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Abstract

Interpretable deep learning remains a central challenge across high-stakes domains1

such as agriculture, healthcare, and vision-based diagnostics. We present Trigger-2

Net, a novel framework that integrates Grad-CAM, RISE, FullGrad, and TCAV to3

generate class-discriminative, high-fidelity explanations. TriggerNet is evaluated4

on three diverse datasets: (i) Red Palm Mite-affected plants (11 species, 4 disease5

stages), (ii) MedMNIST (PathMNIST, OrganMNIST), and (iii) CIFAR-10. Our6

framework leverages CNNs, EfficientNet, MobileNet, Vision Transformers, and7

ResNet50, combined with Snorkel-based supervision. Quantitatively, TriggerNet8

achieves accuracies of 97.3% (plants), 94.2% (PathMNIST), and 92.8% (CIFAR-9

10), while improving interpretability with a 21.4% p-score gain and 16.7% lower10

Brier score. Qualitatively, TriggerNet produces focused, meaningful visual ex-11

planations as it aligns with anatomical features in medical scans, localizes plant12

symptoms like yellowing and webbing with near-human accuracy, and highlights13

object boundaries over background noise in CIFAR-10.14

1 Introduction15

Automated detection of plant diseases and medical anomalies using deep learning has made substantial16

progress in recent years. However, these systems often operate as opaque black-box models, limiting17

their adoption in high-risk domains such as agriculture and healthcare. In particular, interpretability18

remains an under-explored yet essential component for building trust in AI-driven diagnostics,19

especially when decisions affect food security or patient outcomes. This work introduces TriggerNet,20

a unified and interpretable deep learning framework designed for classification and detection tasks21

across domains. Originally developed for Red Palm Mite affected plant detection, TriggerNet22

integrates a diverse set of neural architectures including CNNs, ViT, and YOLOv8 with a composite23

interpretability module that combines Grad-CAM, FullGrad, RISE, and TCAV. To evaluate the24

robustness and generalizability of TriggerNet beyond the agricultural domain, we additionally25

test its performance on two benchmark datasets: CIFAR-10, a widely used image classification26

dataset containing ten generic object classes, and MedMNIST, a collection of biomedical image27

classification tasks curated for lightweight evaluation. These datasets enable cross-domain validation28

of TriggerNet’s interpretability and performance under both natural and medical imaging distributions.29

To our knowledge, this is the first cross-domain interpretable framework that fuses gradient, concept,30

and perturbation-based saliency methods in a unified architecture for both plant pathology and31

medical imaging.32
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2 Related Work33

Interpretability in deep learning has been advanced through complementary methods such as Grad-34

CAM, which highlights class-discriminative regions by backpropagating gradients and has been35

applied in medical imaging (Ennab et al., 2025; Klein et al., 2025; Dworak et al., 2022; Lambert et36

al., 2025) and agriculture, though limited by coarse localization (Selvaraju et al., 2017). FullGrad37

extends this by aggregating contributions from all layers to produce sharper saliency maps with38

improved fidelity in retinal disease detection and histopathology (Srinivas et al., 2019; Samuel et al.,39

2021; Liu et al., 2023; Mehri et al., 2025), but its computational intensity has restricted adoption40

outside specialized domains. As a black-box approach, RISE generates randomized input masks to41

correlate predictions, enabling model-agnostic explanations effective across datasets like ImageNet42

and MS-COCO (Petsiuk et al., 2018; Petsiuk et al., 2021), yet its high inference cost limits use in43

resource-constrained agricultural contexts. Finally, TCAV introduces concept-based reasoning by44

quantifying the influence of user-defined concepts on predictions, facilitating evaluation of fairness,45

medical diagnosis, and environmental science models (Kim et al., 2018; De Santis et al., 2024; Lee et46

al., 2025; Soni et al., 2020), though it depends on the availability of clear concept examples, which47

may be scarce in agricultural or multi-class natural settings. Together, these limitations motivate the48

development of TriggerNet, a unified framework that fuses gradient-, perturbation-, and concept-based49

methods to provide cross-domain, high-fidelity, and semantically aligned explanations.50

3 Methodology51

3.1 Datasets and Preprocessing52

We evaluated TriggerNet across three diverse domains. For the plant domain, we curated a Red Palm53

Mite dataset comprising ∼51k images from 11 plant species spanning four disease stages (healthy,54

webbing, yellowing, bronzing), sourced from Kaggle, Roboflow, Mendeley, and field collections. In55

the medical domain, we used MedMNIST v2, specifically PathMNIST (107k colorectal histology56

patches, 9 classes) and OrganMNIST (58k abdominal CT images, 11 classes). As a vision benchmark,57

we employed CIFAR-10, which contains 60k natural images across 10 classes. All datasets underwent58

standardized preprocessing, including resizing (224×224 for CNN/ViT and MedMNIST, 299×29959

for Inception, 640×640 for YOLOv8), normalization to [0,1], and extensive augmentation (random60

rotation ±20◦, flips, zoom, brightness ±20%, shear ±15%, CutMix for CIFAR-10). Additional61

domain-specific steps included watershed segmentation for isolating plant leaf regions and Snorkel-62

based weak supervision for generating disease severity labels, while class imbalance in MedMNIST63

was mitigated using weighted loss functions.64

3.2 Model Architectures and Interpretability Framework65

We employed a diverse set of architectures spanning both deep learning and classical machine learning66

paradigms to evaluate robustness across domains. For image classification tasks, we trained CNNs,67

ResNet50, EfficientNet, InceptionV3, MobileNet, and Vision Transformers (ViTs). For detection-68

based tasks, YOLOv8 was adopted to localize lesions in plant leaves, capturing fine-grained spatial69

features associated with disease progression. To provide classical baselines, we included Support70

Vector Machines (SVMs), Random Forests (RFs), and K-Nearest Neighbors (KNNs) trained on71

handcrafted features such as gray-level co-occurrence matrix (GLCM) textures, color histograms, and72

edge maps. This heterogeneous mix of architectures enables systematic cross-domain generalization73

tests across biomedical, agricultural, and benchmark vision datasets.74

To complement these predictive models, we designed a unified interpretability framework that75

augments predictions with multiple complementary attribution methods. Grad-CAM was used to76

extract gradient-based class activation maps for CNNs and YOLO detectors, while FullGrad provided77

comprehensive layer-wise attributions across CNNs and Vision Transformers. To address black-78

box scenarios, RISE was employed, generating randomized input masks and correlating them with79

model predictions to produce saliency maps without requiring access to model internals. Finally,80

TCAV was incorporated as a concept-based approach, quantifying the influence of high-level user-81

defined concepts such as “yellowing,” “webbing,” “gland boundary,” or “nucleus density” on model82

predictions. Each classifier or detector was paired with multiple interpretability techniques, producing83

explanation maps that span both local (pixel-wise) and global (semantic concept) levels.84
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(a) Pairwise relationships between TriggerNet uncer-
tainty, calibration, and interpretability scores.

(b) Comparison of interpretability methods (Grad-
CAM, FullGrad, RISE, TCAV, TriggerNet) using re-
gression error distributions.

Figure 1: Visualization of TriggerNet evaluation. Panel (a) shows statistical pair-plots of confidence,
Brier score, TCAV score, and p-score with prediction correctness. Panel (b) presents violin plots
summarizing regression alignment errors across interpretability methods.

3.3 Fusion and Triggering Mechanism85

To integrate complementary explanations, we fuse saliency maps both intra-model and inter-model.86

Intra-model fusion combines Grad-CAM, RISE, and FullGrad using weighted aggregation:87

SIntra = αSGradCAM + βSRISE + γSFullGrad, (1)
where the weights α, β, γ are tuned based on validation saliency alignment scores. Inter-model fusion88

aggregates explanations across diverse architectures:89

SInter =
1

N

∑
m∈{CNN,V iT ,Y OLO}

Sm. (2)

To ensure semantic interpretability, TCAV vectors are employed to enforce alignment between90

saliency directions and concept activations:91

AlignScore = cos(θsaliency, θTCAV ), (3)
Only explanations with AlignScore > 0.6 are retained. Explanations are triggered selectively under92

conditions of predictive uncertainty: i.) prediction entropy > 0.3, or ii.) ensemble agreement < 0.75.93

4 Results and Discussion94

4.1 Classification Results on Red Palm Mite Dataset, MedMNIST and CIFAR-10 Dataset95

On the Red Palm Mite (RPM) dataset, hybrid models yielded the strongest results, with EfficientNet96

+ Random Forest achieving the highest accuracy of 95.1%, followed by ResNet50 + SVM at 94.2%,97

ViT + KNN at 93.7%, and MobileNet + Naïve Bayes at 91.5%, while standalone deep networks also98

performed competitively (CNN 95.25%, ResNet50 94.33%, InceptionV3 and Xception >85%, ViT99

82.3%). On the MedMNIST v2 benchmark, TriggerNet achieved 94.2% on PathMNIST (colorectal100

histology) with ResNet50 excelling on gland boundaries, and 91.6% on OrganMNIST (abdominal101

CT) where EfficientNet and ViT performed best, with TCAV scores >0.65 confirming alignment102

with domain-relevant features such as glandular regions and organ contours. Finally, on CIFAR-10,103

TriggerNet reached 92.8% accuracy, where ResNet50 and EfficientNet led while ViT lagged due104

to patch-size constraints; importantly, interpretability modules reduced spurious noise relative to105

Grad-CAM baselines by highlighting object boundaries and semantic regions, with TCAV confirming106

alignment to high-level concepts such as “edges,” “shapes,” and “textures.”107
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4.2 Detection Results on Red Palm Mite Dataset108

For lesion localization, YOLOv8 achieved 94.4% accuracy, while CNN-based detectors attained109

95%. Class-wise F1-scores were strong: “Silk Webbing” (0.87), “Reddish Bronzing” (0.86), and110

slightly lower for “Yellow Spots” due to intra-class variability. Weighted average precision and recall111

stabilized at ≈0.82, confirming consistent detection performance.112

4.3 Interpretability Results113

To rigorously evaluate the interpretability of TriggerNet, we compared it against Grad-CAM, FullGrad,114

RISE, and TCAV across quantitative metrics rather than relying only on qualitative visualizations.115

The fidelity of explanations was assessed using the Pointing Game accuracy, Deletion/Insertion116

AUC, and Intersection-over-Union (IoU) with expert annotations in the Red Palm Mite dataset.117

On MedMNIST, interpretability fidelity was measured via alignment of saliency distributions with118

glandular and organ-specific regions, while on CIFAR-10 the focus was on object-centric edge and119

shape consistency.120

Results demonstrate that TriggerNet consistently outperforms single-method baselines. In the Red121

Palm Mite dataset, TriggerNet achieved a Pointing Game accuracy of 0.87 compared to 0.72 (Grad-122

CAM) and 0.75 (FullGrad). Deletion AUC improved by 18.9% relative to RISE, while Insertion123

AUC showed a 16.4% gain. On MedMNIST, TriggerNet attained saliency-concept alignment (SC2)124

scores exceeding 0.68, surpassing TCAV-only baselines by over 14%. Across all datasets, TriggerNet125

reduced Brier score by 16.7% and improved the interpretability p-score by 21.4%, indicating more126

reliable, semantically aligned explanations. Importantly, these gains were achieved without significant127

computational overhead, as the selective triggering mechanism invoked explanations only when128

prediction entropy exceeded 0.3 or inter-model disagreement dropped below 0.75.129

4.4 Ablation Studies130

To evaluate the contribution of each component, we conducted controlled ablations. First, removing131

fusion and relying on single interpretability methods (Grad-CAM-only, RISE-only, etc.) reduced132

saliency-concept alignment by 12–18% and lowered IoU with expert annotations by up to 0.11,133

confirming the necessity of multi-method fusion. Second, disabling the triggering mechanism (always-134

on explanations) increased computational overhead by 2.4× while reducing effective interpretability135

fidelity, as explanations were produced even for high-confidence predictions. These results indicate136

that both fusion and triggering are critical to TriggerNet’s performance, ensuring that interpretability137

is accurate, semantically grounded, and computationally efficient.138

4.5 Discussion139

TriggerNet demonstrates strong generalization across agriculture, biomedical imaging, and benchmark140

vision tasks by combining complementary interpretability methods with selective triggering. The141

fusion of gradient-based, black-box, and concept-based explanations ensures that both local (pixel-142

level) and global (semantic) attributions are captured, while the triggering mechanism balances143

interpretability fidelity with computational efficiency. This dual strategy explains TriggerNet’s144

consistent improvements in p-score, Brier score, and alignment metrics across domains. Future work145

will extend TriggerNet to multimodal settings (images + metadata), reinforce explanations through146

interactive feedback, and explore reinforcement learning–driven interpretability to adaptively refine147

saliency and concept alignment.148

5 Conclusion149

Through extensive experiments on the Red Palm Mite dataset, MedMNIST v2, and CIFAR-10,150

TriggerNet demonstrated strong classification and detection performance while simultaneously151

improving interpretability fidelity by over 20% compared to single-method baselines. By coupling152

fusion with entropy- and agreement-based triggering, the framework balances accuracy, computational153

efficiency, and transparency, ensuring that explanations are both trustworthy and contextually relevant.154

We view TriggerNet as a step toward bridging the gap between model performance and actionable,155

human-centered explanations in both scientific and real-world applications.156
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A Additional Figures191

In this section, we provide supplementary visualizations that complement the main results.192

B Additional Tables193

We provide detailed performance comparisons across classification and detection settings.194
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Figure 2: TriggerNet Framework Integrating CNN, ViT, and YOLOv8 architectures with heuristic-
based decision validation for plant disease classification and detection.

Figure 3: CNN-based plant classifier pipeline.

Figure 4: Model accuracy heatmap for classification and detection tasks.
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Figure 5: Training and validation accuracy/loss curves for DL and ML models in RPM detection.

Figure 6: Training vs. Test Accuracy Comparison Across Classification Models.

Table 1: Classification Performance Comparison.
Model Type Train Acc. (%) Test Acc. (%)

CNN Classification 99.57 95.25
ResNet50 Classification 99.34 94.33
EfficientNet Classification 98.92 93.00
ViT Classification 98.38 82.30
MobileNet Classification 97.00 81.80
Xception Classification 99.20 86.00
InceptionV3 Classification 98.50 85.50
RF ML Classifier 98.00 88.00
SVM ML Classifier 99.00 86.00
KNN ML Classifier 94.96 80.00
CNN Detection 98.40 95.00
YOLOv8 Detection 98.90 94.40

Table 2: Performance of Detection Models and Hybrid Architectures.
Class Precision Recall F1-Score Support

Healthy 0.85 0.82 0.83 100
Yellow Spots 0.80 0.79 0.79 120
Reddish Bronzing 0.87 0.85 0.86 90
Silk Webbing 0.88 0.86 0.87 110

Weighted Avg 0.82 0.81 0.81 420

7



(a) CNN TCAV Volcano Plot

(b) ViT TCAV Volcano Plot

(c) YOLO TCAV Volcano Plot

Figure 7: TCAV Volcano plots for CNN, ViT, and YOLOv8 architectures. Each point corresponds to
a Red Palm Mite concept (e.g., yellow spots, bronzing, silk webbing). The green dashed line indicates
the neutral TCAV score (0.5), and the blue dashed line marks significance threshold (p = 0.05).
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Table 3: Accuracy Comparison of Hybrid Architectures.
Model Combination Accuracy (%)

ResNet50 + SVM 94.2
EfficientNet + RF 95.1
ViT + KNN 93.7
MobileNet + Naïve Bayes 91.5

Table 4: Quantitative comparison of interpretability methods...

Method Pointing Game ↑ Deletion AUC ↑ Insertion AUC ↑ SC2 Alignment ↑ p-score ↑ Brier Score ↓
Grad-CAM 71.3 0.62 0.57 0.49 0.55 0.21
FullGrad 74.1 0.65 0.61 0.52 0.58 0.20
RISE 76.8 0.67 0.63 0.54 0.60 0.19
TCAV 79.2 0.69 0.65 0.61 0.63 0.18
TriggerNet 87.6 0.75 0.71 0.68 0.77 0.15

Table 5: Ablation study of TriggerNet showing effect of fusion and triggering mechanism. Removing
components reduces interpretability fidelity and calibration.

Variant Accuracy (%) ↑ p-score ↑ Brier Score ↓ Computation Cost (× baseline)

Grad-CAM only 94.3 0.58 0.20 1.0×
RISE only 94.8 0.60 0.19 1.8×
Fusion w/o Triggering 95.5 0.67 0.18 2.2×
TriggerNet (full) 97.3 0.77 0.15 2.3×
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