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Abstract
Vision-and-language navigation (VLN) agents
are trained to navigate in real-world environ-
ments based on natural language instructions.
A major challenge in VLN is the limited avail-
able training data, which hinders the models’
ability to generalize effectively. Previous ap-
proaches have attempted to alleviate this is-
sue by using external tools to generate pseudo-
labeled data or integrating web-scaled image-
text pairs during training. However, these meth-
ods often rely on automatically-generated or
out-of-domain data, leading to challenges such
as suboptimal data quality and domain mis-
match. In this paper, we introduce a masked
path modeling (MPM) objective. MPM pre-
trains an agent using self-collected data for sub-
sequent navigation tasks, eliminating the need
for external tools. Specifically, our method
allows the agent to explore navigation environ-
ments and record the paths it traverses along-
side the corresponding agent actions. Subse-
quently, we train the agent on this collected
data to reconstruct the original action sequence
when given a randomly masked subsequence
of the original path. This approach enables
the agent to accumulate a diverse and substan-
tial dataset, facilitating the connection between
visual observations of paths and the agent’s ac-
tions, which is the foundation of the VLN task.
Importantly, the collected data are in-domain,
and the training process avoids synthetic data
with uncertain quality, addressing previous is-
sues. We conduct experiments on various VLN
datasets and demonstrate the applications of
MPM across different levels of instruction com-
plexity. Our results exhibit significant improve-
ments in success rates, with enhancements of
1.3%, 1.1%, and 1.2% on the val-unseen split
of the Room-to-Room, Room-for-Room, and
Room-across-Room datasets, respectively. Ad-
ditionally, we underscore the adaptability of
MPM as well as the potential for additional
improvements when the agent is allowed to ex-
plore unseen environments prior to testing.1

1Code is available at https://github.com/
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Figure 1: Vision-and-language navigation agents are
trained to predict actions in a real-world environment
given a natural language instruction. We incorporate our
proposed masked path modeling objective into training,
where the agent is trained to reconstruct the original
action sequence when given a randomly masked sub-
sequence of the visual inputs of the original path. The
figure is adapted from Anderson et al. (2018b).

1 Introduction

A vision-and-language navigation (VLN) agent is
trained to follow natural language instructions and
navigate within an environment to achieve a spec-
ified goal. This task requires the agent to pos-
sess several sophisticated abilities, including under-
standing and grounding language phrases to visual
objects, as well as planning and executing actions
in a real-world setting.

The pretraining-then-finetuning paradigm (Pe-
ters et al., 2018; Devlin et al., 2019; Chen et al.,
2021b; He et al., 2022) has proven to be effec-
tive in addressing these challenges in the field of
VLN. By utilizing various supervision signals and
proposing pretraining objectives, significant im-
provements have been demonstrated across VLN
tasks. Prior works have explored the use of internet-
scale image-text datasets to acquire grounded vi-
sion and language representations. Notable contri-
butions in this area include the works of Majumdar
et al. (2020) and Guhur et al. (2021), who lever-
age web-scraped image-caption corpora to learn
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general vision-language representations and then
finetune the models using in-domain VLN data
to adapt the representations specifically for VLN
tasks. Similarly, Shen et al. (2022) and Khandelwal
et al. (2022) employ the CLIP vision encoder (Rad-
ford et al., 2021) pretrained with image-text con-
trastive loss and showcase the application of such
models in various embodied tasks.

While the vision-language pretrained represen-
tations improve the alignment between vision and
language modalities, it is important to note that
there is a domain gap between the pretraining data
and VLN data. In addition, these models are un-
aware of how to connect the learned representa-
tions to actions because they are not explicitly
trained for generating actions, which is a criti-
cal skill for VLN tasks. To address the issue and
integrate action generation into pretraining, prior
works such as PREVALENT (Hao et al., 2020)
HAMT (Chen et al., 2021a) use a single-step action
prediction objective based on human-annotated and
synthetic image-text-action triplets. However, the
scalability of the pretraining objective is limited
due to the scarcity of annotated instruction-action
pairs. Specifically, they require training on pairs of
natural language instruction and action sequences
which are costly to obtain in a scalable way. There
is also a line of work that utilizes synthetic data
for training, either obtaining pseudo-instructions
from sampled paths (Fried et al., 2018b; Tan et al.,
2019; Hao et al., 2020; Wang et al., 2022b) or gen-
erating both the visual environments as well as the
language instructions (Kamath et al., 2023; Wang
et al., 2023). However, the automatically-generated
data cannot be perfect and the noise during data
generation can impact the model performance.

In this paper, we present an approach to pretrain
VLN models with masked path modeling (MPM),
which leverages in-domain path data collected by
an agent for self-supervised learning. The proposed
objective targets addressing the two major limita-
tions of previous work:

• It collects scalable in-domain pretraining data
without data synthesis. During the pretraining
phase, the VLN agent explores the environ-
ment randomly and gathers navigation paths
along with its actions, which are then used
for pretraining the agent. Because the agent
actively explores different environments, we
can collect a rich amount of diverse paths. In
addition, the MPM objective only requires

the collected path and action information for
training, eliminating the need for synthesizing
additional signals.

• It explicitly focuses on conditional action gen-
eration. Concretely, as shown in Figure 1, to
construct the MPM objective, we randomly
mask certain viewpoints in the self-collected
paths and train the agent to reconstruct the
original paths based on the masked ones.
MPM is similar to the VLN objective because
the agent is trained to output a sequence of
actions given specific instructions, with the
distinction that the instructions are presented
as masked paths rather than natural language
instructions. Consequently, MPM effectively
prepares the agent for VLN tasks that require
conditioned action generation skills.

As a result, our pretraining objective is scalable and
well-suited for addressing the VLN task.

We evaluate the proposed method on various
VLN datasets with different types of instructions,
including Room-to-Room (Anderson et al., 2018c),
Room-for-Room (Jain et al., 2019), and Room-
across-Room (Ku et al., 2020). Experimental re-
sults demonstrate that MPM can achieve significant
improvements in both seen and unseen environ-
ments compared with strong baselines. For exam-
ple, we achieve improvements of 1.32%, 1.05%,
and 1.19% on the val-unseen split of the Room-to-
Room, Room-for-Room, and Room-across-Room
datasets, respectively. In addition, we demonstrate
the MPM can be flexibly integrated into different
types of models and achieve improvements. Fur-
thermore, an analysis reveals the potential for addi-
tional improvements when the agent is allowed to
explore unseen environments prior to testing.

2 Methods

In this section, we first introduce the basic settings
and model architecture of vision-and-language nav-
igation, then illustrate the details of each compo-
nent of our proposed approach.

2.1 Background
Training Data. The training data D of VLN con-
sists of parallel instruction-action pairs {(ik,ak)}
from different environments. However, it is
hard to manually annotate a large amount of
instruction-action data for VLN. Therefore, re-
searchers have proposed various data augmenta-
tion strategies (Fried et al., 2018b; Tan et al.,
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Figure 2: We follow Chen et al. (2021a) to design the base model architecture. In VLN, the model separately
encodes the given instruction with a text encoder, its past history with a hierarchical visual encoder, and its
current observations with another vision encoder; the encoded representations are then fed into a joint cross-modal
transformer to predict the final action. In MPM, we directly feed a masked subpath to the cross-modal transformer
instead of a language instruction and the model is trained to predict the original action given the masked subpath.
All the parameters between VLN and MPM are shared.

2019; Li et al., 2022; Kamath et al., 2023) to pro-
vide additional supervision for VLN models. Int
this work, we follow a common practice to use a
speaker model (Fried et al., 2018b) to generate lan-
guage instructions given randomly sampled paths
and enrich the training data with the generated
instruction-action pairs. Specifically, we incorpo-
rate the PREVALENT-generated data (Hao et al.,
2020) into training.

Base Settings. Using the parallel instruction-
action pairs D, a VLN agent is trained to follow a
given language instruction and generate a sequence
of actions to reach the final destination in a photo-
realistic environment. Formally, in a given environ-
ment e, the navigation agent parameterized by θ
learns to model the distribution P (a|i, e; θ), where
i and a denote instruction and action variables, re-
spectively.

Model Architecture. In this paper, we employ a
history-aware multimodal transformer architecture
design following Chen et al. (2021a) as it achieves
strong VLN performance across datasets, although
it should be noted that our approach is compati-
ble with most existing model architectures in VLN.
Overall, as shown in Figure 2, at each action pre-
diction step, we have a transformer text encoder
to encode the given language instruction, a hier-
archical vision transformer to encode all the past
observations of the agent, and another vision trans-
former to encode the agent panoramic observation
of the current step; then, the three types of represen-
tations will be concatenated together and fed into
a cross-modal transformer for joint encoding, and
the final pooled representation is used for action
prediction.

Text Features. Following previous work (Chen
et al., 2021a), we use pretrained text encoder to
encode the language instructions. We use the
standard BERT model (Devlin et al., 2019) to en-
code the English instructions for the R2R and R4R
datasets (Anderson et al., 2018c; Jain et al., 2019)
and the XLM-R model (Conneau et al., 2020) to
encode the multilingual instructions for the RxR
dataset (Ku et al., 2020).

Vision Features. At each step, the agent is given
a panoramic observation of its current position in
the environment, denoted as {vi}Ki=1. For each
view in the panoramic observation, its vision fea-
ture is first extracted using a pretrained vision en-
coder. While many of the previous methods (Ander-
son et al., 2018b; Chen et al., 2021a) use vision en-
coders pretrained on ImageNet (Fei-Fei et al., 2009)
for image classification, we find that CLIP vision
encoder (Radford et al., 2021) achieves stronger
performance, which is consistent with the findings
of Shen et al. (2022). Therefore, we choose to
use CLIP to first extract vision features and then
the CLIP features are fed into the transformers for
history and observation encoding.

For the current observations, in addition to
the CLIP features, we also feed the model
with the relative angle of each view vi in the
panoramic observation, represented as REL(vi) =
(sinθi, cosθi, sinϕi, cosϕi) where θi and ϕi are the
relative heading and elevation angle to the agent’s
orientation, respectively. The combined representa-
tions {[CLIP(vi);REL(vi)]}Ki=1 are then fed into a
transformer to obtain K processed representations.

History Features. The model also keeps track
of its past observations with a hierarchical vision



transformer, where the panoramic observation at
each step is first encoded by a single vector with
a vision transformer, and all the panoramic repre-
sentations are jointly encoded with another trans-
former along the temporal dimension. We refer
to Chen et al. (2021a) for details.

Cross-Modal Interactions. The history features
and the current observation features are concate-
nated as the vision modality, and a dual-stream
cross-modal fusion architecture is used to encode
both the vision and text modalities and allow for
cross-modal information exchange. At each layer,
we have a self-attention block for inter-modal inter-
actions and a cross-attention block for vision-text
interactions.

2.2 Masked Path Modeling

In this part, we illustrate the main idea of our
proposed masked path modeling method. We go
through the details of the active data collection,
model architecture, and training strategies.

General Framework. Masked path modeling is
inspired by the masked data modeling pretrain-
ing methods in the language and vision commu-
nities (Devlin et al., 2019; He et al., 2022), where
the general idea is that the model is trained to
reconstruct an original input (e.g., a sentence or
an image) given parts of the input masked. In
VLN, we propose to first ask an agent to perform
a sequence of actions and collect a path consist-
ing of several viewpoints p = ⟨p1, p2, · · · , pn⟩,
then we mask x%2 of the viewpoints in this path
and feed the observations along the masked path
pm = ⟨pm1 , pm2 , · · · , pmk

⟩ to the agent and the
agent is trained to perform the same sequence of
actions as before to reconstruct the original path
p given pm. Note that different from the common
masked data modeling methods, the input and out-
put modalities are different in MPM. Specifically,
the model inputs are visual observations of the en-
vironment while the model outputs are the agent
actions. This design can explicitly train the model
to connect vision inputs and action outputs, which
forms the foundation of the VLN task.

Data Collection. One of the major bottlenecks of
VLN is the lack of training data and it is hard to col-
lect large-scale in-domain data for VLN. In masked

2We set x=25 in this paper and perform sensitivity analysis
in the experiment section.

path modeling, however, the agent can actively col-
lect a great amount of data given an environment
for training. During the data collection period, we
ask the agent to randomly choose the next view-
point with equal probabilities at each step. Also,
we keep track of all the visited viewpoints, and the
agent is not allowed to visit the same viewpoint
twice. To control the length of the paths, we uti-
lize pre-computed statistics from the training data
regarding agent paths. We then randomly select
paths, ensuring that each path length is sampled
according to the distribution of path lengths ob-
served in the training data. More sophisticated path
collection techniques such as using techniques to
encourage the diversity of sampled paths may also
be used but here we leave it as future work. During
path masking, we ensure that the last viewpoint is
not masked so that the agent is always aware of the
goal viewpoint.

Model Architecture for MPM. As in Figure 2,
the main difference between masked path mod-
eling and the VLN objective is that the input of
masked path modeling is a sequence of visual ob-
servations instead of a natural language instruction.
Therefore, we employ the same architecture as the
original HAMT model except that we perform a
linear transformation on the CLIP-encoded visual
features so as to match the input and model dimen-
sions, and then directly feed transformed features
to the crossmodal transformer module. While col-
lecting the visual features along a masked path, we
do not use the panoramic view but only the view
that the agent currently faces so as to make the pre-
training task harder.3 All the module parameters
are shared between the masked path modeling and
VLN objectives.

Training Strategies. We include our masked
path modeling objective into the pretraining and
finetuning stages of HAMT (Chen et al., 2021a).
Concretely, during pretraining, the agent is jointly
pretrained with masked path modeling and stan-
dard objectives including masked language model-
ing and instruction trajectory matching. We also
include single-step action prediction and regres-
sion (SAP/SAR), and spatial relationship predic-
tion (SPREL) objectives as in Chen et al. (2021a).4

3In the decoding side, the agent still receives panoramic
views as in previous work (Fried et al., 2018b; Chen et al.,
2021a).

4We do not use the masked region modeling objective
in HAMT because it requires distilling the knowledge of an



Model Validation Seen Validation Unseen Test Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

HAMT (Chen et al., 2021a) 11.15 2.51 76 72 11.46 2.29 66 61 12.27 3.93 65 60
HAMT w/ Li and Bansal (2023) - - - - - - 68 62 - - 65 60
HAMT+ 11.11 2.65 75.02 71.75 11.93 3.34 67.05 61.69 12.70 3.57 67.19 61.94
HAMT+ w/ MPM 10.86 2.43 76.30 72.85 11.99 3.44 68.37 62.59 12.54 3.47 67.79 62.54

Table 1: Results on the Room-to-Room dataset (Anderson et al., 2018c). We incorporate MPM into a strong baseline
(HAMT+) and achieve significant improvements across settings. The best scores are in bold.

Model Validation Seen Validation Unseen
NE↓ SR↑ CLS↑ nDTW↑ sDTW↑ NE↓ SR↑ CLS↑ nDTW↑ sDTW↑

HAMT (Chen et al., 2021a) - - - - - 6.09 44.6 57.7 50.3 31.8
HAMT+ 4.62 57.29 67.97 61.01 41.96 5.90 44.75 61.84 54.18 33.89
HAMT+ w/ MPM 4.29 59.13 70.50 64.88 48.28 5.65 46.88 62.76 55.23 35.50

Table 2: Results on the Room-for-Room dataset (Jain et al., 2019). MPM can also improve the model performance
in this setting across all the evaluation metrics. The best scores are in bold.

The SAP and SAR objectives ask the model to
predict the next action based on instruction, his-
tory from the ground-truth demonstration, and the
current observation with imitation learning, where
SAP formulates the task as a classification task
while SAR trains the model to regress the action
heading and elevation angles. The SPREL objec-
tive trains the model to predict the relative spatial
position of two views in a panorama based on only
visual features, angle features, or both types of fea-
tures. We refer readers to Chen et al. (2021a) for
more details.

Then, during finetuning, the model is jointly
trained with both masked path modeling and the
VLN objective with equal loss weights.5 We com-
bine the Asynchronous Advantage Actor-Critic
(A3C) reinforcement learning objective (Mnih
et al., 2016) and imitation learning objective for
the VLN objective following previous work (Tan
et al., 2019; Chen et al., 2021b), but only use the
imitation learning objective for masked path mod-
eling because it is stable and also it is non-trivial
to design step-wise rewards in this setting.

3 Experiments

In this section, we present our experimental results
with the proposed masked path modeling objective.

image classification model while our vision encoder is CLIP.
Also, the CLIP vision encoder is frozen during pretraining to
save computation time.

5We did not see significant performance differences when
tuning the loss weights in our preliminary studies.

3.1 Settings

We go through the experimental settings in this part,
including our used datasets, evaluation metrics, and
implementation details.

3.1.1 Datasets

We evaluate the models on different types of VLN
datasets, including the Room-to-Room (R2R) (An-
derson et al., 2018c), Room-for-Room (R4R) (Jain
et al., 2019) and Room-across-Room (RxR) (Ku
et al., 2020) datasets.

R2R. The R2R dataset is built based on Matter-
port3D (Chang et al., 2017) and has 7,189 paths,
with each path paired with 3 different English in-
structions and the average length of all the paths
is 29. R2R is split into training, validation, and
test sets; the validation set consists of two splits:
1) val-seen, where all the paths are sampled from
environments that are also seen in the training set,
and 2) val-unseen, where paths are sampled from
environments that do not appear in the training set
so as to test the generalization ability of agents.
The paths in the test set are from new environments
unseen in the training and validation sets.

R4R. The R4R dataset is an algorithmically pro-
duced extension of R2R that concatenates two adja-
cent tail-to-head paths in R2R as well as their cor-
responding instructions to form a new instruction-
path pair. With this extension, R4R has longer
paths and instructions, and the paths are not always
the shorted path from the starting point to the goal,
making the dataset less biased than R2R.



Model Validation Seen Validation Unseen Test Unseen
SR↑ SPL↑ nDTW↑ sDTW↑ SR↑ SPL↑ nDTW↑ sDTW↑ SR↑ SPL↑ nDTW↑ sDTW↑

HAMT (Chen et al., 2021a) 59.4 58.9 65.3 50.9 56.5 56.0 63.1 48.3 53.12 46.62 59.94 45.19
HAMT+ 63.93 59.93 68.59 55.47 62.00 58.05 67.52 53.87 - - - -
HAMT+ w/ MPM 67.73 63.89 71.02 58.86 63.51 59.24 67.71 54.53 60.00 52.52 63.97 51.13

Table 3: Results on the Room-across-Room dataset (Ku et al., 2020). The best scores are in bold.

Model R2R Validation Unseen R4R Validation Unseen
TL NE↓ SR↑ SPL↑ NE↓ SR↑ CLS↑ nDTW↑ sDTW↑

HAMT+ w/ MPM 11.99 3.44 68.37 62.59 5.65 46.88 62.76 55.23 35.50
HAMT+ w/ MPM-Prexplore 11.37 3.33 69.60 64.69 5.13 51.34 63.72 57.95 39.06

Table 4: Pre-exploring the test environments with MPM can further improve the model performance.

RxR. The RxR dataset follows the same environ-
ment division as that in the R2R dataset. Different
from R2R, RxR is a larger dataset that has 16,522
paths in total. In addition, the instructions are mul-
tilingual and in three languages, including English,
Hindi, and Telugu. The lengths of the instructions
in RxR are also much larger than that in R2R (av-
erage length: 78 vs. 29).

3.1.2 Evaluation Metrics
We adopt the standard evaluation metrics in
VLN (Anderson et al., 2018a) to evaluate models.
Specifically, we evaluate models with 1) trajectory
lengths (TL): the length of the agent path measured
in meters; 2) navigation error (NE): the average dis-
tance between the final position of agents and the
goal position measured in meters; 3) success rate
(SR): the proportion of agents whose final position
is within three meters of the target; 4) success rate
weighted by normalized inverse path length (SPL):
success rate normalized by the ratio between the
length of the shortest path and the predicted path.

Because the above metrics are heavily biased
towards whether or not the agent can reach the
goal position while ignoring the specific path the
agents take, Jain et al. (2019) propose the cover-
age weighted by length score (CLS) metric that
measures the path fidelity between the predicted
path and target path for the R4R dataset. Simi-
larly, Ku et al. (2020) propose normalized dynamic
time warping (nDTW) and success rate weighted by
dynamic time warping (sDTW) (Magalhães et al.,
2019) for RxR.

3.1.3 Implementation Details
Model Architecture. We build our models upon
the HAMT model (Chen et al., 2021a) and fol-
low all of its parameter settings except that we

use CLIP-ViT (Radford et al., 2021) pretrained
vision encoder and it is not finetuned during train-
ing. Specifically, our model consists of a 9-layer
text transformer, a 2-layer panoramic transformer
for encoding history information, and a 4-layer
transformer for cross-modal encoding. In each
panoramic observation, there are K = 36 views of
images and we use CLIP-ViT-L-336/14 to encode
the input images. We denote the HAMT baseline
with CLIP-ViT-L-336/14 as HAMT+.

Pretraining. During pretraining, we randomly
select proxy tasks including masked path model-
ing for each mini-batch with a predefined ratio
as in Chen et al. (2021a). Different from Chen
et al. (2021a), the CLIP-ViT is frozen instead of
finetuned during both pretraining and finetuning
in order to save computational costs. We train the
model for 200k iterations with the AdamW opti-
mizer (Loshchilov and Hutter, 2018) and the learn-
ing rate is set to 5e-5 and the batch size is set to 64.
It take around 1 day to finish training on 4 NVIDIA
Tesla V100 GPUs.

Finetuning. During finetuning, the model is
jointly finetuned with the IL+RL and masked path
modeling objectives with equal weights. The
model is fine-tuned for 300k iterations with a learn-
ing rate of 1e-5 and batch size of 8 on a single
V100 GPU, taking around 2.5 days to finish.6 The
best model is selected according to performance on
the val unseen split. We use the same augmented
data as Hong et al. (2021) following previous work
for the R2R dataset, while no augmented data is
used for other datasets. Greedy search is applied
in inference following the single-run setting. In

6Following the hyper-parameters in https://github.
com/cshizhe/VLN-HAMT/blob/main/finetune_src/
scripts/run_r2r.sh.

https://github.com/cshizhe/VLN-HAMT/blob/main/finetune_src/scripts/run_r2r.sh
https://github.com/cshizhe/VLN-HAMT/blob/main/finetune_src/scripts/run_r2r.sh
https://github.com/cshizhe/VLN-HAMT/blob/main/finetune_src/scripts/run_r2r.sh


Path Design R2R Validation Unseen R4R Validation Unseen
TL NE↓ SR↑ SPL↑ NE↓ SR↑ CLS↑ nDTW↑ sDTW↑

MPM w/ R2R Paths 11.99 3.44 68.37 62.59 5.74 45.39 61.42 54.42 33.92
MPM w/ R4R Paths 11.97 3.38 68.20 62.30 5.65 46.88 62.76 55.23 35.50

Table 5: MPM performs the best when its collected paths resemble the paths of test environments. Here we only
control the lengths of the paths to be similar to the paths of either R2R or R4R.

Model MPM R2R Validation Unseen R4R Validation Unseen
PT FT TL NE↓ SR↑ SPL↑ NE↓ SR↑ CLS↑ nDTW↑ sDTW↑

HAMT+ ✗ ✗ 11.93 3.34 67.05 61.69 5.90 44.75 61.84 54.18 33.89
HAMT+ ✗ ✓ 11.84 3.40 67.65 61.74 5.83 46.35 63.66 56.73 35.87
HAMT+ ✓ ✓ 11.99 3.44 68.37 62.59 5.65 46.88 62.76 55.23 35.50

Table 6: Including MPM during both pretraining (PT) and finetuning (FT) can generally lead to the best performance.

both pretraining and finetuning, the agent samples
a batch of paths for MPM from the available envi-
ronments in Matterport3D and we do not allow the
agents to explore test environments.

3.2 Main Results
The main results of the baselines and our model
are listed in Table 1, 2, and 3. We report both the
numbers in the HAMT paper (Chen et al., 2021a)
and our reproduced performance.

First, it should be noted that because we use
the strong CLIP vision encoder, our reproduced
HAMT+ baseline can achieve better performance
than the original HAMT paper across settings, even
surpassing the state-of-the-art end-to-end trained
model (Li and Bansal, 2023). Especially, on the
RxR datasets, our HAMT+ outperforms HAMT
by 4.53% and 4.57 sDTW on the validation seen
split and 5.5% success rate and 4.42 sDTW on the
validation unseen split.

Built upon a strong baseline, our model can still
outperform it across settings. Notably, the perfor-
mance gains are pronounced when measured with
path fidelity metrics (i.e., CLS, nDTW, sDTW) on
the long-horizon VLN datasets R4R and RxR in the
seen environments, indicating that the masked path
modeling objective can encourage the models to
faithfully follow the natural language instructions
and complete the paths accordingly. This is intu-
itive as the VLN training objectives can optimize
the models towards taking the shortest path to reach
the final goal, whereas during masked path model-
ing, the model is trained to reconstruct the original
paths, thus the model can follow the instructions
more faithfully.

In unseen environments, our model achieves
1.32%, 2.13%, and 1.51% improvements over the

baseline in success rates on the R2R, R4R, and
RxR datasets respectively on the validation set,
demonstrating the effectiveness of our approach.
We attribute these improvements to the fact that our
objective allows the model to be trained on a variety
of paths and can thus improve the generalization
ability of the model in unseen environments.

3.3 Analysis
In this part, we perform several analyses to gain
insights into MPM. We leave more analysis results
in Appendix.

Exploring Unseen Environments. Because we
allow the agents to autonomously acquire data and
learn without the need for annotated data, we can
train the agents in a scalable way. We hypothe-
size that when trained with masked path modeling,
the agent can be familiarized with the explored
environments and thus improve its navigation per-
formance, even though it is not explicitly trained
with the VLN objective. To verify this, we train
the model with masked path modeling on unseen
environments in the validation sets with the same
hyper-parameters as before and test its VLN perfor-
mance. As shown in Table 4, performing masked
path modeling on unseen environments can signifi-
cantly improve the model navigation performance,
demonstrating the potential of using the objective
in a large-scale setting. Especially, exploring un-
seen environments can bring 4.46% and 3.56 im-
provements in SR and sDTW on the R4R validation
unseen set respectively.

Path Design. When collecting the paths, we
make the lengths of the sampled paths follow the
distribution of that in the training data so that the
paths are similar to the navigation paths. As shown



Model R2R Validation Unseen REVERIE Validation Unseen
TL NE↓ SR↑ SPL↑ NE↓ OSR↑ SR↑ CLS↑ RGS↑ RGSPL↑

DUET (Chen et al., 2022) 13.94 3.31 72 62 22.11 51.07 46.98 33.73 32.15 23.03
DUET w/ MPM 13.37 3.05 72.84 62.09 21.35 52.51 49.11 35.64 32.52 23.48

Table 7: MPM can be flexibly applied to various models and datasets.

in Table 5, if we switch the path designs between
R2R and R4R, the performance gains will drop
marginally, indicating that making the paths be-
tween MPM and VLN similar can best utilize the
MPM objective for VLN. We leave more sophisti-
cated path designs as future work.

MPM during Pretraining. During the pretrain-
ing stage, we follow HAMT to train the models
with masked language modeling, instruction tra-
jectory matching, single-step action prediction and
regression, and spatial relationship prediction tasks.
We also choose to include the masked path model-
ing objective during pretraining so as to mitigate
the difference between pretraining and finetuning.
As shown in Table 6, we can see that including
masked path modeling is important as it can well
prepare the models for the finetuning stage, al-
though only doing masked path modeling during
finetuning can also bring marginal improvements.
Notably, not including MPM during pretraining
seems to achieve comparable or even better perfor-
mance than including it on R4R. One possible ex-
planation is that during pretraining the path lengths
are similar to those of R2R, thus the pretrained
agent may be more suitable for R2R than R4R.

Applications in Other Models and Datasets.
Previously, we mainly experiment with the end-
to-end HAMT model on navigation tasks with fine-
grained language instructions. In this part, we im-
plement MPM upon the strong DUET model (Chen
et al., 2022). As shown in Table 7, MPM can
still improve the model performance with this map-
based model on both R2R and REVERIE, demon-
strating the flexibilty of MPM. It is worth noting
that REVERIE is a remote object grounding task
while MPM mainly concerns with navigating to a
goal viewpoint or image, thus the object grounding
performance is not improved signficantly, and we
leave this as a future work.

4 Related Work

We overview three lines of related research, in-
cluding vision-and-language navigation in general,

vision-and-language pretraining with a focus on
its applications in VLN, as well as pretraining for
control and embodied learning.

Vision-and-Language Navigation. Building
vision-and-language navigation models has
received increasing attention in recent years (An-
derson et al., 2018b; Fried et al., 2018a; Wang et al.,
2018; Li et al., 2019b; Zhu et al., 2020b; Kurita
and Cho, 2021) and various benchmarks have
been proposed to evaluate the ability of embodied
agents to follow instructions and accomplish
specified tasks (Kolve et al., 2017; Anderson et al.,
2018a; Savva et al., 2019; Anderson et al., 2018c;
Chen et al., 2019; Ku et al., 2020; Shridhar et al.,
2020; Padmakumar et al., 2022). In this line
of research, representative works include Fried
et al. (2018b) who propose panoramic action
space and use a speaker follow to synthesize
additional training data. In addition, Tan et al.
(2019) propose to mix imitation learning and
A3C (Mnih et al., 2016) and increase the diversity
of the synthesized data by adding noise into
the environments during data generation. To
utilize additional training signals, Ma et al. (2019)
propose the self-monitoring agent that improves
vision-language alignment with a co-grounding
module and progress monitor; Zhu et al. (2020a)
propose four self-supervised auxiliary tasks that
are beneficial for the task of VLN. There are also
works on designing better architectures (Chen
et al., 2021a, 2022) for VLN. In terms of data
augmentation, in addition to methods (Fried et al.,
2018b; Tan et al., 2019; Hao et al., 2020; Dou and
Peng, 2022) that synthetic language instructions
are generated from randomly sampled paths,
there are also works on synthesizing both the
environments and the instructions (Wang et al.,
2022b; Kamath et al., 2023). However, most of
these works require external models to generate
imperfect data, which can potentially harm the
performance of VLN models.

Vision-and-Language Pretraining. Pretraining
models on large web corpora have proven to be



highly effective in natural language processing (Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Brown et al., 2020), and similar techniques
have been applied in computer vision (Chen et al.,
2020a, 2021b; He et al., 2022; Bao et al., 2022)
and vision-language communities (Li et al., 2019a;
Chen et al., 2020b; Radford et al., 2021; Kim et al.,
2021; Li et al., 2021; Dou et al., 2022). In the field
of VLN, researchers have tried to use unimodally or
multimodally pretrained language or vision repre-
sentations (Anderson et al., 2018b; Li et al., 2019b).
Notably, the CLIP vision encoder (Radford et al.,
2021) pretrained on large image-caption data has
proven to be generally effective for vision-and-
language embodied tasks (Khandelwal et al., 2022;
Shen et al., 2022). To jointly learn transferrable
vision and language representations for VLN, Ma-
jumdar et al. (2020) and Guhur et al. (2021) pro-
pose to first pretrain models on large image-caption
data such as Conceptual Captions (Sharma et al.,
2018) and then adapt the representations for VLN
tasks by finetuning the model on in-domain VLN
data. While the pretrained representations can be
useful, the pretraining process does not explicitly
connect the learned representations to output ac-
tions. To further integrate action generation into
VLN pretraining, researchers have attempted to di-
rectly use VLN data for pretraining. For example,
PREVALENT (Hao et al., 2020) is pretrained on
image-text-action triplets with a single-step action
prediction objective and masked instruction model-
ing objective; Chen et al. (2021a) further propose a
single-step regression and spatial relationship pre-
diction objective that introduces more supervisions.
However, the pretraining data is limited by the size
of VLN data and thus it is difficult to apply their
approaches in large-scale settings; Li and Bansal
(2023) propose three proxy tasks, one of which is
to reconstruct the trajectory semantic information
given masked inputs, but they fail to connect vision
and language modalities and train on self-collected
data.

Pretraining for Control and Embodied Learn-
ing. The general idea of pretraining on large-
scale data has been adopted in embodied tasks,
including data collection (Burda et al., 2019), rep-
resentation learning (Yang and Nachum, 2021),
and world model learning (Seo et al., 2023). For
example, Pathak et al. (2017) present a curiosity-
driven self-supervised data collection approach
that encourages agents to explore unfamiliarized

states; Nair et al. (2022) pretrain representations
on human ego-centric video data and adapt the
representations on robotic tasks. In terms of us-
ing self-collected data for training, Chaplot et al.
(2021) propose to build 3D semantic maps and
use them to improve action and perception skills.
Similar to our work, Wu et al. (2023) propose to
pretrain models by reconstructing a full trajectory
or given a random subset of the same trajectory,
and the pretrained models can be used for differ-
ent downstream purposes like inverse dynamics,
forward dynamics, imitation learning, offline RL,
and representation learning. Different from these
works, our method explicitly optimizes models for
conditioned action generation and the agent can
self-collect a rich amount of data for pretraining.

5 Conclusion

In this paper, we propose masked path modeling,
a pretraining objective designed for vision-and-
language navigation. The objective can utilize scal-
able data explored from different environments to
improve the agent’s conditioned action generation
ability. We incorporate the objective into a strong
baseline and demonstrate improvements across dif-
ferent settings. An analysis further reveals the po-
tential for scaling the objective to large-scale set-
tings. Future directions include designing better
exploration strategies as well as investigating appli-
cations in more fields.

Limitations

MPM is designed to connect vision and action
modalities, while focusing less on the language
modality. In addition, we constrain the agent to
collect paths from the available environments in
Matterport3D, which can limit the diversity of the
paths to some degree. We also focus solely on VLN
settings and do not investigate its applications in
other embodied instruction following tasks.
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A Additional Analysis Results

In this section, we present more analysis results to
provide further insights into our proposed method.
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Figure 3: Effect of the mask ratio of the MPM objective.
The model is generally robust to this hyper-parameter,
with 25% achieving the best performance on unseen
environments.

Impact of the Mask Ratio. The mask ratio is
a hyperparameter in masked path modeling and
we investigate the optimal ratio in this paragraph.
As shown in Figure 3, the objective is generally
robust to the mask ratio, with 25% leading to the
best performance and <=50% bringing improve-
ments on the baseline. Therefore, we choose to
randomly mask 25% of the viewpoints along a path
in this paper. It is worth noting that because we
always keep the goal viewpoint as mentioned in
the method section, masking 100% of the paths is
equivalent to an image-goal navigation task. Be-
cause the model performance can be improved even
with 100% viewpoints removed, the improvements
of MPM can be partially attribute to multi-task
learning, which has proven to be effective in Wang
et al. (2022a).

Performance on Instructions of Different
Lengths. We evaluate the performance of both
the baseline model and our proposed approach on
instructions of varying lengths on the R2R valida-
tion set. Figure 4 illustrates the results, indicating
that the benefits of employing MPM are particu-
larly significant when instructions are lengthy. We
attribute this observation to the fact that the sam-
pled paths occasionally involve intricate navigation
patterns. Consequently, the integration of MPM
enables the model to effectively learn how to nav-
igate and follow complex instructions. Similarly,
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Figure 4: Performance of models on instructions of dif-
ferent lengths on the R2R validation set. Our model can
significantly improve the model performance, especially
on long instructions.

our method can achieve significant improvements
when the instructions are relatively short possibly
because the sampled paths are sometimes simple.

Qualitative Examples. We also sample some ex-
amples from the R2R validation set with both the
baseline model and our model. As shown in Fig-
ure 5 and 6, our method can encourage the model to
closely follow the language instructions even if they
are rather lengthy or concise. On the other hand,
the baseline model fails to do so: it can generate
incorrect paths when the instructions are short and
false and unnecessarily complicated paths when
the instructions are long.



(a) Ground-truth (b) Base (c) Ours

Figure 5: Qualitative results for the instruction “Walk across patio, stop at hanging basket chair.”

(a) Ground-truth (b) Base (c) Ours

Figure 6: Qualitative results for the instruction “Turn and walk towards the open brown wooden door that leads to
an office with a large desk. Exit the room through the door. Walk around the left side of the table and go through the
double open doors that leads to a hallway. Walk out into the hallway until you reach the first door on the right. Turn
tight and take two steps into the room, stopping in the doorway to the room next to the carpet.”


