

DISCOVERING DEEP CHAIN-OF-THOUGHT PATHS ACROSS BROADER QA: A GENERAL CoT-DECODING FRAMEWORK FOR LLMs

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Chain-of-Thought (CoT) reasoning can enhance large language models (LLMs),
014 but it requires manually designed prompts to guide the model. Recently proposed
015 CoT-decoding enables the model to generate CoT-style reasoning paths without
016 prompts, but it is only applicable to problems with fixed answer sets. To address
017 this limitation, we propose a general decoding strategy—GCoT-decoding—that
018 extends applicability to a broader range of question-answering tasks. GCoT-
019 decoding employs a two-stage branching method combining Fibonacci sampling
020 and heuristic error backtracking to generate candidate decoding paths. It then
021 splits each path into a reasoning span and an answer span to accurately compute
022 path confidence, and finally aggregates semantically similar paths to identify a
023 consensus answer, replacing traditional majority voting. We conduct extensive
024 experiments on six datasets covering both fixed and free QA tasks. Our method
025 not only maintains strong performance on fixed QA but also achieves significant
026 improvements on free QA, demonstrating its generality and effectiveness.

1 INTRODUCTION

031 Introducing Chain-of-Thought (CoT) can effectively enhance the reasoning capability of large
032 language models (LLMs). Existing studies primarily guide models to generate CoT paths through
033 prompt engineering (Kojima et al., 2022; Wei et al., 2022; Yao, 2024; Yasunaga et al., 2023; Zhou et al.,
034 2022a; Lightman et al., 2023; Uesato et al., 2022; Xie et al., 2023; Golovneva et al., 2023). However,
035 prompts can be influenced by the biases of their designers, and distinct tasks require different prompt
036 designs (Wang et al., 2022b; Ye & Durrett, 2022; Zhou et al., 2022b), thus limiting their generality.
037 Recent research has also aimed to enhance the reasoning capabilities of language models from a
038 decoding perspective, such as self-consistency methods (Wang et al., 2022a), contrastive decoding
039 (Li et al., 2022), and context-aware decoding (Shi et al., 2024). Nevertheless, these methods usually
040 require additional information.

041 Therefore, the question arises: Can large language models perform Chain-of-Thought reasoning
042 without prompts? Wang & Zhou (2024) propose a prompt-free CoT-decoding approach, which
043 explores the top- k alternative tokens for the first token in the decoding path, identifies specific answer
044 spans from these paths, computes the difference between their logits as the confidence, and aggregates
045 the paths pointing to the same answer. The answer with the highest cumulative confidence is selected
046 as the final result.

047 However, CoT-decoding heavily relies on specific answer spans to accurately compute path confidence
048 and to aggregate paths pointing to the same answer. As shown in Table 1, [in the fixed-format GSM8K-](#)
049 [style toy-production problem on the right, all top- \$k\$ CoT paths end with the same numeric span “24”,](#)
050 [so CoT-decoding can simply match this exact span and aggregate paths that point to it.](#) In contrast, in
051 [the free-form question about U.S. presidents on the left, the same correct answer is phrased differently](#)
052 [, while another path mentions a plausible but wrong alternative, so there is no single canonical span](#)
053 [for exact matching or majority voting.](#) Moreover, CoT-decoding performs branching solely at the first
054 token in index order, which makes it difficult to discover correct paths that lie deeper in the decoding
055 sequence, while early decoding errors can further disrupt the generation of correct paths.

054
055
056 Table 1: Comparison of CoT-decoding in Free-form vs. Fixed-format QA Tasks
057
058
059
060

	Free QA	Fixed QA
Example	<p>Q: What do Woodrow Wilson, George W. Bush, and James Monroe have in common?</p> <p>k=1: They were U.S. presidents.</p> <p>k=2: These men were Civil War generals.</p> <p>k=3: All served as presidents.</p>	<p>Q: A factory makes 3 toys per hour. How many toys after 8 hours?</p> <p>k=1: $3 \times 8 = 24$ (0.93)</p> <p>k=2: 3 times 8 is <u>24</u> (0.91)</p> <p>k=3: = <u>24</u> (0.85)</p>
Answer Space	∞	\mathbb{N}
Exact Span Match	\times	\checkmark
Majority Vote Aggregation	\times	\checkmark

061
062
063
064
065
066 To address this issue, we propose General Chain-of-Thought Decoding (**GCoT-Decoding**) that can
067 effectively identify decoding paths containing CoT reasoning without relying on specific answer
068 spans, thereby extending applicability to a broader range of question-answering tasks. Specifically,
069 we introduce a novel two-stage branching strategy: in the first stage, we perform Fibonacci sampling
070 at an early decoding step to select k alternative tokens, ensuring path diversity; in the second stage,
071 we backtrack to the token with locally minimal confidence to correct potentially erroneous paths,
072 followed by greedy decoding to complete the remaining steps.

073 For confidence computation, we insert an additional prompt after the model’s initial output to explicitly
074 extract the final answer. It is important to note that this prompt is fundamentally different from
075 conventional CoT prompts—it serves solely to extract the final answer from the model’s response,
076 without guiding or influencing the reasoning process, and thus does not affect the final reasoning
077 outcome. We use the length-normalized top-2 logits gap as the confidence score for the final answer,
078 as CoT paths typically involve longer reasoning steps. Finally, we aggregate similar paths based
079 on semantic similarity and select the earliest path within the group with the highest cumulative
080 confidence; the answer indicated by this path is taken as the final output.

081 We conduct comprehensive experiments on six datasets across both fixed and free-form QA tasks.
082 Our method significantly improves performance on free QA while preserving strong performance on
083 fixed QA. Additionally, it can be combined with prompting to further enhance reasoning capabilities.
084 Overall, our contributions are summarized as follows:

- **Proposing GCoT-Decoding:** A novel and general decoding strategy that does not rely on specific answer spans, thereby improving adaptability to diverse question-answering tasks.
- **Optimizing the branching strategy:** By introducing a two-stage branching mechanism, our method more efficiently discovers correct answers hidden in later decoding steps while correcting potentially erroneous paths.
- **Efficient path aggregation method:** We adopt a semantic similarity-based clustering strategy with a fixed threshold, and select the earliest path in each cluster as the representative. Compared to using the cluster centroid or the most similar path, this design simplifies computation while maintaining performance.

095
096

2 MOTIVATION

097
098

2.1 COT-DECODING RELIES HEAVILY ON SPECIFIC ANSWER SPANS

100 To extend CoT-decoding to free-form QA tasks, a natural idea is to explicitly guide the model to
101 output the final answer by including prompts such as “*So the answer is:*”, thereby replacing the
102 rule-matched answer spans typically used in fixed-format QA. However, when the same answer
103 appears multiple times along the decoding path, selecting different answer spans can still lead to
104 inconsistencies in confidence calculation.

105 To quantitatively investigate the effect of specific answer spans on CoT-decoding, we apply two
106 different methods for extracting answers across **GSM8K**, **MultiArith**, and the **BBH Sports Understanding**
107 **benchmark**: (1) a **rule-based method**, aligned with the official evaluation protocols on these
fixed-answer tasks, which for numeric math benchmarks such as **GSM8K** and **MultiArith** identifies

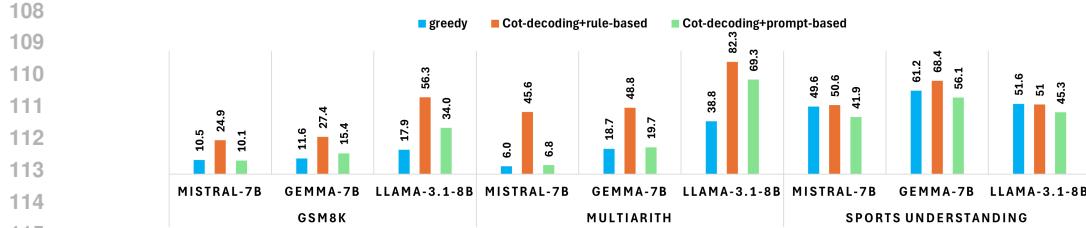


Figure 1: Impact of different answer extraction strategies on CoT-decoding performance.

the last number in the response and computes the average token confidence for that span, **while for Sports Understanding it identifies the final binary answer token (“yes” or “no”) in the model’s continuation**; (2) a **prompt-based method**, which uses the template “*So the answer is:*” to extend the model’s output and compute the average confidence of the answer tokens in the extended segment. As shown in Figure 1, using the prompt-based method to identify answer spans significantly reduces the performance of CoT-decoding: **on GSM8K and MultiArith, it often collapses back toward the greedy baseline, and on Sports Understanding it yields 5–12 point drops compared with the rule-based extractor**. In contrast, while the rule-based method performs well, it relies on task-specific heuristics and thus lacks generality and cannot be applied to tasks with a broader or more open-ended answer space. Therefore, it is necessary to improve CoT-decoding strategies to better adapt to prompt-based approaches.

2.2 CoT-DECODING CAN MISS CORRECT ANSWERS HIDDEN IN DEEPER PATHS

The reasoning ability of LLMs can be obscured by greedy decoding, which tends to yield a direct answer. By substituting the first decoding-step token with a lower-probability token, one may uncover the correct chain-of-thought path (Wang & Zhou, 2024).

In CoT-decoding, candidate paths are ranked by their likelihoods, and naive strategies explore them sequentially from index $k=0$ upward. However, this strategy can be suboptimal, especially when the most probable early paths converge on the same incorrect answer. As shown in Table 2, when the first index is incorrect, the subsequent early-ranked paths tend to replicate the same error pattern. This occurs due to the high probability mass being distributed across semantically similar but incorrect continuations. The correct answer, in such cases, is often buried deeper among lower-probability candidates—hidden in higher-indexed paths, and increasing the number of explored paths would require a substantial amount of additional decoding time. Thus, an effective sampling strategy should avoid redundant exploration of adjacent early paths and instead prioritize diversity across the decoding space.

Table 2: Distribution of correct and incorrect paths and their corresponding confidences for the top 100 questions in the GSM8K dataset in the case of first index error.

Index	Correct	Incorrect	C. Conf.	I. Conf.
0	—	—	—	—
1	8	92	0.73	0.09
2	2	98	0.68	0.13
3	13	87	0.70	0.10
4	23	77	0.74	0.14
5	18	82	0.66	0.17
6	28	72	0.60	0.11
7	35	65	0.78	0.01
8	68	32	0.67	0.18
9	44	56	0.62	0.20

3 METHOD

In this section, we first present a two-stage branching strategy for generating candidate paths (**Sec. 3.1**), then introduce a scoring scheme that combines path length with the top-2 logit gap to assign confidence to each candidate (**Sec. 3.2**), and finally show how to aggregate free-form answers to mitigate the impact of small differences in model logits (**Sec. 3.3**).

3.1 TWO-STAGE PATH BRANCHING STRATEGY

Fibonacci sampling of alternative tokens. We propose a Fibonacci sampling strategy, in which we first sort all candidate tokens at the first decoding step based on their model-assigned confidence scores. Then, instead of selecting the top- k tokens sequentially, we use indices from the Fibonacci

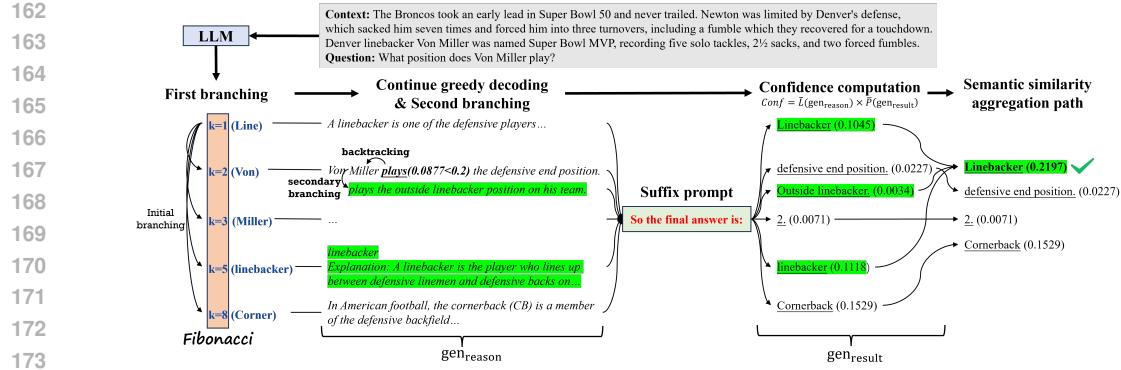


Figure 2: Overall Workflow of GCoT-Decoding. It generates candidate decoding paths via a two-stage branching strategy and then aggregates these paths based on semantic similarity.

sequence to choose k alternative tokens as initial branching points:

$$S_{fb} = \{F_1, F_2, \dots, F_k\}, \quad F_n = F_{n-1} + F_{n-2}, \quad F_1 = 1, \quad F_2 = 2, \quad (1)$$

For each selected token, the model continues decoding the rest of the sequence using greedy decoding, thereby constructing a diverse set of candidate paths.

As shown in Table 2, when the first index is incorrect, Fibonacci sampling helps skip over these local error clusters and increases the chances of exploring correct paths in the tail. Even when the first index is correct, Fibonacci sampling may include some incorrect paths; however, these paths typically have lower confidence due to the lack of a clear reasoning chain. In contrast, the correct path, even if ranked lower, usually has a higher cumulative confidence and is more likely to be selected during the aggregation stage.

Backtracking from local minima. We observe that when the model starts to drift toward an incorrect answer during decoding, it often shows significantly lower confidence in certain tokens. Based on this, we propose a simple yet effective secondary branching strategy: identify the first point where the model’s confidence drops noticeably, then backtrack and regenerate new paths from that point. Specifically, for a greedy decoding path $y = (y_1, y_2, \dots, y_T)$, we monitor the token-level confidence $s_t = P(y_t | x, y_{<t})$. We scan the path from step 3 onward to find the first local minimum where the confidence drops below a threshold δ . Formally, collect candidates:

$$S = \{t \mid 3 \leq t \leq T, s_t < s_{t-1}, (t < T \Rightarrow s_t < s_{t+1}), s_t < \delta\}, \quad (2)$$

and define the backtracking index:

$$b = \begin{cases} \min S, & S \neq \emptyset, \\ -1, & S = \emptyset. \end{cases} \quad (3)$$

If $b \neq -1$, step back to y_{b-1} and branch on k' alternatives (e.g., Fibonacci indices) to form prefixes:

$$\mathbf{y}_{<b}^{(m)} = (y_1, \dots, y_{b-2}, y_{b-1}^{(m)}), \quad m \in \{F_1, \dots, F_{k'}\}, \quad (4)$$

then complete each with greedy decoding, yielding the new candidate set:

$$\mathcal{P} = \{\mathbf{y}_{<b}^{(m)}\}_{m=1}^{k'}. \quad (5)$$

This strategy allows us to explore meaningful alternatives near early signs of error while keeping the search efficient. Please see Appendix A for the pseudocode corresponding to this section.

3.2 LENGTH-AWARE LOGIT GAP CONFIDENCE

CoT-decoding calculates the average difference between the top-1 and top-2 softmax logits for each token in the answer span, treating it as the confidence score of the decoding path. This is based on the observation that the presence of a CoT path typically leads to more confident decoding of the final

216 answer, characterized by a significant probability gap Δ between the top and secondary predictions
 217 (Wang & Zhou, 2024). This method relies on answer tokens extracted by rules and is unsuitable for
 218 questions whose answer sets or formats are not fixed.

219 To address the above issue, we extend the original response gen_1 by appending the prompt “*So the*
 220 *answer is:*” to generate the final answer gen_2 . This short template is used purely as a post-hoc
 221 answer extractor after the model has already produced the full reasoning trace, and does not guide the
 222 structure of the reasoning itself; in Appendix F we further show that replacing it with semantically
 223 equivalent phrases leads to only minor variations. Since relying solely on gen_2 may lead to large
 224 confidence deviations, we treat gen_1 as the reasoning part and gen_2 as the result part, and compute the
 225 confidence by multiplying the normalized length of gen_1 with the average logits gap Δ between the
 226 top-2 tokens in gen_2 , since CoT paths typically involve longer reasoning steps. The new confidence
 227 calculation is formalized as follows:

$$\text{GCoT}_{\Delta(k, \text{answer})} = \frac{\log(1 + |\text{gen}_{1k}|)}{\max_{i \in K} \log(|\text{gen}_{1i}|)} \times \frac{1}{|\text{gen}_2|} \sum_{x_t \in \text{gen}_2} [p(x_t^1) - p(x_t^2)]. \quad (6)$$

231 Here, x_t^1 and x_t^2 represent the top-2 tokens at the t -th decoding step in the k -th decoding path. We
 232 also design an alignment method that finds the longest common subsequence $\text{LCS}(\text{gen}_1, \text{gen}_2) =$
 233 $(s_{11}, s_{12}, \dots, s_{1m}; s_{21}, s_{22}, \dots, s_{2n})$, whose length is L . Before computing this LCS alignment, we
 234 normalize both generations by lowercasing and stripping pure punctuation tokens, which greatly
 235 reduces sensitivity to minor tokenization or punctuation differences. The final LCS in gen_1 is s_{1m} ,
 236 the final LCS in gen_2 is s_{2n} , and we sum their average confidences:

$$\text{GCoT} + \text{SpanAlign}_{\Delta(k, \text{answer})} = \frac{1}{L} \left(\sum_{x_{1t} \in s_{1m}} [p(x_{1t}^1) - p(x_{1t}^2)] + \sum_{x_{2t} \in s_{2n}} [p(x_{2t}^1) - p(x_{2t}^2)] \right). \quad (7)$$

241 When the same answer phrase is mentioned multiple times in a trace, we compare this default
 242 last-span scoring rule against a variant that averages over all aligned spans and observe very similar
 243 performance; detailed numbers are given in Appendix H.

245 3.3 GREEDY SEMANTIC CLUSTERING FOR PATH AGGREGATION

247 When relying solely on the path with the maximum Δ , small differences in the model’s logits can
 248 have a significant impact on the results, whereas aggregation can mitigate this sensitivity (Wang &
 249 Zhou, 2024). However, for questions without a fixed answer set or output format, majority voting
 250 based on exact string matching is infeasible. Introducing semantic similarity for clustering brings a
 251 new challenge: semantically similar paths may still point to different answers.

252 We find that the most critical factor affecting aggregation is the choice of representative answer, rather
 253 than the clustering method itself. Although common practices include selecting the cluster centroid or
 254 the path with the highest confidence, GCoT-decoding is highly sensitive to index order, and selecting
 255 the earliest-indexed path yields better results. Thus, we adopt a greedy clustering method based on
 256 index ordering to aggregate the decoding paths, ensuring both the efficiency and effectiveness of the
 257 aggregation process. We provide the impact of different clustering methods and answer selection
 258 strategies in Appendix D. We further ablate the underlying sentence embedding model and find that
 259 GCoT’s semantic clustering is largely insensitive to the specific encoder used (Appendix G).

260 Specifically, we denote all decoding paths as $\{p_i\}_{i=1}^K$, with each path producing a final answer
 261 $g_i = \text{gen}_2(p_i)$ and associated confidence score $c_i = \text{confidence}(p_i)$. We maintain a set of semantic
 262 groups $\{G_j\}_{j=1}^N$ with corresponding representative answers $\{r_j\}_{j=1}^N$, initialized as empty. For each
 263 answer g_i , we compute its cosine similarity with all existing representatives:

$$s_{i,j} = \cos(\phi(g_i), \phi(r_j)), \quad j = 1, 2, \dots, N, \quad (8)$$

266 where $\phi(\cdot)$ is the embedding function, and the greedy assignment rule is defined as:

$$j^* = \begin{cases} \min\{j \in \{1, \dots, N\} \mid s_{i,j} \geq \tau\}, & \text{if } \max_{1 \leq j \leq N} s_{i,j} \geq \tau, \\ N + 1, & \text{otherwise,} \end{cases} \quad (9)$$

270 which always assigns g_i to the first eligible group according to index ordering. Then we update:
 271

$$272 \quad G_{j^*} \leftarrow G_{j^*} \cup \{g_i\}, \quad r_{j^*} = \begin{cases} r_{j^*}, & j^* \leq N, \\ g_i, & j^* = N + 1, \end{cases} \quad N \leftarrow \max(N, j^*). \quad (10)$$

275 After all K answers are assigned, we compute cumulative confidence for each group:
 276

$$277 \quad C_j = \sum_{g_i \in G_j} c_i, \quad j = 1, 2, \dots, N, \quad (11)$$

278 and select the representative of the group with the highest cumulative confidence $r_{j_{\max}}, j_{\max} = \arg \max_j C_j$ as the final output. The pseudocode is given in Appendix A.
 279

281 4 RESULTS AND ANALYSIS

282 4.1 EXPERIMENTAL SETUP

283 **Datasets.** We evaluate models on two categories of QA tasks: (1) *Fixed QA*, where the answer
 284 set or format is constrained (e.g., integers or yes/no), including **GSM8K** and **MultiArith** (Cobbe
 285 et al., 2021; Roy & Roth, 2015) for multi-step arithmetic reasoning, and **Sports understanding**
 286 (Suzgun et al., 2022) from Big-Bench-Hard for binary reasoning over sports-related sentences; and
 287 (2) *Free QA*, which involves open-ended or paragraph-level outputs, such as **SQuAD v1.1** (Rajpurkar
 288 et al., 2016) for extractive reading comprehension, **BARQA** (Srivastava et al., 2022) for context-
 289 dependent anaphora resolution, and **Auto Categorization** (Srivastava et al., 2022) for identifying
 290 semantic categories among object sets.
 291

292 **Baseline Methods and Evaluation Metrics.** We primarily compare decoding-based methods,
 293 including **single-path sampling** strategies such as greedy decoding, temperature sampling ($t = 0.7$),
 294 and top- k sampling ($k = 10$); as well as **multi-path sampling** methods like beam search ($b = 10$),
 295 self-consistency ($k = 10$) (Wang et al., 2022a) and CoT-decoding (Wang & Zhou, 2024).
 296

297 We do not include prompt-based methods as baselines, as they are orthogonal to GCoT-decoding and
 298 can be freely combined (see Section 4.3 for discussion). For **fixed QA**, we use *accuracy*, computed
 299 by comparing the extracted answer token against the ground truth—note this extraction is used
 300 only for evaluation, not confidence computation. For **free QA**, we evaluate with *BLEU* (Papineni
 301 et al., 2002) and *MATCH*, which checks whether the ground-truth span appears in the response. For
 302 GCoT-decoding variants, *BLEU* is calculated only on the final answer gen_2 .
 303

304 **Model and Parameter Settings.** In the main experiments, we evaluate four models: Mistral-7B
 305 (Jiang, 2024), Gemma-7B (Team et al., 2024), Llama3.1-8B (Grattafiori et al., 2024), and Qwen2.5-
 306 14B (Yang et al., 2024). For the model-scale ablation, we use the Qwen2.5 series at 3B, 7B, 14B, and
 307 32B scales. We use all-MiniLM-L6-v2 (Reimers & Gurevych, 2019) as the embedding model. We
 308 set the first-stage branching number $k = 10$ and second-stage branching number $k' = 2$, branch only
 309 when confidence falls below a threshold δ of 0.2. During semantic aggregation of paths, we use a
 310 similarity threshold τ of 0.8. For the sensitivity experiments on hyperparameter settings, please refer
 311 to Appendix B.
 312

313 4.2 MAIN RESULTS

314 **Fixed QA.** As shown in Table 3, GCoT-decoding outperforms all single-path decoding strategies
 315 (greedy and sampling methods) and most multi-path decoding strategies (beam search and self-
 316 consistency) across all models and datasets. Although CoT-decoding achieves the highest accuracy
 317 on math reasoning tasks, its performance heavily relies on specific answer spans, as discussed in
 318 Section 2.1. This dependency explains its advantage in fixed QA tasks but also becomes a major
 319 bottleneck when extending to free QA tasks. In contrast, GCoT-decoding offers a more stable
 320 alternative that does not rely on answer spans, achieving competitive performance on fixed QA while
 321 delivering significant gains on free QA.
 322

323 **Free QA.** As shown in Table 4, GCoT-decoding achieves the highest BLEU and MATCH scores
 324 in nearly all settings, significantly outperforming other methods in both generation quality and

	Spec	GSM8K			MultiArith			Sports understanding		
		Ans	Mistral-7B	Gemma-7B	Llama-3.1-8B	Mistral-7B	Gemma-7B	Llama-3.1-8B	Mistral-7B	Gemma-7B
Greedy	x	10.5	11.6	17.9	16.0	18.7	38.8	49.6	61.2	51.6
Temperature sampling	x	8.4	7.9	13.1	15.2	18.8	36.2	48.9	60.1	52.4 [†]
Top-k sampling	x	5.1	6.2	14.2	13.3	17.3	37.0	50.3	58.0	51.9
Beam search	x	6.7	10.2	17.1	15.5	17.9	38.1	48.2	59.9	50.7
CoT-decoding	✓	21.9 [♦]	25.4 [♦]	36.3 [†]	40.6 [♦]	43.8 [♦]	72.3 [†]	50.6	68.4 [♦]	51.0
Self-consistency	✓	16.3	17.2	28.5	21.7	22.9	46.9	52.9 [♦]	63.9	54.6 [†]
GCoT-decoding + SpanAlign	x	10.7	15.4	34.0	16.8	19.7	69.3	48.0	67.2 [†]	52.0
GCoT-decoding	x	18.0 [†]	21.8 [†]	41.7 [♦]	31.3 [†]	22.8 [†]	74.3 [♦]	52.0 [†]	65.2	58.0 [♦]

Table 3: Accuracy comparison of decoding strategies on fixed QA tasks; the top-ranked is marked with ♦ and the second-ranked is marked with †. Spec Ans indicates whether the decoding strategy relies on specific answer spans. The top section lists single-path decoding strategies; the bottom section shows multi-path decoding strategies.

	SQuAD v1.1 (contextual)			BARQA (contextual)			Auto categorization (context-free)			
	Gemma-7B Llama-3.1-8B Qwen2.5-14B			Gemma-7B Llama-3.1-8B Qwen2.5-14B			Gemma-7B Llama-3.1-8B Qwen2.5-14B			
	BLEU	MATCH	BLEU	MATCH	BLEU	MATCH	BLEU	MATCH	BLEU	MATCH
Greedy	3.3	42.8	8.3	60.6	21.4	67.2	4.7	36.6 [†]	10.8	39.7
Temperature sampling	3.1	40.1	7.5	57.2	17.1	64.1	4.5	32.1	7.3	37.4
Top-k sampling	2.8	35.2	5.4	51.0	13.1	55.1	2.9	33.3	6.8	37.2
Beam Search	3.2	41.9	7.9	59.3	20.0	66.0	4.2	35.4	10.0	38.5
CoT-decoding + Prompt-based	0.2	25.7	1.3	40.9	5.8	50.3	0.7	21.5	2.4	25.1
Self-consistency + Prompt-based	4.2 [†]	36.7	3.2	43.2	12.1	58.0	2.2	26.1	3.6	30.4
GCoT-decoding + SpanAlign	3.9	48.9 [†]	9.2 [†]	62.0 [†]	21.5 [†]	69.6 [†]	5.8 [†]	36.5	10.9 [†]	41.5 [†]
GCoT-decoding	4.9 [♦]	54.6 [♦]	10.0 [♦]	67.2 [♦]	23.2 [♦]	71.4 [♦]	10.9 [♦]	37.7 [♦]	12.3 [♦]	44.1 [♦]

Table 4: Performance of different models on free QA tasks; the top-ranked is marked with ♦ and the second-ranked is marked with †. The top section lists single-path decoding strategies; the bottom section shows multi-path decoding strategies.

answer alignment. Even compared to variants such as CoT-decoding + Prompt-based and Self-consistency + Prompt-based, GCoT-decoding remains the top performer. In contrast, GCoT-decoding + SpanAlign suffers from performance drops due to frequent misalignment with incorrect spans. Overall, GCoT-decoding demonstrates stronger robustness and generality when tackling complex, free-form reasoning tasks.

Free QA. As shown in Table 4, GCoT-decoding achieves the highest BLEU and MATCH scores in nearly all settings, significantly outperforming other methods in both generation quality and answer alignment. Even compared to variants such as CoT-decoding + Prompt-based and Self-consistency + Prompt-based, GCoT-decoding remains the top performer. In contrast, GCoT-decoding + SpanAlign suffers from performance drops due to frequent misalignment with incorrect spans. Overall, GCoT-decoding demonstrates stronger robustness and generality when tackling complex, free-form reasoning tasks.

Results on a reasoning-tuned model. On GSM8K, we also evaluate the reasoning-tuned DeepSeek-R1 with its recommended math prompt. Even on this near-saturated benchmark (temperature sampling already reaches 96.1%), GCoT-decoding still improves over self-consistency and CoT-decoding, raising accuracy from 97.2% to 99.0%, which shows that it brings gains on top of strong reasoning-tuned models rather than exploiting weaknesses of smaller ones.

4.3 COMPATIBILITY OF GCoT-DECODING WITH PROMPTING METHODS

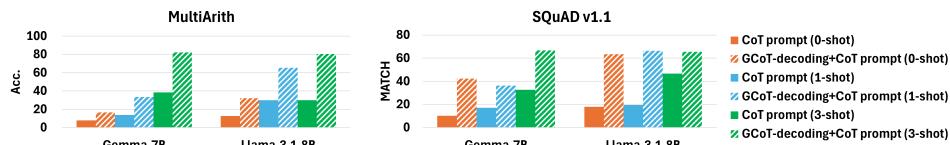


Figure 3: The results of combining GCoT-decoding with CoT prompting.

Decoding strategy	GSM8K Acc. (DeepSeek-R1)
Temperature sampling ($T=0.7$)	96.1
Self-consistency ($k=10$)	96.4
CoT-decoding ($K=10$)	97.2
GCoT-decoding ($K=10$)	99.0

Table 5: Accuracy of different decoding strategies on GSM8K with the reasoning-tuned model DeepSeek-R1.

378 Although GCoT-decoding is a prompt-free method, this does not preclude its combination with
 379 prompt-based approaches; in fact, they are highly compatible. Experiments on MultiArith and
 380 SQuAD v1.1 using Gemma-7B and Llama-3.1-8B show (Figure 3) that merging GCoT-decoding
 381 with CoT prompting yields steady performance improvements across all few-shot settings in both
 382 fixed and free QA, with absolute gains of 10%–50%. This demonstrates that GCoT-decoding and
 383 CoT prompting synergize effectively, significantly enhancing LLM reasoning quality in few-shot
 384 scenarios. We provide the few-shot examples used in Appendix C.

386 4.4 ABLATION STUDY

388 We ablate GCoT-decoding along its three main stages: (i) the path generation strategy, (ii) the
 389 backtracking rule, and (iii) the path aggregation module. We also report additional ablations on
 390 confidence computation in Appendix B.

391 **Effect of path generation strategy.** Our goal
 392 differs from generic diversity generation: in-
 393 stead of injecting randomness at every step,
 394 we only diversify the first token to open a
 395 few alternative reasoning directions and then
 396 greedily roll out each path. Fibonacci indices
 397 further spread this first-step sampling bud-
 398 get along the ranked candidates in a roughly
 399 log-spaced manner, avoiding redundant explo-
 400 ration of tightly clustered early hypotheses. Under a fixed budget of $K=10$ paths, Table 6 compares
 401 this Fibonacci-based scheme to standard step-wise stochastic sampling while keeping backtrack-
 402 ing and aggregation fixed, and shows that replacing our “one-step diversification + greedy rollout”
 403 with top- k /top- p /temperature sampling drives GSM8K accuracy down to about 8–10% and reduces
 404 SQuAD v1.1 MATCH by 10–20 points.

405 **Reliability of local-minima backtracking.**
 406 We assess reliability by measuring trigger fre-
 407 quency and success rate on SQuAD v1.1 (Ta-
 408 ble 7). Local-minima backtracking is trig-
 409 gered on only about 28% of questions, yet
 410 fixes an otherwise wrong greedy answer in
 411 36.5% of those cases, raising MATCH from
 412 52.7 to 54.6. Random and late backtracking
 413 are always triggered but slightly underperform
 414 the no-backtracking baseline and have much lower conditional success rates (around 18–21%), in-
 415 dicating that naive perturbations are not helpful. We further study the effect of allowing more
 416 backtracking points per path in Appendix E.

417 **Greedy semantic clustering vs. LLM-based**
 418 **aggregation.** We first compare GCoT-
 419 decoding with a MaxPath baseline that simply
 420 selects the single highest-confidence path: as
 421 shown in Table 8, greedy semantic clustering
 422 improves GSM8K accuracy from 15.3 to 21.8
 423 and SQuAD MATCH from 41.9 to 54.6, with
 424 only 0.2 seconds of extra time per question.
 425 An LLM-based aggregator yields slightly higher scores than greedy clustering but incurs about 8.3
 426 seconds of additional latency and is sensitive to the aggregation prompt. Our greedy clustering
 427 therefore offers most of the aggregation benefit over MaxPath at a fraction of the compute cost,
 428 matching our goal of a lightweight, robust aggregation module.

429 4.5 QUANTITATIVE AND QUALITATIVE ANALYSIS

430 **Quantitative analysis.** As shown in Figure 4(a), performance improves with scale, especially from
 431 3B to 7B, with smaller gains beyond. *GCoT-decoding* consistently outperforms *+SpanAlign* across
 432 scales and shows greater robustness to domain shifts. Figure 4(b) shows that increasing the number of

Variant	GSM8K (Gemma-7B)	GSM8K (Mistral-7B)	SQuAD v1.1 (Gemma-7B)	SQuAD v1.1 (Llama-3.1-8B)
Fibonacci + greedy (ours)	21.8	18.0	54.6	67.2
top- k sampling ($k=10$)	7.9	6.2	42.1	50.4
top- p sampling ($p=0.9$)	8.6	7.0	43.5	51.3
temperature sampling ($T=0.7$)	9.4	7.8	45.0	52.6

Table 6: Ablation of path-generation strategies under a fixed budget of $K=10$ paths. All variants share the same backtracking and aggregation modules.

Table 6 compares this Fibonacci-based scheme to standard step-wise stochastic sampling while keeping backtracking and aggregation fixed, and shows that replacing our “one-step diversification + greedy rollout” with top- k /top- p /temperature sampling drives GSM8K accuracy down to about 8–10% and reduces SQuAD v1.1 MATCH by 10–20 points.

Variant	Backtracking trigger rate (%)	Success rate given trigger (%)	SQuAD v1.1 (Gemma-7B)	SQuAD v1.1 (Gemma-7B)
No-backtracking	—	—	52.7	8.7
Random backtracking	100.0	18.1	52.0	8.6
Late backtracking	100.0	20.4	51.8	8.5
Local-minima backtracking (ours)	28.0	36.5	54.6	9.1

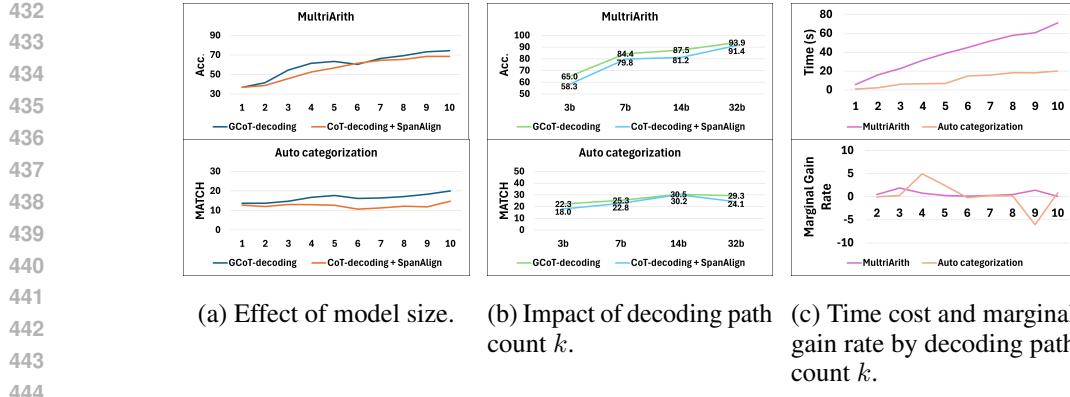
Table 7: Backtracking variants on SQuAD v1.1 dev (Gemma-7B); “Success rate given trigger” is the fraction of triggered cases corrected by backtracking.

Table 7 compares backtracking variants on SQuAD v1.1 dev (Gemma-7B); “Success rate given trigger” is the fraction of triggered cases corrected by backtracking.

Aggregation variant	Extra time per question (sec.)	GSM8K Acc. (Gemma-7B)	SQuAD MATCH (Gemma-7B)
MaxPath (no aggregation)	0.0	15.3	41.9
Greedy clustering (ours)	0.2	21.8	54.6
LLM-based aggregation	8.3	22.1	55.8

Table 8: MaxPath vs. greedy semantic clustering and an LLM-based aggregation module (Gemma-7B). Extra time is measured relative to greedy decoding.

Table 8 compares MaxPath vs. greedy semantic clustering and an LLM-based aggregation module (Gemma-7B). Extra time is measured relative to greedy decoding.

441 (a) Effect of model size. (b) Impact of decoding path 442 count k . (c) Time cost and marginal 443 444 gain rate by decoding path 445 count k .
Figure 4: The impact of model size and the number of decoding paths k .

446 decoding paths k initially improves performance but saturates after $k > 5$. *GCoT-decoding* maintains 447 stronger and more stable gains than *+SpanAlign* across all k settings. As shown in Figure 4(c), time 448 cost grows roughly linearly with k , while both tasks exhibit diminishing marginal gains. Taken 449 together, the optimal “elbow” lies in the range $k = 3 \sim 5$, where the marginal gain rate peaks and 450 time remains moderate. 451

452 Table 9: An example of path backtracking. The underlined segments indicate the answers targeted by 453 the decoding paths, while the highlighted portions show the content generated after backtracking. 454 “plays”, “defensive”, and “.” are the three local minima in Path1. 455

456 **Question:** What position does Von Miller play?

457 **Path1(x):** Von Miller plays(0.0877) defensive(0.0921) **end** position .(0.1980)

458 **Path2(✓):** Von plays the outside linebacker position on his team .

459 **Path3(x):** Von Miller plays the defensive end role for his team and is known for his pass rushing ability .

460 **How early path backtracking works.** We provide a qualitative example in Table 9 to illustrate 461 early error correction in the decoding process. In Path1, the incorrect answer “defensive end” emerges 462 after three local minima. Branching before the first error token (e.g., at “plays”) allows effective 463 correction, as in Path2, which leads to the correct answer “linebacker.” In contrast, branching after the 464 error fragment has formed, as in Path3, fails to revise the mistake—once embedded, the error resists 465 recovery. This highlights the importance of early branching before erroneous spans are committed. 466

467 Table 10: Decoding outputs with confidence gaps $\Delta_{k,\text{answer}}$ for two classification examples.

Question: AUSTRO-ITALIAN WAR, JACOBITE REBELLION, and FRANCO-SPANISH WAR are instances of	Question: Profitable home Chelisheva, The House with Lions, and House under the steeple can be classified as
Ground truth: historical wars	Ground truth: tourist attractions / architecture in Russia
k=1 European diplomatic initiatives. So the answer is: European diplomatic initiatives ($\Delta=0.22$)	✗ These are notable tourist attractions located across Russia. So the answer is: tourist attractions ($\Delta=0.81$) ✓
k=2 diplomatic initiatives. So the answer is: diplomatic initiatives. ($\Delta=0.18$)	✗ architectural heritage in Russia. So the answer is: architecture in Russia ($\Delta=0.68$) ✓
k=3 These events can be categorized under diplomatic initiatives. So the answer is: diplomatic initiatives ($\Delta=0.09$)	✗ tourist attractions in Russia. Explanation: each of these locations is a notable architectural site known for its historical significance within Russian cities. So the answer is: tourist attractions ($\Delta=0.93$) ✓
k=5 They are relevant to international treaty formation. So the answer is: international treaty formation ($\Delta=0.14$)	✗ They refer to government-owned residential complexes. So the answer is: government-owned residential complexes ($\Delta=0.24$) ✗
k=8 Historical wars, because each conflict exemplifies armed struggles ... So the answer is: historical wars ($\Delta=0.81$)	✓ metaphors from Soviet-era literature about class struggle. So the answer is: Soviet-era literature ($\Delta=0.11$) ✗

468 **How Fibonacci sampling works.** Table 10 presents two case studies of automatic classification 469 conducted via Fibonacci sampling. In the war classification example, paths $k = 1$ to $k = 3$ all 470 converge on related but incorrect categories such as “diplomatic initiatives.” The correct answer, 471

486 “historical wars,” only emerges at $k = 8$ with a clear reasoning chain—illustrating the pattern
 487 observed in Section 2.1, where early paths often cluster around the same error if the first prediction is
 488 wrong. In such cases, Fibonacci sampling helps bypass these local error clusters and reach the correct
 489 answer more efficiently.

490 In the architecture example, where the top-ranked path is already correct, early paths ($k = 1\text{--}3$)
 491 also yield accurate labels, with $k = 3$ providing an explicit causal explanation. Although Fibonacci
 492 may skip some additional correct paths (e.g., $k = 4, 6, 7$), the correct answer remains dominant in
 493 aggregated confidence, allowing it to be recovered reliably.

496 5 RELATED WORK

497
 498
 499 **Chain-of-Thought.** Chain-of-Thought (CoT) prompting decomposes complex tasks into intermediate
 500 reasoning steps and has inspired a series of automated and structured extensions, including
 501 Auto-CoT, Synthetic Prompting, Contrastive Denoising CoT, Faithful CoT, and KG-CoT, which aim
 502 to improve generation quality and logical fidelity (Wei et al., 2022; Kojima et al., 2022; Zhang et al.,
 503 2022; Shao et al., 2023; Zhou et al., 2024; Lyu et al., 2023; Zhao et al., 2024). Self-Consistency
 504 further enhances performance by aggregating diverse reasoning paths (Wang et al., 2022a; Wang &
 505 Zhou, 2024). However, most prompting-based methods rely heavily on labeled examples, handcrafted
 506 templates, or predefined outputs, limiting scalability. In contrast, our GCoT-Decoding removes these
 507 dependencies to enable broader applicability.

508
 509 **Prompting Methods to Enhance Reasoning.** Efforts to improve prompting strategies include
 510 paraphrasing, active example selection, analogical cues, and instruction tuning (Chen et al., 2024;
 511 Diao et al., 2023; Yasunaga et al., 2023; Zhang et al., 2024b; Ho et al., 2022). Recent work also
 512 explores context-aware decoding and weakly-supervised aggregation to improve robustness (Shi
 513 et al., 2024; Ling et al., 2023; Arora et al., 2022), though such methods often introduce additional
 514 annotation or computation costs. Prompt sensitivity and task specificity remain common bottlenecks.

515
 516 **Decoding Strategies to Enhance Reasoning.** Beyond prompting, decoding-time strategies provide
 517 an alternative route for eliciting reasoning. Early contrastive decoding diversified outputs without
 518 relying on prompts (Li et al., 2022; Yao, 2024), while self-evaluation, confidence-based scoring, and
 519 preference-guided optimization have been proposed to refine multi-step reasoning (Xie et al., 2023;
 520 Wang et al., 2024; Taubenfeld et al., 2025; Zhang et al., 2024a). Tree-of-Thoughts (Yao et al., 2023)
 521 and CoT-decoding (Wang & Zhou, 2024) treat reasoning as a structured exploration process, with
 522 the latter showing that top- k sampling alone can reveal rich reasoning paths. Speculative decoding
 523 methods (e.g., SPIN, SpecEE) improve efficiency but are less focused on reasoning quality (Chen
 524 et al., 2025; Xu et al., 2025). A recent survey by Welleck et al. (2024) provides a comprehensive
 525 overview of decoding strategies for reasoning tasks.

526 6 CONCLUSION AND FUTURE WORK

527
 528 We propose GCoT-decoding, a general decoding strategy that extends earlier work to broader QA tasks.
 529 We refine the branching method for generating candidate paths, which further boosts performance.
 530 Experiments show that our method consistently improves the reasoning ability of language models of
 531 various sizes and offers greater robustness to task drift.

532
 533 Beyond the trade-off discussion in the current paper, we are actively exploring optimizations such
 534 as early path pruning to reduce computational overhead. At the same time, we plan to extend the
 535 evaluation of GCoT-Decoding to a wider range of tasks, particularly those requiring step-by-step
 536 reasoning (e.g., structured text generation, logical inference, or multi-hop reasoning), which better
 537 align with the strengths of CoT-based methods. For summarization-like tasks where reasoning is
 538 less explicit, we will investigate hybrid approaches that selectively apply GCoT-Decoding only to
 539 reasoning-intensive components, thereby combining efficiency gains with broader applicability.

540 ETHICS STATEMENT

541

542 Our work focuses on developing a general decoding framework (GCoT-Decoding) to enhance the
 543 reasoning capabilities of large language models (LLMs). This research does not involve human
 544 subjects, sensitive personal data, or proprietary datasets, and all benchmarks used (e.g., GSM8K,
 545 MultiArith, SQuAD, BARQA, etc.) are publicly available.

546

547 REPRODUCIBILITY STATEMENT

548

549 We have taken multiple measures to ensure reproducibility. All datasets employed are publicly
 550 accessible, and preprocessing steps are documented in Appendix C. Algorithmic details, including
 551 pseudocode for path sampling, backtracking, and semantic clustering, are provided in Appendix A.
 552 Sensitivity experiments on hyperparameters are reported in Appendix B. Experimental settings
 553 such as model scales, branching parameters, and evaluation metrics are specified in Section 4.1.
 554 Furthermore, we plan to release anonymized source code as supplementary material, enabling
 555 independent replication of all experiments.

556

557 REFERENCES

558

559 Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
 560 Frederic Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language
 561 models. *arXiv preprint arXiv:2210.02441*, 2022.

562

563 Fahao Chen, Peng Li, Tom H Luan, Zhou Su, and Jing Deng. Spin: Accelerating large language
 564 model inference with heterogeneous speculative models. *arXiv preprint arXiv:2503.15921*, 2025.

565

566 Wenqing Chen, Weicheng Wang, Zhixuan Chu, Kui Ren, Zibin Zheng, and Zhichao Lu. Self-
 567 para-consistency: Improving reasoning tasks at low cost for large language models. In *62nd*
 568 *Annual Meeting of the Association for Computational Linguistics (ACL 2024)*, pp. 14162–14167.
 569 Association for Computational Linguistics (ACL), 2024.

570

571 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 572 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
 573 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

574

575 Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
 576 with chain-of-thought for large language models. *arXiv preprint arXiv:2302.12246*, 2023.

577

578 Olga Golovneva, Sean O’Brien, Ramakanth Pasunuru, Tianlu Wang, Luke Zettlemoyer, Maryam
 579 Fazel-Zarandi, and Asli Celikyilmaz. Pathfinder: Guided search over multi-step reasoning paths.
 580 *arXiv preprint arXiv:2312.05180*, 2023.

581

582 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 583 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 584 models. *arXiv preprint arXiv:2407.21783*, 2024.

585

586 Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
 587 *arXiv preprint arXiv:2212.10071*, 2022.

588

589 Fengqing Jiang. Identifying and mitigating vulnerabilities in llm-integrated applications. Master’s
 590 thesis, University of Washington, 2024.

591

592 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 593 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 594 22199–22213, 2022.

595

596 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
 597 Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
 598 *arXiv preprint arXiv:2210.15097*, 2022.

599

600 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 601 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 602 *International Conference on Learning Representations*, 2023.

594 Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
 595 Deductive verification of chain-of-thought reasoning. *Advances in Neural Information Processing*
 596 *Systems*, 36:36407–36433, 2023.

597

598 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
 599 and Chris Callison-Burch. Faithful chain-of-thought reasoning. In *The 13th International Joint*
 600 *Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter*
 601 *of the Association for Computational Linguistics (IJCNLP-AACL 2023)*, 2023.

602 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 603 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*
 604 *for Computational Linguistics*, pp. 311–318, 2002.

605 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
 606 machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.

607

608 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 609 *arXiv preprint arXiv:1908.10084*, 2019.

610 Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluís Màrquez, Chris
 611 Callison-Burch, and Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in*
 612 *Natural Language Processing*, pp. 1743–1752, Lisbon, Portugal, September 2015. Association
 613 for Computational Linguistics. doi: 10.18653/v1/D15-1202. URL <https://aclanthology.org/D15-1202/>.

614

615 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Synthetic
 616 prompting: Generating chain-of-thought demonstrations for large language models. In
 617 *International Conference on Machine Learning*, pp. 30706–30775. PMLR, 2023.

618

619 Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih.
 620 Trusting your evidence: Hallucinate less with context-aware decoding. In *Proceedings of the*
 621 *2024 Conference of the North American Chapter of the Association for Computational Linguistics:*
 622 *Human Language Technologies (Volume 2: Short Papers)*, pp. 783–791, 2024.

623 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 624 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 625 imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint*
 626 *arXiv:2206.04615*, 2022.

627

628 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 629 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
 630 big-bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 631 2022.

632

633 Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
 634 Yona. Confidence improves self-consistency in llms. *arXiv preprint arXiv:2502.06233*, 2025.

635

636 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
 637 Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
 638 based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

639

640 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 641 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 642 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.

643

644 Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Soft self-consistency improves
 645 language model agents. *arXiv preprint arXiv:2402.13212*, 2024.

646

647 Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. *arXiv preprint*
 648 *arXiv:2402.10200*, 2024.

649

650 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 651 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 652 *arXiv preprint arXiv:2203.11171*, 2022a.

648 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-augmented
 649 ensembles in language models. *arXiv preprint arXiv:2207.00747*, 2022b.
 650

651 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 652 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 653 neural information processing systems*, 35:24824–24837, 2022.

654 Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
 655 Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
 656 for large language models. *arXiv preprint arXiv:2406.16838*, 2024.

657 Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
 658 Xie. Self-evaluation guided beam search for reasoning. *Advances in Neural Information Processing
 659 Systems*, 36:41618–41650, 2023.

660 Jiaming Xu, Jiayi Pan, Yongkang Zhou, Siming Chen, Jinhao Li, Yaoxiu Lian, Junyi Wu, and Guohao
 661 Dai. Specee: Accelerating large language model inference with speculative early exiting. *arXiv
 662 preprint arXiv:2504.08850*, 2025.

663

664 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 665 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 666 arXiv:2412.15115*, 2024.

667 Liang Yao. Large language models are contrastive reasoners. *arXiv preprint arXiv:2403.08211*, 2024.

668

669 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 670 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
 671 In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Ad-
 672 vances in Neural Information Processing Systems*, volume 36, pp. 11809–11822. Curran Asso-
 673 ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

674

675 Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
 676 Ed H Chi, and Denny Zhou. Large language models as analogical reasoners. *arXiv preprint
 677 arXiv:2310.01714*, 2023.

678

679 Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual reasoning.
 680 *Advances in neural information processing systems*, 35:30378–30392, 2022.

681

682 Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference
 683 optimization: Improving chain-of-thought reasoning in llms. *Advances in Neural Information
 684 Processing Systems*, 37:333–356, 2024a.

685

686 Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing chain of thought
 687 prompting in large language models via reasoning patterns. *arXiv preprint arXiv:2404.14812*,
 688 2024b.

689

690 Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
 691 large language models. *arXiv preprint arXiv:2210.03493*, 2022.

692

693 Ruilin Zhao, Feng Zhao, Long Wang, Xianzhi Wang, and Guandong Xu. Kg-cot: Chain-of-thought
 694 prompting of large language models over knowledge graphs for knowledge-aware question answer-
 695 ing. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
 696 (IJCAI-24)*, pp. 6642–6650. International Joint Conferences on Artificial Intelligence, 2024.

697

698 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
 699 Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
 700 in large language models. *arXiv preprint arXiv:2205.10625*, 2022a.

701

702 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
 703 Jimmy Ba. Large language models are human-level prompt engineers. In *The Eleventh International
 704 Conference on Learning Representations*, 2022b.

705

706 Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, and Bo Han. Can language
 707 models perform robust reasoning in chain-of-thought prompting with noisy rationales? *Advances
 708 in Neural Information Processing Systems*, 37:123846–123910, 2024.

702 A ALGORITHM DETAILS
703704 We provide the pseudocode of path sampling and backtracking in Algorithm 1, and the pseu-
705 docode of the decoding path aggregation algorithm based on semantic clustering in Algorithm 2.
706707 **Algorithm 1:** General decoding path generation with Fibonacci sampling and backtracking

708 **Input:** Model `model`, tokenizer `tokenizer`, query `query`, first branching size k , second branching size
709 k' , confidence threshold δ

710 **Output:** List of final decoding paths

711 Initialize empty result list \mathcal{R} ;

712 // First branching Compute logits from initial `query` using `model`;
713 Select tokens at indices determined by Fibonacci sequence: $\{F_1, F_2, \dots, F_k\}$;

714 **foreach** token index $i \in \{F_1, F_2, \dots, F_k\}$ **do**

715 Form initial decoding prefix by appending token t_i to `query`;
716 Greedily decode from this prefix to obtain complete path $\mathbf{y} = (y_1, y_2, \dots, y_T)$ and token confidences
717 $\{s_1, s_2, \dots, s_T\}$;
718 Append path and confidences to temporary list \mathcal{L} ;

719 **end**

720 // Secondary branching via backtracking **foreach** decoded path \mathbf{y} and confidences $\{s_t\}_{t=1}^T$ in \mathcal{L} **do**

721 Identify local minima set $S = \{t \mid 3 \leq t \leq T, s_t < s_{t-1}, (t < T \Rightarrow s_t < s_{t+1}), s_t < \delta\}$;
722 Determine branching point b :

723
$$b = \begin{cases} \min S, & S \neq \emptyset \\ -1, & S = \emptyset \end{cases}$$

724 **if** $b \neq -1$ **then**

725 Truncate path to form prefix $\mathbf{y}_{<b} = (y_1, \dots, y_{b-2})$;
726 Compute logits for next token after prefix $\mathbf{y}_{<b}$;
727 Select alternative tokens at Fibonacci indices $\{F_1, \dots, F_{k'}\}$;

728 **foreach** alternative token index $j \in \{F_1, \dots, F_{k'}\}$ **do**

729 Append token $y_{b-1}^{(j)}$ to prefix $\mathbf{y}_{<b}$;
730 Greedily decode from new prefix to complete new path $\mathbf{y}^{(j)}$;
731 Add new path $\mathbf{y}^{(j)}$ to result list \mathcal{R} ;

732 **end**

733 **end**

734 **else**

735 Add original path \mathbf{y} directly to result list \mathcal{R} ;

736 **end**

737 **end**

738 **return** result list \mathcal{R}

738 **Algorithm 2:** General decoding path aggregation via semantic clustering

739 **Input:** Decoding paths $\{p_i\}_{i=1}^K$, confidences $\{c_i\}_{i=1}^K$, embedding function $\phi(\cdot)$, similarity threshold τ

740 **Output:** Final aggregated answer

741 Initialize semantic groups: $G_j \leftarrow \emptyset$, representatives $r_j \leftarrow \emptyset$, group count $N \leftarrow 0$;

742 **foreach** path output $g_i = \text{gen}_2(p_i)$ **do**

743 Compute embedding $\phi(g_i)$;

744 **if** $N = 0$ **then**

745 Create new group $G_1 = \{g_i\}$, set representative $r_1 = g_i$, set $N = 1$;
746 **continue**;

747 Compute similarities $s_{i,j} = \cos(\phi(g_i), \phi(r_j))$ for all existing groups $j = 1, \dots, N$;

748 Find the minimal index j^* satisfying $s_{i,j^*} \geq \tau$; if none exist, set $j^* = N + 1$;

749 **if** $j^* \leq N$ **then**

750 Add g_i to existing group G_{j^*} ;

751 **else**

752 Create new group $G_{N+1} = \{g_i\}$, set representative $r_{N+1} = g_i$, increment N ;

753 **end**

754 Compute cumulative confidence $C_j = \sum_{g_i \in G_j} c_i$ for each group j ;

755 Select group with maximum cumulative confidence $j_{\max} = \arg \max_j C_j$;
756 Return group representative $r_{j_{\max}}$ as the final output.

756 We provide the pseudocode of path sampling and backtracking in Algorithm 1, and the pseudocode
 757 of the decoding path aggregation algorithm based on semantic clustering in Algorithm 2.
 758

760 B SENSITIVITY TO HYPERPARAMETERS

762 We provide the results of sensitivity experiments on the similarity threshold τ and the confidence
 763 threshold δ in Table 11.

765 Table 11: Performance under different thresholds τ and δ on GSM8K, MultiArith, and Sports
 766 Understanding tasks.

τ	δ	GSM8K			MultiArith			Sports Underst.		
		Mistral-7b	Gemma-7b	Llama-3.1-8b	Mistral-7b	Gemma-7b	Llama-3.1-8b	Mistral-7b	Gemma-7b	Llama-3.1-8b
0.8	0.2	18.0	21.8	41.7	31.3	23.2	74.3	52.0	65.2	58.0
0.7	0.2	16.9	20.5	40.8	30.1	21.9	72.6	49.8	63.7	55.3
0.9	0.2	17.3	21.0	40.9	30.5	22.7	73.2	51.5	64.2	57.0
0.8	0.1	17.2	21.1	41.1	30.7	22.4	73.4	51.7	64.5	57.3
0.8	0.3	17.4	21.4	41.2	30.6	22.6	73.7	51.6	64.7	57.5

776 C PROMPT DEMONSTRATION EXAMPLES

778 Figure 5 shows the chain-of-thought prompting examples we use for the SQuAD `dev-v1.1` task. In
 779 the **zero-shot** setting, no demonstrations are provided. The **one-shot** setting includes only Example 1,
 780 while the **three-shot** setting incorporates all three examples.

783 Example 1

784 *Context:* The Hubble Space Telescope was launched into low Earth orbit in 1990 aboard the Space
 785 Shuttle Discovery. It has since captured landmark images such as the Hubble Ultra-Deep Field,
 786 revealing thousands of distant galaxies. In 2009, the final servicing mission upgraded its cameras
 787 and sensors.

788 *Question:* Which space telescope captured the Ultra-Deep Field image?

789 *Answer:* Hubble Space Telescope

790 Example 2

791 *Context:* 'The Lord of the Rings' is a high-fantasy trilogy originally published in three volumes
 792 between 1954 and 1955. Written by J.R.R. Tolkien, it follows the quest of Frodo Baggins to destroy
 793 the One Ring and defeat the Dark Lord Sauron.

794 *Question:* Who is the author of 'The Lord of the Rings'?

795 *Answer:* J.R.R. Tolkien

796 Example 3

797 *Context:* Ratatouille is a classic vegetable stew from southern France, typically including eggplant,
 798 zucchini, bell peppers, tomatoes, onions, and garlic, flavored with herbs de Provence. It is named
 799 after a city on the Côte d'Azur where it originated.

800 *Question:* Which French city is ratatouille traditionally associated with?

801 *Answer:* Nice

802 Figure 5: Prompting examples used in the SQuAD `dev-v1.1` task under different few-shot settings.
 803 Zero-shot uses no demonstrations, one-shot includes only Example 1, and three-shot includes all
 804 three examples.

805 Figure 6 shows the chain-of-thought demonstrations used for the GSM8K task. Similarly, the **zero-**
 806 **shot** configuration contains no examples, the **one-shot** configuration includes only the first example,
 807 and the **three-shot** configuration includes all three. These prompts are used to evaluate the effect of
 808 demonstration count on arithmetic reasoning performance.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838**Example 1**

Question: Tobias is buying a new pair of shoes that costs \$95. He has been saving up his money each month for the past three months. He gets a \$5 allowance a month. He also mows lawns and shovels driveways. He charges \$15 to mow a lawn and \$7 to shovel. After buying the shoes, he has \$15 in change. If he mows 4 lawns, how many driveways did he shovel?

Answer:

He saved up \$110 total because $95 + 15 = <<95+15=110>>110$.
 He saved \$15 from his allowance because $3 \times 5 = <<3*5=15>>15$.
 He earned \$60 mowing lawns because $4 \times 15 = <<4*15=60>>60$.
 He earned \$35 shoveling driveways because $110 - 60 - 15 = <<110-60-15=35>>35$.
 He shoveled 5 driveways because $35 \div 7 = <<35/7=5>>5$.

Final Answer: 5

Example 2

Question: Emma wants to buy a bicycle that costs \$120. She has been saving her weekly allowance of \$8 for the past 5 weeks. She also walks dogs and earns \$12 per dog. After buying the bicycle, she has \$20 left. If she walked 6 dogs, how many additional odd jobs did she do if she earns \$5 per odd job?

Answer:

She saved up \$140 total because $120 + 20 = <<120+20=140>>140$.
 She saved \$40 from her allowance because $5 \times 8 = <<5*8=40>>40$.
 She earned \$72 walking dogs because $6 \times 12 = <<6*12=72>>72$.
 She earned \$28 from odd jobs because $140 - 72 - 40 = <<140-72-40=28>>28$.
 She did 5 odd jobs because $28 \div 5 = <<28/5=5.6>>5.6$ (rounded to 5).

Final Answer: 5

Example 3

Question: Liam is purchasing a video game console for \$180. He saved his monthly allowance of \$10 for 4 months. He also tutors kids for \$15 per session. After the purchase, he has \$30 remaining. If he tutored 8 times, how many times did he babysit if he earns \$12 per babysitting job?

Answer:

He saved up \$210 total because $180 + 30 = <<180+30=210>>210$.
 He saved \$40 from his allowance because $4 \times 10 = <<4*10=40>>40$.
 He earned \$120 tutoring because $8 \times 15 = <<8*15=120>>120$.
 He earned \$50 babysitting because $210 - 120 - 40 = <<210-120-40=50>>50$.
 He babysat 4 times because $50 \div 12 \approx <<50/12=4.166>>4$ (rounded down).

Final Answer: 4

Figure 6: Prompting examples used in different few-shot settings for the GSM8K task., adapted to arithmetic reasoning.

D ANALYSIS ON CLUSTERING AND REPRESENTATIVE SELECTION

As shown in Table 12, while different clustering algorithms (Greedy, K-Means++, Agglomerative, Spectral) yield nearly identical accuracies, the representative selection strategy makes a substantial difference. Specifically, choosing the first-in-cluster answer consistently outperforms alternatives such as selecting the cluster centroid or the maximum-confidence path. This confirms that index ordering plays a crucial role in GCoT-decoding, and that a greedy clustering scheme combined with first-in-cluster selection is both efficient and effective.

Table 12: Accuracy comparison of clustering methods and representative choices on SQuAD v1.1.

Category	Method	Gemma-7B	Llama-3.1-8B
	Greedy Clustering	54.6	67.2
Clustering (with First-in-Cluster)	K-Means++	54.4	66.9
	Agglomerative (Ward)	54.7	67.1
	Spectral Clustering	54.5	67.0
Representative (with Greedy Clustering)	First-in-Cluster	54.6	67.2
	Cluster Centroid	47.8	60.4
	Max-Conf	48.2	60.9

864

E CHOICE OF THE NUMBER OF BACKTRACKING

865
 866 We find that CoT errors tend to have early turning points:
 867 as soon as the model commits to a wrong semantic de-
 868 cision (Table 9), the token-level confidence exhibits a
 869 sharp local drop, and subsequent tokens mostly elabo-
 870 rate on this misconception rather than correcting it. In
 871 these cases, backtracking at the first confidence valley
 872 is typically sufficient to redirect the reasoning towards a
 873 different, potentially correct branch. From an efficiency
 874 perspective, allowing multiple backtracking points per
 875 path under a fixed path budget significantly increases
 876 decoding cost and complicates how to trade off early
 877 vs. late corrections, so we adopt a simple one-shot back-
 878 tracking rule as a pragmatic accuracy–efficiency com-
 879 promise.

880 Figure 7 summarizes this ablation by varying the maxi-
 881 mum number of backtracking points per path from 1 to 5: per-
 882 formance improves slightly from 1-back to 2-back, stays roughly flat around 3-back, and then drops notice-
 883 ably at 4 and 5. This pattern indicates that limited extra backtracking offers only marginal gains, while aggressive multi-backtracking
 884 quickly hurts both accuracy and efficiency, supporting our choice of a single-shot local-minima
 885 strategy.

887

F EFFECT OF ANSWER-EXTRACTION TEMPLATES

888 In Section 2.1, we use a short continuation template (e.g., “So the answer is ...”) purely as an
 889 answer-extraction marker after the model has already produced a full chain-of-thought reasoning
 890 trace. To verify that GCoT-decoding does not depend on the specific wording of this marker, we
 891 evaluate several semantically equivalent templates on SQuAD v1.1 with Gemma-7B, while keeping
 892 all other components fixed.

Template	SQuAD v1.1 MATCH (Gemma-7B)
“So the answer is ...”	54.6
“Therefore, the answer is ...”	54.5
“Final answer:”	54.3

900 Table 13: Ablation on answer-extraction templates for GCoT-decoding on SQuAD v1.1.
 901

902 The variation across templates is within 0.3 absolute MATCH points, which is negligible compared
 903 to the gains obtained by switching from greedy or vanilla CoT-decoding to GCoT on the same
 904 benchmark. This supports our claim that GCoT-decoding does not hinge on a specific wording of the
 905 answer-extraction template.

907

G EMBEDDING MODEL ABLATION FOR SEMANTIC CLUSTERING

910 In Section 3.3, GCoT-decoding uses an off-the-shelf sentence embedding model to perform greedy
 911 semantic clustering over candidate paths. To assess the sensitivity of this module to the choice of
 912 embedding space, we fix the rest of the framework and only vary the embedding model, comparing
 913 MiniLM, MPNet-base, and E5-small on SQuAD v1.1 and Auto-Categorization.

914 Across all settings, the variation in BLEU and MATCH is within 0.5 absolute points, suggesting
 915 that the greedy clustering module is relatively insensitive to the specific off-the-shelf embedding
 916 model used, as long as it provides a reasonable semantic similarity signal. This matches our design
 917 goal of treating semantic clustering as a conservative, pluggable enhancement over simple max-path
 selection.

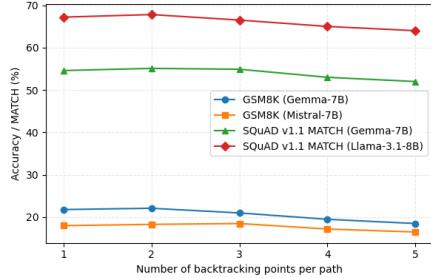


Figure 7: Effect of the maximum number of backtracking points per path under a fixed overall path budget.

918	Setting	SQuAD v1.1 BLEU	SQuAD v1.1 MATCH	Auto-cat BLEU	Auto-cat MATCH
919	GCoT + MiniLM	10.0	67.2	10.6	30.5
920	GCoT + MPNet-base	9.8	66.7	10.4	30.3
921	GCoT + E5-small	10.1	67.0	10.5	30.4
922					

923
924 Table 14: Embedding model ablation for the semantic clustering module in GCoT-decoding.
925926

H SPANALIGN ABLATION: LAST VS. MEAN ALIGNMENT

927
928 In Section 3.2, we use an LCS-based SPANALIGN module to compare answer segments across
929 different paths. When the same answer phrase appears multiple times in a reasoning trace, our default
930 implementation scores only the terminal aligned segment (“SpanAlign (Last)”). To check whether
931 averaging over all aligned segments could be preferable, we compare this default against a variant
932 that averages confidence across all occurrences (“SpanAlign (Mean)”) on **GSM8K**, **MultiArith**, and
933 **Sports Understanding**.

935 Method	936 GSM8K (Acc.)			937 MultiArith (Acc.)			938 Sports Understanding (Acc.)		
	Mistral-7B	Gemma-7B	Llama-3.1-8B	Mistral-7B	Gemma-7B	Llama-3.1-8B	Mistral-7B	Gemma-7B	Llama-3.1-8B
GCoT-decoding + SpanAlign (Last)	10.7	15.4	34.0	16.8	19.7	69.3	48.0	67.2	52.0
GCoT-decoding + SpanAlign (Mean)	10.2	14.9	33.5	16.1	19.0	68.5	47.1	66.3	51.4

939 Table 15: Comparison between using only the last aligned answer span (SpanAlign (Last)) and
940 averaging over all aligned spans (SpanAlign (Mean)).941 Across all three datasets and models, using the final occurrence of the aligned answer span is at least
942 as reliable as averaging over all occurrences, and often slightly better.
943944

I THE USE OF LARGE LANGUAGE MODELS

945
946 This manuscript used a large language model only for light editorial support—namely grammar and
947 spelling checks, minor language polishing, and table formatting. The LLM did not generate scientific
948 content, results, analyses, or claims. All edits were reviewed by the authors, and the authors remain
949 fully responsible for the final text.
950

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971