2060 5.56 89.07 85.94 12.68 -4222
+RLRF (ours) 5.42 72.22 93.25 22.82 -861 5.04 87.42 94.02 7.75 -1574 6.13 82.59 91.20 11.64 -3387

Qwen2.5-VL-7B-Instruct 18.07 60.32 70.93 45.75 -2083 26.52 63.92 77.91 23.79 -1888 13.42 69.41 80.59 25.21 -3859
+SVG-SFT (ours) 6.39 81.85 90.99 24.12 -2581 7.71 88.88 91.12 10.27 -2060 6.16 88.34 85.22 13.37 -4222
+RLRF (ours) 4.93 73.87 93.50 21.05 -483 4.73 88.11 93.73 7.36 -1550 7.38 81.64 90.04 12.05 -3111

image in simple and moderately complex cases. However, it still lacks rendering awareness, which is
necessary for achieving high pixel-level and semantic alignment.

We evaluate several reward configurations, including L2 loss alone, L2 Canny (which focuses on
edges), DreamSim alone, DreamSim+Canny, and combinations that include the Length penalty. We
also test the full composite configuration that integrates L2, DreamSim, Canny, and Length.

All experiments are evaluated on the SVG-Stack-Hard test set using four metrics: DINO Score, MSE,
LPIPS, and SSIM.

Table 5 summarizes the best checkpoint scores across training steps. We observe that the best overall
performance is achieved when using the full combination of rewards. This setup produces high
semantic alignment (reflected by DINO Score), while maintaining strong reconstruction fidelity (low
MSE and LPIPS, high SSIM).

The progression curves in Figure 13 highlight several trends:

• DreamSim-based rewards alone saturate early and yield weaker reconstruction scores,
but show stronger perceptual alignment, as indicated by DINO Score. This suggests that
DreamSim encourages high-level semantic consistency rather than precise pixel-level accu-
racy.

• All configurations that include L2 lead to significantly better performance in MSE, LPIPS,
and SSIM. L2+Canny slightly improves early convergence, while adding the Length term
contributes to smoother and more compact SVGs.

• The full reward combination consistently outperforms other setups, offering both stable
convergence and improved results across all metrics. This configuration balances pixel-level
precision and perceptual alignment while also improving training stability.

22



Table 4: Text2SVG Performance Across Diverse Datasets. This table shows that RLRF improves
Text2SVG performance over the base model (Qwen3-8B-Instruct before RL) across multiple datasets.
Although the gains are less pronounced than in Im2SVG, this is partly due to the limitations of standard
metrics like CLIP and Aesthetic, which are biased toward natural images and misaligned with SVG-
like outputs (see Figure 3 for visual examples). Our proposed Accurate metric, which uses LLMs as
judges, more clearly captures the improvements. We also report scores from OmniSVG [Yang et al.,
2025b], the current state-of-the-art on MM-Icon and MM-Illustration. RLRF models consistently
rank second, outperforming all other baselines.

Model Flickr30k MM-Icon MM-Illustration

↑ CLIP ↑ Accurate ↑ Aesthetic ↑ CLIP ↑ Accurate ↑ Aesthetic ↑ CLIP ↑ Accurate ↑ Aesthetic

VLMs (Open-Source)
LLM4SVG-GPT2XL (3B) 18.58 0.27 0.40 26.82 3.21 3.12 21.70 2.38 2.47
Qwen2.5VL-32B-Instruct 22.10 2.08 2.07 30.26 3.57 3.21 28.54 3.19 2.80
Qwen2.5VL-72B-Instruct 22.27 1.78 2.13 30.26 3.48 3.22 29.01 3.13 2.85
Llama4-Scout (109B) 21.94 1.92 2.42 30.31 3.56 3.27 29.00 3.30 2.99
Llama4-Maverick (400B) 23.26 2.36 2.51 31.17 4.01 3.54 30.18 3.76 3.25

VLMs (Closed-Source)
Gemini-Flash-1.5 22.09 1.59 2.16 30.28 3.37 3.23 29.70 3.16 3.05
Gemini-1.5-Pro 23.61 2.24 2.30 30.65 3.37 3.41 29.52 3.49 3.14
Gemini-Flash-2.0 20.89 1.87 2.23 30.00 3.93 3.48 29.50 3.30 2.92
GPT-4o-1120 25.00 2.43 2.48 31.92 4.10 3.57 31.53 3.92 3.32
Claude-3.7-sonnet 27.40 3.37 2.88 32.73 4.62 3.82 32.75 4.30 3.61

Text2SVG Models
Vectorfusion - - - 27.98 - - 26.39 -
SVGDreamer - - - 29.23 - - 27.95 -
Chat2SVG - - - 30.29 - - 28.91 -
IconShop - - - 23.59 - - 21.98 -
OmniSVG - - - 32.78 - - 31.64 -

RLRF Models
Qwen3-8B-Instruct 22.50 2.74 2.53 30.09 3.77 3.35 29.05 3.63 3.15
+RLRF(flickr) (ours) 24.42 3.65 2.95 30.20 3.88 3.44 29.06 3.95 3.47
+RLRF(icons) (ours) 22.64 3.12 2.75 30.28 4.13 3.65 29.28 3.95 3.45

Table 5: Ablation Study on Rewards. Higher DINO and SSIM, and lower MSE and LPIPS indicate
better reconstructions. This table shows the effect of different reward formulations. Using L2 achieves
a strong MSE score, and L2+Canny further improves it. DreamSim and DreamSim-Edges alone
result in poor performance, but their combination with Canny edges yields better outcomes. The
best overall performance is achieved when combining all rewards using a weighted sum. We clearly
observe a substantial improvement from the baseline (Qwen2.5VL-3B after SVG-SFT, before RL) to
the final model trained with RLRF.

Reward(s) ↓ MSE ↑ SSIM ↑ DINO ↓ LPIPS
Baseline (no RL) 7.48 78.40 92.6 17.44

L2 4.77 88.25 95.85 10.90
L2 Canny 4.60 88.30 95.60 10.95
L2 + L2 Canny 4.50 88.25 95.65 10.95
DreamSim 4.90 87.90 95.90 11.30
DreamSim Canny 4.85 87.90 96.00 11.35
DreamSim Canny + L2 Canny + Length 4.75 88.30 96.00 10.80
All rewards (weighted sum) 4.55 88.45 96.00 10.75

• L2 alone remains competitive for minimizing MSE, as expected for a pixel-focused reward,
but lacks the broader alignment capabilities offered by perceptual and structural signals.

These findings confirm the effectiveness of combining multiple reward signals (pixel-based, semantic,
and code efficiency-based), for optimizing SVG generation in RLRF.

23



0 100 200 300 400 500 600 700 800

Global Step

94.0

94.5

95.0

95.5

96.0

D
in

o 
Sc

or
e

DINO Score (Test)

L2

L2 Canny

L2 + L2 Canny

DreamSim

DreamSim Canny

DreamSim Canny + L2 Canny + Length

L2 + L2 Canny + DreamSim + DreamSim Canny + Length

0 100 200 300 400 500 600 700 800

Global Step

4.4

4.6

4.8

5.0

5.2

5.4

5.6

M
SE

 S
co

re

MSE (Test)

0 100 200 300 400 500 600 700 800

Global Step

10.5

11.0

11.5

12.0

12.5

LP
IP

S 
Sc

or
e

LPIPS (Test)

0 100 200 300 400 500 600 700 800

Global Step

87.2

87.4

87.6

87.8

88.0

88.2

88.4

88.6

88.8

SS
IM

 S
co

re

SSIM (Test)

Figure 13: Ablation on the Impact of Rewards. We show the evolution of test metrics during
RLRF training under different reward configurations. Using L2 alone leads to strong reconstruction
performance, particularly in MSE. DreamSim on its own performs poorly, but combinations that
include DreamSim alongside other signals tend to yield better results. The best overall performance
is achieved by combining all reward components, which provides a stronger and more stable learning
signal. This setup balances pixel-level accuracy (as reflected in MSE, LPIPS, and SSIM) with
perceptual alignment (indicated by a higher DINO score).

A.5 Cases of Reward Hacking

We observe several instances where the model learns to exploit the reward function without actually
improving output quality, a behavior known as reward hacking. Below, we highlight one of the most
notable cases and the corresponding mitigation strategy.

Small ViewBox Hack. The model learns to produce SVGs with extremely small viewboxes, for
example: <svg ... viewBox="0 0 1 1">. This causes the renderer to generate an extremely
low-resolution image, and the input image is similarly resized for comparison. As a result, most
information is lost, and the image-based reward becomes artificially high.

This issue arises because we originally used the predicted SVG’s viewbox to guide rendering
resolution. To fix it, we enforce rendering using the reference image size and aspect ratio derived
from the input image, ensuring a fair and stable reward computation.

SVG Length Collapse. In some cases, we observe that the model progressively generates shorter
and shorter SVGs until it reaches a collapse point, after which generation diverges entirely and
becomes unusable. This behavior is driven by the length deviation reward defined in Equation 6,
which continues to incentivize shorter outputs up to half the ground truth length.

The issue arises because lengths below 1
2Lgt still receive increasingly higher rewards, peaking at 1

when exactly half the length is reached. However, this unintentionally encourages the model to keep
shrinking the SVG below that threshold.

To address this, we explored assigning a fixed reward of −1 when the predicted length falls below
half the ground truth. In practice, we found a more stable solution by reducing the weight of the
length reward to 0.1 in early training, then gradually increasing it as RLRF progresses. Once the
model has undergone sufficient RL training, it is no longer biased toward producing overly short
sequences.

Text-in-Image Hack. In the Text2SVG setup, where the model receives a textual instruction and
generates corresponding SVG code, we observed a common reward hacking behavior. The model
learns to exploit the reward signal by using the <text> SVG primitive to render the exact prompt

24



Figure 14: Statistics about the human evaluation study and main results, favouring RLRF-trained
methods.

string directly onto the image. This artificially boosts similarity scores, especially when using
CLIP-based rewards, since the rendered image containing the input text aligns closely with its textual
embedding. Figure 9

To mitigate this, we preprocess the SVG before rendering and strip out any <text> elements or
related primitives that visually encode the input prompt. We also strengthen reward robustness by
incorporating a Qwen2.5-72B-based evaluator as part of the final reward mix, which helps reduce
reliance on shallow visual-textual shortcuts.

A.6 User Study on Editability and Fidelity

We ran a user study to evaluate the editability and fidelity of SVGs produced by four model variants:
StarVector, StarVector + RLRF, Qwen2.5VL-7B + SFT, and Qwen2.5VL-7B + RLRF. We sampled
50 examples from the SVG-Stack-Hard dataset, covering a wide range of primitives and structural
complexity.

For each example, participants were shown the ground truth image together with paired outputs
before and after RLRF. They were asked to rate the following aspects:

• Fidelity: The extent to which the generated SVG matches the target image.

• Editability: Whether the SVG is clean, structured, and easy to modify, for example through
appropriate use of primitives and absence of redundant paths or unused style attributes.

We collected a total of 267 evaluations from 18 participants, including three professional designers.
All model outputs were anonymized, and the interface randomized the presentation order for each
task.

In terms of Fidelity, RLRF was preferred in 42.7 percent of comparisons, SFT in 12.0 percent, and
the remaining 45.3 percent were ties. Regarding Editability, RLRF was preferred in 59.2 percent of
comparisons, SFT in 15.0 percent, and 25.8 percent were ties.

These results show that RLRF improves both fidelity and editability compared with SFT. Although
SFT already achieves strong fidelity and ties with RLRF on many straightforward examples, RLRF
performs better on the more challenging cases without reducing visual quality. Participants consis-
tently favored the SVGs produced by RLRF in terms of structure and ease of modification. Designers
specifically pointed out that SFT sometimes introduced unused attributes or redundant styles, while
RLRF produced more compact and interpretable paths and a cleaner overall organization.

25



Input Pixel Image RLVG SVG Rollouts

Figure 15: RLRF Improves SVG Generation. Given an input image (left), we show five SVG
generations produced by the model after applying RLRF. By rendering its own predictions and
receiving rewards for accuracy and compactness, the model improves over time.

B Experimental Setup

B.1 Metrics

In addition to the metrics described in Section 4.2, we provide further details specific to the Text2SVG
task. We first employ the CLIP Score, following prior work [Wu et al., 2023, Rodriguez et al., 2025b,
Yang et al., 2025b], along with CLIP Aesthetics. These metrics capture general image-text alignment.
However, we observed that they do not correlate well with the visual characteristics of the SVG
images generated by our models when RLRF is applied to general-purpose instruction-tuned models
such as Qwen2.5VL.

To address this, we introduce a dedicated Text2SVG Accuracy Score (“Accurate”), which uses a
vision-language model (specifically, Qwen2.5VL-70B) as a judge. The VLM is prompted to rate the
generation along several axes. The prompt used is shown in Prompt 1 and was carefully designed and
tuned using a held-out validation set to ensure that model-based scores align with human preferences.

B.2 Datasets

Curating SVG Stack To train our model, we require large-scale data to capture the fundamental
structures of SVG. For this, we leverage the SVG-Stack dataset [Rodriguez et al., 2025b], which
consists of SVG files scraped from GitHub. We rasterize these files to obtain paired image-SVG
examples.

The original SVG-Stack contains 2.1M samples. We preprocess this data by rounding decimals to two
significant figures, removing XML headers, and filtering out samples with excessively long URLs or
embedded base64 images, which could lead the model to memorize irrelevant content. After cleaning,
we retain 1.7M high-quality examples, which we use to train the model in the SVG-SFT stage, where
it learns to generate SVGs from images as faithfully as possible. The SVGs are rendered using
CairoSVG [Kozea, 2023], and image augmentations follow the protocol introduced by LLaVA [Liu
et al., 2023].

SVG-Stack-Hard Test Set We construct the SVG-Stack-Hard benchmark to address several
limitations of the original SVG-Stack evaluation set, which contains noisy, overly simple, and short
samples. The full test set is also relatively large (3k samples), making evaluation slow, and includes
some broken or empty (white) SVGs.

To improve quality and difficulty, we first filter out broken SVGs, white-background SVGs, and
samples with low color entropy. We then retain only SVGs with at least 500 tokens to ensure
complexity. Next, we cluster the remaining samples using DINO image features and perform
stratified sampling to select 600 examples. Finally, we manually verify and curate this set to ensure it
includes visually intricate and moderately challenging samples.

26



Implementation Details We use the LLaMA-Factory codebase [Zheng et al., 2024] to conduct our
supervised fine-tuning (SFT) experiments. For reinforcement learning, including our GRPO-based
approach, we build on EasyR1 [Zheng et al., 2025] and VERL [Sheng et al., 2024]. We leverage
vLLM [Kwon et al., 2023] for sampling during rollout generation, as it enables highly optimized
decoding with high throughput and low latency. This is particularly important for SVG generation,
which involves long context sequences.

Training Details For GRPO, we use a clipping parameter ϵ = 0.4. During RLRF training, we adopt
the AdamW optimizer with bf16 precision. The optimization settings include a maximum gradient
norm of 1.0, a weight decay of 1× 10−2, and no learning rate warmup (lr_warmup_ratio = 0.0).
We enable full parameter sharding via Fully Sharded Data Parallel (FSDP) full model sharding. We
keep the vision tower frozen during SVG-SFT and RLRF

Prompt 1: Used for VLM as a Judge Score (Accurate)

<|im_start|>user<|vision_start|><|image_pad|><|vision_end|> You are an
impartial evaluator of SVG/icon renderings.
––––––––- RUBRIC –––––––––-
Alignment Score (0-5) — “Does the image depict what the text describes?”
0 — Completely unrelated: no shared objects, themes, or context.
1 — Very weak match: one minor element overlaps, but overall scene/concept
is different.
2 — Weak match: a few elements overlap, yet key objects or the main action
differ.
3 — Partial match: primary objects/actions align, but notable details or
context differ.
4 — Strong match: image reflects the description with only small,
non-critical discrepancies.
5 — Perfect match: image fully and accurately depicts every essential
detail of the description.
Aesthetics Score (0-5) — “Overall visual quality: clarity of meaning +
first-impression appeal.”
0 — Unusable: broken or illegible; no clear subject; chaotic or noisy.
1 — Very poor: subject partly recognizable but ugly—obvious errors,
off-proportion shapes, harsh or clashing colors.
2 — Poor: conveys the subject but feels rough; unbalanced layout, dull/flat
styling, sparse detail.
3 — Fair: subject clear at first glance; proportions mostly correct;
acceptable composition and palette with minor flaws.
4 — Good: rich detail, harmonious colors, balanced negative space; polished
with only subtle imperfections.
5 — Excellent: instantly communicates its subject; perfect proportions and
composition; refined details, beautiful color harmony—production-ready.
––––––––– TASK ––––––––-
Rate the image on **both** scales above. Return **only** this JSON
object—nothing else:
“‘json { "alignment_score": <integer 0-5>, "alignment_reason":
"«=100-word justification>", "aesthetics_score": <integer 0-5>,
"aesthetics_reason": "«=100-word justification>" } Description:
<|im_end|><|im_start|>assistant

C RLRF Method

C.1 Multimodal Architecture

To perform SVG generation using the autoregressive approach (see Figure 16), we adopt a vision-
language model (VLM) [Alayrac et al., 2022, Liu et al., 2023] composed of a decoder-only language
model [Brown et al., 2020] that generates SVG code tokens one at a time, and an image encoder that
processes visual inputs. In tasks that do not require an image, the image encoder can be omitted,
and the model reduces to a text-only LLM. For Im2SVG, the model receives an image as input and
generates SVG code as output, treating the code as a plain text sequence in standard SVG format. In

27



VLM
Image

Text

SVG 

Code

Rendered

Image

Supervised Fine-Tuning (SVG-SFT) 
Foundational SVG Code Learning

 Reinforcement Learning (RLRF)
Rendering-Driven SVG Ref inement

VLM

ImagesTexts SVGs

VLM

ImagesTexts

SVG

SVG

SVG

Image

Image

Image

...

Predicted Rendered

...

Autoregressive SVG Generation

Pixel Reconstruction

Semantic Similarity

Code Eff iciency

Rewards

Figure 16: Overview of Autoregressive SVG Generation and RLRF. (Top) Autorregresive SVG
generation pipeline. An image or a prompt is given to a VLM to produce SVG code, which is then
rendered into an image. (Bottom-left) SVG Supervised Fine-Tuning. The VLM is trained with teacher
forcing to generate the SVG code from the training data. (Bottom-right) Reinforcement Learning for
Vector Graphics. Given the same input (image or text), the model generates several SVG roll-outs,
which are then rendered, and a reward is calculated to update the model.

contrast, Text2SVG is a purely textual task, where a strong language model alone may be sufficient
to generate valid SVGs from text prompts.

Vision-Language Model Design VLMs combine an image encoder with a decoder-only language
model to process and generate multimodal content. The image encoder, often a Vision Transformer
(ViT) [Dosovitskiy et al., 2020] or a convolutional network [Krizhevsky et al., 2012], converts the
input image into a sequence of high-dimensional vectors called visual tokens. These are not discrete
tokens like in language, but continuous embeddings representing image regions.

To make these embeddings compatible with the language model, they are passed through linear
projection layers [Liu et al., 2023]. This allows the language model to attend to the visual context
during generation. Since large images can produce many visual tokens, some models add modules to
reduce their number and retain only the most relevant ones. For example, Q-Former [Li et al., 2023a]
uses learnable queries to extract a smaller set of tokens, while Perceiver Resampler [Alayrac et al.,
2022] and AlignVLM [Masry et al., 2025] use resampling and sparse attention to compress the visual
information efficiently.

Once the visual tokens are projected, they are combined with any textual prompt and fed into a
decoder-only language model. This model generates output tokens one at a time, using both the image
and text context. In our case, the output is SVG code. The model learns to translate visual inputs
into structured sequences of SVG instructions that can be rendered to reconstruct the original image.
This setup allows the model to reason about both the appearance and structure of visual content and
generate precise vector representations.

Model Choice: Qwen2.5-VL We perform our experiments using the Qwen2.5-VL [Bai et al.,
2025] family of models, which are general-purpose VLMs designed for diverse multimodal tasks.
Qwen2.5-VL uses a dynamic-resolution vision transformer (ViT) as the image encoder and a high-
capacity language model decoder based on the Qwen2.5 series. This combination allows it to scale to
long contexts, adapt to varied image resolutions, and perform complex vision-language reasoning.
The vision tokens extracted by the ViT are prepended to the text tokens and jointly processed in the
decoder.

28



Comparison to StarVector Compared to StarVector [Rodriguez et al., 2025b], which is specifically
designed for SVG generation, Qwen2.5-VL is a more generalist model not specialized for code or
vector formats. StarVector employs a CLIP-based image encoder and a code-generation-optimized
decoder (e.g., StarCoder) with an adapter to bridge modalities. It is trained directly on SVG-Stack, a
large dataset of real-world SVGs, making it more attuned to the syntax, structure, and compositional
semantics of SVG code. In contrast, Qwen2.5-VL benefits from broader multimodal training but
lacks SVG-specific pretraining, which we address through supervised fine-tuning and reinforcement
learning.

Design Tradeoffs The generalist nature of Qwen2.5-VL enables strong transfer learning capabilities
and flexibility across tasks but makes it initially less precise at SVG generation. Our method,
RLRF, fine-tunes Qwen2.5-VL to align its output with visual fidelity and code compactness through
supervised fine-tuning (SVG-SFT) reinforcement learning (RLRF). This specialization helps close
the gap with task-specific models like StarVector while maintaining broader instruction-following
abilities inherent to Qwen2.5-VL.

Context Length Context length plays a crucial role in autoregressive SVG generation. Complex
SVGs with fine-grained structure and intricate visual elements often require sequences that span tens
or even hundreds of thousands of tokens. The Qwen2.5-VL model supports a context length of up to
128k tokens, which allows it to handle long and highly detailed SVG code sequences.

With the growing availability of models that support very long contexts, including recent work
pushing towards hundreds of thousands or even millions of tokens [Liu et al., 2025, Meta, 2025], we
expect context length to become less of a limitation in the near future. In principle, this trend makes
large-scale vector representation increasingly feasible.

In our experiments, we cap the context length at 32k tokens to fit within GPU memory constraints.
This is sufficient for all benchmark samples we evaluate, including a wide range of complex SVGs.
In comparison, the StarVector model was limited to an 8k token context, which restricts its ability to
model large or deeply nested SVG structures.

C.2 Reward Details

Text2SVG Rewards. We incorporate image-text alignment signals to better guide the model toward
generating SVGs that are consistent with the input text. However, CLIP-based rewards (including
CLIP Score and CLIP Aesthetics) were not effective in this setting. These models provide weak
supervision because the generated SVGs fall far outside the distribution of natural images on which
CLIP was trained. As shown in Figure 8, the SVG outputs tend to follow an abstract visual style
composed of primitives such as rectangles, spirals, and curves, which makes them poorly suited for
CLIP-based evaluation.

To address this, we propose using a VLM as a judge reward. This approach relies on a strong
vision-language model (VLM) to evaluate the quality of the generated SVGs. Specifically, we prompt
Qwen2.5VL-7B, a smaller variant selected for its memory efficiency during rollout scoring, to assess
whether the generated SVG accurately reflects the input prompt. This VLM-based reward aligns more
closely with human preferences and provides a significantly stronger training signal compared to
CLIP. The reward prompts are described in Prompts 2 and 3, and include axes for evaluating semantic
accuracy, visual resemblance, and aesthetic quality.

During RLRF rollouts with Qwen3-8B, the model is trained to produce <think> traces before
answering. We take advantage of this behavior by prompting the model to first plan the SVG content,
and then generate the code. The resulting SVGs include inline comments for better structure and
readability. Examples of this reasoning process are shown in Figure 9.

Prompt 2: Used for VLM as a Judge Reward for Text2SVG (Easy)

<|im_start|>user<|vision_start|><|image_pad|><|vision_end|>Does the drawing
resemble the description: "" [Yes/No]<|im_end|><|im_start|>assistant

29



Prompt 3: Used for VLM as a Judge Reward for Text2SVG (Hard)

<|im_start|>users<|vision_start|><|image_pad|><|vision_end|>Does the image
match the description clearly, accurately, and aesthetically pleasing: ""
[Yes/No]<|im_end|><|im_start|>assistant

C.3 Implementation Strategies for Stable and Robust RLRF Training

We describe practical strategies that enabled stable and efficient training of our RLRF method.

Dynamic Max Length. After the SVG-SFT stage, models often lack strong SVG code completion
skills and can struggle with out-of-distribution or complex samples. This occasionally leads to failure
cases where the model enters indefinite loops, repeating SVG commands until the maximum token
limit is reached. These long and unproductive rollouts slow down RL training, as each rollout must
be fully sampled and passed through multiple models.

To mitigate this, we implement a dynamic maximum length schedule. For each batch, we estimate
the required output length using the ground truth SVGs and set the maximum length to the longest
sample plus a small threshold t. This strategy significantly reduces rollout overhead early in training,
encourages the model to generate shorter and cleaner sequences, and naturally fades in importance as
training progresses and generation improves.

During inference, input images are resized using bilinear interpolation such that the shortest side is
512 pixels, preserving the original aspect ratio. We sample with temperature and top-p equal to 0.5
and 0.9 respectively, using the best-of-n strategy: we generate five candidates (n = 5) and select the
one with the lowest mean-squared error (MSE) relative to the target image.

C.4 Limitations

As with prior work, our method is constrained by the context length of current models. While this
remains a challenge, we note that recent models with extended context windows are beginning to
address it. A more specific limitation of our RLRF experiments is the tendency for the model to
become increasingly specialized in SVG generation, which may diminish its general instruction-
following capabilities. Although straightforward solutions exist, we leave their exploration to future
work.

Another key limitation is the inefficiency of GRPO training, which is bottlenecked by rollout
generation. This process introduces significant GPU idle time during the RL stage2. Mitigating this
overhead is an important direction for future optimization.

D Extended Related Work

D.1 SVG Generation

SVG generation methods are typically categorized into three main approaches: classical image
processing, latent variable models, and large language model (LLM)-based techniques. Traditional
methods such as VTracer [Vision Cortex, 2023], Potrace [Selinger, Peter, 2024], and Autotrace [We-
ber, Martin, 2024] convert raster images into vector graphics by tracing contours and clustering
regions. While effective for extracting shapes, these approaches produce long and unstructured
SVGs composed of raw path commands. The resulting code is verbose, difficult to edit, and lacks
higher-level semantic organization.

Deep learning has also been applied to this domain, particularly through differentiable rendering
techniques that overcome the inherent non-differentiability of SVG rendering. DiffVG [Li et al., 2020]
introduced a differentiable rasterizer, enabling the development of latent variable models [Carlier
et al., 2020, Cao et al., 2023, Wang and Lian, 2021, Ma et al., 2022] that learn deep representations
of SVG commands and the parameters of geometric primitives. These models use architectures based

2https://huggingface.co/blog/ServiceNow/pipelinerl

30

https://huggingface.co/blog/ServiceNow/pipelinerl


on variational autoencoders [Kingma and Welling, 2013], diffusion processes [Ho et al., 2020], or
autoregressive decoders [Cao et al., 2023].

Compared to traditional methods, latent variable models offer more structured control and support
tasks like interpolation and style transfer. However, they often rely on simplified subsets of the SVG
syntax, producing outputs that are less compact and less interpretable. Additionally, these models are
typically trained on narrow, domain-specific datasets, limiting their generalization to diverse SVG
types, an area where classical image processing methods remain more broadly applicable.

More recent approaches frame SVG generation as a code generation task using large language models
(LLMs). We refer to this as the Autoregressive SVG Generation approach. By tokenizing SVG code
and generating it directly, LLM-based models bypass intermediate representations and learn to model
the full SVG syntax end-to-end.

StarVector [Rodriguez et al., 2025b] was among the first to explore this direction, combining a
code-centric LLM (StarCoder [Li et al., 2023b]) with a CLIP-based image encoder [Radford et al.,
2021]. It achieved strong performance on large-scale image-to-SVG benchmarks. Follow-up works
such as Beyond Pixels [Zhang et al., 2023], SVGEditBench [Nishina and Matsui, 2024, 2025], and
related studies [Cai et al., 2023] explored editing, reasoning, and structured SVG generation. More
recently, OmniSVG [Yang et al., 2025b] extended this line of work by leveraging the Qwen2.5-VL
foundation [Bai et al., 2025].

Despite their progress, these models face a key limitation: they do not observe or evaluate the visual
output of the SVG code they generate. As a result, they often produce SVGs that are syntactically
correct but visually inaccurate or inefficient. Moreover, unlike latent models that can rely on
differentiable rasterization, autoregressive VLM approaches operate over discrete token spaces,
making both rendering and sampling non-differentiable.

Our method, RLRF, addresses this gap by introducing a reinforcement learning-based post-training
strategy that incorporates visual feedback. By closing the loop between code generation and rendered
output, we overcome the limitations of purely supervised fine-tuning. This reinforcement learning
approach enables optimization of non-differentiable rendering quality using automatic reward signals.
As a result, models trained with RLRF generalize more effectively across SVG generation tasks
compared to standard supervised fine-tuning.

D.2 Vision-Language Models (VLMs)

Early VLMs such as Flamingo [Alayrac et al., 2022], BLIP-2 [Li et al., 2023a], LLaVA [Liu et al.,
2023], and GPT-4V [OpenAI, 2023] introduced a powerful paradigm by adapting frozen vision
encoders and connecting them to pretrained unimodal LLMs. This is typically done through learned
projection layers that map visual features into token-like embeddings. These models follow an
autoregressive generation strategy [Vaswani et al., 2017], enabling them to process both images and
text within a unified token stream and perform instruction-following and multi-turn conversations
grounded in visual inputs.

In parallel, the use of LLMs for code generation has grown rapidly recently. Code can be seen as a
separate modality, with structure and syntax that differ significantly from natural language. Progress
in this area has been driven by the availability of large-scale code corpora [Kocetkov et al., 2022,
Penedo et al., 2024] and the development of specialized coding models such as Codex [Chen et al.,
2021], CodeGen [Nijkamp et al., 2022], and StarCoder [Li et al., 2023b].

Recent frontier models like GPT-4o [Hurst et al., 2024], Gemini [Georgiev et al., 2024], Claude [An-
thropic, 2024], and Qwen2.5-VL [Bai et al., 2025] have expanded these capabilities further by
incorporating larger and more diverse code datasets during pretraining, substantially improving
performance on structured code tasks.

This convergence of multimodal models [Liu et al., 2023] and their use on structured output gen-
eration [Masry et al., 2025, Zhang et al., 2025, Feizi et al., 2025, Nayak et al., 2025] and code
generation [Li et al., 2023b] enables a new class of problems: inverse rendering code generation,
also known as visual-code generation). In these tasks, the model generates code that compiles
or renders into visual content. Examples include SVG, TikZ, HTML, and CAD, which are used
for generating graphics, diagrams, and illustrations. Prior efforts in this area include diagram and
layout generation [Rodriguez et al., 2023b,a, Belouadi et al., 2023, 2024, Rodriguez et al., 2025a,

31



Belouadi et al., 2025, Nayak et al., 2025, Awal et al., 2025, Bechard et al., 2025] and text-to-CAD
synthesis [Wang et al., 2025].

Although current models can learn valid code distributions and produce visually plausible outputs,
they often suffer from hallucinations, limited long-range coherence, and poor generalization. A key
limitation is the lack of feedback from the rendered environment. These models are never shown how
their outputs look. Our work addresses this gap by enabling models to learn from their own rendered
predictions, providing a visual feedback signal that improves both precision and generalization in
code-driven visual tasks.

D.3 Reinforcement Learning Post-Training

Reinforcement Learning (RL) has become essential for post-training fine-tuning of large language
models (LLMs). Reinforcement Learning from Human Feedback (RLHF), using Proximal Policy
Optimization (PPO) [Schulman et al., 2017], has become the standard for aligning LLM outputs with
human preferences, improving tasks like summarization and instruction-following [Ziegler et al.,
2019, Stiennon et al., 2020, Ouyang et al., 2022]. An alternative approach, Group Relative Policy
Optimization (GRPO) [Shao et al., 2024, Guo et al., 2025], stabilizes training by normalizing rewards
across batches, removing the need for a separate value network and reducing variance. In the visual
generation space, GRPO has been successfully used for image editing [Ahmadi et al., 2025]. In code
generation, frameworks like CodeRL [Le et al., 2022] employ an actor-critic approach where the
critic predicts functional correctness to guide the actor [Le et al., 2022]. PPOCoder [Shojaee et al.,
2023a] integrates PPO with execution feedback, using compiler results as rewards to fine-tune code
generation models [Shojaee et al., 2023b]. StepCoder [Dou et al., 2024a] introduces a curriculum
of code completion subtasks, optimizing exploration by masking unexecuted code segments [Dou
et al., 2024b]. Additionally, Reinforcement Learning from Execution Feedback (RLEF) enables
models to refine code iteratively based on execution outcomes, enhancing performance on complex
tasks [Gehring et al., 2024]. In multimodal domains, approaches like ViCT use a visual critic to align
generated UI code with input screenshots, improving fidelity in UI-to-code generation [Soselia et al.,
2023]. RL has also been applied in architectural design, where agents learn to generate space layouts
by optimizing spatial and functional constraints [Kakooee and Dillenburger, 2024]. Together, these
methods demonstrate the power of RL in enhancing alignment, correctness, and efficiency across
generative models.

While existing RL-based post-training methods focus primarily on functional correctness, they
overlook visual quality. In contrast, RLRF introduces rendering feedback through a composite reward
that jointly optimizes visual fidelity, semantic alignment, and code efficiency.

32



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in the supplementary material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

33



Justification: Our work is entirely empirical in nature and does not involve any theoretical
assumptions, theorems, or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

34



Answer: [No]

Justification: We are not submitting the data, code, or model weights as part of this sub-
mission. However, we are actively working towards open-sourcing all relevant materials,
including the dataset, codebase, and pretrained model weights. We plan to release these
resources publicly at the time of the camera-ready version to support full reproducibility of
our main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report single-run results due to prohibitive compute.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

36

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

37

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

38



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Two-Stage Training
	Rewards for Vector Graphics Rendering

	Experiments
	Experimental Setup
	Evaluation

	Results
	Main Results
	Ablation Studies

	Conclusion
	Additional Experiments and Results
	Im2SVG Results
	Text2SVG Results
	Generalization across SVG Benchmarks
	Ablation Study: Impact of Rewards
	Cases of Reward Hacking
	User Study on Editability and Fidelity

	Experimental Setup
	Metrics
	Datasets

	RLRF Method
	Multimodal Architecture
	Reward Details
	Implementation Strategies for Stable and Robust RLRF Training
	Limitations

	Extended Related Work
	SVG Generation
	Vision-Language Models (VLMs)
	Reinforcement Learning Post-Training


