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Abstract

Event temporal graphs have been shown as001
convenient and effective representations of002
complex temporal relations between events in003
text. While traditional methods are based on004
a pipeline approach, i.e., event extraction and005
relation classification, the recently proposed006
contextualized graph generation methods have007
shown promising results by employing pre-008
trained language models to generate linearized009
graphs as text sequences. However, this in-010
evitably led to sub-optimal graph generation as011
the linearized graphs exhibit set characteristics012
which are instead treated sequentially by the013
language models. This is due to their conven-014
tional text generation objectives which end up015
mistakenly penalizing correct predictions only016
because of the misaligned between elements in017
text. In this work, we extend for the first time018
the event temporal graphs generation to the doc-019
ument level by reformulating the problem as020
a conditional set generation task, proposing a021
Set-aligning Fine-tuning Framework allowing022
smooth employment of large language mod-023
els. A comprehensive experimental assessment024
has shown that our proposed framework signif-025
icantly benefits the event temporal graph gener-026
ation, and outperforms existing baselines. We027
further demonstrate that under the zero-shot028
settings, the structural knowledge introduced029
through the proposed framework has a signifi-030
cant beneficial impact on model generalisation031
when the examples available are limited.032

1 Introduction033

Understanding the temporal relation between034

events mentioned in long documents is crucial to035

modelling complex text with articulated narratives.036

One of the widely adopted benchmarks for event037

temporal relation understanding is still the SemEval038

2013 TempEval-3 (UzZaman et al., 2013), requir-039

ing end-to-end generation of event temporal graphs040

directly from raw text. An event temporal graph041

is a natural representation of temporal information,042

with the nodes representing events and the edges043

the temporal relationships between them, such as 044

“before”, “after”, or “simultaneous”. 045

Most existing approaches have typically ad- 046

dressed the problem of extracting event temporal 047

graphs through a two-step pipeline, with the first 048

step focusing on detecting events in text, and the 049

second step on classifying the temporal relations 050

between them (McDowell et al., 2017; Ning et al., 051

2018b). However, such pipeline-based approaches 052

suffer from well-known limitations, including (i) 053

the need for fine-grained annotations at each step; 054

and (ii) the potential for error propagation through- 055

out the pipeline. In particular, in the first step, 056

the event extractor’s objective is to locate as many 057

event triggers as possible in the given documents, 058

leading to the inclusion of numerous trivial events 059

that often lack relevance to the narrative and have 060

no relation to other events. As a result, the next 061

step for temporal relational extraction becomes bur- 062

dened with many noisy events, significantly im- 063

pacting the overall accuracy and efficiency of the 064

models. 065

To address these limitations, Madaan and Yang 066

(2021) introduced a reformulation of the task by 067

generating event temporal graphs directly through 068

conditional text generation. This approach allows 069

for the use of large pre-trained language models 070

and, more importantly, overcomes the typical lim- 071

itations associated with the pipeline architecture. 072

While this method involved fine-tuning a conven- 073

tional conditional text generation model, such as 074

GPT-2, for the generation of linearized event tem- 075

poral graphs as sequences, it fails to consider an 076

important aspect. Specifically, it does not account 077

for the fact that the target sequence (i.e. the list 078

of event temporal relations) does not rely on any 079

order, and should therefore be treated as a set rather 080

than as an ordered sequence. For example, the fol- 081

lowing two sequences represent the same temporal 082

graph: 083
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S1: [(Cuomo leaving his office, before, speak to reporters),084
· · · (Cuomo leaving, before, met with representatives)]085

S2: [(Cuomo leaving, before, met with representatives),086
· · · (Cuomo leaving his office, before, speak to reporters)]087

In this scenario, the conventional loss function will088

(mistakenly) yield a high value because most of the089

tokens in the corresponding positions do not match,090

even though the event relations are the same. This091

issue has a detrimental effect on the model perfor-092

mance for several reasons. First, it discourages the093

language model from generating additional edges.094

Generating more edges implies a greater number095

of potential permutations in the edge sets, making096

it less likely to match the target. Secondly, if the097

initially generated edge in the sequence differs in098

token count from the one in the target, it causes all099

subsequent edges to misalign with the target, even100

if they are identical, leading to a high loss value.101

In this work, we propose a Set-Aligning Fine-102

tuning Framework (SAFF), to extend the task of103

event temporal relation extraction, typically at the104

sentence-level, to the document-level, enabling ef-105

ficient employment of LLMs. SAFF incorporates106

a novel set of losses, named Set Property Losses,107

along with augmented data, aimed at mitigating the108

challenges associated with conventional text gener-109

ation loss. Using the proposed SAFF, we fine-tune110

language models from the T5 (Raffel et al., 2020)111

family with weak supervison. Additionally, we112

introduce the first human-annotated dataset built113

on the New York Times for document-level event114

temporal relation extraction, which we combine115

with existing sentence-level datasets to evaluate116

the effectiveness of the SAFF framework. Exper-117

iments on the newly annotated New York Times118

corpus 1 show that SAFF significantly increases the119

number of generated edges, resulting in improved120

recall. Furthermore, we assess the performance121

of our approach on existing sentence-level event122

temporal relation extraction datasets, namely MA-123

TRES (Ning et al., 2018a) and TB-Dense (Cassidy124

et al., 2014), under zero-shot settings, and we find125

that the structural knowledge introduced through126

the proposed SAFF has an even greater impact on127

model generalisation when the examples available128

are limited.129

Our contributions are three-folded:130

• We introduce a model-agnostic framework,131

called SAFF, for event temporal graph genera-132

tion. SAFF incorporates novel Set-Aligning133

1https://doi.org/10.35111/77ba-9x74

loss functions, data augmentation, and weak 134

supervision techniques. 135

• We offer a human-annotated test set and 136

a weakly-supervised dataset specifically de- 137

signed for document-level event temporal gen- 138

eration. 139

• We conduct an extensive evaluation of the fine- 140

tuned models under various settings, demon- 141

strating the effectiveness of the proposed 142

framework and the potential of contextualized 143

event graph generation. 144

2 Related Work 145

2.1 Event Temporal Graph 146

The task of event temporal graph extraction serves 147

as an important task for evaluating an end-to-end 148

system which takes raw text as input and output 149

TimeML annotations (i.e., temporal relations) (Uz- 150

Zaman et al., 2013). Early attempts on the task 151

include CAEVO (McDowell et al., 2017) and Cog- 152

comptime (Ning et al., 2018b), which relied on 153

a combination of statistical and rule-based meth- 154

ods. In recent years, more efforts have been put 155

into developing specialized sub-systems with neu- 156

ral network-based approaches (Ning et al., 2019; 157

Han et al., 2019a; Tan et al., 2021). The emergence 158

of large language models has paved a way for end- 159

to-end learning, treating temporal graph generation 160

as conditional text generation (Madaan and Yang, 161

2021). However, to tackle the set misalignment 162

issue which remained unexplored in Madaan and 163

Yang (2021), we propose a framework based on a 164

novel set of Set-Aligning losses, aiming at enhanc- 165

ing text generation models for this task. 166

It is worth noting that there is a related and more 167

widely-recognized task called temporal relation 168

extraction, which aims at classifying the type of 169

temporal links between pre-extracted events (Wang 170

et al., 2020; Wen and Ji, 2021; Tan et al., 2023). 171

While Han et al. (2019b) proposed a joint extraction 172

model for events and event temporal relations, they 173

rely on event extraction supervision signals, which 174

our work does not need. 175

2.2 Graph Generation with Language Models 176

Generating graphs with language models has been 177

explored in many areas. For example, Bosselut 178

et al. (2019) fine-tunes GPT on the ATOMIC com- 179

monsense knowledge graph (Sap et al., 2019). Mel- 180

nyk et al. (2022) proposed a multi-stage system 181

for knowledge generation based on T5. However, 182
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these studies do not generate the entire graph in a183

single step, whereas our framework generates the184

complete graph for each document in one go. In185

contrast, Madaan et al. (2021) generated inference186

graphs using a combination of a graph generator187

and a graph corrector for queries in defeasible rea-188

soning. Different from them, we focus on the set189

property of the generation sequence, which is par-190

ticularly important in the setting where both the191

input document and output sequence are consider-192

ably longer.193

2.3 Conditional Set Generation194

Text generation models are primarily designed for195

generating text with strict linear orders, making196

them suboptimal for generating sets. This limita-197

tion has been acknowledge in recent NLP research,198

where efforts have been made to adapt seq2seq199

frameworks for tasks like multi-label classification200

and keyword generation (Qin et al., 2019; Ye et al.,201

2021). Vinyals et al. (2016) studied the general202

challenge of using sets as either input or target out-203

put for text generation models. They found in both204

cases, the order of elements in the set has a signif-205

icant impact on convergence and final perplexity.206

This implies that there may exist an optimal order207

for the input or output set sequence, and they pro-208

posed allowing the model to search for this order209

during training. Instead of resorting to exhaus-210

tive search, Madaan et al. (2022) proposed to use211

data augmentation to enforce order-invariance and212

prepend the set’s cardinality to the target sequence213

to ensure the correct cardinality. While previous re-214

search has tackled tasks such as multi-label predic-215

tion and keyphrase generation, our work delves into216

the unique challenges presented by event temporal217

graph generation, which involves long sequences218

and partially ordered properties. We investigate var-219

ious methods to address the specific challenge of220

generating the edge set for event temporal graphs,221

exploring novel approaches in this context.222

3 Set-Aligning Fine-tuning Framework223

Madaan and Yang (2021) first explored the possibil-224

ity of end-to-end event temporal graph generation225

using neural language modelling. Since then, how-226

ever, this task has remained under-explored, with227

numerous unresolved issues. To elaborate, the first228

concern is that Madaan and Yang (2021) framed229

graph generation as a conventional sequence gen-230

eration problem, whereas it is fundamentally a set231

generation problem. Secondly, the dataset they232

built primarily consists of small-sized graphs, fail- 233

ing to challenge the model in terms of document- 234

level understanding. Lastly, their investigation 235

mainly centred on GPT-2, while the landscape of 236

LLMs has evolved with the emergence of models 237

featuring distinct structures (e.g., encoder-decoder) 238

and new paradigms (e.g., in-context learning) in 239

recent years. In this study, we address these three 240

aspects to enhance the understanding of sequence- 241

to-sequence temporal graph generation. 242

Although our proposed framework is designed 243

to be model-independent, several factors have led 244

us to choose T5 family as the base models for our 245

experiments: 246

• The T5 family is one of the most versatile 247

and capable LLMs after BERT (Devlin et al., 248

2019). It comprises many variants that incor- 249

porate different state-of-the-art methodologies 250

(e.g., flan-T5 for the instruction fine-tuned T5 251

model). 252

• T5 models are built with an encoder-decoder 253

framework, which is particularly well-suited 254

to document-level graph generation, because 255

it is more efficient in processing comprehen- 256

sive information in lengthy documents. 257

• In comparison to models like ChatGPT and 258

GPT-3, T5 is one of the best open-source mod- 259

els. Additionally, when compared to LLaMA 260

(Touvron et al., 2023), T5 is considerably 261

smaller in size, allowing us to fine-tune nu- 262

merous prototypes and explore a wider range 263

of settings within a limited timeframe. 264

3.1 Event Temporal Graph Modelling as Edge 265

Set Generation 266

An event temporal graph is a directed graph with no 267

isolated vertex. Each edge in the graph describes 268

a temporal relation between two events, and self- 269

loops are not permitted. Following Madaan and 270

Yang (2021), we represent these graphs by lineariz- 271

ing them into strings using the DOT graph descrip- 272

tion language (Gansner, 2006) (example shown in 273

Table 1). Given that event temporal graphs do not 274

have isolated vertices, the sequence essentially rep- 275

resents the edge set of the graph. 276

We model the probability of generating a string 277

y, which is a linearized representation of the event 278

temporal graph G, conditioned on a document X = 279

(x1, x2, ..., xn) using a language model: 280

pLM(y|X) =

T∏
t=1

p(yt|X, y<t) (1) 281
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Document: Governor Cuomo (e1: leaving) his office in Albany yesterday to (e2: speak) to 
          reporters after he (e4: met) with representatives of groups pushing for higher 
          ethical standards for public officials in the state. “We (e3: wanted) the Governor 
          and the Legislature to know that the feeling is out there.” said Paul Elisha.

Large
Language Model

e1: leaving

e2: speak

e3: wanted

Edge Embedding

e4: met

digraph G {
  “Gov. Cuomo leaving his office” -> “To speak to reporters” [l = before];
  “Gov. Cuomo leaving his office” -> “He met with representatives” [l = before];
  “He met with representatives”   -> “Gov. Cuomo leaving his office” [l = before];
  […]
}

Hausdorff
distance e1'

e2'

e3'

e1'

- Matching Loss:     ℒ!"#$%&'((
- Cardinality Loss: ℒ)"'%
- Duplication Loss: ℒ%#*+

Edge Set – Gold
[𝑒,- , 𝑒.- , …, 𝑒/- ]

Edge Set – Generated
[𝑒,, 𝑒., …, 𝑒/]

Parsing

𝓛 - Weighted LossAugmented
Data

ℒ!"#$ ℒ%"&'$(#))

Set-Property Losses

Figure 1: Set-Aligning fine-tuning framework (SAFF).

where y is a string formatted in DOT notation.282

3.2 Data Augmentation283

The target sequences of event temporal graph gener-284

ation are essentially sets rather than strictly ordered285

text sequences. Therefore, conventional text gen-286

eration loss can inadvertently penalize the token287

order and force the arrangement of elements to288

match the order in the target sequence, which is289

not necessarily the optimal order. This enforced or-290

der may lead to sub-optimal performance (Vinyals291

et al., 2016). A potential solution is to introduce292

random permutations of set elements as augmented293

training examples, which has already been shown294

effective in tasks like multi-label classification and295

keyphrase generation (Madaan et al., 2022). Specif-296

ically, in the context of event temporal graph gener-297

ation, the elements correspond to the edges in the298

target string. The substrings representing the edges299

are randomly shuffled, while the rest of the string300

remains unchanged.301

Prepending the set cardinality to the generation302

target may also help constrain the generation model303

to avoid over-generation (Madaan et al., 2022). In304

our preliminary experiment, we tried prepending305

the set cardinality to the target graph string and in-306

deed observed a significant reduction in the number307

of generated edges. However, it also resulted in a308

drop in recall, causing an approximate 4% drop in309

edge F1 score. Thus, we decided not to incorporate310

the cardinality into the final framework.311

3.3 Set Property Losses (SPL)312

Simply adding augmented data to train models does313

not address the fundamental issue of set alignment.314

Several challenges arise in this approach. First of315

all, it is unrealistic to add all permutations, espe-316

cially when dealing with long documents contain- 317

ing numerous event relations, as the training data 318

will grow at a rate proportional to the factorial of 319

the cardinality of the target set. More importantly, 320

with each augmented example, the loss function 321

would still penalize the unobserved permutations 322

of the set. This would make the training unstable. 323

The core challenge lies in finding an effective 324

way to compare the linearized target graph with 325

the linearized generated graph, without relying on 326

a strict token-by-token comparison as in conven- 327

tional text generation. To tackle this issue, we pro- 328

pose introducing modifications to the generation 329

loss. As the linearized graph essentially represents 330

the edge set of the graph, we can simplify the graph 331

comparison problem into a set comparison problem. 332

Our approach involves several components. Firstly, 333

we add a set cardinality loss to encourage the model 334

to generate an adequate number of temporal rela- 335

tion edges. Then, we introduce a duplication loss 336

to penalize any repetition of elements in the edge 337

set. Lastly, we design a set matching loss that as- 338

sess the semantic similarity between elements in 339

the target edge set and those in the generated edge 340

set. Collectively, the above loss functions are re- 341

ferred to as Set Property Losses (SPL). The SPL is 342

integrated with the conventional token-level cross- 343

entropy loss through a weighted average. 344

To compute the set property losses, a graph 345

string needs to be first sampled from a language 346

model given a training input. Then, this sequence is 347

parsed into a list of edges E, where each edge e is 348

a triplet consisting of a head event, a relation type, 349

and a tail event (h, r, t). Now, the number of edges 350

and duplicated edges can be counted. Let E denote 351

the set of all the unique edges in E. The values for 352

the set cardinality loss and the duplication loss can 353
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be computed as follows:354

E = {l|l ∈ E} (2)355

Ldupl =
|E| − |E|

|E|
(3)356

Lcard =
abs(|E ′| − |E|)

|E|
(4)357

The function abs(·) denotes taking the absolute358

value.359

To compute the set matching loss, we assess the360

similarity between the generated set and the target361

set by comparing the semantic similarity of the362

edges across the two sets. We take the last layer363

of the decoder’s representations of the respective364

tokens as the semantic representations of the events365

and the relation type. Then, we concatenate these366

representations as the semantic representation of367

each edge:368

zh = H[h1,h2,...,hm] (5)369

zr = H[r1,r2,...,rs] (6)370

zt = H[t1,t2,...,tn] (7)371

ē =
[
pool(zh); pool(zr); pool(zt))

]
(8)372

373 where H is the last-layer hidden states of the de-374

coder. [h1, ..., hm], [r1, ..., rs], and [t1, ..., tn] are375

the indices of the head event, relation type, and376

tail event, respectively. zh, zr, zt denote the seman-377

tic representations of the head event, relation type,378

and tail event, respectively. pool(·) represents the379

average pooling function. ē denotes the semantic380

representation of the edge.381

We now possess two sets of embeddings: one382

compassing the edge embeddings extracted from383

the target graph, and the other containing the edge384

embeddings derived from the generated graph. Es-385

sentially, they can be considered as two sets of386

points in the representation space. Thus, we can387

measure the similarity of the two graphs by measur-388

ing the distance between the two point sets (mani-389

folds) in the representation space. The Hausdorff390

distance, originally defined to measure the sepa-391

ration between two subsets within a metric space,392

has recently found applications in machine learn-393

ing for measuring the distance between two sets394

of embeddings (Schutze et al., 2012; Wang et al.,395

2023). We compute the average Hausdorff distance396

as the measure:397

dH(E ′, E) = 1

|E ′|
∑
ē′∈E ′

min
ē∈E

dcos(ē′, ē) 398

+
1

|E|
∑
ē∈E

min
ē′∈E ′

dcos(ē′, ē) (9) 399

where the distance of an edge pair is computed by 400

the cosine distance dcos(·). 401

3.4 Fine-tuning with Set Property Losses 402

Directly integrating the SPL into the fine-tuning 403

process is not practical. There are two primary 404

reasons for this. The first reason is that obtain- 405

ing the SPL requires sampling from the decoder, 406

which would reduce the training speed significantly. 407

More critically, the second reason is that the lan- 408

guage model may struggle to generate sequences 409

in DOT format accurately during the early stages 410

of fine-tuning. Consequently, the sequence parser 411

may fail to recognize any valid edges within the 412

sequence, resulting in high SPL values. These high 413

loss values can mislead the language model when it 414

is still in the process of learning to generate correct 415

DOT format sequences, potentially disrupting the 416

training process. 417

To avoid the problems mentioned above, we in- 418

troduce the SPL after a certain number of fine- 419

tuning iterations. Once the model has acquired 420

a basic proficiency in generating correct DOT se- 421

quences, the SPL can function as intended. This 422

makes training with SPL similar to the process of 423

calibration. 424

In our preliminary experiments, we explore al- 425

ternative methods for incorporating SPL, such as 426

mixing SPL in some of the training steps based on 427

a certain probability. However, they show inferior 428

performance and thus we decided not to include 429

them in the final SAFF framework. 430

4 Experiment 431

4.1 NYT Temporal Event Graph Dataset 432

There are several event temporal relation extraction 433

datasets with pairwise event relation annotations, 434

such as MATRES and TBD. It is theoretically pos- 435

sible to convert these annotations into document- 436

level event temporal graphs. However, our pre- 437

liminary experiments have shown that even when 438

merging all of these datasets (resulting in 4,684 439

training documents), it is not sufficient to fine-tune 440

a large language model to achieve acceptable per- 441

formance. To address this limitation, we opted to 442
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NYT-train NYT-test NYT-human

Total documents 18, 263 1, 000 22
Total events 846, 022 47, 251 661
Node degree 2.52 2.54 2.34
Total relations 1, 066, 264 60, 056 528
before 578, 216 32, 729 465
after 412, 704 23, 200 0
includes 7, 922 450 12
is_included 41, 964 2, 332 0
simultaneous 25, 458 1, 345 51

Table 1: The statistics of the NYT temporal event graph
dataset. Node degree represent the average number of
relations each event has.

build a significantly larger dataset on a selection of443

data from the New York Times (NYT) corpus using444

a weak supervision approach, drawing inspiration445

from the work of Madaan and Yang (2021). Never-446

theless, we introduced additional steps in the data447

selection process to ensure that the selected docu-448

ments contain high-quality event temporal graphs,449

which were not taken in Madaan and Yang (2021).450

Firstly, we performed topic modelling using La-451

tent Dirichlet Allocation (LDA) on the MATRES452

and TBD datasets to extract a set of topics. Then,453

we identified general descriptors that are semanti-454

cally similar to these topics (e.g., politics, diploma,455

sports, etc.). This selection process was crucial456

because, following training with noisy labels, our457

intention was to evaluate the model’s performance458

on these datasets under zero-shot settings. We fur-459

ther analysed the most noteworthy events in these460

descriptors to ensure they were narrative-oriented,461

because articles that weave stories tend to contain a462

wealth of event temporal relations. To identify the463

most significant events, we employed a metric sim-464

ilar to TF·IDF which we could describe as “event465

frequency × inverse-descriptor frequency”.466

ef·idf =
fe,d∑

e′∈d fe′,d
·log |D|

|{d ∈ D : e ∈ d}|
(10)467

where e is an event and d is a descriptor. fe,d is the468

number of times that event e occurs in the docu-469

ments with the descriptor d.
∑

e′∈d fe′,d is the total470

number of event occurrence in the descriptor d.471

|D| is the total number of descriptors in the corpus.472

|{d ∈ D : e ∈ d}| is the number of descriptors473

where the event e appears.474

The descriptors that are selected and the number475

of documents in them are listed in the Appendix476

B.1. After choosing the documents, we acquire the477

event temporal graph by running an off-the-shelf478

event and temporal relation extraction tool called 479

CAEVO (McDowell et al., 2017). CAEVO is more 480

scalable than Cogcomptime (Ning et al., 2018b), 481

making it suitable for building a large-scale dataset. 482

Then, each temporal graph is represented in DOT 483

format, and every event verb is prefixed and suf- 484

fixed with its noun phrase and object, respectively. 485

Note that we did not break the documents into 486

short segments as Madaan and Yang (2021) did. 487

Instead, we keep the data strictly at the document 488

level which is a more challenging setting because 489

the model needs to analyse the entire document 490

and generate a much larger graph. In the dataset 491

we built, a target graph has about 46 nodes and 492

58 edges on average. While in Madaan and Yang 493

(2021), the average number of nodes is 4 and the 494

average number of edges is 5 in a document-level 495

event temporal graph. Moreover, their events have 496

1.54 relations on average, while events in our data 497

have 2.52 relations on average, showing that the 498

graphs in our dataset are much more complex. In 499

practice, these complex documents are usually the 500

ones that require analysis, and a model developed 501

based on simpler inputs cannot handle them di- 502

rectly. 503

Aside from testing with the CAEVO-created 504

data like Madaan and Yang (2021), we recruited hu- 505

man annotators to annotate a test split of the NYT 506

data. We performed a preprocessing step regard- 507

ing the relation types by merging the reciprocal 508

relations, such as transforming after into before, 509

is_included into includes by swapping the head 510

and tail events. For example, “I had dinner after I 511

had lunch” is equivalent to “I had lunch before I 512

had dinner”. This processing not only streamlined 513

the annotation process but also had a potential to 514

enhance the model performance (refer to experi- 515

mental results in Appendix A). The statistics of our 516

dataset are shown in Table 1. We could see that the 517

distribution of relation types is highly imbalanced, 518

with a majority falling into either the before or after 519

categories. We also evaluated the trained models on 520

the MATRES test set (comprising 20 documents) 521

and TBD test set (consisting of 9 documents), both 522

of which were processed into DOT strings using 523

the methods previously described . 524

4.2 Model Setting 525

We use Flan-T5-base (Chung et al., 2022) (250M) 526

as our backbone model. The model is trained for 527

10 epochs, with each document being augmented 528

through 4 random permutations, followed by a fur- 529

ther 3 epochs of training, during which the SPL 530
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loss is adopted without permutations. We use a531

learning rate of 2e − 5, along with a weight de-532

cay, and a batch size of 5. We optimize the loss533

with the AdamW optimizer (Loshchilov and Hutter,534

2019). We use the beam search (Graves, 2012) with535

a beam size of 5 and a maximum length of 2048536

to sample generation results. All experiments are537

conducted on a single-node GPU cluster with four538

Nvidia A100 GPUs. Because of limited timeframe539

and resources, each model is trained once.540

4.3 Evaluation Metrics541

Following the previous research (Madaan and Yang,542

2021), we evaluate the results using the metrics of543

precision, recall, and F1 score for both node set and544

edge set predictions. Formally, given the ground545

truth graph G′ = (N ′, E′) and the predicted G =546

(N,E), derived from the target sequence, and the547

predicted sequence2. Where N ′ and E′ represent548

the ground truth node set and edge set, respectively,549

while N and E denote the predicted node set and550

edge set. The precision, recall, and F1 score for551

nodes can be computed as follows:552

PN =
TPN

TPN + FPN

RN =
TPN

TPN + FNN

FN
1 =

2× PN ×RN

RN +RN

(11)553

Where TPN represents the number of nodes that554

are correctly predicted3, FPN denotes nodes that555

are predicted but not present in the ground truth,556

and FNN is the number of nodes that are in the557

ground truth but not predicted. Analogously, edge558

precision PE , edge recall RE , and edge FE
1 can559

be computed using similar formulas.560

4.4 Results561

Table 2 shows the results on the NYT test set which562

was constructed using distant supervision signals,563

i.e., the gold-standard events and event temporal564

relations were given by CAEVO. Flan-T5-base565

was trained following the same setup as in Madaan566

and Yang (2021). SAFF (w/o SPL) is our frame-567

work without the use of Set Property Losses (SPL)568

and with only the incorporation of permutated aug-569

mentations. As our SAFF framework with SPL re-570

quires additional training steps, to evaluate whether571

2Parse based on the DOT format
3The prediction is considered correct only when the sub-

ject, predicate, and object exactly match the target.

the performance improvement is due to extended 572

training or the SPL itself, we conducted a control 573

test labeled as SAFF (w/o SPL + steps). The 574

control test involves training SAFF without SPL 575

for the same number of training steps as the full 576

Set-Aligning Fine-tuning Framework (SAFF). 577

RN PN FN
1 RE PE FE

1

Flan-T5-base 52.96 75.51 62.26 29.01 50.93 36.96
SAFF (w/o SPL) 61.96 75.48 68.05 36.34 52.04 42.79
SAFF (w/o SPL + steps) 62.48 75.58 68.41 36.90 52.23 43.25
SAFF 65.13 75.46 69.92 39.86 50.91 44.71

Table 2: Test results on the NYT test set.

Comparing the results of Flan-T5-base with 578

those of SAFF (w/o SPL), it becomes evident that 579

permutated augmentation significantly improves 580

the edge F1 and node F1 by about 6%. Further- 581

more, when Set Property Losses (SPL) are incorpo- 582

rated, the graph generation performance is further 583

increased (cf. SAFF (w/o SPL + steps) and SAFF) 584

We can also see that models utilizing SAFF have 585

much higher edge recalls while their edge precision 586

scores are either similar or occasionally even lower 587

than those of other models. This suggests that the 588

performance improvement primarily comes from 589

the generation of more edges. This observation is 590

reinforced by the information presented in Figure 2, 591

where models trained with SAFF can generate be- 592

tween 37% and 79% more edges compared to the 593

conventional text generation framework on these 594

datasets. These additional edges play a pivotal role 595

in the improvement of the edge F1 since precision 596

stays nearly the same. 597

Figure 2: Number of generated edges (normalized).

Similar trends are also observed in Table 3, 598

which were obtained through evaluation on human- 599

annotated NYT, MATRES, and TBD. For these 600
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MATRES-test TBD-test NYT-human

FN
1 RE PE FE

1 FN
1 RE PE FE

1 FN
1 RE PE FE

1

ChatGPTmulti-hop 29.39 5.11 8.42 6.36 37.15 4.05 20.92 6.78 23.92 3.41 3.78 3.59
vanilla Flan-T5-base 47.41 6.91 12.96 9.01 53.33 3.92 21.23 6.62 49.92 18.37 16.67 17.48
SAFF 56.59 13.81 17.56 15.46 65.62 11.38 38.96 17.61 52.47 37.12 24.08 29.21

Table 3: Experiment results on human-annotated MATRES, TBD, and NYT under zero-shot setting. To avoid
penalising ChatGPT which tends to generate longer text as events, we applied a slightly looser matching rule:
correct if the gold event is a substring of the generated event, close to zero otherwise.

evaluations, we used the models trained with SAFF601

on the NYT training set to evaluate on these data602

under zero-shot settings. It is worth mentioning603

that the NYT-human dataset has a different label604

distribution compared to the NYT dataset used for605

training, where its events and event temporal re-606

lations were produced by CAEVO. Notably, the607

simultaneous is significantly higher, accounting608

for 9.66%, in contrast to the 2.39% observed in609

the training set (see Appendix B.1 for more com-610

prehensive analyses). Based on our observation,611

it appears that human annotators tend to apply a612

more lenient criterion for the simultaneous label613

whereas CAEVO enforces a stricter definition of614

this label. It is worth noticing that SAFF exhibits615

superior zero-shot performance compared to GPT-616

2, as reported in (Madaan and Yang, 2021), despite617

our SAFF training using date four times smaller618

and GPT-2 (with 355M parameters) having 40%619

more parameters.620

ChatGPTmulti-hop shows our attempts to generate621

event temporal graphs utilizing the OpenAI API622

(gpt-3.5-turbo). Specifically, we first formulated a623

prompt instructing the model to generate the events,624

followed by a request to generate the event graph625

based on the conversation history. This process sug-626

gests that event temporal graph generation either627

poses considerable challenges without fine-tuning628

or requires more intricate prompt engineering. We629

also tried directly instruct ChatGPT to generate the630

graph in a single step, but the results were even631

worse. Hence, we have not presented the results632

here. We provide the detailed inputs, outputs, and633

parameter settings in Appendix C.634

4.5 Error Analysis635

One significant issue we encountered is that the636

model frequently fails to deduce temporal relation-637

ships that involve inference. This is due to the638

reliance of weak supervision signals provided by639

CAEVO, which primarily rely on syntactical rules.640

Consequently, this problem led to a lower edge F1641

on the human-annotated test set, as human anno- 642

tators provided many temporal relations that were 643

inferred through commonsense reasoning. Con- 644

versely, the model does not perceive a clear tem- 645

poral sequence in the sentence:“<person A> won 646

the gold medal in women’s 1,500m. <person B> 647

won the silver and <person C> won the bronze.” 648

However, human annotators can readily identify an 649

obvious temporal order among “<person A> won”, 650

“<person B> won”, and “<person C> won”, as it 651

aligns with the common knowledge that in a race, 652

the first person who crossed the finish line won the 653

gold, followed by the silver and the bronze winners. 654

Another error, which is less frequent than the 655

first, involves the model’s incorrect prediction of 656

long-distance temporal relationships. The model 657

sometimes predicts a temporal relation between 658

two events that are separated by more than ten 659

sentences. This is unexpected, as the CAEVO 660

model, which produces weak supervision signals, 661

typically does not extract relations for events that 662

are more than two sentences apart from each other. 663

In essence, it primarily focuses on events within 664

close proximity. Our observations suggest that hu- 665

man annotators also tend not to annotate temporal 666

relations for events that are distant from each other, 667

arguably because such relations are often implicit 668

and can be challenging to track across large chunks 669

of text. 670

5 Conclusion 671

This study proposes a framework for fine-tuning 672

large language models to generate event temporal 673

graphs directly from raw documents. We propose 674

data augmentation and set property losses to mit- 675

igate the problem caused by conventional genera- 676

tion loss, promoting the generation of more edges 677

by language models and, consequently, leading to 678

improved performance. 679
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Limitations680

Due to the presence of noisy labels used in fine-681

tuning, a major limitation of the proposed method682

is the inclusion of many imaginary events, trivial683

events, and negative expressions of events. For ex-684

ample, CAEVO identified phrases like “<someone>685

did not fire” as an event. While “fire” serves as a686

predicate and the notion of “did not fire” can hold687

narrative significance, it may not be entirely suit-688

able within the context of event temporal graphs.689

This is because it is not about the occurrence of690

an action or a change of state, but rather describes691

the absence of an event. Similarly, in some articles,692

there are descriptions of multiple potential future693

developments, such as "he might buy product A".694

Including such expressions as events might intro-695

duce confusion into the event temporal graph, as696

these represent possibilities rather than actual oc-697

currences. This problem mainly arises from the698

behavior of the CAEVO method, which primar-699

ily focuses on identifying fine-grained predicates700

as events. The resolution to this problem lies in701

obtaining better-quality supervision signals which702

focus on salient events (i.e., those events with rela-703

tively higher occurrences that are important to the704

narrative).705

Ethics Statement706

The proposed method analyses the text provided707

and extracts relevant information from it. The al-708

gorithm cannot acquire information beyond the709

boundary of the given text. Thus, any associated710

risks stem solely from the data itself. This research711

only utilized publicly available data. As long as the712

data input to the model is collected according to the713

relevant data policies and guidelines, the proposed714

method does not introduce further risks.715
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A More Analysis about the Generation 923

Results 924

Table A1 shows the Flan-T5-base models trained 925

and tested on NYT data. The first row is the model 926

trained with before, after, includes, is_included, 927

and simultaneous. The second row is the model 928

trained by merging after with before, is_included 929

and includes by swapping the head and tail events. 930

Both models are trained with 4 augmented in- 931

stances for each original instance. The results show 932

the model benefits from the simpler label set. 933

RN PN FN
1 RE PE FE

1

With reciprocal relations 55.05 76.05 63.87 30.90 52.07 38.78
Merge reciprocal 61.96 75.48 68.05 36.33 52.03 42.78

Table A1: Comparison between model trained with
reciprocal relations or merging reciprocal relations.

Table A2 shows the relation type distribution 934

generated by the models. 935

before includes simultaneous

Target graph 93.13 4.63 2.24
Flan-T5-base 92.82 3.19 3.99
T5-base 92.48 3.94 3.59
SAFF (Flan-T5-base) 93.45 3.28 3.27
SAFF (T5-base) 93.00 3.65 3.35

Table A2: Generated graph temporal relation label dis-
tribution (in percentage).

Table A3 shows the average degree for the nodes 936

in the generated graphs. 937

average node degree

Vanilla Flan-T5-base 2.06
SAFF (w/o SPL) 2.16
SAFF 2.31

Table A3: The average node degree of the generated
graphs on NYT.

B Annotation of the Test Set 938

B.1 Overview 939

We recruited crowd workers from Prolific4 plat- 940

form, which is a research-focused platform pro- 941

viding verified human workers. We recruited 24 942

participants in total (including pilot testing runs). 943

In order to make sure the participants can under- 944

stand and annotate the article efficiently, we require 945

4prolific.com
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the participants to be native English speakers and946

have an education level higher than High school947

diploma/A-levels. We put 4 documents, which are948

randomly sampled from the same descriptor set as949

the training and testing of the selected NYT corpus,950

into each unit task. There is a shared document951

across all the tasks for the purpose of computing952

the inter-annotator agreement (IAA). In order to953

maximize the IAA, we asked 2 participants to first954

identify the event triggers in each unit task. Af-955

ter that, we merged the event annotations from956

the participants by taking the union of the spans957

(if there are overlapped spans, we take the longer958

span). Then, we asked another participant to an-959

notate the event temporal relation based on the960

identified events. We also included the outputs961

from the CAEVO model to serve as examples, but962

we explicitly asked the participants to correct the963

annotations by adding, removing, or changing the964

CAEVO’s annotations. In the end, we collected 22965

documents as the human-annotated test set.966

On the event identification, we compute IOU (In-967

tersection over Union) as a measure of agreement968

between the annotators. Average across 7 tasks,969

the IOU between the event spans is 0.8986. For970

the relation annotations, we compute the average971

Cohen’s κ of every participant pair in the relation972

annotation task (on the shared document). The973

average Cohen’s κ is 0.7465.974

B.2 Chosen Descriptors975

Here are the chosen descriptors: “airlines and air-976

planes”, “olympic games”, “tennis”, “united states977

international relations”, “international relations”,978

“civil war and guerrilla warfare”, “track and field”,979

“soccer”, “bombs and explosives”, “politics and980

government”. We choose 2, 000 documents from981

each descriptor. After preprocessing and filtering982

out some invalid documents, we have 18, 263 docu-983

ments in NYT-train, 1, 000 documents in NYT-test,984

and 22 documents in NYT-human.985

B.3 Instructions and Interface986

We use a popular open-sourced annotation interface987

called Doccano. As shown in Figure A1, annotators988

can select text spans for events. To direct annota-989

tors to distinguish events that actually occurred and990

imaginary events, we also provide an “imaginary991

event” label type. We asked them to annotate the992

predicates that are about a negative expression of993

an action or just a hypothesis in the context as an994

imaginary event. Imaginary events are orthogonal995

to the real-world timeline and thus have limited 996

meaning for understanding the narrative. 997

Figure A2 shows the interface for annotating the 998

relation. On this page, annotators can select two ex- 999

isting event spans, and then select the relation type 1000

from “before”, “includes”, and “simultaneous”. 1001

Before the annotators came to the annotation 1002

platform, they went through a website where we put 1003

detailed descriptions and terminology definitions 1004

about the task. We also provided a video tutorial 1005

for using the annotation platform. 1006

C ChatGPT prompting 1007

We used the OpenAI API chat completion model 1008

gpt-3.5-turbo-0613. We used the “function call” 1009

method to ensure better parsing quality. The func- 1010

tion call parameters are shown in Figure A5. The 1011

temperature is set to 0. The other parameters are 1012

set as default. We show the inputs and outputs of 1013

the multi-hop prompting in Table A4. 1014

D GPT-4 Case Study 1015

We show some test cases of where GPT-4 was 1016

prompted in this anonymous link 5. The responses 1017

of GPT-4 essentially serve as summaries of docu- 1018

ments provided. The events it understood are quite 1019

broad, resembling abstracts of segments in the doc- 1020

uments. This diverges from the NLP community’s 1021

definition of event understanding, which typically 1022

pertains to the occurrence of specific actions. We 1023

would like to obtain more granular information 1024

within the event temporal graph. 1025

Another issue with the graphs generated by GPT- 1026

4 is that they tend to represent a linear sequence of 1027

items ordered by their appearances in the document. 1028

This ties back to the first issue, which relates to how 1029

GPT-4 comphrehends events. It essentially gener- 1030

ated a summary of the document, which, while not 1031

incorrect, does not align with the standard of event 1032

temporal graph extraction as defined in SemEval 1033

2013 TempEval-3 (UzZaman et al., 2013). 1034

Simply providing the definition of an event has 1035

not brought about a change in its behaviour 6. 1036

While extensive prompt engineering might help, 1037

we believe that incoporating some supervision sig- 1038

nals could still be necessary. Our framework could 1039

prove valuable for instruct-finetuning, aligning spe- 1040

cific instructions with the event temporal graph 1041

generation task. 1042

5Test cases on the TBD dataset
6Prompt with definition
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Figure A1: Annotation interface for event identification.

Figure A2: Annotation interface for event relation identification.
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Figure A3: Disclaimers.
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Figure A4: Guides.
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1 FUNCTION_LIST = [
2 {
3 "name": "save_events",
4 "description": "Store the extracted events in a list",
5 "parameters": {
6 "type": "object",
7 "properties": {
8 "event_list": {
9 "type": "string",

10 "description": "This is a list of event strings",
11 }
12 },
13 "required": ["event_list"],
14 },
15 },
16 {
17 "name": "save_graph",
18 "description": "Store the constructed graph in DOT language",
19 "parameters": {
20 "type": "object",
21 "properties": {
22 "graph": {
23 "type": "string",
24 "description": "The constructed graph in DOT language. \
25 This graph is a strict graph , in which every edge containing \
26 two event nodes , and a temporal relation label from \
27 [\" before\", \" includes\", \" simultaneous \"]. For example , \
28 \" strict graph {\n\"The Organization asserted responsibility \
29 \" -- \"a United States Navy diver killed \" [rel=before ];\n}\"",
30 }
31 },
32 "required": ["graph"],
33 },
34 }
35 ]

Figure A5: Function list for OpenAI API call
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Input Output

First hop:
Instructions: Analyse the given document. Extract
the main events. Store the events as a JSON list
by calling the save_events function.
Document: President Clinton says he is committed
to a possible strike against Iraq, despite objections
from other countries. Steve Hurst has that. The
US military buildup in the Persian gulf contin-
ues apace, more planes headed from the united
states and senior officials say Iraq’s president Sad-
dam Hussein can expect punishing air strikes to
continue well into the future if he doesn’t stop
building biological and chemical weapons. Sad-
dam will know by our actions and our warning
that we will be prepared to act again if we have ev-
idence he is trying to rebuild his weapons of mass
destruction capabilities. In a bit of television diplo-
macy, Iraq’s deputy foreign minister responded
from Baghdad in less than one hour, saying Wash-
ington would break international law by attacking
without UN approval. The united states is not
authorized to use force before going to the coun-
cil. President Clinton, meantime, glossed over
stern warnings from Moscow on Thursday that
US air strikes against Iraq could do serious harm
to relations with the Kremlin. We’re trying to
find a diplomatic solution. And I hope that, what-
ever happens today, that our relationships with
Russia will continue to be productive and con-
structive and strong, because that’s very important
to the future of our peoples. One contrary view
of the issue presented itself to the president as
he arrived in Philadelphia later in the day. Nev-
ertheless, the president said Washington would
use force if diplomacy fails to force Saddam Hus-
sein to back down. The Russian foreign minister,
meanwhile, sought to soften the harsh words of his
military counterpart, saying on Friday that Rus-
sia now feels the US must hold off at least until
UN secretary general Kofi Annan visits Baghdad
in a last-ditch effort at diplomacy. Annan has no
trip planned so far. Meanwhile, secretary of state
Madeleine Albright, Berger and defense secretary
William Cohen announced plans to travel to an
unnamed city in the US heartland next week, to
explain to the American people just why military
force will be necessary if diplomacy fails. Steve
Hurst, CNN, the state department.

strict graph {
"President Clinton says he is committed to a pos-
sible strike against Iraq, despite objections from
other countries." – "The US military buildup in the
Persian gulf continues apace, more planes headed
from the united states and senior officials say
Iraq’s president Saddam Hussein can expect pun-
ishing air strikes to continue well into the future if
he doesn’t stop building biological and chemical
weapons." [rel=after];
"The US military buildup in the Persian gulf
continues apace, more planes headed from the
united states and senior officials say Iraq’s pres-
ident Saddam Hussein can expect punishing air
strikes to continue well into the future if he doesn’t
stop building biological and chemical weapons." –
"Saddam will know by our actions and our warn-
ing that we will be prepared to act again if we
have evidence he is trying to rebuild his weapons
of mass destruction capabilities." [rel=after];
"Saddam will know by our actions and our warn-
ing that we will be prepared to act again if we have
evidence he is trying to rebuild his weapons of
mass destruction capabilities." – "Iraq’s deputy for-
eign minister responded from Baghdad in less than
one hour, saying Washington would break inter-
national law by attacking without UN approval."
[rel=after];
"President Clinton, meantime, glossed over stern
warnings from Moscow on Thursday that US air
strikes against Iraq could do serious harm to rela-
tions with the Kremlin." – "We’re trying to find
a diplomatic solution. And I hope that, whatever
happens today, that our relationships with Russia
will continue to be productive and constructive
and strong, because that’s very important to the
future of our peoples." [rel=after];
"We’re trying to find a diplomatic solution. And I
hope that, whatever happens today, that our rela-
tionships with Russia will continue to be produc-
tive and constructive and strong, because that’s
very important to the future of our peoples." –
"One contrary view of the issue presented itself to
the president as he arrived in Philadelphia later in
the day." [rel=after];
"One contrary view of the issue presented itself
to the president as he arrived in Philadelphia later
in the day." – "Nevertheless, the president said
Washington would use force if diplomacy fails to
force Saddam Hussein to back down." [rel=after];
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Second hop:
For every possible pair of events, please infer the
relative temporal order (e.g., before, includes, si-
multaneous) between them based on the context.
Make a graph where the nodes are the events, and
the edges represent the temporal relation between
the events. Lastly, please output the graph using
DOT graph description language.

"Nevertheless, the president said Washington
would use force if diplomacy fails to force Saddam
Hussein to back down." – "The Russian foreign
minister, meanwhile, sought to soften the harsh
words of his military counterpart, saying on Fri-
day that Russia now feels the US must hold off at
least until UN secretary general Kofi Annan vis-
its Baghdad in a last-ditch effort at diplomacy."
[rel=after];
"The Russian foreign minister, meanwhile, sought
to soften the harsh words of his military coun-
terpart, saying on Friday that Russia now feels
the US must hold off at least until UN secretary
general Kofi Annan visits Baghdad in a last-ditch
effort at diplomacy." – "Annan has no trip planned
so far." [rel=after];
"Meanwhile, secretary of state Madeleine Al-
bright, Berger and defense secretary William Co-
hen announced plans to travel to an unnamed city
in the US heartland next week, to explain to the
American people just why military force will be
necessary if diplomacy fails." – "Annan has no
trip planned so far." [rel=after];
}
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First hop:
Instructions: Analyse the given document. Extract
the main events. Store the events as a JSON list
by calling the save_events function.
Document: For The World, this is Pamela McCall
in the BBC news room in London. More heavy
gunfire in the Serbian province of Kosovo. It’s the
second day of an offensive by the security forces
against villages populated by ethnic Albanians.
BBC correspondent Karyn Coleman reports from
Kosovo. There were more accounts of people flee-
ing from the villages near where the offensive was
taking place. They were too afraid to stay, fearing
the forces may also move their operations further
afield. By mid afternoon, official Serb sources
were saying the operation was over, but that has
not yet been confirmed from Belgrade, the capi-
tal of Serbia, which is where the whole attack is
thought to have been planned. The ethnic Albani-
ans here in Kosovo are considerably worried about
the future and fear they are witnessing the begin-
nings of a much wider conflict. Karyn Coleman,
BBC news, Pristina.
Second hop:
For every possible pair of events, please infer the
relative temporal order (e.g., before, includes, si-
multaneous) between them based on the context.
Make a graph where the nodes are the events, and
the edges represent the temporal relation between
the events. Lastly, please output the graph using
DOT graph description language.

strict graph {
"heavy gunfire in the Serbian province of Kosovo"
– "offensive by the security forces against villages
populated by ethnic Albanians" [rel=before];
"heavy gunfire in the Serbian province of Kosovo"
– "people fleeing from the villages near where the
offensive was taking place" [rel=concurrent];
"heavy gunfire in the Serbian province of Kosovo"
– "official Serb sources saying the operation was
over" [rel=concurrent];
"heavy gunfire in the Serbian province of Kosovo"
– "ethnic Albanians in Kosovo worried about the
future and fear a wider conflict" [rel=concurrent];
"offensive by the security forces against villages
populated by ethnic Albanians" – "people fleeing
from the villages near where the offensive was
taking place" [rel=concurrent];
"offensive by the security forces against vil-
lages populated by ethnic Albanians" – "offi-
cial Serb sources saying the operation was over"
[rel=concurrent];
"offensive by the security forces against villages
populated by ethnic Albanians" – "ethnic Albani-
ans in Kosovo worried about the future and fear a
wider conflict" [rel=concurrent];
"people fleeing from the villages near where the of-
fensive was taking place" – "official Serb sources
saying the operation was over" [rel=concurrent];
"people fleeing from the villages near where the
offensive was taking place" – "ethnic Albanians in
Kosovo worried about the future and fear a wider
conflict" [rel=concurrent];
"official Serb sources saying the operation was
over" – "ethnic Albanians in Kosovo worried
about the future and fear a wider conflict"
[rel=concurrent];
}

Table A4: Example of ChatGPT promoting on the TBD data.
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