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Abstract—Overeating is a key contributor to obesity, yet
identifying and characterizing its underlying causes remains chal-
lenging. While prior research has leveraged Ecological Momen-
tary Assessment (EMA) to capture psychological and contextual
factors in real-time, few studies have integrated EMA with pas-
sive sensing to uncover fine-grained, individualized consumption
behaviors. In this work, we present a multimodal framework
combining psychological and contextual data from a custom-built
EMA app with validated camera-derived meal microstructure
features from a neck-worn activity-oriented wearable camera.
Across 41 participants, the camera captured 6,343 hours of
footage over 312 days, yielding annotated bites, chews, meal
start/end times, and dietitian-confirmed caloric intake. Using
supervised contrastive learning, we generated meal-level repre-
sentations, projected them using UMAP, and applied k-means
clustering to identify behavioral phenotypes. We then conducted
a z-score analysis to highlight features most distinctive to each
cluster. Among the eight discovered groups, three consistently
showed high purity for overeating meals (average purity = 0.99),
revealing nuanced, data-driven overeating phenotypes that may
inform targeted intervention strategies.

Index Terms—Overeating phenotypes, multimodal sensing,
supervised contrastive learning, wearable camera

I. INTRODUCTION

As of 2023, 40.3% of US adults have obesity [1], a disease
caused by energy intake in excess of expenditure [2]. Individ-
ual factors shape the formation of overeating habits that sustain
energy imbalance over time [3]. Consequently, understanding
the patterns underlying individual dietary habits is crucial for
designing effective long-term weight loss interventions [4].
Recent advances in sensor analytics enable automated capture
of such patterns. This approach supports identifying both
known (e.g., emotional eating, impulsive eating in response to
cues, hedonic eating) and novel eating phenotypes, enabling
personalized, meal-level interventions.

Significant efforts have been made to understand eating be-
haviors through objective and subjective monitoring methods
such as passive sensing and Ecological Momentary Assess-
ment (EMA) [5]. Previous passive sensing approaches include
wrist-worn accelerometers to detect eating, inertial sensors to
monitor chewing, and multi-sensor systems combining prox-
imity, IMU, and ambient light sensors to track eating gestures

via jaw and hand movements [5]. Compared to traditional self-
reports, EMA provides more accurate and nuanced data by
capturing eating contexts in real time, which aids in identifying
co-occurring psychological or situational exposures over time
[6]. Combining image-based EMA with 24-hour dietary recalls
can further enhance accuracy by reducing errors in dietary
reporting [7]. The wealth of data these tools provide invites
us to explore new analytic approaches to overeating.

Prior studies examine overeating through individual fac-
tors such as stress, nighttime eating, and loss of control
(LOC). Emotional states (e.g., anxiety, boredom, depression)
are closely linked to emotional eating [8], while behaviors can
increase intake (e.g., rapid eating) by overriding satiety cues
[9]. Environmental influences, (e.g., access to high-calorie
foods, social settings) also contribute to overeating [2]. Most
existing methods examining these determinants have primarily
relied on linear statistical approaches, which utilize a limited
set of predictors to tackle the complex and multifaceted issue
of overeating and thus fall short in capturing the interplay
of physiological, psychological, behavioral, and environmental
factors at work in overeating.

To address limitations in prior work, we introduce a mul-
timodal framework that integrates passive sensing and EMA
to explore overeating. Leveraging a dataset of 700 dietitian-
verified meals from 41 adults with obesity, we extracted
psychological, contextual, and camera-derived features across
14 days. Our contributions include: (1) collecting a high-
resolution, multimodal dataset linking passive sensing and
EMA in real-world eating contexts; (2) developing a super-
vised contrastive learning model to derive meaningful meal-
level embeddings; and (3) identifying interpretable overeating
phenotypes through clustering, revealing novel sensor-EMA
behavioral signatures that may guide targeted intervention
strategies for nutrition and obesity care.

II. METHODS

A. Study Design and Data Collection

The 14-day observational study involved 65 adults with
obesity (BMI ≥ 30 kg/m2) in the Chicago area, designed to
examine real-world eating behaviors using a combination of



Fig. 1. Multimodal pipeline for overeating phenotype discovery: (A) Passive sensing, EMA, and dietitian-verified meals enable rich data collection. (B)
Supervised contrastive learning and UMAP uncover latent clusters. (C) Key features (|z-score| ≥ 1) profile behavioral differences.

passive sensing and EMA. Participants were equipped with a
wearable sensing suite that included a neck-mounted, activity-
oriented wearable camera capable of capturing thermal and
RGB video data to monitor eating activity in naturalistic
settings. A custom smartphone app prompted participants to
complete event-based EMA surveys before and after meals.
Dietary intake was further assessed through 24-hour recalls
conducted by trained dietitians using the multiple-pass method,
supported by participant-captured food images. Of the 65
initial participants, 41 participants were included in the final
analysis after excluding individuals who dropped out (n=7),
lacked dietitian-administered recalls (n=5), had fewer than
10 valid meals (n=5), or had insufficient wearable camera
data (n=7). The resulting dataset comprised 700 meals with
complete passive sensing and EMA data. Figure 1 displays
an overview of the analysis pipeline. More details about the
study design and data collection can be found in the SenseWhy
design paper [10].

B. Feature Extraction
EMA-derived features captured psychological and contex-

tual factors surrounding each meal. Prior to and following
each eating episode, participants completed surveys via a
mobile app assessing hunger, affect, stress, and emotional
states using Likert-scale items. Contextual features included
meal source (e.g., self-prepared, restaurant), setting (e.g., solo
or social dining), and concurrent activities (e.g., task-oriented
distraction or focused eating). Evening meals were defined
as those consumed between 5 PM and 6 AM. Following a
standardized protocol validated by trained raters, we conducted
fine-grained annotations of eating activity using wearable
camera footage. For each eating episode, we manually labeled
the start and end times. Within each episode, we annotated
individual bites, defined as large jaw open/close movements
when food enters the mouth, and chews, defined as smaller,
consecutive jaw movements during mastication. From these
annotations, we derived passive sensing features including
total number of chews/bites, chew-to-bite ratio, average time

interval between chews and bites, meal duration from start/end
of eating episodes, eating pace, and percent of meal time spent
chewing. The outcome of interest, overeating, was defined as a
binary variable indicating whether a meal’s energy intake ex-
ceeded 1 z-score above the individual’s 14-day average intake,
based on validated data from 24-hour dietary recalls [10].

C. Eating Pace
In obesity research, eating speed influences satiety, intake,

and weight outcomes, making it a key behavioral marker.
Traditional assessments of eating speed, however, often rely
on self-report or coarse measurements of meal duration, which
may be prone to recall bias or distortion by long inactive
periods during eating. To address these limitations, we propose
a refined, behaviorally grounded method of defining eating
based on chews, allowing for precise quantification of eating
dynamics. We applied DBSCAN, a density-based clustering
algorithm, to identify natural groupings of chews and re-
move temporally isolated outliers. DBSCAN parameters (ϵ
and minimum samples) were optimized for each participant
using elbow-method clustering to accommodate individual
differences in chewing frequency. Chews occurring within ϵ
seconds of one another were grouped into chewing sequences,
while those separated by longer intervals were considered
isolated and excluded. This segmentation filters out spurious
chewing activity—such as a single chew minutes apart from
others—that could otherwise inflate eating time or distort
derived metrics. An eating episode was defined as chewing
sequences containing at least 15 consecutive chews, in line
with prior work, which established this threshold as a minimal
criterion for sustained eating behavior [11]. Building on this
segmentation, we introduced a novel metric for eating pace,
defined as the number of chews per meal divided by the
total chewing duration—calculated from the time between
the first and last chew in the identified sequence. Unlike
conventional definitions based on bite timing or meal start/end
timestamps, our chew-based approach is robust to pauses
in eating and better reflects actual masticatory engagement.



TABLE I
PHENOTYPE PROFILES OF OVEREATING CLUSTERS

Phenotype
Name

Psychological
Features

Contextual
Features

Camera
Features

“Fast-Fork
Social
Dining”

Loss of control(p)

Pre-meal biological
hunger(p)

Desire for food(p)

Social dining
experience(p)

Restaurant-
sourced meal
(dine-in)(p)

In-restaurant
dining(p)

Socializing(p)

In-home dining(n)

Eating
pace(p)

“Serene
Screen
Suppers”

Pre-meal biological
hunger (p)

Pre-meal calm(p)

Hedonic eating(p)

Desire for food(p)

Perceived
overeating(n)

Pre-meal upbeat(n)

Post-meal stress(n)

Evening eating(p)

Task-oriented
distraction
(watching TV)(p)

Self-prepared
meal(p)

Solo dining(p)

Chews
number(p)

Bites
number(p)

Meal
duration(p)

Chew-bite
ratio(n)

Eating
pace(n)

Chew
time-meal
duration
ratio(n)

“Stressed
Solo
Bites”

Pre-meal stress(p)

Post-meal stress(p)

Pre-meal lonely(p)

Perceived
overeating(p)

Cognitive
restraint(p)

Hedonic eating(n)

Pre-meal upbeat(n)

Pre-meal calm(n)

Restaurant-
sourced
meal (takeout)(p)

In-home dining(p)

–

The table shows the principal features and characteristics associated with
each derived overeating phenotype cluster. Note. Superscripts (p) and (n)

indicate positive and negative z-scores, respectively.

To our knowledge, this is the first study to examine the
relationship between overeating and detailed passive sensing
features—such as eating pace, chew-to-bite ratio, percent of
time spent chewing, and average chew/bite intervals—using
validated, fine-grained annotations from wearable sensor data.

D. Supervised Contrastive Learning Framework

We developed a supervised contrastive learning frame-
work, SupConNet, inspired by the architecture and train-
ing strategy proposed in [12]. SupConNet consists of an
MLP-based encoder followed by a projection head, trained
using a supervised contrastive loss to learn discriminative
embeddings of meal-level behavioral features. During training,
two augmented views of each sample are generated through
stochastic transformations, and the model is optimized to pull
together embeddings from the same class (e.g., overeating
vs. non-overeating) while pushing apart those from different
classes. Formally, let fθ : Rd → Rp denote the full network
parameterized by θ, where x ∈ Rd is a high-dimensional
input feature vector and z = fθ(x) ∈ Rp is the learned

embedding in a latent space. After training, we discard the
projection head and extract embeddings from the encoder for
downstream tasks. To visualize the learned representations,
we apply Uniform Manifold Approximation and Projection
(UMAP) to project z ∈ Rp into a two-dimensional space
R2, facilitating qualitative exploration of latent structure and
clustering in eating behaviors.

E. Latent Space Clustering and Z-Score Analysis
We applied k-means clustering to the two-dimensional

UMAP projections of the SupConNet embeddings to identify
distinct subgroups of participants based on their learned be-
havioral representations. To determine the optimal number of
clusters k, we computed the average silhouette score across
a range of candidate values k ∈ [2, 10], selecting values near
local maxima for further evaluation.

We evaluated the resulting clustering using standard metrics
including homogeneity, entropy, Davies-Bouldin Index (DBI),
purity, and silhouette score. Homogeneity measures whether
clusters contain only members of a single class (range: 0–1,
higher is better); DBI evaluates cluster compactness and
separation (range: 0 to ∞, lower is better); entropy quanti-
fies class distribution uncertainty within clusters (range: 0–1,
lower is better); and the silhouette score captures cohesion
vs. separation (range: -1 to 1, higher is better). Purity was
computed as:

Purity =
1

N

∑
k

max
j

|Ck ∩ Lj | ,

where Ck is the set of samples in cluster k, Lj is the set of
samples in class j, and N is the total number of samples.

To assess the distinctiveness of clusters, we conducted a z-
score analysis across all features included in the study. For
each cluster c and feature j, we calculated:

zc,j =
µc,j − µj

σj
,

where µc,j is the mean of feature j within cluster c, µj is the
overall mean across all clusters, and σj is the corresponding
standard deviation. This analysis enabled standardized com-
parisons across clusters to identify behavioral patterns and
characterize each subgroup.

III. RESULTS AND DISCUSSION

A. SupConNet Specifications
We trained SupConNet using a fully connected encoder

with three hidden layers (128–128–64 units, ReLU activations)
followed by a two-layer projection head with a final projection
dimension of 32. Input features were augmented by adding
Gaussian noise and applying random masking before con-
trastive training. The model was optimized using a supervised
contrastive loss with a temperature parameter of 0.07. Training
was conducted for 500 epochs using the Adam optimizer
with a learning rate of 10−3 and a batch size of 4. After
training, embeddings from the encoder were extracted and
used for UMAP projection and then downstream clustering
and phenotype profiling.



B. Overeating Subgroup Discovery via Clustering in Latent
Space

After performing k-means clustering with k = 8, se-
lected based on the maximum silhouette score, on the two-
dimensional UMAP projections of SupConNet embeddings,
we obtained clusters that exhibited strong separation and inter-
nal consistency. The resulting clustering achieved an average
silhouette score of 0.55, homogeneity = 0.98, DBI = 0.51,
average purity = 0.99, and average entropy = 0.05 across all
clusters. Among these, three clusters were highly pure with
respect to the overeating class and collectively accounted for
all of the overeating meals. These clusters were selected for
further profiling as candidate overeating phenotypes.

C. Phenotype Profiling

Table I summarizes the three overeating phenotypes identi-
fied via clustering, highlighting features with |z-score| ≥ 1
as the most distinctive. For each cluster, we report cluster
size (n), purity score (p), mean energy intake with stan-
dard deviation (kCal), entropy (e), and silhouette score (s).
Additionally, we assign a concise name to each phenotype,
highlight novel behavioral patterns, and contextualize them
with existing literature.

“Fast-Fork Social Dining” (n = 66, p = 100%, 1190.3 ±
355.2 kCal, e = 0.00, s = 0.83): reflects elevated loss of
control and biological hunger, with a tendency to eat socially
or at restaurants and at a faster pace. Our findings suggest that
loss of control, as experienced in the context of social dining,
may be coupled with an elevated eating pace—providing a
behavioral lens through which sensor-derived features reflect
internal states. This extends prior associations between eating
speed and reduced satiety awareness [13].

“Serene Screen Suppers” (n = 27, p = 92.6%, 1206.2 ±
536.2 kCal, e = 0.381, s = 0.93): are marked by biolog-
ical hunger, low stress, and calm affect. Individuals in this
group often eat self-prepared, evening meals while watching
TV alone. Despite frequent chewing and biting, their low
chew-to-bite ratio and slow eating pace suggest distracted,
extended meals. Although prior work has linked screen-
related distractions to overeating [14], we found that such
distracted, mindless eating may also be reflected in altered
chewing behavior (e.g., a lower chew-to-bite ratio and slower
eating pace), highlighting new sensor-derived indicators of
disengaged eating.

“Stressed Solo Bites” (n = 18, p = 100%, 1143.4± 259.5
kCal, e = 0.00, s = 0.94): characterized by stress-related
solitary takeout eating, elevated pre- and post-meal stress,
loneliness, and perceived overeating, alongside low positive
affect and reduced hedonic motivation. This pattern reinforces
and extends prior research linking emotional distress and
social isolation to maladaptive eating behaviors and increased
risk of overeating [8].

IV. CONCLUSION AND FUTURE WORK

These findings highlight distinct phenotypes of overeat-
ing meals, integrating psychological, contextual, and sensor-

derived features. The outlined phenotypes provide a better
understanding of prominent overeating behaviors at the meal
level, which can then be utilized for tailored interventions
deployed in real-time when passive sensing detects eating
patterns consistent with specific phenotypes. Future work
will focus on validating these phenotypes in larger, diverse
populations and exploring their utility for targeted intervention
strategies.
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