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EHTask: Recognizing User Tasks from Eye and
Head Movements in Immersive Virtual Reality
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Abstract—Understanding human visual attention in immersive virtual reality (VR) is crucial for many important applications, including
gaze prediction, gaze guidance, and gaze-contingent rendering. However, previous works on visual attention analysis typically only
explored one specific VR task and paid less attention to the differences between different tasks. Moreover, existing task recognition
methods typically focused on 2D viewing conditions and only explored the effectiveness of human eye movements. We first collect eye
and head movements of 30 participants performing four tasks, i.e. Free viewing, Visual search, Saliency, and Track, in 15 360-degree
VR videos. Using this dataset, we analyze the patterns of human eye and head movements and reveal significant differences across
different tasks in terms of fixation duration, saccade amplitude, head rotation velocity, and eye-head coordination. We then propose
EHTask – a novel learning-based method that employs eye and head movements to recognize user tasks in VR. We show that our
method significantly outperforms the state-of-the-art methods derived from 2D viewing conditions both on our dataset (accuracy of
84.4% vs. 62.8%) and on a real-world dataset (61.9% vs. 44.1%). As such, our work provides meaningful insights into human visual
attention under different VR tasks and guides future work on recognizing user tasks in VR.

Index Terms—Visual Attention, Task Recognition, Eye Movements, Head Movements, Deep Learning, Virtual Reality
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1 INTRODUCTION

UNDERSTANDING human visual attention in immersive vir-

tual reality (VR) is crucial for many important applications,

including gaze prediction [1–3], VR content design [4], gaze guid-

ance [5], and gaze-contingent rendering [2, 3]. However, previous

works on visual attention analysis typically only explored one spe-

cific VR task, e.g. Free viewing task [2–4,6] or Visual search task

[1]. Similarly, existing VR datasets typically only cover one VR

task, making it hard to analyze and compare performance across

tasks. Analyzing and comparing human behaviour across different

tasks helps to better understand the mechanisms of human visual

attention in VR [1, 7] and to develop related VR applications,

such as gaze guidance [5] or gaze-contingent rendering [2, 3].

In addition, it helps to build better predictive models of visual

attention [1–4] and to derive models recognizing user tasks from

visual attention [8–11].

Human visual attention is strongly influenced by the specific

task a user is performing [1, 7, 10]. Investigating the effect of

task on visual attention in immersive virtual reality is of great

significance for the emerging research area of task recognition

in VR [7]. In his seminal work [12], Yarbus analyzed human

gaze positions in seven different visual tasks and found that their

eye movement patterns were significantly different. Inspired by

Yarbus’ work, many researchers focused on the inverse Yarbus
process, i.e. recognizing user tasks from eye movement patterns

[8, 9, 13–19]. Task recognition methods have many important
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applications in the areas of virtual reality, augmented reality (AR),

and mixed reality (MR), collectively referred to as XR, including

adaptive virtual environment design [7], low-friction predictive

interfaces [16, 20], and attention-aware intelligent systems [21].

Specifically, virtual environments can provide a user with dynamic

and adaptive experiences according to the specific task the user is

performing [7]. XR systems have the potential to alleviate a user’s

burden of interaction by recognizing user tasks and interaction

goals and providing convenience for completing the corresponding

actions with less friction [16, 20]. By recognizing user tasks and

attentional states, XR systems can adapt to different states of at-

tention to improve the usability of the system [21]. However, prior

works on task recognition typically focused on 2D images and

videos [8, 9, 15, 22] and few works have studied immersive virtual

reality. Moreover, existing task recognition methods mainly focus

on human eye movements [8, 9, 13–16, 22] and paid less attention

to human head movements. However, human head movements

provide substantial insights into human cognitive behaviours [1–

3, 23, 24] and may also have strong correlations with user tasks.

Therefore, it is important to investigate the effectiveness of both

human eye and head movements in recognizing tasks in immersive

virtual reality.

We first perform a user study to collect 30 users’ eye and head

movements while performing four tasks, i.e. Free viewing, Visual
search, Saliency, and Track, in 15 360-degree VR videos. Using

this dataset, we analyze the characteristics of human eye and head

movements, including fixation duration, fixation number, saccade

amplitude, head rotation velocity, head rotation acceleration, and

eye-head coordination, and observe significant differences across

different tasks. Based on our analysis, we then propose EHTask – a

novel learning-based method to recognize user tasks from eye and

head movements in VR. We further conduct extensive experiments

to evaluate our model. Results from these experiments show that

our model outperforms the state-of-the-art methods derived from

2D viewing conditions by a large margin both on our dataset
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(accuracy of 84.4% vs. 62.8%) and on a real-world dataset (61.9%

vs. 44.1%). Our dataset, source code, and pre-trained models are

publicly available at https://cranehzm.github.io/EHTask.

The specific contributions of our work are three-fold:

• We provide a new dataset that contains human eye and

head movements under four task conditions collected

while participants viewed 15 360-degree VR videos.

• We analyze the patterns of human eye and head move-

ments and reveal significant differences across different

tasks in terms of fixation duration, saccade amplitude, head

rotation velocity, and eye-head coordination.

• We present EHTask, a novel learning-based method to

recognize user tasks in immersive virtual reality that sig-

nificantly outperforms the current state of the art.

2 RELATED WORK

Our work is related to previous works on 1) cognitive state estima-

tion, 2) automatic recognition of user tasks, and 3) coordination of

eye and head movements.

2.1 Cognitive State Estimation
In the area of cognitive research, cognitive state estimation has

become a popular and important research topic in recent years.

Lethaus et al. [25] and Sattar et al. [26] both focused on the prob-

lem of predicting user intents. Lethaus et al. predicted driver intent

based on gaze data while Sattar et al. inferred user search intents

from human gaze fixations. Pfleging et al. [27] and Fridman et al.

[28] both concentrated on cognitive load estimation. Pfleging et al.

presented an approach to estimating cognitive load by measuring

pupil diameters under various controlled lighting conditions while

Fridman et al. proposed two vision-based methods for cognitive

load estimation under real-world driving conditions. Recently,

Wang et al. utilized eye movements of a person recalling an image

while looking at nothing to estimate mental images [29]. David et

al. employed gaze features to predict artificial visual field losses

by utilizing hidden Markov models and recurrent neural networks

[30]. Ahn et al. decoded a reader’s eye movements to estimate their

levels of text comprehension and related states [31]. In addition,

many researchers have studied the problem of recognizing user

tasks and have presented many successful methods [8, 9, 13–

15, 22].

In the field of virtual reality, some researchers focused on

VR cybersickness prediction [32–34]. For example, Kim et al.

developed an electroencephalography driven model to predict VR

cybersickness [32] while Anwar et al. proposed a neural network-

based method to predict the degree of cybersickness influenced

by 360-degree VR videos [33]. Other researchers concentrated on

cognitive load estimation in VR [35, 36]. Tremmel et al. utilized

electroencephalogram features to estimate cognitive load in an

interactive virtual environment [35]. Dell’Agnola et al. simulated

cognitive loads in virtual reality and extracted features from

different physiological signals to detect the levels of cognitive load

[36]. In contrast with previous works, we focus on the problem of

recognizing user tasks in immersive virtual reality.

2.2 Recognition of User Tasks
The problem of recognizing user tasks has been explored by

many researchers. In his seminal work [12], Yarbus revealed that

human eye movement patterns were significantly influenced by

the specific tasks assigned to them, suggesting that a user’s task

may be recognized from his or her eye movements. Since then,

many researchers have focused on the link between task and eye

movements and have proposed many eye movement-based task

recognition methods [8, 9, 13–16, 22]. Coutrot et al. employed

hidden Markov models to recognize user tasks from fixations

recorded while viewing static natural scene images [8]. Fuhl et

al. proposed to use random ferns in combination with saccade

angle successions to recognize user tasks [22]. They evaluated this

approach on two image-based datasets and showed improvements

over other methods. Hild et al. focused on the situation of viewing

motion videos and utilized random forests to recognize user tasks

from eye movement patterns [15]. However, prior work on task

recognition typically focused on 2D viewing conditions, e.g. 2D

images and videos, and few works have studied 3D viewing con-

ditions (stereoscopic viewing conditions), e.g. immersive virtual

reality. Moreover, existing task recognition methods mainly focus

on human eye movements [8, 9, 13–16, 22] and pay less attention

to human head movements. However, human head movements

provide substantial insights into human cognitive behaviours [1–

3,23,24] and may also have strong correlations with user tasks. To

address the limitations of prior works, in this research, we investi-

gate the effectiveness of both human eye and head movements in

recognizing tasks in immersive virtual reality.

2.3 Coordination of Eye and Head Movements

Human eye and head movements have been extensively inves-

tigated in the fields of cognitive science and human-centered

computing. Some researchers focused on eye-head coordination

[2, 3, 24, 37, 38], which refers to the coordinated movements be-

tween the eyes and the head. Stahl found that the eyes and the head

move in coordination during gaze shifts and that head movement

amplitude is proportional to gaze shift amplitude [37]. Fang et al.

further discovered that eye-head coordination is involved in gaze

fixation and plays a role in visual cognitive processing [24]. Hu et

al. focused on eye-head coordination in virtual reality and revealed

strong correlations between human gaze positions and head rota-

tion velocities [2,3]. Sidenmark et al. identified general eye, head,

and torso coordination patterns during gaze shifts in virtual reality

[38]. Other researchers concentrated on the applications of eye

and head movements [1, 23, 39–41]. Gandrud et al. utilized gaze

direction and head orientation to predict direction of locomotion

in virtual reality [41]. Kytö et al. [39] and Sidenmark et al. [42]

leveraged eye and head movements to improve target selection

techniques. Kothari et al. employed the magnitudes of eye and

head movements to classify gaze events (i.e. fixations, pursuits,

and saccades) [23]. Recently, Hu et al. proposed a learning-based

method to forecast future eye fixations using past gaze positions

and head rotation velocities [1]. In contrast with prior works, in

this research we employed eye and head movements to recognize

user tasks.

3 DATA COLLECTION

3.1 Stimuli

To collect human eye and head movements of performing different

tasks in virtual reality, we employed 360-degree VR videos as our

stimuli to ensure that the same VR content was presented to a

user under different task conditions. Specifically, 15 videos were

selected from three publicly available 360-degree video datasets
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Fig. 1: The experimental setup (top-left) and the 15 360-degree

VR videos used in our experiments.

[43–45] to provide a wide variety of content, which include

indoor scenes, cities, outdoor scenarios, sports, movies, and shows

(Figure 1). Eleven videos were captured by a stationary camera

and four videos were recorded using a moving camera. These

videos are monoscopic and not interactive. They were projected

onto the inner surface of a sphere and viewers could observe the

videos from the inside of the sphere using a VR headset. Each

selected video has a resolution of 3840×2160 pixels and a frame

rate of 30 f ps. The original videos have different lengths, and

to ensure that the task duration is the same in different videos,

we extracted a 150-second segment from each video for data

collection.

3.2 Participants and Apparatus

We recruited 30 participants (18 male, 12 female, age μ =
24.5,σ = 5.0) to take part in our experiments. Each participant

reported normal or corrected-to-normal vision. The eye tracker

was calibrated to each user before starting the experiment. We

conducted the data collection experiments on a computer with an

Intel(R) Core(TM) i7-8700 @ 3.20GHz CPU and an NVIDIA

GeForce RTX 2060 SUPER GPU. The 360-degree VR videos

were displayed using an HTC Vive head mounted device (HMD),

equipped with a 7invensun VR eye tracker running at 100 Hz and

providing an accuracy of 0.5◦. We used the Unity3D game engine

to render the VR videos and employed our own Unity scripts to

record human eye movements (accessed from the eye tracker) and

head movements (accessed from the HMD) at a sampling rate of

100 Hz. The snapshot of our experimental setup is demonstrated

on the top left of Figure 1.

3.3 Procedure

In our experiments, each participant was asked to explore three

360-degree VR videos that were randomly chosen from the 15

videos. Each video was played four times for a user, in which the

user was required to complete the following four tasks (one task

at a time) in random order:

• Free viewing: Freely explore the 360-degree VR video;

• Visual search: Locate and count as many objects with

geometrical shapes, e.g. triangles, circles, and rectangles,

as you can find in the scene;

• Saliency: Estimate which half of the scene (top or bottom)

is more salient;

• Track: Keep in view the nearest moving object in your

field of view and track it with your eyes.

These tasks are not only typically used in existing task datasets

[15, 23, 46, 47] but also have crucial importance for VR appli-

cations [1–4, 7, 48]. Studying these tasks contributes to not only

understanding the mechanisms of human visual attention in VR

[1, 7] but also deriving models recognizing user tasks from visual

attention in immersive virtual reality [8–11]. Each task lasted for

150 seconds, i.e. the same length as a video, and the videos were

set to silent to avoid auditory disturbance.

During the experiments, we collected the class of the task,

human eye movements, and human head movements for fur-

ther analysis. Specifically, we recorded human gaze positions

on the screen of the HMD ((ex,ey),ex,ey ∈ [0,1]) and human

head orientation in the 360-degree virtual world ((hx,hy),hx ∈
[−180◦,180◦],hy ∈ [−90◦,90◦]). Using the head orientation in-

formation, we further converted on-screen gaze positions to the

gaze positions in the 360-degree virtual world ((gx,gy),gx ∈
[−180◦,180◦],gy ∈ [−90◦,90◦]). For clarity, we utilized eye-in-

head (EiH) data to denote on-screen gaze positions and employed

gaze-in-world (GiW) data to represent gaze positions in the virtual

world. The EiH data reflects human eye movements with respect

to the head while the GiW data shows the combined influence of

human eye and head movements [23].

Our dataset (EHTask-dataset) contains exploration data of 30

participants, totalling 360 recordings (30 participants × 3 videos

× 4 tasks). Each recording is annotated with the task, EiH data

(100 Hz), GiW data (100 Hz), and head orientation data (100

Hz) in a 150-second 360-degree video. Each of the 15 videos

was observed by six users. Table 1 provides a comparison of our

dataset with other related datasets. We can see that our dataset

is the first VR dataset that contains both human eye and head

movements in different tasks.

4 EYE MOVEMENTS, HEAD MOVEMENTS, AND
TASK

Human eye movements and head movements in immersive VR

may be severely influenced by the specific tasks assigned to them.

To investigate which features or movements are discriminative for

which task, in this section we conducted a comprehensive analysis

of human eye and head movements in different VR tasks based on

our dataset. Specifically, we analyzed the characteristics of human

eye movements, the characteristics of human head movements,

and the characteristics of eye-head coordination.

4.1 Eye Movements and Task
The patterns of human eye movements can be classified into

fixations (pauses over regions of interest) and saccades (rapid eye

movements between fixations). To analyze the characteristics of

human eye movements in different tasks, we employed a thresh-

olding method based on dispersion and duration to detect fixations

and saccades from EiH data [52]. The maximum dispersion of

fixations was set to 1◦ and the minimum duration of fixations was

set to 150 ms [4].

We computed the statistical characteristics of the detected fixa-

tions and saccades. Specifically, we first calculated the mean fixa-

tion duration, fixation number per second, mean saccade duration,

saccade number per second, and mean saccade amplitude for each

recording. Then we computed the means and standard deviations
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TABLE 1: A comparison between our dataset and other related datasets. Our dataset is the first task dataset for immersive virtual reality

that contains the information on both human eye and head movements.

Datasets Stimuli Viewers Eye Head Task Duration Tasks
Greene et al. [49] 64 images 16

√ × 10 s Memory � Decade � People � Wealth
Borji et al. [50] 15 images 21

√ × 30 s Yarbus’ original 7 tasks [12]
Koehler et al. [46] 800 images 19

√ × 2 s Free viewing � Object search � Saliency
Sugano et al. [47] 480 image pairs 14

√ × 10 s Free viewing � Preference
Kübler et al. [51] 2 paintings 20

√ × 30-120 s Free viewing � Age estimating
Hild et al. [15] 1 video 30

√ × 4 min Explore � Observe � Search � Track
Bulling et al. [17] Real World 8

√ × 5 min Copy � Read � Write � Video � Browse � Null
GW dataset [23] Real world 19

√ √
3 min Navigation � Ball catching � Visual search �Tea making

Ours 15 VR videos 30
√ √

150 s Free viewing � Visual search � Saliency � Track

(SDs) of the above features for the recordings belonging to the four

tasks respectively. The results are indicated in Table 2. To investi-

gate whether the differences between the statistics of the four tasks

are significant, we first ran a one-way repeated measures analysis

of variance (ANOVA) test to evaluate the differences between

the four tasks. If the differences were statistically significant, we

further ran a post-hoc Tukey’s honest significant difference test

(Tukey’s HSD test) to perform pairwise comparisons among the

four tasks. We find that the differences between the four tasks

are statistically significant in terms of mean fixation duration

(F(3,180) = 291.1, p = 8.57E − 69 < 0.01), fixation number per

second (F(3,180) = 399.7, p = 2.61E−79 < 0.01), mean saccade

duration (F(3,180) = 612.8, p = 3.45E − 94 < 0.01), saccade

number per second (F(3,180) = 59.8, p= 7.10E−27< 0.01), and

mean saccade amplitude (F(3,180) = 428.8, p = 1.04E − 81 <
0.01) and the differences between every two tasks also have

statistical significance (Tukey’s HSD test, p < 0.01). The above

results correspond with previous findings that human eye move-

ment patterns are different across different tasks [7,12,50,53]. An

exception to this is that there is no significant difference between

Free viewing task and Track task (Tukey’s HSD test, p = 0.878)

in terms of saccade number per second. Generally, we expect

Track task to have fewer saccades than Free viewing task because

observers are required to fixate on the nearest moving object in the

Track task. However, the nearest moving object in our VR videos

usually moves very fast, which may increase observers’ saccades

and make the difference between Free viewing task and Track task

not significant.

To gain a sound understanding of eye fixations in the four

tasks, we analyzed the distributions of fixation positions. Figure 2

illustrates the distributions of fixation positions on the HMD’s

screen, which are smoothed using a Gaussian filter with sigma

equal to one degree of visual angle [54]. We find that, in each

task, most of the fixation positions lie in the central region

of the screen, which corresponds with previous findings [1–4].

This is because when observers move their heads little or not

at all, their gaze-shift sizes are usually limited to a small range

of about ±18◦ [24]. As a consequence, observers’ eye-in-head

fixation positions are usually limited to the central region of

the HMD’s screen regardless of the task being performed. We

further analyzed the dispersions of fixation position distributions.

Specifically, we utilized the determinant of the co-variance matrix

between horizontal and vertical fixation coordinates as a measure

for dispersion [7] and indicated the results in Table 2. We find

that there exists a significant difference between the four tasks

(F(3,180) = 194.0, p = 3.70E −56 < 0.01) and Saliency task has

significant difference with the other three tasks (Tukey’s HSD test,
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Fig. 2: The distributions of human fixation positions on the HMD’s

screen in (a) Free viewing task, (b) Visual search task, (c) Saliency
task, and (d) Track task.

p< 0.01). However, there is no significant difference between Free
viewing task and Visual search task (Tukey’s HSD test, p= 0.996),

no significant difference between Free viewing task and Track
task (Tukey’s HSD test, p = 0.352), and no significant difference

between Visual search task and Track task (Tukey’s HSD test,

p = 0.527). This is because Saliency task requires the observers

to frequently compare the top and bottom half of the scene, which

makes the fixation positions more dispersed than the other three

tasks.

To analyze the temporal characteristics of human eye move-

ments in the four tasks, we calculated the auto-correlations of the

horizontal and vertical eye coordinates of EiH data respectively

[55]. The auto-correlation of a time series is defined as the Pearson

correlation between the time series and a delayed copy of itself.

We first calculated the horizontal and vertical auto-correlations for

each recording and then computed the means for the recordings

belonging to the four tasks respectively. Figure 3 illustrates the

horizontal and vertical auto-correlations at different time intervals.



5

TABLE 2: Statistical characteristics of human eye movements in the four tasks. For each item, the difference in the fonts of two tasks

indicates that there exists a significant difference between them (Tukey’s HSD test, p < 0.01). The same font indicates no statistical

significance.

Free viewing Visual search Saliency Track

Mean Fixation Duration
Mean 263.4 ms 339.5 ms 241.2 ms 431.7 ms
SD 25.6 ms 49.0 ms 24.3 ms 106.7 ms

Fixation Number Per Second
Mean 1.41 1.97 1.22 1.77
SD 0.38 0.17 0.43 0.19

Mean Saccade Duration
Mean 633.2 ms 269.3 ms 776.0 ms 241.1 ms
SD 218.0 ms 69.2 ms 260.1 ms 56.2 ms

Saccade Number Per Second
Mean 1.03 1.20 0.95 1.01
SD 0.17 0.18 0.19 0.24

Mean Saccade Amplitude
Mean 6.51◦ 4.73◦ 8.56◦ 5.40◦
SD 1.24◦ 1.05◦ 1.49◦ 1.58◦

Fixation Distribution Dispersion
Mean 2.21E-6 2.25E-6 7.08E-6 2.50E-6
SD 1.01E-6 1.18E-6 3.50E-6 1.57E-6
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Fig. 3: The auto-correlations of the (a) horizontal eye coordinates

and (b) vertical eye coordinates at different time intervals.

In the horizontal direction, we find that the auto-correlations of

the four tasks are very close and there is no significant difference

between the four tasks (F(3,180) = 0.848, p = 0.469) at the time

interval of 200 ms. However, in terms of vertical auto-correlations,

we find that the difference between the four tasks is statistically

significant (F(3,180) = 89.7, p = 1.52E − 35 < 0.01) at 200 ms
and the differences between every two tasks are statistically sig-

nificant (Tukey’s HSD test, p < 0.01). This may be because tasks

have a higher influence on observers’ vertical gaze behaviours than

on horizontal gaze behaviours [1, 3, 55].

To sum up, we conducted a comprehensive analysis of human

eye movements in different tasks and observed significant differ-

ences in the aspects of mean fixation duration, fixation number per

second, mean saccade duration, saccade number per second, mean

saccade amplitude, fixation distribution dispersion, and vertical

auto-correlation. Our results suggest that the characteristics of

human eye movements can serve as clues to recognize tasks in

VR.

4.2 Head Movements and Task
To analyze the characteristics of human head movements in the

four tasks, we calculated the mean absolute horizontal velocity,

mean absolute vertical velocity, mean absolute horizontal acceler-

ation, and mean absolute vertical acceleration for different tasks.

We also calculated the dispersions of head velocity distributions by

utilizing the determinant of the co-variance matrix between hori-

zontal and vertical head velocities as a measure for dispersion [7].

Specifically, we first calculated the statistics for each recording and

then computed the means and SDs for the recordings belonging to

the four tasks respectively. The results are indicated in Table 3. To

analyze the differences between different tasks, we first ran a one-

way repeated measures ANOVA test to evaluate the differences be-

tween the four tasks and if the results were significant, we further

ran a post-hoc Tukey’s HSD test to perform pairwise comparisons

among the four tasks. We find that the differences between the four

tasks are statistically significant in the aspects of mean absolute

horizontal velocity (F(3,180) = 1328.5, p = 1.68E−122 < 0.01),

mean absolute vertical velocity (F(3,180) = 1494.8, p = 6.38E −
127 < 0.01), mean absolute horizontal acceleration (F(3,180) =
296.9, p = 1.96E − 69 < 0.01), mean absolute vertical acceler-

ation (F(3,180) = 195.6, p = 2.14E − 56 < 0.01), and velocity

distribution dispersion (F(3,180) = 613.7, p= 3.03E−94< 0.01)

and the differences between every two tasks also have statistical

significance (Tukey’s HSD test, p < 0.01). The above results

reveal that the patterns of human head movements are different

across different tasks, indicating that the characteristics of human

head movements can be employed to recognize user tasks. An

exception to this is that there is no significant difference between

Free viewing task and Visual search task in the aspect of mean

absolute vertical velocity (Tukey’s HSD test, p = 0.278). Gener-

ally, we expect Free viewing task to have larger vertical velocity

than Visual search task because observers have more freedom

to move their heads in Free viewing task. However, we find

that, agreeing with prior work [6], observers preferred to explore

the 360◦ VR videos in the horizontal direction (mean absolute

horizontal velocity: 22.7◦/s) than in the vertical direction (mean

absolute vertical velocity: 2.9◦/s) in Free viewing task, possibly

because the horizontal view (360◦) of the 360◦ VR videos is much

larger than the vertical view (180◦). As a consequence, the mean

absolute vertical velocity in Free viewing task is smaller than

expected and the difference between Free viewing task and Visual
search task is not significant. Another exception is that there is

no significant difference between Visual search task and Track
task (Tukey’s HSD test, p = 0.030 > 0.01) in the aspect of mean

absolute vertical acceleration. Generally, we expect Track task to

have lower vertical acceleration than Visual search task because

observers are required to fixate on the nearest moving object in the

Track task. However, the nearest moving object in our VR videos

usually moves very fast, which may increase observers’ vertical

acceleration and make the difference between Visual search task

and Track task not significant.

To summarize, we conducted a comprehensive analysis of

human head movements in different tasks and observed significant
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TABLE 3: Statistical characteristics of human head movements in the four tasks. For each item, the same font of two tasks means that

the difference between the two tasks is not statistically significant (Tukey’s HSD test, p > 0.01) while different fonts indicate statistical

significance.

Free viewing Visual search Saliency Track

Mean Absolute Horizontal Velocity
Mean 22.7◦/s 9.1◦/s 26.8◦/s 6.4◦/s
SD 4.3◦/s 2.3◦/s 4.4◦/s 2.4◦/s

Mean Absolute Vertical Velocity
Mean 2.9◦/s 2.7◦/s 7.5◦/s 1.9◦/s
SD 0.6◦/s 0.5◦/s 1.4◦/s 0.4◦/s

Mean Absolute Horizontal Acceleration
Mean 182.6◦/s2 140.4◦/s2 203.5◦/s2 129.8◦/s2

SD 29.4◦/s2 14.1◦/s2 23.9◦/s2 19.4◦/s2

Mean Absolute Vertical Acceleration
Mean 125.0◦/s2 114.2◦/s2 145.4◦/s2 109.4◦/s2

SD 15.0◦/s2 11.1◦/s2 12.0◦/s2 11.6◦/s2

Velocity Distribution Dispersion
Mean 2.64E+4 6.95E+3 2.39E+5 3.12E+3
SD 2.13E+4 7.98E+3 1.27E+5 4.35E+3

differences in the aspects of mean absolute horizontal velocity,

mean absolute vertical velocity, mean absolute horizontal accelera-

tion, mean absolute vertical acceleration, and velocity distribution

dispersion. Our results reveal that human head movements are

severely affected by the specific tasks assigned to them, suggesting

that the characteristics of human head movements can be applied

to recognize user tasks.

4.3 Eye-Head Coordination and Task

Eye-head coordination refers to the coordinated movements be-

tween the eyes and the head. Some researchers found that head

movement amplitude is proportional to gaze shift amplitude in

real-world situations [24,37] while other researchers revealed that

human on-screen gaze positions are correlated with their head

rotation velocities in virtual reality [1–3]. To analyze the eye-head

coordinations in the four VR tasks, we calculated the correlations

between human on-screen gaze positions and their head rotation

velocities in the horizontal and vertical directions respectively us-

ing Spearman’s rank correlation coefficient [1,3], which measures

the monotonic relationship between two variables. Specifically,

we first calculated the horizontal and vertical correlations for

each recording and then computed the means for the recordings

belonging to the four tasks respectively. Figure 4 illustrates the

eye-head correlations in the horizontal and vertical directions.

We performed a one-way repeated measures ANOVA test on the

correlations of the four tasks at the time interval of 0 ms and if

the differences between the four tasks were significant, we further

ran a post-hoc Tukey’s HSD test to perform pairwise comparisons

among the four tasks. We find that the differences between the four

tasks are statistically significant in terms of horizontal eye-head

correlation (F(3,180) = 548.7, p = 2.80E − 90 < 0.01) and ver-

tical eye-head correlation (F(3,180) = 308.0, p = 1.27E − 70 <
0.01) and the differences between every two tasks also have

statistical significance (Tukey’s HSD test, p < 0.01). The above

results reveal that the patterns of eye-head coordination are dif-

ferent across different tasks. This is because different tasks can

induce different visual cognitive processings [1,7] and thus induce

different eye-head coordinations because eye-head coordination is

influenced by visual cognitive processing [24]. An exception is

that there is no significant difference between Free viewing task

and Saliency task (Tukey’s HSD test, p = 0.086 > 0.01) in the

aspect of horizontal eye-head correlation at the time interval of

0 ms. This reflects that the visual cognitive processings of Free
viewing task and Saliency task have similarities in the horizontal

direction.
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Fig. 4: The Spearman’s correlations between on-screen gaze

positions and head rotation velocities in the (a) horizontal direction

and (b) vertical direction at different time intervals.

To summarize, we analyzed the characteristics of eye-head

coordination in different tasks and observed significant differences

in the aspects of horizontal eye-head correlation and vertical eye-

head correlation. Our results indicate that different tasks have

different influences on eye-head coordination, suggesting that the

inner connection between eye movements and head movements

can provide meaningful information for task recognition.

5 EHTASK MODEL

Based on the analysis in Section 4, we propose a learning-based

model called EHTask that combines the eye and head movements

to recognize user tasks (Figure 5). EHTask consists of four

modules: an EiH module that extracts features from eye-in-head

data, a GiW module that extracts features from gaze-in-world data,

a head module that extracts features from head rotation velocities,

and a task recognition module that recognizes user tasks from the

extracted features.

The EiH module aims at extracting features from the eye-in-

head time-series data (Ei ∈ R2). Previous work on gaze prediction

reveals that 1D convolutional neural network (CNN) has good

performance for extracting features from gaze and head time-

series data [1, 3] while bidirectional gated recurrent unit (BiGRU)

has also been proven to be powerful for processing sequence data

[56]. An intuitive idea is to combine the above two architectures

to produce better results. Therefore, the EiH module first employs

1D CNN layers to extract features for each time step of the eye-

in-head data and then applies BiGRU to extract temporal features

from the output of the 1D CNN layers. Specifically, three 1D

CNN layers, each with 16 channels and a kernel size of three,
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are employed for feature extraction. Each CNN layer is followed

by a batch normalization layer, a ReLU activation function, and

a max-pooling layer with a kernel size of two. After the CNN

layers, a BiGRU layer with hidden size (the number of features in

the hidden state) of 64 is applied to extract temporal features. The

BiGRU layer outputs the hidden states of the first and last time

steps respectively for task recognition.

The GiW module extracts features from the gaze-in-world

time-series data (Gi ∈ R2) while the head module is utilized to

extract features from the time series of the head rotation velocities

(Hi ∈ R2). The same network structure as EiH module is employed

for the GiW module and head module respectively for feature

extraction.

The task recognition module combines the outputs of the EiH

module, GiW module, and head module to recognize user tasks.

Specifically, this module employs two fully connected (FC) layers,

each with 64 neurons, to integrate the extracted features. Each FC

layer is followed by a batch normalization layer, a ReLU activation

function, and a dropout layer with dropout rate 0.5 to improve the

network’s generalization ability. A Softmax layer is applied after

the second FC layer to generate the probability of each task.

To train our model, we first down-sampled the original record-

ings in the dataset to a frequency of 25 Hz for simplicity [8]. Then

we segmented the recordings into small windows and employed

these windows to train our model. The window size was set to

10 seconds (Δt1 = Δt2 = Δt3 = 10 s) because the duration of 10

seconds has been proven to be effective enough for recognizing

user tasks [8,9,22,47]. The interval between two adjacent windows

was set to one second. We employed cross entropy loss as the loss

function and utilized Adam optimizer with weight decay 1.0e−4

to minimize the loss. We set the initial learning rate to 1.0e−2 and

employed an exponential decay strategy that decayed the learning

rate by γ every epoch. We set γ to 0.75 and employed a batch size

of 256 to train our model for totally 30 epochs. Our model was

implemented using the PyTorch framework.

6 EXPERIMENTS AND RESULTS

In this section, we conducted extensive experiments to evaluate

our model’s task recognition performance. Specifically, we first

compared our model with the state-of-the-art methods derived

from 2D viewing conditions on our dataset using a cross-user

evaluation and a cross-scene evaluation respectively. We further

evaluated our model’s performance on a newly released real-world

task dataset [23] to test our model’s generalization capability

for different situations. We also performed an ablation study to

validate the effectiveness of each component in our model.

6.1 Evaluation Metric and Comparison
As commonly used in prior works [8, 9, 13, 22], we employed

classification accuracy as the metric to evaluate the performances

of task recognition methods. We compared the performance of our

model with the following state-of-the-art methods derived from 2D

viewing conditions:

• Linear Discriminant Analysis (LDA): Linear discriminant

analysis has been proven to be effective for task recogni-

tion in prior works [8,15]. We utilized the implementation

provided in Coutrot et al.’s Matlab toolbox [8] and trained

the model from scratch using its default settings. This

Matlab toolbox extracts features from raw eye movements

using hidden Markov models (HMM) and then utilizes

the HMM features to train task recognition methods. We

respectively utilized the raw eye movements and the HMM

features of the raw eye movements to train LDA and got

LDA r (LDA using raw eye movements) and LDA h (LDA

using HMM features) for comparison.

• Support Vector Machine (SVM): As shown in prior works

[11,16–18,51,53], support vector machines can be applied

to recognize user tasks. We employed the implementation

provided in Coutrot et al.’s Matlab toolbox [8] and used

the default settings to train it from scratch. Raw eye

movements and the HMM features of the raw eye move-

ments were trained respectively to produce two models,

i.e. SVM r and SVM h.

• Boosting Classifier (BC): Boosting classifiers have been

successfully used for task recognition in previous works

[8,50]. We used the implementation of AdaBoost provided

in Coutrot et al.’s Matlab toolbox [8] and trained it from

scratch using the default settings. BC r and BC h were

trained for comparison using the raw eye movements and

the HMM features of the raw eye movements respectively.

• Random Forests (RFo): Random forests were frequently

used to recognize user tasks [9, 13, 15, 47]. We used the

implementation provided in Coutrot et al.’s Matlab toolbox

[8] and trained RFo r and RFo h from raw eye movements

and the HMM features of the raw eye movements respec-

tively using the default settings.

• Random Ferns (RFe): Random ferns were recently applied

to the problem of task recognition [22]. We employed the

implementation provided by Fuhl et al. [22], which recog-

nizes user tasks from raw eye movements. We trained RFe
from scratch using the default parameters for comparison.

6.2 Recognition Performance

6.2.1 Cross-User Evaluation
We first performed a cross-user evaluation to evaluate our model’s

generalization capability for different users. Specifically, we first

segmented the original recordings into windows of 10 seconds

(Section 5) and then evenly divided all the windows into five folds

according to different users. We trained the methods on four folds,

and tested on the remaining one fold. Each method was trained

and tested for five times in total in which each fold was tested

once. The recognition results in each test were collected for further

analysis. We calculated the mean classification accuracy of the

five tests for each method and indicated the results in Table 4

(Cross-User, Window). We can see that our model outperforms the

state-of-the-art methods by a large margin (accuracy of 84.4% vs.
62.8%). We further performed a paired Wilcoxon signed-rank test

to compare the recognition results of our model with the second-

best method and validated that the difference between our model

and the second-best method is statistically significant (p < 0.01).

The above results validate that our model has a high accuracy for

recognizing user tasks and has a strong generalization capability

for different users.

Figure 6 (a) shows the confusion matrix of our model’s cross-

user recognition results. Each diagonal element of the confusion

matrix represents the recognition accuracy for each class while the

off-diagonal elements indicate the probabilities of mislabeling one

class as another. The higher the diagonal values of the confusion

matrix, the better the recognition performance. We can see that
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Fig. 5: Architecture of the proposed model EHTask.

our model maintains a high recognition accuracy for each class,

which validates the effectiveness of our model. Furthermore,

we find that the largest confusion takes place between Visual
search task and Track task (11.8% and 12.9%). By examining

our analysis in Section 4, we find that Visual search task and

Track task have many similarities in terms of influences on human

eye movements and head movements. For example, there is no

significant difference between Visual search task and Track task

in the aspects of fixation distribution dispersion (Table 2) and

mean absolute vertical acceleration of head movements (Table 3).

The similar influences on human eye and head movements may

degrade our model’s performance because our model relies on

the features extracted from human eye and head movements to

discriminate different tasks. In addition, we also find that our

model has the highest accuracy for recognizing Saliency task.

This may be because Saliency task has some distinct influences

on human eye and head movements compared with the other three

tasks. For example, in terms of fixation distribution dispersion (Ta-

ble 2), Saliency task has the largest dispersion and the differences

between Saliency task and the other three tasks are statistically

significant while there exists no statistical significance between

the other three tasks.

In the above evaluation, we segmented a whole recording

into windows of 10 seconds and only evaluated our model’s

performance on the windows. To further evaluate our model’s

performance on the whole recordings, we employed a majority

voting (MV) strategy that utilized the majority voting result of

all the windows belonging to one recording to recognize the task

of this recording. The majority voting recognition performances

of different methods are indicated in Table 4 (Cross-User, MV).

We can see that our model outperforms the state-of-the-art meth-

ods and the difference between our model and the second-best

method is statistically significant (paired Wilcoxon signed-rank

test, p < 0.01). Furthermore, we find that our model achieves

a large improvement using majority voting over that of using

windows (97.8% vs. 84.4%), which validates the effectiveness of

our majority voting strategy.

6.2.2 Cross-Scene Evaluation

Our dataset consists of recordings from 15 scenes. To evaluate

our model’s generalization capability for different scenes, we

segmented the original recordings into 10-second windows, evenly

divided all the windows into five folds according to different
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Fig. 6: Confusion matrices of our model’s (a) cross-user recog-

nition results and (b) cross-scene recognition results, normalised

across ground truth rows. FV: Free viewing; VS: Visual search;

SA: Saliency; TR: Track.

scenes, and performed a five-fold cross-scene evaluation to test

our model and other methods. The recognition performances of

different methods are indicated in Table 4 (Cross-Scene, Window).

We can see that our model achieves a large improvement over the

state-of-the-art methods (82.1% vs. 62.6%). We further performed

a paired Wilcoxon signed-rank test to compare our model with

the second-best method and the result validates that the difference

between our model and the second-best method is statistically

significant (p < 0.01). The above results validate that our model

has a high accuracy for recognizing user tasks and a strong

generalization capability for different scenes.

The confusion matrix of our model’s cross-scene recognition

results is illustrated in Figure 6 (b). We can see that, similar to the

situation of cross-user evaluation (Figure 6 (a)), our model has a

high accuracy for recognizing each class and the largest confusion

takes place between Visual search task and Track task (14.1% and

15.9%). In addition, the confusion matrix also indicates that our

model has the highest accuracy for recognizing Saliency task.

We further evaluated the majority voting recognition perfor-

mances of our model and other methods. Specifically, we em-

ployed the majority voting result of all the windows belonging to

one recording to recognize user tasks in this recording. The results

are indicated in Table 4 (Cross-Scene, MV). We can see that our

model outperforms other methods, achieving a high accuracy of
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TABLE 4: Task recognition performances of different methods on our dataset. In each row, the best method is emphasized using bold

font and the second-best method is stressed using a underline. Our model outperforms other methods in both cross-user and cross-scene

settings.

Ours LDA r LDA h SVM r SVM h BC r BC h RFo r RFo h RFe

Cross-User
Window 84.4% 37.2% 54.0% 29.5% 54.3% 41.5% 49.3% 62.8% 58.0% 48.7%

MV 97.8% 42.8% 76.1% 34.2% 75.3% 47.5% 65.3% 83.1% 88.9% 68.3%

Cross-Scene
Window 82.1% 37.2% 53.8% 26.3% 54.1% 41.2% 49.0% 62.6% 57.9% 48.3%

MV 96.4% 41.9% 74.2% 26.7% 75.3% 47.5% 64.4% 83.6% 87.2% 72.2%

96.4%. The result of a paired Wilcoxon signed-rank test reveals

that there exists a significant difference between our model and

the second-best method (p < 0.01). In addition, we find that our

model achieves a large improvement using majority voting over

that of using windows (96.4% vs. 82.1%). This validates that the

majority voting strategy is effective in cross-scene settings.

6.3 Performance in Real World
Our model recognizes task using only the eye and head movements

of a user. This ensures that our model can be easily applied

to other situations besides immersive virtual reality as long as

human eye and head movements in the corresponding situations

are available. To test our model’s generalization capability for

different situations, we evaluated our model on a newly released

real-world dataset, i.e. GW dataset [23]. GW dataset contains

the eye and head movements of 19 participants performing four

everyday tasks, i.e. indoor navigation, ball catching, visual search,

and tea making, in an indoor environment. The duration of each

task was approximately three minutes. Task recognition in real-

world situations may be more challenging than that in immersive

VR. This is because human physical movements are usually

limited to a small region in immersive VR, making different users

share similar eye and head movements in the same task. However,

in real-world situations, human physical movements may have

more freedom and greater randomness, which leads to different

eye and head movements even in the same task.

We first segmented the original recordings in GW dataset into

windows of 10 seconds and then evenly divided all the windows

into five folds according to different users. We further performed

a five-fold cross-user evaluation to test our model and other

methods. The recognition performances of different methods are

indicated in Table 5 (Window). We can see that our model achieves

a large improvement over the state-of-the-art methods (61.9% vs.
44.1%) and the difference between our model and the second-best

method is statistically significant (paired Wilcoxon signed-rank

test, p < 0.01).

We further evaluated the majority voting recognition perfor-

mances of our model and other methods on GW dataset. Specif-

ically, the majority voting result of all the windows belonging

to one recording was employed to recognize user tasks in this

recording. The results are indicated in Table 5 (MV). We find that

our model achieves a high accuracy of 87.7%, outperforming the

state-of-the-art methods. We further performed a paired Wilcoxon

signed-rank test and the result indicates that the difference between

our model and the second-best method is statistically significant

(p < 0.01). Furthermore, we find that our model achieves higher

accuracy using majority voting than that of using windows (87.7%

vs. 61.9%), which validates that the majority voting strategy

helps improve recognition accuracy in real-world settings. By

comparing all the methods’ performances on our dataset (Table 4)

with that on the real-world dataset (Table 5), we find that all the

methods achieve a higher accuracy in immersive VR than in real-

world situations. This validates that task recognition in real-world

situations is more challenging than that in immersive VR.

6.4 Ablation Study
We performed an ablation study to evaluate the effectiveness of

each component in our model. Specifically, we retrained our model

on our dataset using only EiH data, using only Head data, using

only GiW data, using EiH and Head data, using EiH and GiW

data, using Head and GiW data, using only the CNN modules, and

using only the BiGRU modules, respectively. We segmented the

recordings in our dataset into 10-second windows and evaluated

the ablated models using a five-fold cross-user evaluation and a

five-fold cross-scene evaluation. Table 6 indicates the recognition

performances of our model and the ablated models. We find that

our model achieves higher accuracy than all the ablated models in

terms of both cross-user evaluation and cross-scene evaluation. We

further employed paired Wilcoxon signed-rank tests to perform

pairwise comparisons between our model and each ablated model

and validated that the differences between our model and the

ablated models are statistically significant (p < 0.01). The above

results indicate that each component in our model helps improve

our model’s task recognition accuracy.

To further validate the effectiveness of our model’s architec-

ture, we also evaluated other architectures on our dataset: (1).

We replaced our CNN+BiGRU architecture with a bidirectional

long short-term memory (BiLSTM) layer with hidden size of

64 to extract features for task recognition (2). We replaced our

CNN+BiGRU architecture with a CNN+BiLSTM architecture for

feature extraction. The same CNN architecture as our model was

employed and a BiLSTM layer with hidden size of 64 was applied

after the CNN. (3). We employed the eye-head statistics indicated

in Table 2 and Table 3 as hand-crafted features to train the state-of-

the-art methods, i.e. LDA, SVM, RFo, and BC. The cross-user and

cross-scene recognition performances of these architectures are

indicated in Table 7. We can see that our model outperforms these

architectures and the results are statistically significant (paired

Wilcoxon signed-rank test, p < 0.01).

6.5 Runtime Performance
Our model was implemented on an NVIDIA TITAN Xp GPU

platform with an Inter(R) Xeon(R) E5-2620 v4 2.10 GHz CPU.

The average run time for recognizing task from a 10-second

window was 0.10 ms on the GPU and 1.19 ms on the CPU. These

results show that our model is light-weight enough and ready for

real-time usage.

7 DISCUSSION

Our work has made an important step towards understanding

human visual attention under different VR tasks and recognizing
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TABLE 5: Task recognition performances of different methods on GW dataset. In each row, bold font is used to emphasize the best

method and a underline is applied to indicate the second-best method. Our model performs better than other methods in terms of both

the results of windows and the results of majority voting.

Ours LDA r LDA h SVM r SVM h BC r BC h RFo r RFo h RFe
Window 61.9% 26.4% 39.0% 26.2% 37.9% 36.3% 34.1% 44.1% 42.3% 36.1%

MV 87.7% 26.2% 60.0% 32.3% 46.2% 33.8% 40.0% 53.8% 60.0% 64.6%

TABLE 6: The recognition performances of our model and the ablated models. Our model outperforms all the ablated models, validating

the effectiveness of each component in our model.

Ours EiH Head GiW EiH+Head EiH+GiW Head+GiW CNN BiGRU
Cross-User 84.4% 74.5% 79.9% 75.5% 82.1% 80.0% 83.1% 83.5% 81.3%

Cross-Scene 82.1% 73.9% 79.5% 70.3% 81.2% 77.0% 80.1% 81.5% 78.8%

TABLE 7: The cross-user and cross-scene recognition perfor-

mances of our model and other architectures.

Ours BiLSTM CNN+BiLSTM LDA SVM RFo BC
User 84.4% 80.8% 83.8% 74.3% 31.4% 75.8% 67.4%

Scene 82.1% 78.1% 81.3% 74.0% 32.4% 75.7% 67.1%

user tasks in immersive virtual reality. Our dataset, the analyses,

and the new method advance VR research in several ways.

On our dataset: Existing VR datasets typically only cover a

single user task [1–4, 6]. In contrast, our dataset contains human

eye and head movements during four common task conditions in

immersive virtual reality (Section 3). As such, our dataset paves

the way towards a better understanding of visual attention in VR

and can be very useful for fostering more research in this field.

Furthermore, although in this work we only used our dataset to

train a task recognition model, it can also be used to evaluate

other data-driven models for immersive virtual reality, such as

saliency prediction models [4] or gaze prediction models [1–3, 6].

Our dataset enables researchers to extend existing models that

were only trained for one specific task to other task conditions,

which will significantly increase the impact of these models as

well as their generalization capability to different VR tasks.

On our analyses: We analyzed the patterns of human eye

and head movements in immersive virtual reality and revealed

significant differences across different tasks (Section 4). Our

analyses are significant in that they provide information that are

crucial for the development of future VR applications, for example

those employing gaze guidance [5] and gaze-contingent rendering

[2, 3]. Our analyses also guide future research on the important

topic of visual attention analysis in immersive virtual reality.

On our recognition model: Our proposed model achieves a

high recognition accuracy in immersive virtual reality and demon-

strates strong generalization capabilities for both different users

and visual scenes (Table 4). As such, it significantly advances

research on the emerging research area of task recognition in VR.

The method can also become a crucial component of important

VR applications, such as adaptive virtual environment design

[7] or low-friction predictive interfaces [16, 20]. In addition, our

model also exhibits good recognition performance and strong

generalization capability for different users in real-world situations

(Table 5). This means our model also has a significant impact on

task recognition in real-world situations. Furthermore, our model

recognizes user tasks using only the eye and head movements. As

such, our model can also be easily extended to other systems like

AR and MR systems and can be very useful for fostering new

research in these systems.

Limitations: Despite all of these advances, we identified

several limitations that we plan to address in future work. First,

we only explored the four tasks that are most commonly used

in VR applications. However, there exist other VR tasks worth

investigating in future work, such as reading or memory tasks.

Furthermore, we employed non-interactive 360-degree VR videos

instead of interactive 3D virtual environments as our stimuli to

ensure that the same VR content was presented to a user under

different task conditions. Human visual attention is influenced by

both the scene content and the specific tasks assigned to them

[1,7]. Since we were interested in the differences between different

tasks, employing the same content to collect data avoided the

interference from different scene content. However, employing

non-interactive VR videos inevitably restricts our analysis to non-

interactive VR tasks, neglecting interactive tasks, such as naviga-

tion task. The characteristics of human eye and head movements

in interactive VR tasks still remain to be explored. Finally, we

mainly focused on the differences between different tasks rather

than the differences between different stimuli. For our 15 videos,

each video was observed by only six users. Our dataset may be

insufficient for analyzing the differences between different stimuli.

Future Work: Besides overcoming the above limitations,

many potential avenues of future work exist. First, it will be

interesting to explore the effectiveness of other factors, such as

human body movements and hand movements, in recognizing user

tasks. In addition, we can apply our model to other systems besides

immersive virtual reality, such as real-world system, augmented

reality system, and mixed reality system. Our model only relies

on human eye and head movements, ensuring that it can be

easily applied to other systems. Furthermore, we are also looking

forward to exploring our model’s applications in human computer

interaction, human-centered computing, and intelligent user inter-

faces. Finally, recognizing other mental states in immersive VR

besides user tasks, such as user cognitive loads [35, 36] and the

levels of VR cybersickness [32–34], from human eye and head

movements is an interesting avenue of future work.

8 CONCLUSION

In this work, we focused on understanding human visual attention

under different VR tasks and recognizing user tasks in immersive

VR. We first presented a dataset of users performing four tasks

in immersive VR and showed that the patterns of human eye and

head movements are significantly different across different tasks

in terms of fixation duration, saccade amplitude, head rotation

velocity, and eye-head coordination. Based on these insights, we

proposed a novel method to recognize user tasks that outperformed
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the state-of-the-art methods both on our dataset and on a real-

world dataset by a large margin. As such, our work represents an

important advance in understanding human visual attention under

different VR tasks and guides future research on task recognition

in immersive virtual reality.
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