
Text Diffusion Model with Encoder-Decoder Transformers for
Sequence-to-Sequence Generation

Anonymous ACL submission

Abstract
The diffusion model, a new generative mod-001
eling paradigm, has achieved great success in002
image, audio, and video generation. However,003
considering the discrete categorical nature of004
the text, it is not trivial to extend continuous005
diffusion models to natural language. In this006
work, we propose SeqDiffuSeq, a text diffu-007
sion model, to approach sequence-to-sequence008
text generation with an encoder-decoder Trans-009
former architecture. To improve the generation010
performance, SeqDiffuSeq is equipped with011
the self-conditioning technique and our newly012
proposed adaptive noise schedule technique.013
Self-conditioning enables SeqDiffuSeq to bet-014
ter use the predicted sequence information dur-015
ing the generation process. The adaptive noise016
schedule balances the difficulty of denoising017
across time steps at the token level. Exper-018
iment results illustrate the improved perfor-019
mance on five sequence-to-sequence generation020
tasks compared to other diffusion-based models021
regarding text quality and inference time.022

1 Introduction023

Generative modeling is drawing more attention in024

recent years of machine learning research due to025

the development of diffusion models (Ho et al.,026

2020). Diffusion models define the forward pro-027

cess and the reverse process where the former grad-028

ually diffuses data to random noise while the latter029

recovers data from random noise iteratively, which030

have shown superior performance on synthesiz-031

ing images (Rombach et al., 2021), audios (Kong032

et al., 2020), and videos (Ho et al., 2022) over other033

generative methods, such as generative adversar-034

ial network (GAN) (Goodfellow et al., 2014) and035

normalizing flow (Kobyzev et al., 2021).036

It is not trivial to extend diffusion models to the037

generation of natural languages. Most of the ex-038

isting diffusion models are applied to continuous039

feature space (Ho et al., 2020; Nichol and Dhari-040

wal, 2021) while texts are sequences of discrete041

categorical tokens. Recently, research has explored 042

categorical diffusion models in discrete space for 043

text generation (Hoogeboom et al., 2021; Austin 044

et al., 2022). There also exists research such as Dif- 045

fusionLM (Li et al., 2022) that applies continuous 046

diffusion models to word embedding. However, 047

these works only focus on unconditional and con- 048

trolled text generation. 049

Sequence-to-sequence text generation is a fun- 050

damental natural language processing setting and 051

covers various practical downstream tasks, such as 052

dialogue (Ni et al., 2021) and machine translation 053

(Liu et al., 2020). In recent practice, researchers 054

resort to auto-regressive (AR) (Dai et al., 2019) 055

or non-auto-regressive (NAR) (Gu et al., 2019) 056

Transformers for the tasks, and achieve good gen- 057

eration performance. Using diffusion models, a 058

recent work named DiffuSeq (Gong et al., 2022) 059

applies the diffusion-based method for sequence- 060

to-sequence text generation. They deploy encoder- 061

only Transformers and partially define diffusion 062

and denoising processes on output sequences. 063

In this work, we explore diffusion models 064

with encoder-decoder Transformer architecture for 065

sequence-to-sequence generation. We propose Se- 066

qDiffuSeq which extends the continuous diffusion 067

framework proposed in DiffusionLM (Li et al., 068

2022) to sequence-to-sequence settings. We equip 069

SeqDiffuSeq with the self-conditioning technique 070

(Chen et al., 2022) and our newly proposed adap- 071

tive noise schedule. Self-conditioning helps the 072

model better capture the information from former it- 073

erations during the generation. The proposed adap- 074

tive noise schedule learns a token-level noise sched- 075

ule to better control the amount of noise injected 076

and information recovered during the forward and 077

reverse process (Nichol and Dhariwal, 2021). 078

We conduct experiments on five generation tasks. 079

Results show that SeqDiffuSeq achieves compet- 080

itive performance compared with AR and NAR 081

baselines in terms of generation quality and diver- 082

1



sity. SeqDiffuSeq also shows improved genera-083

tion performance and inference speed compared084

to text diffison model DiffuSeq. Ablation stud-085

ies demonstrate that our model can benefit from086

self-conditioning and adaptive noise schedule tech-087

niques, and both are complementary to each other088

in sequence-to-sequence settings.089

To summarize, the main contributions of this090

work are as follows:091

1. We propose SeqDiffuSeq that extends the092

continuous text diffusion model to sequence-093

to-sequence text generation with encoder-094

decoder Transformer architecture.095

2. The self-conditioning and newly proposed096

adaptive noise schedule technique can effec-097

tively improve the generation quality of the098

text diffusion model.099

3. Experiments show SeqDiffuSeq achieves100

promising performance with the previous101

diffusion-based method DiffuSeq as well as102

AR and NAR models on five generation tasks.103

2 Related Work104

Since the great success of diffusion models in vi-105

sion (Ho et al., 2020; Rombach et al., 2021; Song106

et al., 2021b), researchers have explored extend-107

ing diffusion models to text generation. Consid-108

ering the discrete and categorical nature of texts,109

Multinomial Diffusion (Hoogeboom et al., 2021)110

and D3PM (Austin et al., 2021) are proposed for111

modeling categorical data. They define discrete112

diffusion models using discrete categorical transi-113

tions directly on texts. DiffusionBERT (He et al.,114

2022) follows D3PM and introduces pre-trained115

models for language modeling. Besides, recent116

research also explores converting texts into con-117

tinuous features to adapt to diffusion models. Bit118

Diffusion (Chen et al., 2022) encodes discrete data119

as binary bits and treats these binary bits as real120

number features. Yu et al. (2022) is proposed to121

build text diffusion models in continuous latent122

space. DiffusionLM (Li et al., 2022) uses the word123

embedding space for continuous diffusion mod-124

els and introduces auxiliary losses to enable joint125

learning of embedding and network parameters.126

Following DiffusionLM, recent research explores127

improving text generation quality (Strudel et al.,128

2022), and DiffuSeq (Gong et al., 2022) extends it129

to sequence-to-sequence settings. Compared to Dif-130

fuSeq, we propose a different model architecture131

and self-conditioning and adaptive noise schedule 132

techniques to improve sequence-to-sequence gen- 133

eration performance. 134

Noise schedules in diffusion models control the 135

level of noise injected and the level of information 136

recovered in the forward and reverse process re- 137

spectively. Previous research in vision and texts 138

demonstrates that appropriate noise schedule de- 139

sign can improve the generation quality perfor- 140

mance of diffusion models (Nichol and Dhariwal, 141

2021; Li et al., 2022). Concurrently, Diffusion- 142

BERT (He et al., 2022) proposes a spindle sched- 143

ule for language modeling, and CDCD (Dieleman 144

et al., 2022) designs a learned noise schedule for 145

language modeling and machine translation. Dif- 146

ferent from both concurrent works, SeqDiffuSeq 147

is proposed with a token-level noise schedule that 148

balances the difficulty of denoising across time 149

steps. Gao et al. (2023) proposes Difformer and is 150

orthogonal to our work. 151

3 Preliminary 152

Diffusion model is generally formulated by a de- 153

signed forward diffusion process and a learnt re- 154

verse denoising process. In the forward diffusion 155

process, samples gradually mix with random noise, 156

while in the reverse denoising process, the random 157

noise is gradually denoised to generate synthetic 158

samples. We adopt the forward and reverse pro- 159

cesses proposed in DDPM (Ho et al., 2020). 160

For the forward process, given a sample z0 from 161

a real-world data distribution q(z0). At each time 162

step t ∈ {1, 2, · · · , T}, a noise sample zt is sam- 163

pled from zt ∼ q(zt|zt−1) = N (zt;
√
αtzt−1, (1− 164

αt)I), where αt control the noise added at time 165

step t. In this regard, when T is large enough, a 166

real-world sample will gradually and ultimately 167

diffuse to a standard Gaussian noise distribution. 168

For the reverse process, the diffusion model 169

uses a learnt parameterized denoising distribution 170

zt−1 ∼ pθ(zt−1|zt) to gradually recover samples 171

from noise. The denoising distribution is parame- 172

terized by θ and is to fit the posterior distribution 173

q(zt−1|zt, z0) of the forward process. 174

q(zt−1|zt, z0) = N (zt−1; µ̃(z0, zt), β̃tI). (1) 175

In this equation, 176

µ̃(z0, zt) =

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt, (2) 177

ᾱt =
t∏

s=1

αs, βt = 1− αt, β̃t =
1− ᾱt−1

1− ᾱt
βt. (3) 178
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With learnt denoising distribution pθ, a synthetic179

real-world sample z0 can be generated from pure180

random noise zT step-by-step.181

4 Approach182

In this section, we present the main design of our183

proposed SeqDiffuSeq for sequence-to-sequence184

language generation. The overview of SeqDiffuSeq185

is depicted in Figure 1. In the following sections,186

the input and output sequences are denoted as wx187

and wy respectively. For the i-th token in wy, the188

token is denoted as wi
y, where 0 < i ≤ n and189

n represents the maximum output sequence word190

length. In order to avoid lengthy notations, we omit191

the indices referring to different data samples.192

4.1 Diffusion Model193

Forward Process To fit diffusion models to194

sequence-to-sequence settings, we extend the text195

diffusion model, DiffusionLM (Li et al., 2022).196

In the sequence-to-sequence setting, the forward197

process gradually changes the target output se-198

quence wy to random noise. Diffusing wy to pure199

random noise is independent of the input sequence200

wx. For the sequence wy, we use an embedding201

function gϕ to map the word tokens wi
y to con-202

tinuous word embedding gϕ(w
i
y) ∈ Rd, where203

d represents the dimension of embedding and ϕ204

represents the parameters of the word embedding205

function. The embedding for the sequence wy is206

defined by stacking the tokens’ embedding and is207

denoted as gϕ(wy) ∈ Rn×d. At the beginning of208

the forward process, a Markovian transition pa-209

rameterized by qϕ(z0|wy) = N (z0; gϕ(wy), β0I)210

is added. Extended by qϕ(z0|wy), the forward pro-211

cess can continue to diffuse continuous features of212

z0 iteratively. For each time step t, we apply the213

diffusion distribution q(zt|zt−1) to get noisier sam-214

ples. Ultimately, the output sequence wy becomes215

zT which is nearly pure random noise following216

standard Gaussian distribution.217

Reverse Process Diffusion models generate the218

synthetic samples by successively sampling the de-219

noising distribution in the reverse process. For each220

time step t in the reverse process, a learnt denoising221

distribution pθ parameterized by θ generates sam-222

ples zt−1 conditioned on the former noisier sam-223

ples zt. In the sequence-to-sequence setting, the224

generated sequences correlate to input sequences.225

Therefore, the denoising distribution is addition-226

ally conditioned on the input sequence wx, and227

pθ = pθ(zt−1|zt, wx). After the reverse denoising 228

process reaches T = 0, we round each column of 229

the generated ẑ0 to its nearest word in the embed- 230

ding space by the rounding distribution p̃ϕ(wy|ẑ0) 231

to generate the final word sequences. 232

Training Objective We optimize θ and embed- 233

ding parameters by minimizing the variational 234

bound of the data log-likelihood: 235

LV B = Eqϕ(z0:T ,wx,wy)[log
q(zT |z0)
p(zT )

236

+
T∑
t=2

log
q(zt−1|z0, zt)
pθ(zt−1|zt, wx)

− log pθ(z0|z1, wx) 237

+ log qϕ(z0|wy)− log p̃ϕ(wy|z0)], (4) 238

The training objective is to narrow down the dis- 239

crepancy between pθ(zt−1|zt, wx) and the poste- 240

rior q(zt−1|zt, z0) in the forward process. Since 241

q(zt−1|zt, z0) follows the form of Gaussian dis- 242

tribution, we parameterize the denoising distribu- 243

tion following Gaussian distribution family and 244

pθ(zt−1|zt, wx) = N (zt−1; µ̃θ(zt, wx, t), β̃tI), 245

where 246

µ̃θ(zt, wx, t) = 247
√
ᾱt−1βt
1− ᾱt

z0θ(zt, wx, t) +

√
αt(1− ᾱt−1)

1− ᾱt
zt. (5) 248

z0θ(zt, wx, t) is named the denoising function and 249

predicts the estimated output embedding sequences 250

at each reverse step t. Then according to density 251

functions q and pθ following Gaussian distribution, 252

the objective can be further simplified as: 253

Lsimple = 254

Eqϕ(z0,wx,wy)[

T∑
t=2

Eq(zt|z0)∥z
0
θ(zt, wx, t)− z0∥2 255

+ ∥µ̃(zT , z0)∥2 + ∥z0θ(z1, wx, 1)− gϕ(wy)∥2 256

− log p̃ϕ(wy|z0)], (6) 257

where q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I) for effi- 258

cient sampling of zt during training, and µT (z0) = 259√
ᾱT z0. We leave the detailed derivation to Ap- 260

pendix B. The training objective becomes to fit 261

gϕ(wy) and the denoising function z0θ(zt, wx, t), 262

which we can model with encoder-decoder Trans- 263

formers architectures. During training, the sam- 264

pling distribution qϕ contains trainable parame- 265

ters of word embedding. We can backpropagate 266

through this with reparameterization trick (Kingma 267

and Welling, 2013). 268

3



Figure 1: The overview of SeqDiffuSeq with an encoder-decoder Transformers architecture.

Denoising with Encoder-Decoder Framework269

Unlike DiffuSeq (Gong et al., 2022) using encoder-270

only Transformer architecture, we propose using271

an encoder-decoder Transformers architecture to272

model the input and output text sequences. For273

z0θ(zt, wx, t), we use the encoder to process the in-274

put sequences wx and use the decoder to model275

the noisy output sequence zt. Following the pre-276

vious work (Li et al., 2022), we inject time step277

information t by adding time step embedding to zt.278

Using the encoder-decoder architecture has com-279

putational convenience during generation because280

the input sequences wx only require one forward281

computation through the encoder network during282

the whole reverse process. Considering the reverse283

process requires thousands of iterations to generate284

the output sequences of high quality, the saving of285

computational resources can be significant.286

During training and generation, the function z0θ287

generates denoised samples at the sequence level.288

Therefore making predictions from the denoising289

function z0θ resembles the non-autoregressive natu-290

ral language generation. In this regard, we use a de-291

coder with full attention matrices instead of causal292

attention matrices to model zt at the sequence level.293

4.2 Self-Conditioning294

At each time step t in the reverse process, the295

denoising function z0θ(zt, wx, t) makes output se-296

quence predictions based on the noisier sample297

zt. zt is sampled from the former denoising dis-298

tribution by mixing former sequence prediction299

ẑt0 = z0θ(zt+1, wx, t + 1), zt+1 and random noise.300

In this regard, part of the information contained in301

the former prediction ẑt0 is discarded. Bit-Diffusion302

(Chen et al., 2022) proposed the self-conditioning303

technique mitigating this waste of information by304

additionally taking former sequence predictions as305

inputs. The denoising function is formulated as 306

z0θ(zt, ẑ
t
0, wx, t). Self-conditioning may enable the 307

denoising function to refine the former sequence 308

predictions rather than make new predictions from 309

scratch. It is empirically verified that the self- 310

conditioning technique can boost the performance 311

of text diffusion models (Strudel et al., 2022). 312

To fit the technique into the Transformers model- 313

ing of z0θ in our sequence-to-sequence setting, the 314

sequence features ẑt0 from the former predictions 315

are concatenated with noisier sequence features 316

zt on the embedding dimension. Hence, the di- 317

mension of input features of Transformer decoder 318

becomes n × 2d. Since the former sequences 319

at time step t are sampled successively from T 320

to t which is computational-tedious during train- 321

ing, we take an efficient training scheme. With 322

half probability, z0θ(zt, ẑ
t
0, wx, t) is trained by set- 323

ting the input ẑt0 to 0. Otherwise, ẑt0 is first esti- 324

mated by z0θ(zt, 0, wx, t) and then is used for self- 325

conditioning training. Under the second circum- 326

stance, we do not backpropagate through the first 327

forward propagate estimated ẑt0. 328

4.3 Adaptive Noise Schedule 329

In the domain of vision and audio, the generated 330

sample quality (Nichol and Dhariwal, 2021) and 331

likelihood estimation (Kingma et al., 2021) may 332

potentially benefit from different appropriate time 333

schedules. Previous research uses different simple 334

functions such as linear function (Ho et al., 2020) 335

or cosine function (Nichol and Dhariwal, 2021) 336

of α against time step t to design noise schedules. 337

Such designs may results in unbalanced denoising 338

difficulties for each step and lead to unsatisfying 339

generation quality. Some works proposed to allevi- 340

ate this problem by importance sampling (Li et al., 341

2022) or loss reweighing (Gong et al., 2022). 342
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We propose a novel adaptive noise schedule at343

the token-level. Firstly, we propose to adaptively344

adjust the time schedules during training to make345

the denoising difficulties of z0θ predicting output346

sequence increase linearly with respect to the time347

step. Secondly, we separately set adaptive noise348

schedule for different token positions, unlike previ-349

ous text diffusion research that only designs noise350

schedules on the whole sequence level. Since the351

intrinsic features for embedding sequences are dif-352

ferent across token positions within, we assume353

that for different token positions the expected noise354

schedules are different.355

Concretely, we measure the difficulties of356

denoising task at each time step t and to-357

ken position i by the training losses Li
t =358

Eqϕ(wx,wy ,zt,z0)∥z0θ(zt, ẑt0, wx, t)
i − zi0∥2. We use359

the schedule of ᾱi
t which ranges from 0 to 1 to360

access the noise schedule design. ᾱi
t controls the361

noise level at each time step t. Our adaptive noise362

schedule for each token position i is to fit a map-363

ping ᾱi = Mi(Li) between Li
t and ᾱi

t by linear364

interpolation. For time step t, ∀x ∈ [Li
t−1,Li

t),365

Mi(x) =
ᾱi
t − ᾱi

t−1

Li
t − Li

t−1

(x− Li
t−1) + ᾱi

t−1, (7)366

After initializing a noise schedule, we record the367

loss Li
t
1. The mapping Mi is fitted after each train-368

ing period. Ideally, the training losses should be369

monotonic with respect to the time step t since370

for larger T the input features zt to the denoising371

function are noisier. However, overall time step372

T is usually by thousands, hence this results in a373

fine-grained discretization of ᾱi. Due to the em-374

pirical loss estimation errors, training losses may375

not be monotonic between some successive time376

steps. To alleviate this issue and fit a smoother377

mapping Mi, we form a coarse-grained discretiza-378

tion s for ᾱi and Li: Li
s = 1

K

∑s×(K+1)
t=s×K Li

t,379

ᾱi
s = 1

K

∑s×(M+1)
t=s×K ᾱi

t, s =
⌊

t
K

⌋
, where K is380

the stride to evenly downsample t and ⌊·⌋ rounds381

the number down to it nearest integer.382

With the learnt linear interpolation mapping383

ᾱi
s = Mi(Li

s), we can obtain the adjusted384

discretized noise schedule ᾱi,new
t by ᾱi,new

t =385

Mi(Li,new
t ) where Li,new

t ’s are evenly taken be-386

tween the minimum and maximum recorded val-387

ues. As the training progresses, we adaptively388

calibrate the noise schedule ᾱi by repeating the389

1We do not record the losses Li
t for the padding tokens.

Algorithm 1 Adaptive Noise Schedule

Input: Current recorded losses Li
t and noise

schedules ᾱi
t for each time step t and token

position i
1: if Train Step % Update Step == 0 then
2: for each token position i do
3: Fit the mapping Mi by Equation 7,
4: Take new Li,new

t value with equal interval
between mint(Li

t) and maxt(Li
t),

5: Get new schedule ᾱi,new
t = Mi(Li,new

t ),
6: end for
7: end if
8: return Noise schedule ᾱi,new

t for each t and i

above-mentioned procedure once per training up- 390

dates. The pseudo-code for setting adaptive noise 391

schedules during training is shown in Algorithm 1. 392

5 Experiments 393

5.1 Datasets 394

We conduct experiments on six datasets across five 395

different text generation tasks: Quora Question 396

Pairs (QQP) (DataCanary et al., 2017) for Para- 397

phrase Generation, Wiki-Auto (Jiang et al., 2020) 398

for Text Simplification, Quasar-T (Dhingra et al., 399

2017) for Question Generation, Commonsense 400

Conversation Dataset (CCD) (Zhou et al., 2018) for 401

Dialogue Generation as well as the German(DE)- 402

English(EN) pairs of IWSLT14 and WMT14 for 403

Machine Translation. Detailed introductions and 404

statistics of the datasets as shown in Appendix C. 405

5.2 Baselines 406

We consider three kinds of models as baselines. 407

First, vanilla encoder-decoder Transformers and 408

pre-trained GPT-2 are selected as strong AR base- 409

lines. Second, since SeqDiffuSeq denoises out- 410

puts at the sequence level, we compare it with 411

an NAR baseline Levenshtein Transformer (LevT) 412

(Gu et al., 2019). For machine translation, we also 413

use CMLM (Ghazvininejad et al., 2019) which is 414

an NAR translation method with iterative refine- 415

ment as baselines. Besides, we compare it to other 416

diffusion-based methods. DiffuSeq (Gong et al., 417

2022) is a recently proposed text diffusion model 418

using an encoder-only Transformer structure. We 419

also compare with concurrently proposed CDCD 420

(Dieleman et al., 2022) on machine translation. 421
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QQP Wiki-Auto
BLEU BERTScore dist. 1 BLEU BERTScore dist. 1

Transformers 5.80 53.92 78.89 24.45 75.90 88.86
GPT2-large FT 20.59 83.63 98.19 26.93 78.82 94.64
LevT 22.68 83.44 97.90 20.52 72.54 97.15
DiffuSeq 18.47 79.47 97.61 29.89 79.12 92.33
DiffuSeq w/ MBR=10 24.13 83.65 98.07 36.43 81.39 92.61
SeqDiffuSeq 23.28 82.91 98.06 37.09 82.11 90.81
SeqDiffuSeq w/ MBR=10 24.34 84.00 98.07 37.12 82.14 90.77

Quasar-T CCD
BLEU BERTScore dist. 1 BLEU BERTScore dist. 1

Transformers 3.64 53.34 82.36 1.89 47.81 74.93
GPT2-large FT 11.10 63.46 96.70 1.25 52.93 92.44
LevT 9.30 54.91 89.14 1.58 47.60 97.26
DiffuSeq 15.84 59.39 91.12 - - -
DiffuSeq w/ MBR=10 17.01 60.95 90.72 1.39 51.31 94.67
SeqDiffuSeq 17.20 61.35 92.70 0.84 43.82 96.50
SeqDiffuSeq w/ MBR=10 17.46 61.74 92.48 1.12 44.25 96.08

IWSLT14 WMT14
EN-DE DE-EN EN-DE DE-EN

SacreBLEU SacreBLEU SacreBLEU BLEU SacreBLEU BLEU
Transformers 26.51 33.81 26.20 27.48 30.20 31.19
CMLM w/ iter=1 14.36 21.46 - 18.05 - 21.83
CMLM w/ iter=4 23.74 32.83 - 25.94 - 29.90
CDCD - - 19.30 - 24.90 -
CDCD w/ MBR=10 - - 19.70 - 25.40 -
SeqDiffuSeq 21.96 30.16 19.16 23.63 23.28 25.22
SeqDiffuSeq w/ MBR=10 22.12 30.45 19.76 24.24 23.93 25.90

Table 1: Main results on Paraphrase, Text Simplification, Question Generation, Dialogue, and Machine Translation.
We use the results reported in the DiffuSeq paper for CCD results since reproducing CCD results requires more than
10 days of training on 8 NVIDIA A100 80GB GPUs.

5.3 Implementation Details422

We use a 6 layers encoder-decoder Transformer423

(Vaswani et al., 2017) with GeLU activation424

(Hendrycks and Gimpel, 2016). For the diffusion425

process, we set the maximum diffusion step T to426

2000, and use the sqrt schedule from DiffusionLM427

(Li et al., 2022) to initialize the adaptive time sched-428

ule. For translation tasks, we construct vocabulary429

using BPE (Sennrich et al., 2016). The vocabulary430

size is set to 10,000 for IWSLT14 and 32,768 for431

WMT14. For other tasks, we use the vocabulary of432

bert-base-uncased (Devlin et al., 2019).433

For training of SeqDiffuSeq, we use a learn-434

ing rate of 10−4 with 10,000 warm-up steps and a435

linearly-decreasing schedule. The proposed adap-436

tive noise schedule is updated every 20,000 train-437

ing steps and K is set to 20. We explore maximum438

Bayes risk (MBR) decoding (Koehn, 2004) follow-439

ing previous research (Li et al., 2022) for improv-440

ing generation quality during inference. Details on441

experiment settings and MBR are in Appendix D.442

5.4 Main Results443

To assess the generation quality of each model, we444

use BLEU (Papineni et al., 2002) and BERTScore445

(Zhang et al., 2020) as metrics. We also use dis- 446

tinct uni-gram (dist.1) to measure the word diver- 447

sity within generated sentences. A high dist.1 score 448

indicates fewer repeated words. For machine trans- 449

lation tasks, we additionally consider SacreBLEU 450

(Post, 2018). The results are listed in Table 1. To 451

better present the generation performance, we pro- 452

vide human evaluation results in Appendix G. 453

Primarily, for text generation quality, our pro- 454

posed SeqDiffuSeq achieves much better perfor- 455

mance measured by BLEU than DiffuSeq and other 456

baselines with single generation on QQP, Wiki- 457

Auto, and Quasar-T. On Wiki-Auto and Quasar- 458

T, SeqDiffuSeq even achieves better performance 459

with single generation than recently proposed Dif- 460

fuSeq with MBR of 10 candidates. When incor- 461

porating with MBR, SeqDiffuSeq enjoys a boost 462

of performance and achieves superior results over 463

all baselines on QQP, Wiki-Auto, and Quasar-T. 464

The performance is better than the pre-trained then 465

fine-tuned GPT-2 with more parameters on Wiki- 466

Auto and QQP. This indicates that SeqDiffuSeq can 467

generate texts with good quality for sequence-to- 468

sequence tasks (except CCD that all models have 469

inferior performance). On translation tasks, the per- 470
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IWSLT14 Paraphrase Text Simplification
EN-DE DE-EN QQP Wiki-Auto Avg. ∆BLEU

S-BLEU S-BLEU BLEU BERTSco. BLEU BERTSco.
SeqDiffuSeq A 21.96 30.16 23.28 83.91 37.09 82.11 -

A w/o Apt. Sche. B 19.89 28.60 21.82 81.78 33.04 79.74 -2.29
A w/o Self-Cond. C 20.76 28.28 21.64 81.45 36.46 81.62 -1.34
C w/o Apt. Sche. D 17.50 24.39 19.73 79.95 28.03 76.06 -5.71

Table 2: Ablation studies on IWSLT14, QQP and Wiki-Auto. S-BLEU represents Sacre-BLEU. BERTSco.
represents BERTScore. Self-Cond. and Apt. Sche. are short for self-conditioning and adaptive noise schedule.

Figure 2: The left figure depicts the adaptive noise schedule at different token positions on IWSLT14 DE-EN dataset.
The middle and right figures show the loss for each time step at different token positions with and without adaptive
noise schedule, respectively. Best viewed in color.

formance lags behind the AR Transformers base-471

line consistently across different datasets, while472

compared with NAR methods, SeqDiffuSeq con-473

sistently surpasses CMLM with 1 refinement itera-474

tion by 6.32 and 6.75 averaged points across four475

datasets without and with MBR. CMLM with 4476

iterations has better performance. When compar-477

ing with CDCD, the performance with and without478

MBR are competitive on WMT14 EN-DE while479

the performance is worse on DE-EN. For diversity480

within sequences, texts generated by SeqDiffuSeq481

have fewer repeated words averagely than Trans-482

formers and DiffuSeq.483

6 Analysis and Discussion484

6.1 Ablation Study485

To verify the effectiveness of the proposed tech-486

niques in SeqDiffuSeq, we conduct ablation studies487

on QQP, Wiki-Auto, and IWSLT14. As shown in488

Table 2, after removing the adaptive noise sched-489

ule from SeqDiffuSeq and instead using the fixed490

sqrt schedule proposed in DiffusionLM (B), the491

performance drops consistently and the BLEU492

scores decrease by 2.29 on average. Without self-493

conditioning (C), the performance also degrades494

by 1.34 on average. By further removing adap-495

tive noise schedule (D), the performance drops496

sharply by 5.71 on average and the largest drop in497

terms of BLEU is 8.43 on Wiki-Auto. Comparing 498

adaptive noise schedule and self-conditioning tech- 499

nique, it is illustrated that our proposed adaptive 500

noise schedule brings larger improvement and two 501

techniques are complementary to each other. 502

6.2 Time Schedule 503

It is verified in the ablation study that the proposed 504

adaptive noise schedule can improve sequence-to- 505

sequence text generation. On the IWSLT14 DE-EN 506

dataset, we visualize the adaptive noise schedules 507

as well as the loss at each time step with and with- 508

out adaptive noise schedule. For the adaptive noise 509

schedule, we plot ᾱi
t at different token positions i 510

against the diffusion time step t. And for losses, 511

we plot averaged training losses Li
t at each position 512

i against time step t. Depicted in Figure 2, the 513

dashed line in the first sub-figure shows the sqrt 514

schedule, while the other lines represent the noise 515

schedules at different token positions. The figure 516

shows that the adaptive noise schedules deviate 517

from the sqrt schedule. At both ends of time steps, 518

the adaptive noise schedules are flatter compared 519

to sqrt schedule, especially for tokens at larger po- 520

sition orders. Besides, adaptive noise schedules 521

are diverse for different positions, although the 522

trends along time steps are similar. For the token 523

positions at larger orders, the noise schedule lines 524

move toward the lower-left direction. Therefore, at 525

7



Time Acceleration
DiffuSeq 317 sec. -
SeqDiffuSeq 89 sec. ×3.56

Table 3: Inference time on QQP on one NVIDIA V100
GPU. The inference batch size is set to 50 and the overall
time step is set to 2000 for both models.

Figure 3: The top figure plots the sequence-level Div.4
score against different MBR candidate numbers on
IWSLT14 EN-DE. The bottom figure plots SacreBLEU
against different MBR candidate numbers. SDS repre-
sents SeqDiffuSeq. Best viewed in color.

each time step, the tokens at earlier positions have526

smaller noise than later positions. The information527

of tokens on the left is recovered earlier at each528

step. SeqDiffuSeq resembles the left-to-right gen-529

eration of texts. Through a case study in Appendix530

H, the phenomenon is also verified.531

Comparing the second and third sub-figures, the532

losses Li with adaptive noise schedule increase533

linearly with respect to time steps as expected. At534

each time step, the losses at earlier token positions535

are smaller, indicating earlier tokens are easier to536

generate for SeqDiffuSeq . More visualizations on537

other datasets are listed in Appendix F.538

6.3 Inference Speed539

We compare SeqDiffuSeq with DiffuSeq in terms540

of inference time in Table 3. Our SeqDiffuSeq541

achieves 3.56 times acceleration generating one542

batch of text samples. The acceleration mainly543

originated from: (1) SeqDiffuSeq only requires for-544

ward computation of encoder once, while DiffuSeq 545

needs to run forward computation for the input se- 546

quences for each diffusion step; (2) At each time 547

step, SeqDiffuSeq only models the output sequence, 548

while DiffuSeq has to model the concatenation of 549

both input and output sequences. 550

6.4 MBR Inference 551

It is shown in Table 1 that MBR with 10 candi- 552

dates improves DiffuSeq to more than 6 BLEU 553

score, while improves SeqDiffuSeq by 1.06 BLEU 554

score on QQP. In Figure 3, we plot SacreBLEU 555

scores and Diverse 4-gram (Div.4) scores (Desh- 556

pande et al., 2018) against MBR candidate num- 557

bers. Div.4 measures the proportion of distinct 558

4-grams in a set of generated sequences. A higher 559

Div.4 score means better sequence-level diversity 560

by different generation runs. The figure shows that 561

the self-conditioning technique and adaptive noise 562

schedule make the text diffusion model generate 563

less diverse sequences, and the single generated 564

sequence will have higher quality with both tech- 565

niques. Self-conditioning technique and adaptive 566

noise schedule deliver a trade-off between gener- 567

ation quality and generation diversity. With both 568

techniques, MBR inference is needless to gener- 569

ate high-quality samples for SeqDiffuSeq resulting 570

in a more efficient generation procedure. We also 571

propose a new sampling scheme to compensate 572

the marginal MBR improvements for SeqDiffuSeq 573

which is discussed in detail in Appendix E. 574

7 Conclusion 575

In this work, we explore to approach sequence-to- 576

sequence text generation with continuous diffusion 577

models. We propose SeqDiffuSeq which uses an 578

encoder-decoder Transformers architecture to learn 579

the denoising function. In order to improve text 580

generation performance, the denoising function in 581

SeqDiffuSeq is integrated with self-conditioning 582

technique. SeqDiffuSeq also includes a newly pro- 583

posed adaptive noise schedule which makes the 584

denoising difficulty evenly distributed across all 585

time steps and assigns exclusive noise schedules for 586

tokens from different positional orders. Through 587

experiments, we illustrate the superior performance 588

of SeqDiffuSeq in terms of generation quality and 589

inference speed and provide insights into our pro- 590

posed adaptive noise schedule technique. 591
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Limitation592

Diffusion models generate high-quality synthetic593

samples through thousands of iterations in the re-594

verse process. Thousands of reverse process iter-595

ations require a huge amount of forward propa-596

gation computation of Transformers model which597

is computationally costly, although we save nearly598

four times of computational budget for one forward599

computation compared to the previous diffusion-600

based model DiffuSeq. In the domain of vision601

synthetic, there exists research to profoundly re-602

duce the time step needed for generation (Song603

et al., 2021a). Reducing the reverse steps for text604

generation would be a promising direction for fu-605

ture research.606

As shown in the discussion, equipping text dif-607

fusion models with self-conditioning and adaptive608

noise schedules can profoundly increase the gener-609

ation quality. However, such quality improvement610

is at the cost of generation diversity under different611

random seeds. This leads to marginal MBR infer-612

ence improvements. Although we propose a com-613

pensation discussed in Appendix E. The in-depth614

discussion on improving SeqDiffuSeq generation615

diversity is left to future research.616

Ethic Statements and Boarder Impact617

The datasets and baseline models used in our re-618

search are publicly available. Diffusion models,619

previously successful in vision, face challenges in620

NLP due to discrete token sequences. Promising621

results have been shown in DiffusionLM (Li et al.,622

2022) and DiffuSeq (Gong et al., 2022), but both623

works use encoder-only models and have limita-624

tions in scalability and efficiency. This research ex-625

plores and improves the diffusion-based sequence-626

to-sequence text generation models. Our work al-627

ters to encoder-decoder Transformers which are628

widely applied in recent LLMs such as FLAN-T5629

(Chung et al., 2022) for better scalability, poten-630

tial, and sampling speed acceleration (Section 6.3).631

Our work also incorporates novel techniques like632

self-conditioning and adaptive noise schedules, out-633

performing several AR and NAR baselines. Se-634

qDiffuSeq demonstrates the feasibility of encoder-635

decoder diffusion models for sequence-to-sequence636

tasks and may serve as a starting point for fu-637

ture exploration of text diffusion models’ potential,638

serving as another method approaching sequence-639

to-sequence text generation besides widely imple-640

mented AR and NAR models. Considering the641

excellent performance of diffusion models in other 642

domains such as vision, text diffusion models have 643

great potential in generating text sequences with 644

high quality and may be an emerging framework 645

of text generation. 646
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A Derivation of Posterior877

Given zt ∼ q(zt|zt−1) = N (zt;
√
αtzt−1, (1 −878

αt)I), we can reparameterize zt =
√
αtzt−1 +879 √

1− αtϵt. Then, recursively,880

zt881

=
√
αt(

√
αt−1zt−2 +

√
1− αt−1ϵt−1) +

√
1− αtϵt882

=
√
ᾱtz0 +

√
1− ᾱtϵt883

∼ N (zt;
√
ᾱtz0, (1− ᾱt)I). (8)884

Therefore, q(zt|z0) = N (zt;
√
ᾱtz0, (1 − ᾱt)I).885

According to Bayes rule, we have:886

q(zt−1|zt, z0) =
q(zt|zt−1)q(zt−1|z0)

q(zt|z0)
, (9)887

since q(zt|zt−1) and q(zt−1|z0) are all Gaussian888

distributed, we will have:889

q(zt−1|zt, z0) = N (zt−1; µ̃(z0, zt), β̃tI), (10)890

where891

µ̃(z0, zt) =

√
ᾱt−1βt

1− ᾱt
z0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt, (11)892

ᾱt =

t∏
s=1

αs, βt = 1− αt, β̃t =
1− ᾱt−1

1− ᾱt
βt. (12)893

B Derivation of Training Objective894

We present the detailed derivation of training ob-895

jective following Ho et al. (2020); Li et al. (2022).896

As mentioned in main texts, the forward process897

successively perturbs the real-world sample z0 with898

random noise, where z0 gradually changes to zT899

for a T -time step diffusion process. zT can be ap-900

proximately regarded as pure random noise which901

follows standard Gaussian distribution in our case.902

We define the forward process as follows:903

q(zt|zt−1) = N (zt;
√
αtzt−1, (1− αt)I), (13)904

where αt controls the noise level at each time step905

t.906

For the reverse process, we learn a parameter-907

ized denoising distribution pθ(zt−1|zt, wx, t). By908

successively sampling from pθ, a synthetic real-909

world sample z0 can be recovered from pure ran-910

dom noise zT .911

The training objective of diffusion model is to912

minimize the negative likelihood of data distribtu-913

ion, which is:914

L̃ = E[− log pθ(z0)], (14)915

then with the forward and revser process defined 916

as above, we can derive the variational bound for 917

the objective L̃: 918

L̃ =Eq(z0)[− log pθ(z0)] 919

≤Eq(z0:T )

[
− log

pθ(z0:T )

q(z1:T |z0)

]
920

=Eq(z0:T )

− log p(zT )−
∑
t≥1

log
pθ(zt−1|zt)
q(zt|zt−1)

 921

=Eq(z0:T )

[
− log p(zT )−

∑
t>1

log
pθ(zt−1|zt)
q(zt|zt−1)

922

− log
pθ(z0|z1)
q(z1|z0)

]
. (15) 923

In our sequence-to-sequence settings, following 924

the notations in Section 4, we let the denoising 925

distribution pθ condition on the input sequence wx, 926

which is pθ(zt−1|zt, wx). Besides, with the Markov 927

transition extensions of embedding mapping transi- 928

tion qϕ(z0|wy) in the forward process and rounding 929

transition p̃ϕ(wy|z0) in the reverse process, the ob- 930

jective in Equation 15 can be extended as: 931

L =Eqϕ(z0:T ,wx,wy)

[
− log p(zT ) 932

−
∑
t>1

log
pθ(zt−1|zt, wx)

q(zt|zt−1)
933

− log
pθ(z0|z1, wx)

q(z1|z0)
934

− log p̃ϕ(wy|z0) + log qϕ(z0|wy)

]
. (16) 935

By Bayes rule, we can derive the posterior distri- 936

bution of q with respect to zt−1: 937

q(zt−1|zt, z0) =
q(zt|zt−1, z0)q(zt−1|z0)

q(zt|z0)
, (17) 938

then, we have: 939

q(zt|zt−1) =
q(zt−1|zt, z0)q(zt|z0)

q(zt−1|z0)
. (18) 940

We substitute q(zt|zt−1),∀t > 1 in Equation 16 941

with Equation 18: 942

LV B =Eqϕ

[
− log

p(zT )

q(zT |z0)
943

−
∑
t>1

log
pθ(zt−1|zt, wx)

q(zt−1|zt, z0)
944

− log pθ(z0|z1, wx) 945

− log p̃ϕ(wy|z0) + log qϕ(z0|wy)

]
(19) 946
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For the time step t, t > 1, the terms947

−Eqϕ

[
log pθ(zt−1|zt)

q(zt−1|zt,z0)

]
between two Gaussian dis-948

tributions has a closed form solution, following Li949

et al. (2022); Ho et al. (2020), we have:950

− Eqϕ

[
log

pθ(zt−1|zt)
q(zt−1|zt, z0)

]
951

=Eqϕ

[∥∥∥∥ 1

2σ2
t

(µ̃θ(zt, wx, t)− µ̃(z0, zt))

∥∥∥∥2
]
+ C952

∝Eqϕ

[
∥µ̃θ(zt, wx, t)− µ̃(z0, zt)∥2

]
, (20)953

where C is a constant and σ2
t = β̃t, then substitut-954

ing µ̃ and µ̃θ by Equation 2 and 5, we have:955

∥µ̃θ(zt, wx, t)− µ̃(z0, zt)∥2956

=

√
ᾱt−1βt
1− ᾱt

∥∥z0θ(zt, wx, t)− z0
∥∥2957

∝
∥∥z0θ(zt, wx, t)− z0

∥∥2 . (21)958

After omitting 1
2σ2

t
and

√
ᾱt−1βt

1−ᾱt
for any t > 2,959

and substituting terms −Eqϕ

[
log pθ(zt−1|zt)

q(zt−1|zt,z0)

]
in960

Equation 19 with Equation 20, 21, we have the961

simplified loss function:962

L̃simple =Eqϕ

[
− log

p(zT )

q(zT |z0)
963

+
∑
t>1

∥∥z0θ(zt, wx, t)− z0
∥∥2964

− log
pθ(z0|z1, wx)

qϕ(z0|wy)
965

− log p̃ϕ(wy|z0)
]
. (22)966

We can further substituting terms967

−Eqϕ

[
log p(zT )

q(zT |z0)

]
and −Eqϕ

[
log pθ(z0|z1,wx)

qϕ(z0|wy)

]
968

similarly with:969

− Eqϕ

[
log

p(zT )

q(zT |z0)

]
∝ Eqϕ

[
∥µ̃(zT , z0)∥2

]
,

(23)

970

− Eqϕ

[
log

pθ(z0|z1, wx)

qϕ(z0|wy)

]
971

∝ Eqϕ

[
∥z0θ(z1, wx, 1)− gϕ(wy)∥

]2
. (24)972

Therefore we can derive Lsimple in Equation 6973

by subsitituting terms in L̃simple with Equation 23974

and 24: 975

Lsimple 976

= Eqϕ

[∑
t>1

∥z0θ(zt, wx, t)− z0∥2 977

+ ∥µ̃(zT , z0)∥2 + ∥z0θ(z1, wx, 1)− gϕ(wy)∥2 978

− log p̃ϕ(wy|z0)
]

(25) 979

= Eqϕ(z0,wx,wy)

[ T∑
t=2

Eq(zt|z0)∥z
0
θ(zt, wx, t)− z0∥2 980

+ ∥µ̃(zT , z0)∥2 + ∥z0θ(z1, wx, 1)− gϕ(wy)∥2 981

− log p̃ϕ(wy|z0)
]
. (26) 982

C Datasets 983

We conduct experiments on following datasets. The 984

data statistics and licenses are shown in Table 4 985

and 5. 986

Quora Question Pairs (QQP) (DataCanary et al., 987

2017) is a paraphrase identification dataset. We 988

use the positive pairs as the paraphrase generation 989

task. The models need to generate a restatement 990

expressing the same meaning to the given sentence. 991

Wiki-Auto (Jiang et al., 2020) is a text simplifica- 992

tion dataset to revise a complex text with simplified 993

grammar and word choices. The dataset aligns 994

sentences between English Wikipedia and Simple 995

English Wikipedia with automatic pre-processing 996

and identifying procedure. 997

Quasar-T (Dhingra et al., 2017) is a question- 998

answering dataset containing trivia questions 999

paired with answers and contexts. We use the 1000

dataset for evaluating question generation which 1001

aims to generate related questions with given con- 1002

texts. We use the pre-processed data from Lin et al. 1003

(2018) following Gong et al. (2022). 1004

Commonsense Conversation Dataset (CCD) 1005

(Zhou et al., 2018) is extracted from single-round 1006

dialogues on Reddit and is used for evaluating open 1007

domain dialogue generation. The task requires gen- 1008

erating feedback with commensense knowledge 1009

given the dialogue contexts. 1010

IWSLT14 and WMT14 are both widely used 1011

benchmarks for machine translation. We use the 1012

German(DE)-English(EN) pairs for both directions 1013

of translation. We follow fairseq (Ott et al., 2019) 1014

for data pre-processing using Moses script (Koehn 1015

et al., 2007) and tokenizing the sentences with byte- 1016

pair encoding (BPE) (Sennrich et al., 2016). 1017
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Dataset Train size Dev size Test Size
QQP 144,715 2,048 2,500
Quasar-T 116,953 2,048 10,000
Wiki-Auto 677,751 2,048 5,000
CCD 3,382,137 2,048 10,000
IWSLT14 160,239 7,283 6,750
WMT14 4,475,414 45,206 3,003

Table 4: The data splits statistics.

QQP CC-BY-SA-3.0 from GLUE
Quasar-T BSD-2-Clause license
Wiki-Auto Unspecified, Wikipedia by CC-BY-SA-3.0
CCD Apache License 2.0
IWSLT14 CC-BY-NC-ND-4.0
WMT14 Unspecified

Table 5: The license of data used in experiments.

D Implementation Details1018

D.1 Details on Experiment Setting1019

Here we give details for the implementation details1020

of our experiments. For the Transformers structure1021

and model training, we list detailed design in Table1022

6. For all the tasks, the set the maximum train-1023

ing step to 1000,000 and save checkpoints every1024

10,000 steps. We select the best checkpoint on the1025

development set. For WMT14 task, we use batch1026

size 1024 while for other tasks we use batch size1027

128. For training on each datasets, we train for one1028

run on NVIDIA A100 GPUs with 80GB memory.1029

For inference, we set the maximum time step to1030

T = 2000, and we do not use the clamping trick1031

as proposed in DiffusionLM (Li et al., 2022), since1032

the clamping trick does not consistently improve1033

the generation quality across datasets.1034

D.2 Details on MBR1035

Following DiffusionLM (Li et al., 2022), we apply1036

Minimum Bayes Risk (MBR) decoding for one sin-1037

gle generation output with improved quality. For1038

each sample, MBR decoding uses a generated se-1039

quences candidate set C and finds the candidate1040

sequence s∗ that minimize a expected risk R:1041

s∗ = argmin
s∈C

R(s) = argmin
s∈C

1

|C|
∑
s′∈C

r(s, s′),

(27)

1042

where r(·, ·) is a specific risk function and we use1043

the negative BLEU score following DiffusionLM1044

and sequence candidates in the candidate set C are1045

generated from the diffusion models under different 1046

random seeds. 1047

E Sampling by Prior 1048

Since at each time step t, the Transformers denois- 1049

ing function z0θ models the prediction ẑt0 of target 1050

output sequences. In the reverse process, sampling 1051

zt−1 is according to the denoising distribution pθ 1052

as: 1053

pθ(zt−1|zt, wx) = N (zt−1; µ̃θ(zt, wx, t), β̃tI).
(28)

1054

However, we can also use the prior distribution q 1055

in the forward process to generate zt−1, which is: 1056

zt−1 ∼q(zt−1|ẑt0) 1057

=N (zt−1;
√
ᾱt−1ẑ

t
0, (1− ᾱt−1)I). (29) 1058

Comparing to generation by Equation 28, using 1059

Equation 29 theoretically have larger variance. 1060

1− ᾱt−1 ≥ β̃t =
1− ᾱt−1

1− ᾱt
βt, (30) 1061

because βt

1−ᾱt
= 1−αt

1−ᾱt
≤ 1 where αt < 1,∀t and 1062

ᾱt =
∏t

s=1 αs. 1063

To increase the sequence level diversity, we ex- 1064

periment with randomly replacing the denoising 1065

distribution pθ by high variance distribution in 1066

Equation 29 in the reverse process during genera- 1067

tion. We denote the replacing probability as p1. 1068

Besides, considering the variance difference be- 1069

tween the two sampling distribution are larger at 1070
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Tasks Translation Non-Translation
Encoder Layer 6 6
Decoder Layer 6 6
Head Number 8 12
Hidden Dimension 512 768
FFN Dimension 2048 3072
Embedding Dimension 128 128
Max. Input Length 128 128
Max. Output Length 64 64
Dropout 0.3 0.1

Table 6: Translation represents the machine translation tasks on IWLST14 and WMT14. Non-Translation represents
the Paraphase, Text Simplification, Queation Generation and Dialogue tasks on QQP, Wiki-Auto, Quasar-T and
CCD respectively.

Figure 4: The figures from left to right plot the diversity, SacreBLUE with MBR=10 and SacreBLEU for single
candidates against p2 on IWSLT14 EN-DE dataset with p1 = 0.05 fixed, repectively. The dashed lines in each
figure represents the default generation results of SeqDiffuSeq.

earlier time step in the reverse process, we also1071

explore to only replace the sampling distribution1072

in the first p2 percent of time steps. We generate1073

10 candidate output sentences for each sample un-1074

der different random seeds to compute Div.4 and1075

SacreBLEU scores.1076

As shown in the left subfigure of Figure 4, when1077

fixing the replacing probability to 0.05, the genera-1078

tion diversity are consistently and profoundly im-1079

proved. In the right subfigure, the generation qual-1080

ity consistently degrades when replacing the de-1081

noising distribution when generation, even though1082

the replacing probability is low. In the middle sub-1083

figure, we can see that although the generation1084

quality degrades for each candidate, the final out-1085

put sequences by MBR may improve with proper1086

p2. In Figure 5, we can get similar results when1087

fixing p2 = 0.5. In the middle subfigure of Figure1088

5, the final output sequences are consistently better1089

with different p1.1090

To conclude, it is shown that replacing the sam-1091

pling distribution from the denoising distribution1092

pθ to the prior distribution q can provide a trade-off1093

between the generation diversity and generation1094

quality. With a proper combination of p1 and p2,1095

the generation quality of SeqDiffuSeq with the aid 1096

of MBR can be further improved. The benefits of 1097

sampling with the prior distribution q are always 1098

neglected in previous research. 1099

F More Results on Adaptive Noise 1100

Schedule 1101

We present more visualizations of the learned adap- 1102

tive noise schedules and the losses for each time 1103

step on other datasets. Figure 6, 7 and 8 present 1104

the visualizations on IWSLT14 EN-DE, QQP, and 1105

Wiki-Auto respectively with the same arrangement 1106

as Figure 2. The results from the figures are consis- 1107

tent with those discussed in the main texts. 1108

G Human Evaluation 1109

To better demonstrate the performance of the pro- 1110

posed SeqDiffuSeq , we conduct human evalua- 1111

tions to compare the generated results of SeqD- 1112

iffuSeq to those of DiffuSeq on the paraphrasing 1113

task QQP dataset. We randomly sample 100 data 1114

points in the test sets and let annotators decide for 1115

the same input sequence, which generated text se- 1116

quence is better, worse, or of similar quality. We 1117

compare SeqDiffuSeq with the previous state-of- 1118
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Figure 5: The figures from left to right plot the diversity, SacreBLUE with MBR=10 and SacreBLEU for single
candidates against p1 on IWSLT14 EN-DE dataset with p2 = 0.5 fixed, repectively. The dashed lines in each figure
represents the default generation results of SeqDiffuSeq.

Figure 6: The left figure depicts the adaptive noise schedule at different token positions on IWSLT14 EN-DE dataset.
The middle figure shows the loss for each time step at different token positions without the adaptive noise schedule.
The right figure shows the loss for each time step at different token positions with the adaptive noise schedule. Best
viewed in color.

the-art text diffusion model DiffuSeq. For fairness,1119

the human evaluations are designed to be blind eval-1120

uations (i.e., the annotators are unaware of which1121

model the output sequence is related to).1122

The human annotators are graduate university1123

students who are proficient in English and are asked1124

to compare the generated sequences based on the1125

following instruction. Decide which generated out-1126

put sequence is better based on whether the one is1127

more consistent with the input question, whether1128

the one has higher grammatical and syntactic qual-1129

ity. Figure 9 shows the human evaluation results.1130

The results show that both annotators prefer the1131

generated output sequences by SeqDiffuSeq more.1132

Generated output sequences on QQP from SeqDif-1133

fuSeq win by 36% and 44% from two annotators,1134

while those from DiffuSeq only win by 24% and1135

30% respectively. Human evaluation results show1136

that SeqDiffuSeq can generate text sequences of1137

higher quality than DiffuSeq.1138

H Case Study 1139

We select three illustrative cases and investigate the 1140

generation process of SeqDiffuSeq. From the cases, 1141

it shows that SeqDiffuSeq can generate reasonable 1142

text sequences. The generation process reveals that 1143

1. SeqDiffuSeq decides the output sequence 1144

length by generating [SEP] tokens at the early stage 1145

of sampling; 1146

2. The generation process seems to follow a 1147

left-to-right refining order; 1148

3. The position of [SEP] token will not change 1149

during sampling, even though there exists token 1150

repetition in the generated sequences as shown in 1151

red. 1152
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Figure 7: The left figure depicts the adaptive noise schedule at different token positions on QQP dataset. The middle
figure shows the loss for each time step at different token positions without the adaptive noise schedule. The right
figure shows the loss for each time step at different token positions with the adaptive noise schedule. Best viewed in
color.

Figure 8: The left figure depicts the adaptive noise schedule at different token positions on Wiki-Auto dataset. The
middle figure shows the loss for each time step at different token positions without the adaptive noise schedule. The
right figure shows the loss for each time step at different token positions with the adaptive noise schedule. Best
viewed in color.

Figure 9: Pie plots of human evaluation results by two different annotators.

17



Table 7: Three cases from QQP. We truncate the selected samples to the first 15 tokens. Generally, SeqDiffuSeq can
easily learn to generate [PAD] tokens after the ending token [SEP].

Time Step T − t zt

Input Text How do I read and find my YouTube comments?
400 [CLS] how do i read in??? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
800 [CLS] how do i read my a the? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
1200 [CLS] how do i read my youtube comments? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
1600 [CLS] how do i read my youtube comments? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]
2000 [CLS] how do i read my youtube comments? [SEP] [PAD] [PAD] [PAD] [PAD] [PAD]

Input Text How do I use Twitter as a business source?
400 [CLS] how can i use??? a??? [SEP] [PAD] [PAD]
800 [CLS] how can i use?? as a business?? [SEP] [PAD] [PAD]
1200 [CLS] how can i use? twitter as a business source? [SEP] [PAD] [PAD]
1600 [CLS] how can i use? twitter as a business source? [SEP] [PAD] [PAD]
2000 [CLS] how can i use twitter twitter as a business source? [SEP] [PAD] [PAD]

Input Text What is the funniest joke you know?
400 [CLS] what is the the tot the you? a? [PAD] [PAD] [PAD]
800 [CLS] what is the fun?t joke you’for? in? [SEP]
1200 [CLS] what is the funniest joke you’ve ever know? [SEP]
1600 [CLS] what is the funniest joke you’ve ever know? [SEP]
2000 [CLS] what is the funniest joke you’ve ever know? [SEP]
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