
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCOVERING DEEP CHAIN-OF-THOUGHT PATHS
ACROSS BROADER QA: A GENERAL COT-DECODING
FRAMEWORK FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) reasoning can enhance large language models (LLMs),
but it requires manually designed prompts to guide the model. Recently proposed
CoT-decoding enables the model to generate CoT-style reasoning paths without
prompts, but it is only applicable to problems with fixed answer sets. To address
this limitation, we propose a general decoding strategy—GCoT-decoding—that
extends applicability to a broader range of question-answering tasks. GCoT-
decoding employs a two-stage branching method combining Fibonacci sampling
and heuristic error backtracking to generate candidate decoding paths. It then
splits each path into a reasoning span and an answer span to accurately compute
path confidence, and finally aggregates semantically similar paths to identify a
consensus answer, replacing traditional majority voting. We conduct extensive
experiments on six datasets covering both fixed and free QA tasks. Our method
not only maintains strong performance on fixed QA but also achieves significant
improvements on free QA, demonstrating its generality and effectiveness.

1 INTRODUCTION

Introducing Chain-of-Thought (CoT) can effectively enhance the reasoning capability of large
language models (LLMs). Existing studies primarily guide models to generate CoT paths through
prompt engineering (Kojima et al., 2022; Wei et al., 2022; Yao, 2024; Yasunaga et al., 2023; Zhou et al.,
2022a; Lightman et al., 2023; Uesato et al., 2022; Xie et al., 2023; Golovneva et al., 2023). However,
prompts can be influenced by the biases of their designers, and distinct tasks require different prompt
designs (Wang et al., 2022b; Ye & Durrett, 2022; Zhou et al., 2022b), thus limiting their generality.
Recent research has also aimed to enhance the reasoning capabilities of language models from a
decoding perspective, such as self-consistency methods (Wang et al., 2022a), contrastive decoding
(Li et al., 2022), and context-aware decoding (Shi et al., 2024). Nevertheless, these methods usually
require additional information.

Therefore, the question arises: Can large language models perform Chain-of-Thought reasoning
without prompts? Wang & Zhou (2024) propose a prompt-free CoT-decoding approach, which
explores the top-k alternative tokens for the first token in the decoding path, identifies specific answer
spans from these paths, computes the difference between their logits as the confidence, and aggregates
the paths pointing to the same answer. The answer with the highest cumulative confidence is selected
as the final result.

However, CoT-decoding heavily relies on specific answer spans to accurately compute path confidence
and to aggregate paths pointing to the same answer. As shown in Table 1, in the fixed-format GSM8K-
style toy-production problem on the right, all top-k CoT paths end with the same numeric span “24”,
so CoT-decoding can simply match this exact span and aggregate paths that point to it. In contrast, in
the free-form question about U.S. presidents on the left, the same correct answer is phrased differently
, while another path mentions a plausible but wrong alternative, so there is no single canonical span
for exact matching or majority voting. Moreover, CoT-decoding performs branching solely at the first
token in index order, which makes it difficult to discover correct paths that lie deeper in the decoding
sequence, while early decoding errors can further disrupt the generation of correct paths.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of CoT-decoding in Free-form vs. Fixed-format QA Tasks

Free QA Fixed QA

Example Q: What do Woodrow Wilson, George W. Bush, and
James Monroe have in common?
k=1: They were U.S. presidents.
k=2: These men were Civil War generals.
k=3: All served as presidents.

Q: A factory makes 3 toys per hour. How many toys
after 8 hours?
k=1: 3 × 8 = 24 (0.93)
k=2: 3 times 8 is 24 (0.91)
k=3: = 24 (0.85)

Answer Space ∞ N

Exact Span Match × ✓

Majority Vote Aggregation × ✓

To address this issue, we propose General Chain-of-Thought Decoding (GCoT-Decoding) that can
effectively identify decoding paths containing CoT reasoning without relying on specific answer
spans, thereby extending applicability to a broader range of question-answering tasks. Specifically,
we introduce a novel two-stage branching strategy: in the first stage, we perform Fibonacci sampling
at an early decoding step to select k alternative tokens, ensuring path diversity; in the second stage,
we backtrack to the token with locally minimal confidence to correct potentially erroneous paths,
followed by greedy decoding to complete the remaining steps.

For confidence computation, we insert an additional prompt after the model’s initial output to explicitly
extract the final answer. It is important to note that this prompt is fundamentally different from
conventional CoT prompts—it serves solely to extract the final answer from the model’s response,
without guiding or influencing the reasoning process, and thus does not affect the final reasoning
outcome. We use the length-normalized top-2 logits gap as the confidence score for the final answer,
as CoT paths typically involve longer reasoning steps. Finally, we aggregate similar paths based
on semantic similarity and select the earliest path within the group with the highest cumulative
confidence; the answer indicated by this path is taken as the final output.

We conduct comprehensive experiments on six datasets across both fixed and free-form QA tasks.
Our method significantly improves performance on free QA while preserving strong performance on
fixed QA. Additionally, it can be combined with prompting to further enhance reasoning capabilities.
Overall, our contributions are summarized as follows:

• Proposing GCoT-Decoding: A novel and general decoding strategy that does not rely on
specific answer spans, thereby improving adaptability to diverse question-answering tasks.

• Optimizing the branching strategy: By introducing a two-stage branching mechanism,
our method more efficiently discovers correct answers hidden in later decoding steps while
correcting potentially erroneous paths.

• Efficient path aggregation method: We adopt a semantic similarity–based clustering
strategy with a fixed threshold, and select the earliest path in each cluster as the representative.
Compared to using the cluster centroid or the most similar path, this design simplifies
computation while maintaining performance.

2 MOTIVATION

2.1 COT-DECODING RELIES HEAVILY ON SPECIFIC ANSWER SPANS

To extend CoT-decoding to free-form QA tasks, a natural idea is to explicitly guide the model to
output the final answer by including prompts such as “So the answer is:”, thereby replacing the
rule-matched answer spans typically used in fixed-format QA. However, when the same answer
appears multiple times along the decoding path, selecting different answer spans can still lead to
inconsistencies in confidence calculation.

To quantitatively investigate the effect of specific answer spans on CoT-decoding, we apply two
different methods for extracting answers across GSM8K, MultiArith, and the BBH Sports Under-
standing benchmark: (1) a rule-based method, aligned with the official evaluation protocols on these
fixed-answer tasks, which for numeric math benchmarks such as GSM8K and MultiArith identifies

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Impact of different answer extraction strategies on CoT-decoding performance.

the last number in the response and computes the average token confidence for that span, while
for Sports Understanding it identifies the final binary answer token (“yes” or “no”) in the model’s
continuation; (2) a prompt-based method, which uses the template “So the answer is:” to extend the
model’s output and compute the average confidence of the answer tokens in the extended segment. As
shown in Figure 1, using the prompt-based method to identify answer spans significantly reduces the
performance of CoT-decoding: on GSM8K and MultiArith, it often collapses back toward the greedy
baseline, and on Sports Understanding it yields 5–12 point drops compared with the rule-based
extractor. In contrast, while the rule-based method performs well, it relies on task-specific heuristics
and thus lacks generality and cannot be applied to tasks with a broader or more open-ended answer
space. Therefore, it is necessary to improve CoT-decoding strategies to better adapt to prompt-based
approaches.

2.2 COT-DECODING CAN MISS CORRECT ANSWERS HIDDEN IN DEEPER PATHS

Table 2: Distribution of correct and incorrect
paths and their corresponding confidences for
the top 100 questions in the GSM8K dataset
in the case of first index error.

Index Correct Incorrect C. Conf. I. Conf.
0 – – – –
1 8 92 0.73 0.09
2 2 98 0.68 0.13
3 13 87 0.70 0.10
4 23 77 0.74 0.14
5 18 82 0.66 0.17
6 28 72 0.60 0.11
7 35 65 0.78 0.01
8 68 32 0.67 0.18
9 44 56 0.62 0.20

The reasoning ability of LLMs can be obscured by
greedy decoding, which tends to yield a direct answer.
By substituting the first decoding-step token with a
lower-probability token, one may uncover the correct
chain-of-thought path (Wang & Zhou, 2024).

In CoT-decoding, candidate paths are ranked by their
likelihoods, and naive strategies explore them sequen-
tially from index k=0 upward. However, this strategy
can be suboptimal, especially when the most proba-
ble early paths converge on the same incorrect answer.
As shown in Table 2, when the first index is incorrect,
the subsequent early-ranked paths tend to replicate
the same error pattern. This occurs due to the high
probability mass being distributed across semanti-
cally similar but incorrect continuations. The correct
answer, in such cases, is often buried deeper among lower-probability candidates—hidden in higher-
indexed paths, and increasing the number of explored paths would require a substantial amount of
additional decoding time. Thus, an effective sampling strategy should avoid redundant exploration of
adjacent early paths and instead prioritize diversity across the decoding space.

3 METHOD

In this section, we first present a two-stage branching strategy for generating candidate paths (Sec.
3.1), then introduce a scoring scheme that combines path length with the top-2 logit gap to assign
confidence to each candidate (Sec. 3.2), and finally show how to aggregate free-form answers to
mitigate the impact of small differences in model logits (Sec. 3.3).

3.1 TWO-STAGE PATH BRANCHING STRATEGY

Fibonacci sampling of alternative tokens. We propose a Fibonacci sampling strategy, in which
we first sort all candidate tokens at the first decoding step based on their model-assigned confidence
scores. Then, instead of selecting the top-k tokens sequentially, we use indices from the Fibonacci

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overall Workflow of GCoT-Decoding. It generates candidate decoding paths via a two-stage
branching strategy and then aggregates these paths based on semantic similarity.

sequence to choose k alternative tokens as initial branching points:

Sfib = {F1, F2, . . . , Fk}, Fn = Fn−1 + Fn−2, F1 = 1, F2 = 2, (1)

For each selected token, the model continues decoding the rest of the sequence using greedy decoding,
thereby constructing a diverse set of candidate paths.

As shown in Table 2, when the first index is incorrect, Fibonacci sampling helps skip over these local
error clusters and increases the chances of exploring correct paths in the tail. Even when the first
index is correct, Fibonacci sampling may include some incorrect paths; however, these paths typically
have lower confidence due to the lack of a clear reasoning chain. In contrast, the correct path, even if
ranked lower, usually has a higher cumulative confidence and is more likely to be selected during the
aggregation stage.

Backtracking from local minima. We observe that when the model starts to drift toward an
incorrect answer during decoding, it often shows significantly lower confidence in certain tokens.
Based on this, we propose a simple yet effective secondary branching strategy: identify the first point
where the model’s confidence drops noticeably, then backtrack and regenerate new paths from that
point. Specifically, for a greedy decoding path y = (y1, y2, . . . , yT), we monitor the token-level
confidence st = P (yt | x, y<t). We scan the path from step 3 onward to find the first local minimum
where the confidence drops below a threshold δ. Formally, collect candidates:

S =
{
t
∣∣ 3 ≤ t ≤ T, st < st−1, (t < T ⇒ st < st+1), st < δ

}
, (2)

and define the backtracking index:

b =

{
minS, S ̸= ∅,

−1, S = ∅.
(3)

If b ̸= −1, step back to yb−1 and branch on k′ alternatives (e.g., Fibonacci indices) to form prefixes:

y
(m)
<b = (y1, . . . , yb−2, y

(m)
b−1), m ∈ {F1, . . . , Fk′}, (4)

then complete each with greedy decoding, yielding the new candidate set:

P =
{
y(m)

}k′

m=1
. (5)

This strategy allows us to explore meaningful alternatives near early signs of error while keeping the
search efficient. Please see Appendix A for the pseudocode corresponding to this section.

3.2 LENGTH-AWARE LOGIT GAP CONFIDENCE

CoT-decoding calculates the average difference between the top-1 and top-2 softmax logits for each
token in the answer span, treating it as the confidence score of the decoding path. This is based on the
observation that the presence of a CoT path typically leads to more confident decoding of the final

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

answer, characterized by a significant probability gap ∆ between the top and secondary predictions
(Wang & Zhou, 2024). This method relies on answer tokens extracted by rules and is unsuitable for
questions whose answer sets or formats are not fixed.

To address the above issue, we extend the original response gen1 by appending the prompt “So the
answer is:” to generate the final answer gen2. This short template is used purely as a post-hoc
answer extractor after the model has already produced the full reasoning trace, and does not guide the
structure of the reasoning itself; in Appendix F we further show that replacing it with semantically
equivalent phrases leads to only minor variations. Since relying solely on gen2 may lead to large
confidence deviations, we treat gen1 as the reasoning part and gen2 as the result part, and compute the
confidence by multiplying the normalized length of gen1 with the average logits gap ∆ between the
top-2 tokens in gen2, since CoT paths typically involve longer reasoning steps. The new confidence
calculation is formalized as follows:

GCoT∆(k,answer) =
log
(
1 + |gen1k |

)
maxi∈K log

(
|gen1i |

) × 1

|gen2|
∑

xt∈gen2

[
p(x1

t)− p(x2
t)
]
. (6)

Here, x1
t and x2

t represent the top-2 tokens at the t-th decoding step in the k-th decoding path. We
also design an alignment method that finds the longest common subsequence LCS(gen1, gen2) =
(s11, s12, . . . , s1m; s21, s22, . . . , s2n), whose length is L. Before computing this LCS alignment, we
normalize both generations by lowercasing and stripping pure punctuation tokens, which greatly
reduces sensitivity to minor tokenization or punctuation differences. The final LCS in gen1 is s1m,
the final LCS in gen2 is s2n, and we sum their average confidences:

GCoT + SpanAlign∆(k,answer) =
1

L

(∑
x1t∈s1m

[
p
(
x1
1t

)
− p
(
x2
1t

)]
+

∑
x2t∈s2n

[
p
(
x1
2t

)
− p
(
x2
2t

)])
.

(7)

When the same answer phrase is mentioned multiple times in a trace, we compare this default
last-span scoring rule against a variant that averages over all aligned spans and observe very similar
performance; detailed numbers are given in Appendix H.

3.3 GREEDY SEMANTIC CLUSTERING FOR PATH AGGREGATION

When relying solely on the path with the maximum ∆, small differences in the model’s logits can
have a significant impact on the results, whereas aggregation can mitigate this sensitivity (Wang &
Zhou, 2024). However, for questions without a fixed answer set or output format, majority voting
based on exact string matching is infeasible. Introducing semantic similarity for clustering brings a
new challenge: semantically similar paths may still point to different answers.

We find that the most critical factor affecting aggregation is the choice of representative answer, rather
than the clustering method itself. Although common practices include selecting the cluster centroid or
the path with the highest confidence, GCoT-decoding is highly sensitive to index order, and selecting
the earliest-indexed path yields better results. Thus, we adopt a greedy clustering method based on
index ordering to aggregate the decoding paths, ensuring both the efficiency and effectiveness of the
aggregation process. We provide the impact of different clustering methods and answer selection
strategies in Appendix D. We further ablate the underlying sentence embedding model and find that
GCoT’s semantic clustering is largely insensitive to the specific encoder used (Appendix G).

Specifically, we denote all decoding paths as {pi}Ki=1, with each path producing a final answer
gi = gen2(pi) and associated confidence score ci = confidence(pi). We maintain a set of semantic
groups {Gj}Nj=1 with corresponding representative answers {rj}Nj=1, initialized as empty. For each
answer gi, we compute its cosine similarity with all existing representatives:

si,j = cos
(
ϕ(gi), ϕ(rj)

)
, j = 1, 2, . . . , N, (8)

where ϕ(·) is the embedding function, and the greedy assignment rule is defined as:

j∗ =

min{ j ∈ {1, . . . , N} | si,j ≥ τ}, if max1≤j≤N si,j ≥ τ,

N + 1, otherwise,
(9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which always assigns gi to the first eligible group according to index ordering. Then we update:

Gj∗ ← Gj∗ ∪ {gi}, rj∗ =

{
rj∗ , j∗ ≤ N,

gi, j∗ = N + 1,
N ← max(N, j∗). (10)

After all K answers are assigned, we compute cumulative confidence for each group:

Cj =
∑

gi∈Gj

ci, j = 1, 2, . . . , N, (11)

and select the representative of the group with the highest cumulative confidence rjmax
, jmax =

argmaxj Cj as the final output. The pseudocode is given in Appendix A.

4 RESULTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate models on two categories of QA tasks: (1) Fixed QA, where the answer
set or format is constrained (e.g., integers or yes/no), including GSM8K and MultiArith (Cobbe
et al., 2021; Roy & Roth, 2015) for multi-step arithmetic reasoning, and Sports understanding
(Suzgun et al., 2022) from Big-Bench-Hard for binary reasoning over sports-related sentences; and
(2) Free QA, which involves open-ended or paragraph-level outputs, such as SQuAD v1.1 (Rajpurkar
et al., 2016) for extractive reading comprehension, BARQA (Srivastava et al., 2022) for context-
dependent anaphora resolution, and Auto Categorization (Srivastava et al., 2022) for identifying
semantic categories among object sets.

Baseline Methods and Evaluation Metrics. We primarily compare decoding-based methods,
including single-path sampling strategies such as greedy decoding, temperature sampling (t = 0.7),
and top-k sampling (k = 10); as well as multi-path sampling methods like beam search (b = 10),
self-consistency (k = 10) (Wang et al., 2022a) and CoT-decoding (Wang & Zhou, 2024).

We do not include prompt-based methods as baselines, as they are orthogonal to GCoT-decoding and
can be freely combined (see Section 4.3 for discussion). For fixed QA, we use accuracy, computed
by comparing the extracted answer token against the ground truth—note this extraction is used
only for evaluation, not confidence computation. For free QA, we evaluate with BLEU (Papineni
et al., 2002) and MATCH, which checks whether the ground-truth span appears in the response. For
GCoT-decoding variants, BLEU is calculated only on the final answer gen2.

Model and Parameter Settings. In the main experiments, we evaluate four models: Mistral-7B
(Jiang, 2024), Gemma-7B (Team et al., 2024), Llama3.1-8B (Grattafiori et al., 2024), and Qwen2.5-
14B (Yang et al., 2024). For the model-scale ablation, we use the Qwen2.5 series at 3B, 7B, 14B, and
32B scales. We use all-MiniLM-L6-v2 (Reimers & Gurevych, 2019) as the embedding model. We
set the first-stage branching number k = 10 and second-stage branching number k′ = 2, branch only
when confidence falls below a threshold δ of 0.2. During semantic aggregation of paths, we use a
similarity threshold τ of 0.8. For the sensitivity experiments on hyperparameter settings, please refer
to Appendix B.

4.2 MAIN RESULTS

Fixed QA. As shown in Table 3, GCoT-decoding outperforms all single-path decoding strategies
(greedy and sampling methods) and most multi-path decoding strategies (beam search and self-
consistency) across all models and datasets. Although CoT-decoding achieves the highest accuracy
on math reasoning tasks, its performance heavily relies on specific answer spans, as discussed in
Section 2.1. This dependency explains its advantage in fixed QA tasks but also becomes a major
bottleneck when extending to free QA tasks. In contrast, GCoT-decoding offers a more stable
alternative that does not rely on answer spans, achieving competitive performance on fixed QA while
delivering significant gains on free QA.

Free QA. As shown in Table 4, GCoT-decoding achieves the highest BLEU and MATCH scores
in nearly all settings, significantly outperforming other methods in both generation quality and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Spec
Ans

GSM8K MultiArith Sports understanding
Mistral-7B Gemma-7B Llama-3.1-8B Mistral-7B Gemma-7B Llama-3.1-8B Mistral-7B Gemma-7B Llama-3.1-8B

Greedy × 10.5 11.6 17.9 16.0 18.7 38.8 49.6 61.2 51.6
Temperature sampling × 8.4 7.9 13.1 15.2 18.8 36.2 48.9 60.1 52.4†
Top-k sampling × 5.1 6.2 14.2 13.3 17.3 37.0 50.3 58.0 51.9
Beam search × 6.7 10.2 17.1 15.5 17.9 38.1 48.2 59.9 50.7
CoT-decoding ✓ 21.9♠ 25.4♠ 36.3† 40.6♠ 43.8♠ 72.3† 50.6 68.4♠ 51.0
Self-consistency ✓ 16.3 17.2 28.5 21.7 22.9 46.9 52.9♠ 63.9 54.6†

GCoT-decoding + SpanAlign × 10.7 15.4 34.0 16.8 19.7 69.3 48.0 67.2† 52.0
GCoT-decoding × 18.0† 21.8† 41.7♠ 31.3† 22.8† 74.3♠ 52.0† 65.2 58.0♠

Table 3: Accuracy comparison of decoding strategies on fixed QA tasks; the top-ranked is marked
with ♠ and the second-ranked is marked with †. Spec Ans indicates whether the decoding strategy
relies on specific answer spans. The top section lists single-path decoding strategies; the bottom
section shows multi-path decoding strategies.

SQuAD v1.1 (contextual) BARQA (contextual) Auto categorization (context-free)
Gemma-7B Llama-3.1-8B Qwen2.5-14B Gemma-7B Llama-3.1-8B Qwen2.5-14B Gemma-7B Llama-3.1-8B Qwen2.5-14B

BLEU MATCH BLEU MATCH BLEU MATCH BLEU MATCH BLEU MATCH BLEU MATCH BLEU MATCH BLEU MATCH BLEU MATCH
Greedy 3.3 42.8 8.3 60.6 21.4 67.2 4.7 36.6† 10.8 39.7 10.7† 44.4♠ 5.8 16.8 5.1† 16.0† 8.5 29.0
Temperature sampling 3.1 40.1 7.5 57.2 17.1 64.1 4.5 32.1 7.3 37.4 7.7 42.5 6.0 13.6 4.9 13.3 6.6 27.9
Top-k sampling 2.8 35.2 5.4 51.0 13.1 55.1 2.9 33.3 6.8 37.2 6.4 40.0 4.3 13.7 4.5 11.2 5.6 26.0
Beam Search 3.2 41.9 7.9 59.3 20.0 66.0 4.2 35.4 10.0 38.5 10.1 42.1 5.3 15.0 4.7 15.4 8.1 28.4
CoT-decoding + Prompt-based 0.2 25.7 1.3 40.9 5.8 50.3 0.7 21.5 2.4 25.1 1.4 32.0 1.2 20.1 2.0 15.7 8.0 29.0
Self-consistency + Prompt-based 4.2† 36.7 3.2 43.2 12.1 58.0 2.2 26.1 3.6 30.4 1.5 33.5 7.4 20.3 3.1 14.1 5.3 29.8
GCoT-decoding + SpanAlign 3.9 48.9† 9.2† 62.0† 21.5† 69.6† 5.8† 36.5 10.9† 41.5† 10.9♠ 43.3† 8.8† 23.3† 4.5 14.7 8.8† 30.2†

GCoT-decoding 4.9♠ 54.6♠ 10.0♠ 67.2♠ 23.2♠ 71.4♠ 10.9♠ 37.7♠ 12.3♠ 44.1♠ 10.2 38.9 8.9♠ 24.6♠ 6.8♠ 20.0♠ 10.6♠ 30.5♠

Table 4: Performance of different models on free QA tasks; the top-ranked is marked with ♠ and the
second-ranked is marked with †. The top section lists single-path decoding strategies; the bottom
section shows multi-path decoding strategies.

answer alignment. Even compared to variants such as CoT-decoding + Prompt-based and Self-
consistency + Prompt-based, GCoT-decoding remains the top performer. In contrast, GCoT-decoding
+ SpanAlign suffers from performance drops due to frequent misalignment with incorrect spans.
Overall, GCoT-decoding demonstrates stronger robustness and generality when tackling complex,
free-form reasoning tasks.

Free QA. As shown in Table 4, GCoT-decoding achieves the highest BLEU and MATCH scores
in nearly all settings, significantly outperforming other methods in both generation quality and
answer alignment. Even compared to variants such as CoT-decoding + Prompt-based and Self-
consistency + Prompt-based, GCoT-decoding remains the top performer. In contrast, GCoT-decoding
+ SpanAlign suffers from performance drops due to frequent misalignment with incorrect spans.
Overall, GCoT-decoding demonstrates stronger robustness and generality when tackling complex,
free-form reasoning tasks.

Decoding strategy GSM8K Acc. (DeepSeek-R1)
Temperature sampling (T=0.7) 96.1
Self-consistency (k=10) 96.4
CoT-decoding (K=10) 97.2
GCoT-decoding (K=10) 99.0

Table 5: Accuracy of different decod-
ing strategies on GSM8K with the
reasoning-tuned model DeepSeek-R1.

Results on a reasoning-tuned model. On GSM8K, we also
evaluate the reasoning-tuned DeepSeek-R1 with its recom-
mended math prompt. Even on this near-saturated bench-
mark (temperature sampling already reaches 96.1%), GCoT-
decoding still improves over self-consistency and CoT-
decoding, raising accuracy from 97.2% to 99.0%, which
shows that it brings gains on top of strong reasoning-tuned
models rather than exploiting weaknesses of smaller ones.

4.3 COMPATIBILITY OF GCOT-DECODING WITH
PROMPTING METHODS

Figure 3: The results of combining GCoT-decoding with CoT prompting.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Although GCoT-decoding is a prompt-free method, this does not preclude its combination with
prompt-based approaches; in fact, they are highly compatible. Experiments on MultiArith and
SQuAD v1.1 using Gemma-7B and Llama-3.1-8B show (Figure 3) that merging GCoT-decoding
with CoT prompting yields steady performance improvements across all few-shot settings in both
fixed and free QA, with absolute gains of 10%–50%. This demonstrates that GCoT-decoding and
CoT prompting synergize effectively, significantly enhancing LLM reasoning quality in few-shot
scenarios. We provide the few-shot examples used in Appendix C.

4.4 ABLATION STUDY

We ablate GCoT-decoding along its three main stages: (i) the path generation strategy, (ii) the
backtracking rule, and (iii) the path aggregation module. We also report additional ablations on
confidence computation in Appendix B.

Variant GSM8K
(Gemma-7B)

GSM8K
(Mistral-7B)

SQuAD v1.1
(Gemma-7B)

SQuAD v1.1
(Llama-3.1-8B)

Fibonacci + greedy (ours) 21.8 18.0 54.6 67.2
top-k sampling (k=10) 7.9 6.2 42.1 50.4
top-p sampling (p=0.9) 8.6 7.0 43.5 51.3
temperature sampling (T=0.7) 9.4 7.8 45.0 52.6

Table 6: Ablation of path-generation strategies under
a fixed budget of K=10 paths. All variants share the
same backtracking and aggregation modules.

Effect of path generation strategy. Our goal
differs from generic diversity generation: in-
stead of injecting randomness at every step,
we only diversify the first token to open a
few alternative reasoning directions and then
greedily roll out each path. Fibonacci indices
further spread this first-step sampling bud-
get along the ranked candidates in a roughly
log-spaced manner, avoiding redundant explo-
ration of tightly clustered early hypotheses. Under a fixed budget of K=10 paths, Table 6 compares
this Fibonacci-based scheme to standard step-wise stochastic sampling while keeping backtrack-
ing and aggregation fixed, and shows that replacing our “one-step diversification + greedy rollout”
with top-k/top-p/temperature sampling drives GSM8K accuracy down to about 8–10% and reduces
SQuAD v1.1 MATCH by 10–20 points.

Variant Backtracking
trigger rate (%)

Success rate
given trigger (%)

SQuAD v1.1
(Gemma-7B)

SQuAD v1.1
(Gemma-7B)

No-backtracking – – 52.7 8.7
Random backtracking 100.0 18.1 52.0 8.6
Late backtracking 100.0 20.4 51.8 8.5
Local-minima backtracking (ours) 28.0 36.5 54.6 9.1

Table 7: Backtracking variants on SQuAD v1.1 dev
(Gemma-7B); “Success rate given trigger” is the frac-
tion of triggered cases corrected by backtracking.

Reliability of local-minima backtracking.
We assess reliability by measuring trigger fre-
quency and success rate on SQuAD v1.1 (Ta-
ble 7). Local-minima backtracking is trig-
gered on only about 28% of questions, yet
fixes an otherwise wrong greedy answer in
36.5% of those cases, raising MATCH from
52.7 to 54.6. Random and late backtracking
are always triggered but slightly underperform
the no-backtracking baseline and have much lower conditional success rates (around 18–21%), in-
dicating that naive perturbations are not helpful. We further study the effect of allowing more
backtracking points per path in Appendix E.

Aggregation variant Extra time
per question (sec.)

GSM8K
Acc. (Gemma-7B)

SQuAD
MATCH (Gemma-7B)

MaxPath (no aggregation) 0.0 15.3 41.9
Greedy clustering (ours) 0.2 21.8 54.6
LLM-based aggregation 8.3 22.1 55.8

Table 8: MaxPath vs. greedy semantic clustering and
an LLM-based aggregation module (Gemma-7B).
Extra time is measured relative to greedy decoding.

Greedy semantic clustering vs. LLM-based
aggregation. We first compare GCoT-
decoding with a MaxPath baseline that simply
selects the single highest-confidence path: as
shown in Table 8, greedy semantic clustering
improves GSM8K accuracy from 15.3 to 21.8
and SQuAD MATCH from 41.9 to 54.6, with
only 0.2 seconds of extra time per question.
An LLM-based aggregator yields slightly higher scores than greedy clustering but incurs about 8.3
seconds of additional latency and is sensitive to the aggregation prompt. Our greedy clustering
therefore offers most of the aggregation benefit over MaxPath at a fraction of the compute cost,
matching our goal of a lightweight, robust aggregation module.

4.5 QUANTITATIVE AND QUALITATIVE ANALYSIS

Quantitative analysis. As shown in Figure 4(a), performance improves with scale, especially from
3B to 7B, with smaller gains beyond. GCoT-decoding consistently outperforms +SpanAlign across
scales and shows greater robustness to domain shifts. Figure 4(b) shows that increasing the number of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Effect of model size. (b) Impact of decoding path
count k.

(c) Time cost and marginal
gain rate by decoding path
count k.

Figure 4: The impact of model size and the number of decoding paths k.

decoding paths k initially improves performance but saturates after k > 5. GCoT-decoding maintains
stronger and more stable gains than +SpanAlign across all k settings. As shown in Figure 4(c), time
cost grows roughly linearly with k, while both tasks exhibit diminishing marginal gains. Taken
together, the optimal “elbow” lies in the range k = 3 ∼ 5, where the marginal gain rate peaks and
time remains moderate.

Table 9: An example of path backtracking. The underlined segments indicate the answers targeted by
the decoding paths, while the highlighted portions show the content generated after backtracking.
“plays”, “defensive”, and “.” are the three local minima in Path1.

Question: What position does Von Miller play?
Path1(×): Von Miller plays(0.0877) defensive(0.0921) end position .(0.1980)

Path2(✓): Von plays the outside linebacker position on his team .

Path3(×): Von Miller plays the defensive end role for his team and is known for his pass rushing ability .

How early path backtracking works. We provide a qualitative example in Table 9 to illustrate
early error correction in the decoding process. In Path1, the incorrect answer “defensive end” emerges
after three local minima. Branching before the first error token (e.g., at “plays”) allows effective
correction, as in Path2, which leads to the correct answer “linebacker.” In contrast, branching after the
error fragment has formed, as in Path3, fails to revise the mistake—once embedded, the error resists
recovery. This highlights the importance of early branching before erroneous spans are committed.

Table 10: Decoding outputs with confidence gaps ∆k,answer for two classification examples.

Question: AUSTRO-ITALIAN WAR, JACOBITE REBELLION, and
FRANCO-SPANISH WAR are instances of

Question: Profitable home Chelisheva, The House with Lions, and
House under the steeple can be classified as

Ground truth: historical wars Ground truth: tourist attractions / architecture in Russia

k=1 European diplomatic initiatives. So the answer is: European diplo-
matic initiatives (∆=0.22)

× These are notable tourist attractions located across Russia. So the
answer is: tourist attractions (∆=0.81)

✓

k=2 diplomatic initiatives. So the answer is: diplomatic initiatives.
(∆=0.18)

× architectural heritage in Russia. So the answer is: architecture in
Russia (∆=0.68)

✓

k=3 These events can be categorized under diplomatic initiatives. So the
answer is: diplomatic initiatives (∆=0.09)

× tourist attractions in Russia. Explanation: each of these locations is a
notable architectural site known for its historical significance within
Russian cities. So the answer is: tourist attractions (∆=0.93)

✓

k=5 They are relevant to international treaty formation. So the answer is:
international treaty formation (∆=0.14)

× They refer to government-owned residential complexes. So the answer
is: government-owned residential complexes (∆=0.24)

×

k=8 Historical wars, because each conflict exemplifies armed struggles ...
So the answer is: historical wars (∆=0.81)

✓ metaphors from Soviet-era literature about class struggle. So the
answer is: Soviet-era literature (∆=0.11)

×

How Fibonacci sampling works. Table 10 presents two case studies of automatic classification
conducted via Fibonacci sampling. In the war classification example, paths k = 1 to k = 3 all
converge on related but incorrect categories such as “diplomatic initiatives.” The correct answer,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

“historical wars,” only emerges at k = 8 with a clear reasoning chain—illustrating the pattern
observed in Section 2.1, where early paths often cluster around the same error if the first prediction is
wrong. In such cases, Fibonacci sampling helps bypass these local error clusters and reach the correct
answer more efficiently.

In the architecture example, where the top-ranked path is already correct, early paths (k = 1–3)
also yield accurate labels, with k = 3 providing an explicit causal explanation. Although Fibonacci
may skip some additional correct paths (e.g., k = 4, 6, 7), the correct answer remains dominant in
aggregated confidence, allowing it to be recovered reliably.

5 RELATED WORK

Chain-of-Thought. Chain-of-Thought (CoT) prompting decomposes complex tasks into interme-
diate reasoning steps and has inspired a series of automated and structured extensions, including
Auto-CoT, Synthetic Prompting, Contrastive Denoising CoT, Faithful CoT, and KG-CoT, which aim
to improve generation quality and logical fidelity (Wei et al., 2022; Kojima et al., 2022; Zhang et al.,
2022; Shao et al., 2023; Zhou et al., 2024; Lyu et al., 2023; Zhao et al., 2024). Self-Consistency
further enhances performance by aggregating diverse reasoning paths (Wang et al., 2022a; Wang &
Zhou, 2024). However, most prompting-based methods rely heavily on labeled examples, handcrafted
templates, or predefined outputs, limiting scalability. In contrast, our GCoT-Decoding removes these
dependencies to enable broader applicability.

Prompting Methods to Enhance Reasoning. Efforts to improve prompting strategies include
paraphrasing, active example selection, analogical cues, and instruction tuning (Chen et al., 2024;
Diao et al., 2023; Yasunaga et al., 2023; Zhang et al., 2024b; Ho et al., 2022). Recent work also
explores context-aware decoding and weakly-supervised aggregation to improve robustness (Shi
et al., 2024; Ling et al., 2023; Arora et al., 2022), though such methods often introduce additional
annotation or computation costs. Prompt sensitivity and task specificity remain common bottlenecks.

Decoding Strategies to Enhance Reasoning. Beyond prompting, decoding-time strategies provide
an alternative route for eliciting reasoning. Early contrastive decoding diversified outputs without
relying on prompts (Li et al., 2022; Yao, 2024), while self-evaluation, confidence-based scoring, and
preference-guided optimization have been proposed to refine multi-step reasoning (Xie et al., 2023;
Wang et al., 2024; Taubenfeld et al., 2025; Zhang et al., 2024a). Tree-of-Thoughts (Yao et al., 2023)
and CoT-decoding (Wang & Zhou, 2024) treat reasoning as a structured exploration process, with
the latter showing that top-k sampling alone can reveal rich reasoning paths. Speculative decoding
methods (e.g., SPIN, SpecEE) improve efficiency but are less focused on reasoning quality (Chen
et al., 2025; Xu et al., 2025). A recent survey by Welleck et al. (2024) provides a comprehensive
overview of decoding strategies for reasoning tasks.

6 CONCLUSION AND FUTURE WORK

We propose GCoT-decoding, a general decoding strategy that extends earlier work to broader QA tasks.
We refine the branching method for generating candidate paths, which further boosts performance.
Experiments show that our method consistently improves the reasoning ability of language models of
various sizes and offers greater robustness to task drift.

Beyond the trade-off discussion in the current paper, we are actively exploring optimizations such
as early path pruning to reduce computational overhead. At the same time, we plan to extend the
evaluation of GCoT-Decoding to a wider range of tasks, particularly those requiring step-by-step
reasoning (e.g., structured text generation, logical inference, or multi-hop reasoning), which better
align with the strengths of CoT-based methods. For summarization-like tasks where reasoning is
less explicit, we will investigate hybrid approaches that selectively apply GCoT-Decoding only to
reasoning-intensive components, thereby combining efficiency gains with broader applicability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on developing a general decoding framework (GCoT-Decoding) to enhance the
reasoning capabilities of large language models (LLMs). This research does not involve human
subjects, sensitive personal data, or proprietary datasets, and all benchmarks used (e.g., GSM8K,
MultiArith, SQuAD, BARQA, etc.) are publicly available.

REPRODUCIBILITY STATEMENT

We have taken multiple measures to ensure reproducibility. All datasets employed are publicly
accessible, and preprocessing steps are documented in Appendix C. Algorithmic details, including
pseudocode for path sampling, backtracking, and semantic clustering, are provided in Appendix A.
Sensitivity experiments on hyperparameters are reported in Appendix B. Experimental settings
such as model scales, branching parameters, and evaluation metrics are specified in Section 4.1.
Furthermore, we plan to release anonymized source code as supplementary material, enabling
independent replication of all experiments.

REFERENCES

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
Frederic Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language
models. arXiv preprint arXiv:2210.02441, 2022.

Fahao Chen, Peng Li, Tom H Luan, Zhou Su, and Jing Deng. Spin: Accelerating large language
model inference with heterogeneous speculative models. arXiv preprint arXiv:2503.15921, 2025.

Wenqing Chen, Weicheng Wang, Zhixuan Chu, Kui Ren, Zibin Zheng, and Zhichao Lu. Self-
para-consistency: Improving reasoning tasks at low cost for large language models. In 62nd
Annual Meeting of the Association for Computational Linguistics (ACL 2024), pp. 14162–14167.
Association for Computational Linguistics (ACL), 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
with chain-of-thought for large language models. arXiv preprint arXiv:2302.12246, 2023.

Olga Golovneva, Sean O’Brien, Ramakanth Pasunuru, Tianlu Wang, Luke Zettlemoyer, Maryam
Fazel-Zarandi, and Asli Celikyilmaz. Pathfinder: Guided search over multi-step reasoning paths.
arXiv preprint arXiv:2312.05180, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
arXiv preprint arXiv:2212.10071, 2022.

Fengqing Jiang. Identifying and mitigating vulnerabilities in llm-integrated applications. Master’s
thesis, University of Washington, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
arXiv preprint arXiv:2210.15097, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
Deductive verification of chain-of-thought reasoning. Advances in Neural Information Processing
Systems, 36:36407–36433, 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluís Màrquez, Chris
Callison-Burch, and Jian Su (eds.), Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1743–1752, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1202. URL https://aclanthology.
org/D15-1202/.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Syn-
thetic prompting: Generating chain-of-thought demonstrations for large language models. In
International Conference on Machine Learning, pp. 30706–30775. PMLR, 2023.

Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih.
Trusting your evidence: Hallucinate less with context-aware decoding. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pp. 783–791, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
Yona. Confidence improves self-consistency in llms. arXiv preprint arXiv:2502.06233, 2025.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Soft self-consistency improves
language model agents. arXiv preprint arXiv:2402.13212, 2024.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022a.

12

https://aclanthology.org/D15-1202/
https://aclanthology.org/D15-1202/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-augmented
ensembles in language models. arXiv preprint arXiv:2207.00747, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. arXiv preprint arXiv:2406.16838, 2024.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing
Systems, 36:41618–41650, 2023.

Jiaming Xu, Jiayi Pan, Yongkang Zhou, Siming Chen, Jinhao Li, Yaoxiu Lian, Junyi Wu, and Guohao
Dai. Specee: Accelerating large language model inference with speculative early exiting. arXiv
preprint arXiv:2504.08850, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Liang Yao. Large language models are contrastive reasoners. arXiv preprint arXiv:2403.08211, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 11809–11822. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang,
Ed H Chi, and Denny Zhou. Large language models as analogical reasoners. arXiv preprint
arXiv:2310.01714, 2023.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual reasoning.
Advances in neural information processing systems, 35:30378–30392, 2022.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference
optimization: Improving chain-of-thought reasoning in llms. Advances in Neural Information
Processing Systems, 37:333–356, 2024a.

Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing chain of thought
prompting in large language models via reasoning patterns. arXiv preprint arXiv:2404.14812,
2024b.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

Ruilin Zhao, Feng Zhao, Long Wang, Xianzhi Wang, and Guandong Xu. Kg-cot: Chain-of-thought
prompting of large language models over knowledge graphs for knowledge-aware question answer-
ing. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
(IJCAI-24), pp. 6642–6650. International Joint Conferences on Artificial Intelligence, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022a.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh International
Conference on Learning Representations, 2022b.

Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, and Bo Han. Can language
models perform robust reasoning in chain-of-thought prompting with noisy rationales? Advances
in Neural Information Processing Systems, 37:123846–123910, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ALGORITHM DETAILS

We provide the pseudocode of path sampling and backtracking in Algorithm 1, and the pseu-
docode of the decoding path aggregation algorithm based on semantic clustering in Algorithm 2.

Algorithm 1: General decoding path generation with Fibonacci sampling and backtracking
Input: Model model, tokenizer tokenizer, query query, first branching size k, second branching size

k′, confidence threshold δ
Output: List of final decoding paths
Initialize empty result listR;
// First branching Compute logits from initial query using model;
Select tokens at indices determined by Fibonacci sequence: {F1, F2, . . . , Fk};
foreach token index i ∈ {F1, F2, . . . , Fk} do

Form initial decoding prefix by appending token ti to query;
Greedily decode from this prefix to obtain complete path y = (y1, y2, . . . , yT) and token confidences
{s1, s2, . . . , sT };

Append path and confidences to temporary list L;
end
// Secondary branching via backtracking foreach decoded path y and confidences {st}Tt=1 in L do

Identify local minima set S = {t | 3 ≤ t ≤ T, st < st−1, (t < T ⇒ st < st+1), st < δ};
Determine branching point b:

b =

{
minS, S ̸= ∅
−1, S = ∅

if b ̸= −1 then
Truncate path to form prefix y<b = (y1, . . . , yb−2);
Compute logits for next token after prefix y<b;
Select alternative tokens at Fibonacci indices {F1, . . . , Fk′};
foreach alternative token index j ∈ {F1, . . . , Fk′} do

Append token y
(j)
b−1 to prefix y<b;

Greedily decode from new prefix to complete new path y(j);
Add new path y(j) to result listR;

end
end
else

Add original path y directly to result listR;
end

end
return result listR

Algorithm 2: General decoding path aggregation via semantic clustering
Input: Decoding paths {pi}Ki=1, confidences {ci}Ki=1, embedding function ϕ(·), similarity threshold τ
Output: Final aggregated answer
Initialize semantic groups: Gj ← ∅, representatives rj ← ∅, group count N ← 0;
foreach path output gi = gen2(pi) do

Compute embedding ϕ(gi);
if N = 0 then

Create new group G1 = {gi}, set representative r1 = gi, set N = 1;
continue;

end
Compute similarities si,j = cos(ϕ(gi), ϕ(rj)) for all existing groups j = 1, . . . , N ;
Find the minimal index j∗ satisfying si,j∗ ≥ τ ; if none exist, set j∗ = N + 1;
if j∗ ≤ N then

Add gi to existing group Gj∗ ;
else

Create new group GN+1 = {gi}, set representative rN+1 = gi, increment N ;
end

end
Compute cumulative confidence Cj =

∑
gi∈Gj

ci for each group j;
Select group with maximum cumulative confidence jmax = argmaxj Cj ;
Return group representative rjmax as the final output.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We provide the pseudocode of path sampling and backtracking in Algorithm 1, and the pseudocode
of the decoding path aggregation algorithm based on semantic clustering in Algorithm 2.

B SENSITIVITY TO HYPERPARAMETERS

We provide the results of sensitivity experiments on the similarity threshold τ and the confidence
threshold δ in Table 11.

Table 11: Performance under different thresholds τ and δ on GSM8K, MultiArith, and Sports
Understanding tasks.

τ δ GSM8K MultiArith Sports Underst.

Mistral-7b Gemma-7b Llama-3.1-8b Mistral-7b Gemma-7b Llama-3.1-8b Mistral-7b Gemma-7b Llama-3.1-8b

0.8 0.2 18.0 21.8 41.7 31.3 23.2 74.3 52.0 65.2 58.0
0.7 0.2 16.9 20.5 40.8 30.1 21.9 72.6 49.8 63.7 55.3
0.9 0.2 17.3 21.0 40.9 30.5 22.7 73.2 51.5 64.2 57.0
0.8 0.1 17.2 21.1 41.1 30.7 22.4 73.4 51.7 64.5 57.3
0.8 0.3 17.4 21.4 41.2 30.6 22.6 73.7 51.6 64.7 57.5

C PROMPT DEMONSTRATION EXAMPLES

Figure 5 shows the chain-of-thought prompting examples we use for the SQuAD dev-v1.1 task. In
the zero-shot setting, no demonstrations are provided. The one-shot setting includes only Example 1,
while the three-shot setting incorporates all three examples.

Figure 5: Prompting examples used in the SQuAD dev-v1.1 task under different few-shot settings.
Zero-shot uses no demonstrations, one-shot includes only Example 1, and three-shot includes all
three examples.

Figure 6 shows the chain-of-thought demonstrations used for the GSM8K task. Similarly, the zero-
shot configuration contains no examples, the one-shot configuration includes only the first example,
and the three-shot configuration includes all three. These prompts are used to evaluate the effect of
demonstration count on arithmetic reasoning performance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Prompting examples used in different few-shot settings for the GSM8K task., adapted to
arithmetic reasoning.

D ANALYSIS ON CLUSTERING AND REPRESENTATIVE SELECTION

As shown in Table 12, while different clustering algorithms (Greedy, K-Means++, Agglomerative,
Spectral) yield nearly identical accuracies, the representative selection strategy makes a substantial
difference. Specifically, choosing the first-in-cluster answer consistently outperforms alternatives
such as selecting the cluster centroid or the maximum-confidence path. This confirms that index
ordering plays a crucial role in GCoT-decoding, and that a greedy clustering scheme combined with
first-in-cluster selection is both efficient and effective.

Table 12: Accuracy comparison of clustering methods and representative choices on SQuAD v1.1.

Category Method Gemma-7B Llama-3.1-8B

Clustering (with
First-in-Cluster)

Greedy Clustering 54.6 67.2
K-Means++ 54.4 66.9
Agglomerative (Ward) 54.7 67.1
Spectral Clustering 54.5 67.0

Representative
(with Greedy
Clustering)

First-in-Cluster 54.6 67.2
Cluster Centroid 47.8 60.4
Max-Conf 48.2 60.9

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E CHOICE OF THE NUMBER OF BACKTRACKING

Figure 7: Effect of the maximum number
of backtracking points per path under a
fixed overall path budget.

We find that CoT errors tend to have early turning points:
as soon as the model commits to a wrong semantic de-
cision (Table 9), the token-level confidence exhibits a
sharp local drop, and subsequent tokens mostly elabo-
rate on this misconception rather than correcting it. In
these cases, backtracking at the first confidence valley
is typically sufficient to redirect the reasoning towards a
different, potentially correct branch. From an efficiency
perspective, allowing multiple backtracking points per
path under a fixed path budget significantly increases
decoding cost and complicates how to trade off early
vs. late corrections, so we adopt a simple one-shot back-
tracking rule as a pragmatic accuracy–efficiency com-
promise.

Figure 7 summarizes this ablation by varying the maxi-
mum number of backtracking points per path from 1 to 5: performance improves slightly from 1-back
to 2-back, stays roughly flat around 3-back, and then drops noticeably at 4 and 5. This pattern indi-
cates that limited extra backtracking offers only marginal gains, while aggressive multi-backtracking
quickly hurts both accuracy and efficiency, supporting our choice of a single-shot local-minima
strategy.

F EFFECT OF ANSWER-EXTRACTION TEMPLATES

In Section 2.1, we use a short continuation template (e.g., “So the answer is ...”) purely as an
answer-extraction marker after the model has already produced a full chain-of-thought reasoning
trace. To verify that GCoT-decoding does not depend on the specific wording of this marker, we
evaluate several semantically equivalent templates on SQuAD v1.1 with Gemma-7B, while keeping
all other components fixed.

Template SQuAD v1.1 MATCH (Gemma-7B)

“So the answer is . . . ” 54.6
“Therefore, the answer is . . . ” 54.5
“Final answer:” 54.3

Table 13: Ablation on answer-extraction templates for GCoT-decoding on SQuAD v1.1.

The variation across templates is within 0.3 absolute MATCH points, which is negligible compared
to the gains obtained by switching from greedy or vanilla CoT-decoding to GCoT on the same
benchmark. This supports our claim that GCoT-decoding does not hinge on a specific wording of the
answer-extraction template.

G EMBEDDING MODEL ABLATION FOR SEMANTIC CLUSTERING

In Section 3.3, GCoT-decoding uses an off-the-shelf sentence embedding model to perform greedy
semantic clustering over candidate paths. To assess the sensitivity of this module to the choice of
embedding space, we fix the rest of the framework and only vary the embedding model, comparing
MiniLM, MPNet-base, and E5-small on SQuAD v1.1 and Auto-Categorization.

Across all settings, the variation in BLEU and MATCH is within 0.5 absolute points, suggesting
that the greedy clustering module is relatively insensitive to the specific off-the-shelf embedding
model used, as long as it provides a reasonable semantic similarity signal. This matches our design
goal of treating semantic clustering as a conservative, pluggable enhancement over simple max-path
selection.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Setting SQuAD v1.1
BLEU

SQuAD v1.1
MATCH

Auto-cat
BLEU

Auto-cat
MATCH

GCoT + MiniLM 10.0 67.2 10.6 30.5
GCoT + MPNet-base 9.8 66.7 10.4 30.3
GCoT + E5-small 10.1 67.0 10.5 30.4

Table 14: Embedding model ablation for the semantic clustering module in GCoT-decoding.

H SPANALIGN ABLATION: LAST VS. MEAN ALIGNMENT

In Section 3.2, we use an LCS-based SPANALIGN module to compare answer segments across
different paths. When the same answer phrase appears multiple times in a reasoning trace, our default
implementation scores only the terminal aligned segment (“SpanAlign (Last)”). To check whether
averaging over all aligned segments could be preferable, we compare this default against a variant
that averages confidence across all occurrences (“SpanAlign (Mean)”) on GSM8K, MultiArith, and
Sports Understanding.

Method GSM8K (Acc.) MultiArith (Acc.) Sports Understanding (Acc.)

Mistral-7B Gemma-7B Llama-3.1-8B Mistral-7B Gemma-7B Llama-3.1-8B Mistral-7B Gemma-7B Llama-3.1-8B

GCoT-decoding + SpanAlign (Last) 10.7 15.4 34.0 16.8 19.7 69.3 48.0 67.2 52.0
GCoT-decoding + SpanAlign (Mean) 10.2 14.9 33.5 16.1 19.0 68.5 47.1 66.3 51.4

Table 15: Comparison between using only the last aligned answer span (SpanAlign (Last)) and
averaging over all aligned spans (SpanAlign (Mean)).

Across all three datasets and models, using the final occurrence of the aligned answer span is at least
as reliable as averaging over all occurrences, and often slightly better.

I THE USE OF LARGE LANGUAGE MODELS

This manuscript used a large language model only for light editorial support—namely grammar and
spelling checks, minor language polishing, and table formatting. The LLM did not generate scientific
content, results, analyses, or claims. All edits were reviewed by the authors, and the authors remain
fully responsible for the final text.

18

	Introduction
	Motivation
	CoT-decoding relies heavily on specific answer spans
	CoT-decoding can miss correct answers hidden in deeper paths

	Method
	Two-stage path branching strategy
	Length-Aware Logit Gap Confidence
	Greedy Semantic Clustering for Path Aggregation

	Results and Analysis
	Experimental setup
	Main results
	Compatibility of GCoT-decoding with Prompting Methods
	Ablation study
	Quantitative and qualitative analysis

	Related Work
	Conclusion and future work
	Algorithm Details
	Sensitivity to hyperparameters
	Prompt Demonstration Examples
	Analysis on Clustering and Representative Selection
	Choice of the number of backtracking
	Effect of answer-extraction templates
	Embedding model ablation for semantic clustering
	SpanAlign ablation: last vs. mean alignment
	The Use of Large Language Models

