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Abstract

With the recent advancement of Large Lan-001
guage Models (LLMs), efforts have been made002
to leverage LLMs in crucial social science003
study methods, including predicting human fea-004
tures of social life such as presidential voting.005
Existing works suggest that LLMs are capable006
of generating human-like responses. Neverthe-007
less, it is unclear how well LLMs work and008
where the plausible predictions derive from.009
This paper critically examines the performance010
of LLMs as social predictors, pointing out the011
source of correct predictions and limitations.012
Based on the notion of mutability that classifies013
social features, we design three realistic set-014
tings and a novel social prediction task, where015
the LLMs make predictions with input features016
of the same mutability and accessibility with017
the response feature. We find that the promis-018
ing performance achieved by previous studies019
is because of input shortcut features to the re-020
sponse, which are hard to capture in reality;021
the performance degrades dramatically to near-022
random after removing the shortcuts. With the023
comprehensive investigations on various LLMs,024
we reveal that LLMs struggle to work as ex-025
pected on social prediction when given ordinar-026
ily available input features without shortcuts.027
We further investigate possible reasons for this028
phenomenon and suggest potential ways to en-029
hance LLMs for social prediction.030

1 Introduction031

Social Prediction is one of the crucial elements in032

social studies (Hofman et al., 2017), with a body of033

literature (Liben-Nowell and Kleinberg, 2003; Bak-034

shy et al., 2011; Cheng et al., 2014) devoted to esti-035

mating inaccessible features, either unobserved or036

missing, based on observed ones. Historically, so-037

cial prediction is made by statistical models such as038

linear regression (Uyanık and Güler, 2013). With039

the development of machine learning, supervised040

methods have been adopted, e.g. random forest041

and neural networks (Chen et al., 2021b). How-042

ever, the classic machine learning methods notably043

rely on extensive labeled training data, which is044

labor-intensive, especially in social studies. Addi-045

tionally, the predictive power of machine learning046

methods is limited (Mackenzie, 2015; Athey, 2018) 047

and can hardly model the complicated phenomenon 048

in social life. 049

With the rapid advancement in Large Language 050

Models (LLMs), undertaking text-related tasks is 051

empowered with a new paradigm (Zhuang et al., 052

2023; Tan et al., 2023; Nijkamp et al., 2022; Chen 053

et al., 2021a; Zhou et al., 2022; Wei et al., 2022). 054

The extensive world knowledge (Zhao et al., 2023) 055

and inference abilities (Creswell et al., 2022) en- 056

able LLMs to mitigate the limitations of classic ma- 057

chine learning methods in social prediction. Recent 058

works leverage LLMs in predicting or simulating 059

human responses, such as voting decisions (Argyle 060

et al., 2022; von der Heyde et al., 2023) and polit- 061

ical attitude (Rosenbusch et al., 2023). They take 062

advantage of LLMs to augment existing datasets 063

with previously inaccessible features due to unob- 064

servability, data missing, sensitivity and privacy 065

issues. Promising performance is reported. How- 066

ever, the common methodology of these works is 067

worth being skeptical about: it first creates datasets 068

with a well-constructed survey; next, except for 069

the response feature, any other features are candi- 070

dates as input, even if they and the response feature 071

are almost semantically equivalent and thus nearly 072

(in)accessible. 073

This methodology introduces a question: If the 074

observed features are nearly equivalent and thus 075

nearly accessible, why did the original survey avoid 076

directly collecting the key response feature, yet 077

bother to predict by other features? This issue 078

hinders the exploration of LLMs’ authentic social 079

prediction ability and the underlying mechanisms, 080

as well as the realistic and practical implementa- 081

tion of proposed methods. Our paper responds to 082

it, critically checking and revising social prediction 083

in a group of settings considering the accessibility 084

of features. 085

To study it, our preliminary investigation revis- 086

its the famous case of voting prediction (Argyle 087

et al., 2022) with LLMs. We define shortcut as the 088

observed features approximately equivalent and 089

(in)accessible with the response feature, which 090

should be masked in input. The result indicates that 091
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LLMs’ performance is bolstered by the presence of092

shortcuts to the desired response features. Specifi-093

cally, the presence of shortcuts directly associated094

with the feature to be predicted leads to exceptional095

performance, even replacing LLMs with machine096

learning models. Unfortunately, this effectiveness097

comes with a decline when eliminating shortcuts098

(detailed in Sec.2 and Sec.3). This performance gap099

leads us to question the true capability of LLMs in100

social predictions, challenging the prevailing per-101

ception of their prowess (Argyle et al., 2023). The102

research community is urged to be more cautious103

and skeptical when employing this method. Fur-104

thermore, we shed light on the potential causes105

and solutions to the under-performance, hinting at106

future works to comply with the realistic settings107

when delving into social prediction studies.108

Our contributions are listed below:109

• We introduce a novel social prediction110

task Soc-PRF Prediction (stands for111

Social Profile Prediction). Informed112

by theoretical social studies (Bailey, 1998),113

we categorize social features into two groups,114

and the degrees of feature accessibility com-115

ply with the principle of "intra-group homo-116

geneity, inter-group heterogeneity". Predic-117

tion across the groups avoids shortcuts and118

delves deeper into LLMs’ abilities.119

• We conduct comprehensive experiments of120

social prediction with various LLMs, includ-121

ing closed-sourced models GPT 3.5 (OpenAI,122

2022), GPT 4 (Achiam et al., 2023), and Gem-123

ini Pro (Anil et al., 2023), as well as lighter124

open-sourced models like Llama-7B, Llama-125

7B-chat (Touvron et al., 2023) and Mistral-126

7B (Jiang et al., 2023). The results reveal the127

incapability of LLMs in rigorous yet realistic128

settings.129

• Our studies suggest that LLMs are reluctant to130

work on social prediction with ordinary input131

features without shortcuts. We further explore132

the potential reasons and future directions to133

enhance LLMs for social prediction.134

2 Revisit Voting Prediction with LLMs135

Large Language Models (LLMs) have demon-136

strated impressive performance in predicting voting137

decisions in the United States (Argyle et al., 2022;138

Veselovsky et al., 2023). In this section, we revisit 139

this voting prediction study with LLMs (Argyle 140

et al., 2022) and take a further step beyond it. 141

2.1 Reflecting on Voting Prediction 142

The work of (Argyle et al., 2022) adopts the 143

American National Election Studies (ANES) 144

to construct the dataset. ANES is a survey 145

conducted in every presidential election year, 146

with features about American public views and 147

political decisions. To elicit LLMs’ prediction 148

of the response feature (aka individual voting 149

decision), this study selects 10 input features: 150

racial/ethnic self-identification, gender, 151

age, ideological self-identification, 152

party identification, political interest, 153

church attendance, if discussing politics 154

with family/friends, patriotism feelings, 155

state of residence. With these 10 input 156

features and a question to elicit predictions, they 157

build the prompts with an example as below: 158

Racially, I am white. I am male. Ideolog- 159

ically, I describe myself as conservative. 160

Politically, I am a strong Republican ... 161

In 2016, I voted for: . 162

However, intuitively two of the input fea- 163

tures are near-equivalent to voting decision, 164

i.e. ideological self-placement and party 165

identification. It is evident from political sci- 166

ence studies (Miller, 1991; Dalton, 2016) that given 167

the partisan nature of American politics, voting 168

decision are closely related to these two features; 169

besides, they share similar degrees of difficulty to 170

capture due to privacy and costs. To validate this 171

assertion, we first calculate their Cramer’s V1 with 172

vote decision. The Cramer’s V scores are 0.86 173

and 0.76 respectively, indicating these two features 174

are highly correlated with vote decision. 175

Worse still, these features are rarely found and 176

nearly (in)accessible with the response features. 177

Referring to a survey on political social data min- 178

ing (dos Santos et al., 2021), only 1.89% of the 179

studies conducted have access to election-related 180

input features. Consequently, including features 181

closely related to the election as inputs is also im- 182

practical. 183

1Cramer’s V is a measurement of association between
features; the score 0 indicates no association and 1 indicates a
perfect association.
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We term features in this context as shortcuts,184

which are nearly semantic-equivalent and nearly ac-185

cessible with the response feature, and thus should186

not be used as input features.187

Figure 1: Performance of voting prediction. For each
model: = Full + Accuracy; = w/o shortcut +
Accuracy; = Full + Kappa; = w/o shortcut +
Kappa.

2.2 Further Experiments of Voting Prediction188

Next, we conduct further experiments on the im-189

pacts of shortcuts on social prediction. We choose190

both GPT-based approaches and classic super-191

vised machine learning models. For GPT-based192

approaches, the backbone GPT 3.5 model and193

prompts are the same with (Argyle et al., 2022);194

for classic supervised machine learning, we choose195

the Random Forest Classifier2. There are two set-196

tings on features: (1) Full, taking all the 10 input197

features; (2) w/o shortcut, taking input features198

except the 2 shortcuts. Given the balanced distribu-199

tion of the voting decision (51.9% vs. 48.1%),200

the metric to use is Accuracy; in addition, Cohen’s201

Kappa3 κ is adopted to evaluate the agreement be-202

tween the predicted and true voting decision.203

As shown in Fig. 1, the GPT-based approach204

with all input features achieved the accuracy of205

90.82% and Cohen’s Kappa κ of 0.83, successfully206

reproducing the results of (Argyle et al., 2022).207

2Since supervised classifiers need labeled data to train,
we split the dataset into 80%/10%/10% as training, valida-
tion, and test sets. The supervised setting offers models more
information and eases the tasks.

3Cohen’s Kappa κ has values ranging from 0 to 1, where 1
indicates stronger agreement and 0 indicates almost no agree-
ment.

However, after removing two shortcuts, the per- 208

formance of both methods drops dramatically: the 209

performance of GPT 3.5 drops to the accuracy of 210

61.60% and κ of 0.43; similarly, Random Forest 211

drops from 90.29%, 0.78 to 69.22%, 0.23. On the 212

other hand, in the Full setting, even the simple Ran- 213

dom Forest achieves results as almost good as GPT, 214

and also outperforms GPT in w/o shortcut setting. 215

Given the nearly half-half distribution of voting 216

decision, the performance without shortcut fea- 217

tures is considerably unsatisfactory. 218

Our preliminary study suggests LLMs’ promis- 219

ing social prediction performance reported by prior 220

works (Argyle et al., 2022) possibly derives from 221

the existence of shortcut features. This finding mo- 222

tivates us to question if LLMs are really powerful 223

in social prediction, or if the startling results are 224

merely because of the shortcut features. To explore 225

it, we propose a set of tasks that avoid shortcut 226

features as inputs and resemble realistic scenarios. 227

3 Social Profile Prediction 228

In this section, we introduce a social prediction task 229

evaluating LLMs’ predictive power without short- 230

cuts. First, we coin a social prediction dataset based 231

on survey data and methods to eliminate shortcut 232

features. Then we introduce three settings to simu- 233

late real-world scenarios. Finally, we demonstrate 234

and discuss the performance of LLMs’ prediction 235

in new settings. 236

3.1 Task and Dataset 237

As illustrated in Sec. 2, the inclusion of shortcut 238

features can affect the evaluation of the authentic 239

social prediction power of LLMs. To address it, we 240

design Soc-PRF Prediction as shown below. 241

The dataset derives from Gallup World 242

Poll (Gallup, 2009), one of the most prestigious so- 243

cial surveys that guarantees reliability and diversity 244

of features 4. In this paper, we construct our dataset 245

on its data from the USA and primarily between 246

2016 and 2020. To ensure information complete- 247

ness, sample individuals with missing demographic 248

features are removed. After careful data cleaning, 249

the dataset includes 4,941 profiles of American in- 250

dividuals (samples). From feature views, we pick a 251

4Initialized in 2006, Gallup World Poll is conducted in over
150 countries and follows strict random sampling. Questions
are designed by political scientists, measuring key indicators
of social life, such as law, finance, civic engagement, etc.,
along with individual demographic data.
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Figure 2: Correlation between features. The met-
ric is Cramer’s V ↑. The labels IA, SL, EC,
CE, AL stand for features of Internet Access, Social
Life, Economic Confidence, Civic Engagement, and
Approval of Leadership.

subset of features to construct the profiles of indi-252

viduals, encompassing 16 social features reflecting253

various socio-demographic characteristics. Details254

are shown in Sec. 3.2.255

3.2 General Settings stemming from Realistic256

Scenarios257

In social studies, social datasets mainly derive from258

two methodologies: either traditional surveys or259

online data collection (Couper, 2017; Diaz et al.,260

2016; Callegaro et al., 2014). Following the state-261

ment in Sec. 1, features are not always available262

in realistic scenarios. To simulate this situation,263

we first retrieved the works of social studies and264

selected the concept mutability5 to classify the265

social features bipartite. Most of the time fea-266

tures with high mutability (like viewpoint, ideol-267

ogy, social behavior, etc.) and low mutability (like268

age, gender, profession, etc.) can hardly be col-269

lected simultaneously. For example, online data270

collection, such as crawling posts from social net-271

working platforms, has the advantage of collect-272

ing high-mutability features by analyzing real-time273

attitudes and opinions with natural language pro-274

cessing (NLP) tools (Alghamdi and Alfalqi, 2015;275

Vayansky and Kumar, 2020; Hussein, 2018; Yue276

5Mutability measures the features’ propensity to change or
be influenced by social context. For more details please refer
to social studies as (Bailey, 1992; Brensinger and Eyal, 2021;
Sen and Wasow, 2016; Halley, 2017)

et al., 2019). In contrast, low mutability features 277

(e.g. demographic features) often remain inaccessi- 278

ble unless the users reveal them online. Survey data 279

from in-person interviews is complementary, cap- 280

turing low-mutability features precisely, while the 281

capture of highly mutable features is constrained 282

to limited topics/years/individuals and inevitably 283

missing data. 284

The 16 selected social features are assigned 285

to low-mutability and high-mutability groups re- 286

spectively. The low-mutability features are socio- 287

demographic features, including age, gender, 288

marriage, education, employment, income, and 289

urbanicity of residence. The high-mutability fea- 290

tures are attitudes or behaviors of social life, with 291

topics of Internet Access, Social Life, Economic 292

Confidence, Civic Engagement, and Approval of 293

Leadership. In save of space, we denote features 294

of them as IA, SL1, SL2, EC1, EC2, CE1, CE2, CE3, 295

AL. Please note mutability is continuous; features 296

even in the same group could have different de- 297

grees of mutability. For example, employment 298

status is more mutable than gender, while Civic 299

Engagement is more mutable than Internet Access. 300

The details of the features are shown in Ap- 301

pendix A.1. 302

According to features’ mutability, we design 303

three settings to assess the social prediction capa- 304

bility of LLMs, which simulate real-world scenar- 305

ios for social data: giving low-mutability features 306

to predict high-mutability features; giving high- 307

mutability features to predict high-mutability or 308

low-mutability features. Following the prior works 309

especially (Argyle et al., 2022), we employ the 310

same zero-shot prompt template without taking in 311

any labeled data. 312

3.3 Details of 3 Settings 313

low2high. This setting takes in low mutability 314

features to predict high mutability features, re- 315

sembling traditional survey datasets mentioned in 316

Sec. 3.2. One example of the prompt is: 317

- I am a male in the USA. I am 42 years 318

old. My current marital status is married. 319

My highest completed level of educa- 320

tion is middle level. My current employ- 321

ment status is employed. My Annual 322

Household Income is $12600. I am from 323

a suburb of a large city. 324

- When I’m asked "Do you have access 325
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Figure 3: Performance of Random Forest and Random Guessing. The metric is AUC.

to the Internet in any way, whether on a326

mobile phone, a computer, or some other327

device?", my answer is328

Here the underlined text indicates the values of329

individual features, and italicized text presents the330

question to elicit final responses. For the subse-331

quent settings, we utilize prompts with similar tem-332

plates.333

high2low: This setting denotes the prediction from334

high-mutability to low-mutability features. The in-335

puts include values of all 9 high mutability features,336

followed by the question about one low mutability337

feature. Serving as the inverse setting of low2high,338

this setting is designed for profile construction us-339

ing online data: with the in-time individual atti-340

tudes extracted from online posts, the demographic341

features are inaccessible.342

high2high. High-mutability features are utilized343

as input to predict other high-mutability features.344

Different from high2low setting, to avoid short-345

cuts, the high mutability features of the same topic346

with the response feature are excluded from the347

input prompts. This setting simulates a specific348

real-world scenario, where individuals’ attitudes to-349

ward one topic are collected, but opinions on other350

topics remain unexpressed.351

Evaluation Metrics. Most features in the dataset352

have imbalanced distributions. For example, the353

feature IA has 91.82% samples with "yes" labels,354

while only 8.18% samples with "no". In this sit-355

uation, accuracy is not a proper metric (Gu et al.,356

2009). Thus we employ AUC as the metric.357

3.4 Feature Analysis358

Remind that our study is motivated by the shortcut359

features which are closely related to the response360

feature, and thus inaccessible in realistic scenar-361

ios. Mutability only guarantees the features are362

of different accessibility, but says little about re-363

latedness between features. To prevent the emer- 364

gence of shortcut features, we check the Cramer’s 365

V between all feature pairs. As shown in Fig. 2, 366

most Cramer’s V scores lie at low levels that are 367

lower than 0.5. The only large values (such as 368

0.58 between CE2 and CE3) come from the high 369

mutability features with the same topics (i.e., Civic 370

Engagement); however, all our settings do not in- 371

clude this kind of cases. 372

Then we evaluate the predictive power of the se- 373

lected features by a traditional supervised method. 374

Take the low2high setting as the example, we 375

train Random Forest Classifier with dataset split 376

by 80%/10%/10% as training/validation/test sets. 377

Then we compare its results with random guessing 378

as the baseline. Fig. 3 shows Random Forest Clas- 379

sifier outperforms the random guessing baseline 380

by a considerable margin. For example, the AUC 381

score of IA is 95.07, compared to 48.34 of random 382

guessing. 383

In conclusion, all selected features are not short- 384

cuts, and they are still powerful enough in predic- 385

tion tasks. 386

3.5 LLMs as the Predictor 387

In this section, we leverage LLMs for the Soc-PRF 388

Prediction task in the three aforementioned set- 389

tings. The results of the three settings are illustrated 390

in Table 1, Table 2, and Fig. 4, respectively. In the 391

tables, "Random" indicates the random guessing 392

baseline. Note that for the settings high2high, 393

we only show part of the results because the ob- 394

servations are similar. We note that the perfor- 395

mance of LLMs is closely similar to the random 396

guessing and is far from satisfactory. The poor 397

results appear consistently in all the settings and 398

with all the LLMs. These observations indicate that 399

LLMs struggle to predict individual features with 400

the given information in the proposed settings. 401
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Table 1: Performance of LLMs of setting low2high. The IA, SL, EC, CE, AL stand for indexes of Internet
Access, Social Life, Economic Confidence, Civic Engagement, and Approval of Leadership.

Model IA SL1 SL2 EC1 EC2 CE1 CE2 CE3 AL

Random 48.34 52.09 48.47 52.12 50.07 49.89 49.16 49.32 48.60
Llama-7B 50.00 50.00 50.00 48.75 55.41 50.00 50.00 50.00 50.00

Llama-7B-chat 50.00 50.00 50.00 50.95 51.80 50.00 50.00 50.00 50.00
Mistral-7B 50.00 50.00 50.00 53.12 56.89 50.00 50.00 50.00 50.00
Gemini Pro 50.00 50.00 50.00 50.76 60.93 50.00 50.00 50.00 50.00

GPT-3.5 50.00 50.00 50.00 52.63 58.20 50.00 50.00 50.00 50.00
GPT-4 50.00 50.00 50.00 53.82 56.57 50.00 50.00 50.00 50.00

Table 2: Performance of LLMs (GPT 3.5 and GPT 4) of setting low2high.

Model age gender marriage education employment income urbanicity

Random 49.50 49.62 49.45 49.99 50.54 48.14 50.22
Llama-7B 33.50 49.81 50.00 55.15 50.00 50.05 49.85

Llama-7B-chat 40.00 50.00 50.00 35.21 50.33 51.18 50.09
Mistral-7B 33.55 49.81 50.00 55.15 50.00 50.05 49.85
Gemini Pro 38.80 51.14 50.00 66.70 50.00 50.10 49.75

GPT-3.5 41.35 50.00 51.29 57.76 49.59 50.95 50.94
GPT-4 40.75 50.00 50.88 65.65 52.01 53.80 52.09

Figure 4: Performance of GPT 3.5 of setting high2high.
The metric is AUC score. The sign "-" indicates no
valid data, either because the input features (Y-axis) and
output features (X-axis) share the same topic, or they
are not conducted simultaneously in the survey.

4 Discussions402

Some may wonder if the degraded results are403

caused by suboptimal or even trivial prompts: are404

there other prompts that can make good predic-405

tions? We admit there is a possibility, but this goes406

beyond the range of our paper. The prompts can be407

augmented by better-crafted prompts or examples408

of labeled data (so-called few-shot), but the settings409

will be incomparable with the prior works, and also410

converting the focus from LLMs’ authentic predic-411

tive ability to advanced prompt engineering. Sim-412

ilar to the critical work of self-correction (Huang413

et al., 2023), we are not devoted to addressing ques- 414

tions like "what are the better social prediction 415

prompt templates to induce better performance?". 416

Rather, with the overwhelming evidence that sev- 417

eral representative LLMs fail on social prediction 418

with the popular and straightforward prompts, we 419

wonder "do LLMs really have social prediction 420

ability at the individual level, without the help 421

of other external resources?" Below we propose 422

deeper analysis and potentially helpful methods for 423

social prediction. 424

4.1 Population v.s. Individual 425

As shown in the previous section, even advanced 426

LLMs like GPT 4 encounter challenges in accu- 427

rately predicting social features, only to yield out- 428

comes similar to random guessing. To explore the 429

underlying causes for such phenomena, we take 430

the distribution comparisons between predicted re- 431

sponse features and true counterparts. The case 432

study is conducted in low2high setting and the re- 433

sults are shown in Fig. 5. We have the following 434

observations: 435

(1) Although all the response features are high- 436

mutable, LLM’s predictions of relatively less muta- 437

ble features (such as IA and SL, first 2 sub-figures 438

of Fig. 5) are prone to have smaller discrepancies 439

with true distributions. This fact indicates LLMs 440
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do contain global knowledge about these social441

features, but they are only well-aligned at the pop-442

ulation level. To validate this claim, we check443

the distributions of predictions in the true posi-444

tive group and the whole dataset: among all the445

individuals, 88.60% are predicted as positive; how-446

ever, among the true positive group (all the predic-447

tions are expected to be positive), the proportion448

of positive prediction is 90.52%. The gap is only449

1.92%, which means the input features of individu-450

als have few impacts on the prediction. We specu-451

late that even conditioned by individual-level fea-452

tures, the population-level pre-trained knowledge453

prevails over that of individuals from prompts, lead-454

ing LLMs to predict by simple sampling from the455

population distribution, rather than making case-456

specific predictions.457

(2) The patterns of highly mutable features, such458

as CE1 and CE2 (last 2 sub-figures of Fig. 5), are459

not captured by existing LLMs even at the popu-460

lation level. Rather, LLMs prefer to predict more461

negative responses to these features. This fact in-462

dicates building accurate predictors with LLMs463

for highly mutable features is more challenging,464

requiring LLMs to be well-aligned not only to in-465

dividual information but also to population-level466

knowledge.467

4.2 Incorporating Labeled Data468

We try several popular methods below, only to find469

social prediction is still a challenging task without470

further advancement of LLMs.471

The strong performance of the random forest472

classifier in Fig. 3 indicates that our proposed pre-473

diction task is reasonable if sufficient labeled data474

is considered. Based on this finding, we explore475

the effectiveness of incorporating supervision sig-476

nals to LLMs based on the low2high setting as477

the example. Following prior studies (Brown et al.,478

2020; Song et al., 2023), we leverage the in-context479

learning ability of LLMs (Dong et al., 2022; Zhang480

et al., 2023) to incorporate a few labeled samples481

as demonstrations. Specifically, for each individual482

profile, we sample some other individual profiles483

from the dataset as the reference. In addition to the484

vanilla prompts introduced in Sec. 3.2, we append485

full information (including the input and response486

features) of these reference samples to the prompts.487

One example of such prompts is:488

- Here are self-descriptions of two people:489

"I am a male in the USA ... my answer 490

is yes"; "I am a female in the USA ... my 491

answer is no"; ... 492

- I am a male in the USA. I am 42 years 493

old ...; 494

- When I’m asked "Do you have access 495

to the Internet in any way, whether on a 496

mobile phone, a computer, or some other 497

device?", my answer is 498

To improve the efficiency of demonstrations, we 499

select reference samples with tricks. (1) We choose 500

2 or 4 samples with the same year and marriage 501

features with the predicted sample, and the pos- 502

itive and negative labels are balanced within the 503

reference samples. (2) In addition, we adopt two 504

more sets of in-context learning with Active Learn- 505

ing algorithms (Margatina et al., 2023). Among 506

the demonstration selection methods, we select the 507

most powerful Diversity (Yu et al., 2022) and Simi- 508

larity (Liu et al., 2021) variants. The samples with 509

the most distinct or similar representations are se- 510

lected as context. Like the supervised methods, 511

these demonstrations allow LLMs to make predic- 512

tions aided by supervision signals from ground 513

truth. 514

The results of experiments are shown in Table 3. 515

It’s plausible that augmented prompts with demon- 516

strations help LLMs achieve better prediction per- 517

formance, but it’s worth noting the performance 518

gain is unstable and sometimes minimal. Besides, 519

incorporating 4 demonstrations (column 3) only 520

has marginal or no improvement compared to incor- 521

porating 2 demonstrations (column 2). The active 522

learning methods (columns 4-5) showcase similar 523

results. This observation suggests solely searching 524

for optimal prompts takes intensive effort, given the 525

search space of prompts is infinite and the outputs 526

are sensitive to prompts. 527

Again, as this is not the focus of our work, we 528

leave the improvement of in-context prompts as a 529

further direction. 530

5 Related Work 531

With the advent of LLMs, predicting social fea- 532

tures with LLMs has been studied by numerous 533

works (Ziems et al., 2023; Veselovsky et al., 2023). 534

Among social studies, LLMs have been deployed 535

to predict the potential responses or outcomes with 536
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Figure 5: Distributions of Social Features. Note that the last two features (civic engagement behaviors) are more
mutable than the first two.

Table 3: Performance of LLMs (GPT-3.5) with demon-
strations. 2-Demos and 4-Demos indicate label-
balanced demonstrations; AL-Sim and AL-Div stand for
active learning with similar or diverse demonstrations.

Zero 2- 4- AL- AL-
Shot Demos Demos Sim Div

IA 50.00 71.61 82.67 60.46 54.19
SL2 50.00 50.60 50.04 48.54 50.65
EC1 52.63 50.52 53.47 49.11 56.64
CE1 50.00 60.17 55.34 54.15 54.13
CE2 50.00 53.22 52.79 55.90 60.34
AL 50.00 52.03 50.80 46.89 51.22

ease, especially in scenarios where traditional meth-537

ods are constrained by cost or ethical concerns.538

In economics, Phelps and Russell (2023) studied539

game theory by examining cooperative and com-540

petitive behaviors with LLMs. Within political541

science, Wu et al. (2023) deployed LLMs to pre-542

dict the ideological views of politicians. For com-543

munication studies, LLMs are used to simulate544

and predict the potential outcomes of toxic dis-545

course (Törnberg et al., 2023), the political affilia-546

tion of Twitter posts (Törnberg, 2023), etc.547

Additionally, there are growing interests in lever-548

aging LLMs with social survey and interview, aim-549

ing to replicate human-like responses to certain550

questions or attributes of individuals. For example,551

Argyle et al., 2022 proposed "silicon samples" that552

deploy LLMs to simulate the people in a survey553

or interview and predict their partisan views and554

voting decisions. Dillion et al., 2023 examined555

the LLMs response to psychological tests, com-556

paring the decisions and judgements from LLMs557

and humans. Aher et al., 2023 proposed sets of558

experiments to check LLMs response to interview559

and games. Besides, fine-tuning LLMs is a promis-560

ing method for better prediction of social attitudes561

across years of surveys (Kim and Lee, 2023). At562

the same time, discussions (Jansen et al., 2023) 563

are hold about the potential and risks of deploying 564

LLMs in social survey studies. 565

6 Conclusion 566

In this study, we introduce a survey-based social 567

prediction task to assess the LLMs’ predictive abil- 568

ity using general features. Through the replication 569

of experiments and ablation studies of voting pre- 570

diction tasks, we reveal a significant performance 571

gap between input prompts with and without short- 572

cut features. To further study the LLMs’ predic- 573

tive ability, we propose a real-world survey dataset 574

with rigorously selected features. Based on it, we 575

demonstrate the inability of LLMs to predict social 576

features only with general features. Furthermore, 577

our empirical studies further showcase the potential 578

reasons that constrain the LLMs’ predictive power. 579

In our future research, we aim to explore the effi- 580

cient methods of providing supervision signals and 581

reference information to improve LLMs prediction 582

performance. Moreover, with the abundant social 583

survey and online data, we plan to use fine-tuning 584

methods to fit the LLMs knowledge with social 585

prediction tasks. 586

8



7 Limitations587

As not the focus of this paper, we do not propose588

methods to address the poor performance issue of589

social prediction, nor provide experiments with590

better results to validate our suggestions. Second,591

the LLMs are not further fine-tuned and the op-592

timal prompts are not searched. Tailoring LLMs593

to advance social prediction abilities and finding594

optimal prompts are potential directions to ex-595

plore. Besides, we merely deploy large-scale close-596

sourced LLMs and less powerful open-sourced597

LLMs. However, large-scale open-sourced LLMs,598

such as the Llama-70B, have both access to fine-599

tuning and enormous language capabilities. For600

researchers with enough computing resources, we601

encourage further experiments and tuning on large-602

scale open-sourced LLMs.603

8 Ethics Statement604

As far as we know, there are no major ethical605

concerns thanks to our use of publicly available606

and anonymized data. However, it’s important to607

acknowledge potential ethical issues when using608

LLMs to mimic human responses in surveys. If609

the privacy features are easy to infer, there’s a610

risk of privacy leakage. Moreover, addressing bias611

and ensuring fairness is another significant ethical612

challenge. LLMs may perpetuate societal biases613

present in training data, resulting in social predic-614

tion responses that reinforce harmful stereotypes or615

discrimination. Thoroughly testing for bias across616

different demographics is vital to mitigate these617

risks and promote fairness.618
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A Appendix869

A.1 Questions for Features870

We categorize the selected 16 features into two871

groups, i.e. high-mutability and low-mutability fea-872

tures. The details of high-mutability features are873

shown in Table 4 and those of low-mutability fea-874

tures are shown in Table 5. The column "Question875

Abbrev." indicates the abbreviation of the features,876

which are broadly used in this work. The column877

"Question Identifiers" indicates the identifier la-878

bels of the corresponding questions in the original879

Gallup survey.880

A.1.1 Feature Convert Methods881

In the main experiments, there are features882

of integer or several classes, such as income,883

employment, etc. We convert them into groups884

(with the number of groups no larger than four).885

For income, we calculate the 35% and 65% per-886

centiles of the annual household income. Based887

on them, we categorize income into three classes:888

lower level, middle level, and higher level. For fea-889

tures with more than 4 classes, we combine similar890

classes to make the number of classes as 2 or 3.891
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Topic Question
Abbrev.

Question
Identifiers Question Options

Communication Use IA WP16056 Do you have access to the internet in any way,
whether on a mobile phone, a computer, or some
other device?

yes, no

Social Life SL1 WP27 If you were in trouble, do you have relatives or
friends you can count on to help you whenever you
need them, or not?

yes, no

SL2 WP10248 In the city or area where you live, are you satisfied
or dissatisfied with the opportunities to meet people
and make friends?

satisfied, dissatisfied

Economic Confidence EC1 WP148 Right now, do you think that economic conditions in
this country, as a whole, are getting better or getting
worse?

better, worse

EC2 M30 How would you rate your economic conditions in
this country today – as excellent, good, fair, or poor?

excellent, good, fair,
poor

Civic Engagement CE1 WP108 Have you donated money to a charity in the past
month?

yes, no

CE2 WP109 Have you volunteered your time to an organization
in the past month?

yes, no

CE3 WP110 Have you helped a stranger or someone you did not
know who needed help?

yes, no

Approval of Leadership AL WP150 Do you approve or disapprove of the job
performance of the leadership of this country?

approve, disapprove

Table 4: Questions and Options of High-mutability Features of Gallup Dataset.

Immutable Attribute Question
Abbrev.

Question
Identifiers. Options

Age age age -
Gender gender WP1219 1. Man, 2. Woman

Marital Status marriage WP1223 1. Single/Never been married, 2. Married, 3.
Separated, 4. Divorced, 5. Widowed, 6. Domestic
Partner;

Highest Completed Level of
Education

education WP3117 1. Completed elementary education or less (up to 8
years of basic education); 2. Secondary - 3 years
Tertiary/Secondary education and some education
beyond secondary education (9-15 years of
education); 3. Completed four years of education
beyond high school and/or received a 4-year college
degree;

Employment Status employment EMP_2010 1. Employed full time for an employer, 2. Out of
workforce, 3. Employed part time do not want full
time, 4. Employed full time for self, 5. Employed
part time want full time, 6. Unemployed;

Annual Household Income income INCOME_1 -
Living of Urbanicity urbanicity WP14 1. A suburb of a large city, 2. A small town or

village, 3. A large city, 4. A rural area or on a farm;

Table 5: Questions and Options of Low-mutability Features of Gallup Dataset.
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