
Characterizations of Language Generation With Breadth

Alkis Kalavasis Anay Mehrotra Grigoris Velegkas

Yale University Yale University Yale University
alkis.kalavasis@yale.edu anaymehrotra1@gmail.com grigoris.velegkas@yale.edu

Abstract

We study language generation in the limit, which was introduced by Kleinberg and Mul-
lainathan [KM24] building on classical works of Gold [Gol67] and Angluin [Ang79]. The re-
sult of [KM24] is an algorithm for generating from any countable language collection in the
limit. While their algorithm eventually generates strings from the target language K, it sacri-
fices breadth, i.e., its ability to output all strings in K. The main open question of [KM24] was
whether this trade-off between consistency and breadth is necessary for language generation.

Recent work by Kalavasis, Mehrotra, and Velegkas [KMV24] proposed three definitions
for consistent language generation with breadth in the limit: generation with exact breadth,
generation with approximate breadth, and unambiguous generation. Concurrent and indepen-
dent work by Charikar and Pabbaraju [CP24a] introduced a different notion, called exhaustive
generation. Both of these works explore when language generation with (different notions of)
breadth is possible.

In this work, we fully characterize language generation for all these notions of breadth and
their natural combinations. Building on [CP24a; KMV24], we give an unconditional lower
bound for generation with exact breadth, removing a technical condition needed in [KMV24]
and extending the unconditional lower bound of [CP24a] which holds for specific collections;
our result shows that generation with exact breadth is characterized by Angluin’s condition
for identification from positive examples [Ang80]. Furthermore, we introduce a weakening of
Angluin’s condition and show that it tightly characterizes both generation with approximate
breadth and exhaustive generation, thus showing that these two notions are equivalent. More-
over, we show that Angluin’s condition further characterizes unambiguous generation in the
limit as a corollary of a more general result that applies to a family of notions of breadth. We
discuss the implications of our results in the statistical setting of Bousquet, Hanneke, Moran,
van Handel, and Yehudayoff [BHMvY21]. Finally, we provide unconditional lower bounds for
stable generators, strengthening the results of [KMV24], and we show that for stable generators
all the aforementioned notions of breadth are characterized by Angluin’s condition. This gives
a separation for generation with approximate breadth, between stable and unstable generators.

Figure 1: Equivalences for Language Generation With Breadth in the Limit (Main Theorem 1).

1

ar
X

iv
:2

41
2.

18
53

0v
1

 [
cs

.L
G

]
 2

4
D

ec
 2

02
4

mailto:alkis.kalavasis@yale.edu
mailto:anaymehrotra1@gmail.com
grigoris.velegkas@yale.edu

Contents

1 Introduction 1
1.1 Language Identification in the Limit . 1
1.2 Language Generation in the Limit . 2
1.3 Language Generation With Breadth in the Limit . 3
1.4 Motivation for Generation With Approximate Breadth and Infinite Coverage 4
1.5 Summary of Our Results . 5
1.6 Recent Works on Language Generation With Breadth 8

2 Main Results: Unconditional Characterizations 10
2.1 Unconditional Characterization of Generation With (Exact) Breadth 10
2.2 Unconditional Characterization of Generation With Approximate Breadth 14
2.3 Unconditional Characterization of Exhaustive Generation 19
2.4 Unconditional Characterization of Unambiguous Generation 23
2.5 Implications to Language Generation in the Statistical Setting 24

3 The Role of Stability in Language Identification and Generation 25
3.1 Characterization of Stable Generation With Approximate Breadth 26
3.2 A Collection for Which No Stable Generator Has Infinite Coverage 28
3.3 Sufficient Condition for Stable Generation With Infinite Coverage 30
3.4 Generation With Increasing Coverage: A Strengthening of Stability 32
3.5 Landscape of Language Generation With Stable Algorithms 33

4 Extension to Any Notion of Breadth Satisfying Uniqueness 34

5 Extension to Any Notion of Breadth Satisfying Finite Non-Uniqueness 36

6 Conclusion 38

A The Proof of Theorem 4.5 and Implications 41
A.1 The Proof of Lemma 2.12 (Impossibility for Unambiguous Generation) 43

B The Proof of Theorem 5.4 and Implications 44
B.1 The Proof of Lemma 2.7 (Impossibility for Generation With Approximate Breadth) . 44
B.2 The Proof of Lemma 2.11 (Impossibility for Exhaustive Generation) 44
B.3 The Proof of Corollary 5.5 (Equivalence of Approximate Breadth, Exhaustive Gen-

eration and Its Variant) . 45

C Proof Omitted From Section 3 45

D Membership Oracle Problem 48

1 Introduction

Building on classical work on learning theory, tracing back to Gold [Gol67] and Angluin [Ang88],
Kleinberg and Mullainathan [KM24] provided a formal framework for language generation. In
this framework, the domain X is a countable collection of strings, and there is an unknown tar-
get language K which is a subset of this domain. We know that the true language lies within a
collection of possibly infinite but countably many languages L = {L1, L2, . . . }.1 Based on this el-
ementary setup, one can define the tasks of language identification and generation. We start our
exposition with the notion of identification in the limit, that goes back to the work of Gold in the
late 1960s.

1.1 Language Identification in the Limit

The problem of language identification in the limit from positive examples was introduced by
Gold [Gol67] and further studied by Angluin [Ang79; Ang80]. For a fixed collection L, an ad-
versary and an identifier play the following game: The adversary chooses a language K from L

without revealing it to the identifier, and it begins enumerating the strings of K (potentially with
repetitions) x1, x2, . . . over a sequence of time steps n = 1, 2, 3, The adversary can repeat
strings in its enumeration, but the crucial point is that for every string x ∈ K, there must be at
least one time step n at which it appears. At each time n, the identification algorithm I , given the
previous examples x1, x2, . . . , xn, outputs an index in that corresponds to its guess for the index of
the true language K. Language identification in the limit is then defined as follows.

Definition 1 (Language Identification in the Limit [Gol67]). Fix some K from the language collection
L = {L1, L2, . . . }. The identification algorithm I = (In) identifies K in the limit if there is some n∗ ∈ N

such that for all steps n > n∗, the identifier’s guess in satisfies in = in−1 and Lin = K. The language
collection L is identifiable in the limit if there is an identifier that identifies in the limit any K ∈ L, for any
enumeration of K. In this case, we say that the identifier identifies the collection L in the limit.

It is important to note that the above definition imposes some stability to the algorithm: since
there can be multiple appearances of K in the enumeration of L, an algorithm identifies K in the
limit only if it eventually stabilizes (i.e., in = in−1 for n larger than some n∗) to a correct index (i.e.,
Lin = K). A natural question is which collections of languages are identifiable in the limit. Angluin
[Ang80] provided a condition that characterizes such collections.

Definition 2 (Angluin’s Condition [Ang80]). Fix a language collection L = {L1, L2, . . . }. The collec-
tion L is said to satisfy Angluin’s condition if for any index i, there is a tell-tale, i.e., a finite set of strings
Ti such that Ti is a subset of Li, i.e., Ti ⊆ Li, and the following holds:

For all j ≥ 1, if Lj ⊇ Ti, then Lj is not a proper subset of Li.

Further, the tell-tale oracle is a primitive that, given an index i, outputs an enumeration of the set Ti.

It turns out that the above condition characterizes language identification in the limit.

1Throughout this work, we assume membership oracle access to L which given x ∈ X and index i as input, returns
1{x ∈ Li}.

1

Theorem 1.1 (Characterization of Identification in the Limit [Ang80]). The following holds for any
countable collection of languages L.

1. L is identifiable in the limit if it satisfies Angluin’s condition and one has access to the tell-tale oracle.

2. If there is an algorithm that identifies L in the limit, then Angluin’s condition is true and the tell-tale
oracle can be implemented.

The above tight characterization shows that language identification is information-theoretically
impossible even for simple collections of languages, such as the collection of all regular languages.
Crucially, access to the tell-tale oracle is necessary for identification in the limit (its existence alone
is not sufficient) [Ang80, Theorem 2].

1.2 Language Generation in the Limit

Language generation in the limit was introduced by Kleinberg and Mullainathan [KM24] and we
define it below. In this work, we define a generating algorithm G = (Gn)n∈N as a sequence of
mappings, i.e., for each n ∈ N, Gn is a mapping from training sets of size n to distributions on
the domain X. Occasionally, we may refer to generating algorithms as simply generators. As in
language identification, there is a two-player game where the adversary fixes a language K ∈
L and an enumeration of its elements. The adversary presents the enumeration sequentially to
the generator, who, at each round, generates a potential example from the target language. The
generator’s goal is as follows:

Definition 3 (Language Generation in the Limit [KM24]). Fix some K from the language collection
L = {L1, L2, . . . } and a generating algorithm G = (Gn). At each step n, let Sn ⊆ K be the set of all strings
that the algorithm G has seen so far. G must output a string wn /∈ Sn (its guess for an unseen string in
K). The algorithm G is said to generate from K in the limit if, for all enumerations of K, there is some
n∗ ∈ N such that for all steps n ≥ n∗, the algorithm’s guess wn belongs to K \ Sn (or K \ Sn is empty).
The collection L allows for generation in the limit if there is an algorithm G that, for any target K ∈ L,
generates from K in the limit.

Note that for the problem of language generation to be interesting, the languages of the collection
L must be of infinite cardinality. Hence, throughout this work we assume that that each language
in the collection has infinite cardinality. The main result of Kleinberg and Mullainathan [KM24] is
that language generation in the limit is possible for all countable collections of languages.

Theorem 1.2 (Theorem 1 in Kleinberg and Mullainathan [KM24]). There is a generating algorithm
with the property that for any countable collection of languages L = {L1, L2, . . . }, any target language
K ∈ L, and any enumeration of K, the algorithm generates from K in the limit.

This result is in stark contrast to negative results in language identification, mentioned in the
previous section; hence, showing a strong separation between identification and generation in the
limit. We proceed with the main topic of interest: language generation with breadth.

2

1.3 Language Generation With Breadth in the Limit

The main open question of Kleinberg and Mullainathan [KM24] was whether there exists a gen-
erating algorithm satisfying consistency (i.e., eventually outputting elements only from the true
language, which corresponds to Definition 3) and breadth (i.e., eventually being able to generate
from the whole range of the true language). The mathematical formulation of this question was
introduced in Kalavasis, Mehrotra, and Velegkas [KMV24] and is as follows.

Definition 4 (Language Generation With Breadth in the Limit [KMV24]). A generating algorithm
G = (Gn) is said to generate with breadth in the limit for a language collection L = {L1, L2, . . . } if, for
any K ∈ L and enumeration of K, there is an n∗ ≥ 1, such that for all n ≥ n∗, after seeing n elements of
the enumeration,

supp(Gn) ∪ Sn = K , (1)

where Sn is the set of elements enumerated until round n.

One can also study natural relaxations of the notion of breadth. Kalavasis, Mehrotra, and Velegkas
[KMV24] proposed some relaxations of Definition 4. The first relaxation allows the generating
algorithm to miss (any) finitely many elements of the target language.

Definition 5 (Language Generation with Approximate Breadth in the Limit [KMV24]). A generat-
ing algorithm G = (Gn) is said to generate with approximate breadth in the limit for a language collection
L = {L1, L2, . . . } if, for any K ∈ L and enumeration of K, there is an n∗ ≥ 1, such that for all n ≥ n∗,
after seeing n elements of the enumeration,

supp(Gn) ⊆ K and |K \ supp(Gn)| < ∞ . (2)

Observe that a generating algorithm with approximate breadth avoids hallucinations (i.e., out-
putting elements outside of K, see first term of (2)) but also only misses finitely many elements
of the infinite language K (second term of (2)). Hence, any algorithm satisfying Definition 4 im-
mediately satisfies Definition 5; see Section 1.4 for some additional motivation behind the above
definition. We note that |K \ supp(Gn)| should be finite for all n > n∗ but not a fixed constant.

Charikar and Pabbaraju [CP24a], independently of and concurrently with Kalavasis, Mehrotra,
and Velegkas [KMV24], came up with another notion of breadth – termed exhaustive generation2

In their formulation, the generating algorithm is a sequence of mappings from sequences of the
domain to enumerations of the domain. For any i, n ∈ N, let Gn(i) be the i-th element in the
enumeration of the generator that was outputted in the n-th round.

Definition 6 (Exhaustive Language Generation in the Limit [CP24b]). A generating algorithm G =

(Gn) is said to be an exhaustive generator in the limit for a language collection L = {L1, L2, . . . } if, for any
K ∈ L and enumeration of K, there is an n∗ ≥ 1, such that for all n ≥ n∗, after seeing n elements of the
enumeration, ∣∣∣∣∣ ∞⋃

i=1

Gn(i) \ K

∣∣∣∣∣ < ∞ and Sn ∪
n−1⋃
j=1

Gj(1) ∪
∞⋃

i=1

Gn(i) ⊇ K , (3)

2The definition of exhaustive generation appearing in [CP24a] is slightly different from the definition appearing in
the updated version [CP24b] (which is concurrent with our work). After coordination with the authors of [CP24b],
we present the updated definition in Definition 6. Later, in Section 5, we show that generation under the two defi-
nitions of exhaustive generation (from [CP24a] and [CP24b] respectively) is characterized by the same condition (see
Corollary 5.5).

3

where Sn is the set of elements enumerated until round n.

We note that Definition 6 is (strictly) weaker than generation with exact breadth, but, seems in-
comparable to Definition 5. For instance, this definition allows the algorithm to hallucinate on
finitely many points while approximate breadth requires the generator to be consistent.

Finally, the second relaxation of generation with breadth proposed by Kalavasis, Mehrotra,
and Velegkas [KMV24] allows the generator to also hallucinate (i.e., output strings outside of the
target language K) provided it is a “better” generator for the target language than for any other
language in the collection.

Definition 7 (Unambiguous Language Generation in the Limit [KMV24]). A generating algorithm
G = (Gn) is unambiguous in the limit for a language collection L = {L1, L2, . . . } if, for any K ∈ L and
enumeration of K, its support eventually becomes closer to K than to any other language L ̸= K in L in
terms of the symmetric difference metric, i.e., there exists some n∗ ∈ N such that for all n ≥ n∗, after seeing
n elements of the enumeration,

|supp(Gn)△K| < min
L∈L : L ̸=K

|supp(Gn)△L| , (4)

where recall that for two sets S and T, S△T := (S \ T) ∪ (T \ S).

Unambiguous generation is seemingly weaker than generation with (exact) breadth and not di-
rectly comparable to generation with approximate breadth and exhaustive generation.

Remark 1 (Representation of the Generators). The astute reader might observe that the previous
definitions allow for generating algorithms that output infinite-sized objects. However, all our
generating algorithms have succinct representations and this allows for computable algorithms
that sample (i.e., generate) a new element, enumerate the support of all generatable elements,
and, given an element, decide whether it belongs to the support (i.e., whether it is part of the
enumeration). On the other hand, our lower bounds are stronger, they hold for functions that
might not be computable.

1.4 Motivation for Generation With Approximate Breadth and Infinite Coverage

In this section, we provide further motivation behind Definition 5, generation with approximate
breadth. An immediate modification of the algorithm of [KM24] can achieve finite coverage of the
target language, for any finite number. More concretely, for any function f : N → N and any
countable collection of languages L there exists a generating algorithm (Gn)n∈N such that, for any
target language K ∈ L and any enumeration of K the algorithm achieves in the limit

supp(Gn) ⊆ K , supp(Gn) ∩ Sn = ∅ , and |supp(Gn)| = f (n) ,

where Sn is the set of elements enumerated until round n. In fact, their algorithm can achieve the
stronger property of infinite coverage defined below.

Definition 8 (Language Generation with Infinite Coverage in the Limit). A generating algorithm
G = (Gn) is said to generate with infinite coverage in the limit for a language collection L = {L1, L2, . . . }
if, for any K ∈ L and enumeration of K, there is an n∗ ≥ 1, such that for all n ≥ n∗, after seeing n elements
of the enumeration (corresponding to the set Sn in round n),

supp(Gn) ⊆ K , supp(Gn) ∩ Sn = ∅ , and |supp(Gn)| = ∞ ,

4

Given the above notion of infinite coverage, a simple modification to the generating algorithm of
[KM24] gives the following result.

Proposition 1.3 (Modification of [KM24]). There is a generating algorithm with the property that for
any countable collection of languages L = {L1, L2, . . . }, any target language K ∈ L, and any enumeration
of K, the algorithm generates with infinite coverage from K in the limit.

Thus, the aforementioned modification of the algorithm of [KM24] has the property that it does not
hallucinate (i.e., it does not include any elements outside of K in its support) and covers infinitely
many (unseen) elements of the target language, but might, potentially, not cover infinitely many
elements as well. Thus, a natural question is whether there exists an algorithm that does not
hallucinate, can cover infinitely many elements of K, and also miss only finitely many elements of
it. This is precisely the requirement of generation with approximate breadth (Definition 5).

Proof Sketch of Proposition 1.3. We discuss a sketch of the proof for the version of the algorithm of
[KM24] that uses a subset oracle for L, i.e., for any Li, Lj ∈ L it can ask “Is Li ⊆ Lj?”. Let us first
give a high-level description of their algorithm. For large enough n ∈ N, it creates a (potentially
infinite) sequence of languages L′ = {Li1 , Li2 , . . .} ⊆ L such that the following hold.

(i) For every language L ∈ L′ it holds that L is consistent, i.e., Sn ⊆ L, where Sn is the set of
elements enumerated until round n,

(ii) The sequence of languages in L′ satisfies the inclusion: Li1 ⊇ Li2 ⊇ . . . , and

(iii) K ∈ L′.

Then, it outputs an arbitrary string x such that x /∈ Sn and x ∈ Liℓ , where iℓ ∈ N is the largest
number such that Liℓ ∈ L′ and iℓ ≤ n. The immediate modification is to output a distribution Gn

such that supp(Gn) = Liℓ \Sn. Notice that this can be done in a computable way: in order to sample
from this distribution, we first sample a natural number n̂ (e.g., from a geometric distribution on
N), and then we check if xn̂ ∈ Liℓ \ Sn.

An analogous modification can be made to the algorithm of [KM24] that only has access to a
membership oracle for L. For brevity, we omit the modifications to this algorithm.

1.5 Summary of Our Results

Building on [CP24a; KMV24], we provide a general collection of characterizations, summarized
in Figure 1. We stress that all these results are unconditional, in the sense that they do not rely on
any particular structure of the generating algorithm, strengthening the conditional lower bounds
of [KMV24]. Further, the results also hold for all countable collections of languages and not for
specific families, strengthening the family-specific lower bounds of [CP24a]. Moreover, in ad-
dition to strengthening existing results, the results also establish several new lower bounds and
characterizations.

We proceed with the statement of our results, which provide a clear picture of the landscape
of language generation in the limit. In particular, we show that generation with exact breadth
and unambiguous generation are equivalent (Definition 2). Moreover, we show that generation

5

with approximate breadth and exhaustive generation are both characterized by a different no-
tion, which we call weak Angluin’s condition (Definition 9), that is strictly weaker than Angluin’s
condition.

Main Theorem 1 (Characterizations of Language Generation with Breadth). For any countable
collection of languages L, the following hold.

1. The following are equivalent:

• There is an algorithm that generates from L in the limit.
• There is an algorithm that generates with infinite coverage from L in the limit.

2. The following are equivalent:

• There is an algorithm that generates with approximate breadth from L in the limit.
• There is an algorithm that generates exhaustively from L in the limit.
• L satisfies the weak Angluin’s condition (Definition 9).

3. The following are equivalent:

• There is an algorithm that generates with (exact) breadth from L in the limit.
• There is an algorithm that generates unambiguously from L in the limit.
• There is an algorithm that identifies L in the limit.
• L satisfies Angluin’s condition (Definition 2).

The proofs for all the results of the list of characterizations are provided in the upcoming Sec-
tion 2. We mention that using reductions from [KMV24], the above characterizations also have
implications in the statistical setting, which we discuss in Section 2.5.

Remark 2 (Oracle Access for Main Theorem 1). Following the phrasing of [KM24], we provide both
functions and algorithms that generate in the limit. An algorithm only accesses L via a membership
oracle (and potentially a tell-tale oracle). When a generator uses other types of oracles (e.g., subset
oracle), we call it a function. To be more specific for the generators of Main Theorem 1, for Item (1),
we design a function that uses membership and subset queries as well as an algorithm that uses
only membership queries ([KM24] and Proposition 1.3). For approximate breadth in Item (2), we
design a function that uses membership and subset queries (Lemma 2.4) as well as an algorithm
that uses membership and tell-tale queries (Lemma 2.6). For exhaustive generation in Item (2), we
design a function that uses membership, subset, and finite-difference queries (Lemma 2.9) and an
algorithm that uses membership and tell-tale queries (Lemma 2.10). Finally, for Item (3), we design
a function that uses membership and subset queries and an algorithm that uses membership and
tell-tale queries [Ang80; KMV24].

Landscape with Stable Generators. Prior work [KMV24] also studied the problem of generation
with breadth using generating algorithms that are stable. Roughly speaking, this means that their
support eventually stops changing and stabilizes. Under this condition, perhaps surprisingly, the
landscape for generation with breadth changes and we provide new results that characterize sev-
eral definitions of stable generation with breath discussed so far. In particular, we show that the

6

requirement of stability makes the problem of generation with approximate breadth and the prob-
lem of exhaustive generation strictly harder (see Figure 4): there exist stable generators with these
properties if and only if the collection satisfies Angluin’s condition for identifiability whereas be-
fore, when unstable generators were also allowed, one only required the weak Angluin’s condition
(Lemma 3.2). As another example of the stark change in the landscape, we also show that there
exists a collection that satisfies the weak Angluin’s condition (hence admits non-stable generator
with approximate breadth), but for which no stable generator can achieve the much weaker re-
quirement of infinite coverage (Theorem 3.4). For further details and additional results, we refer
to Section 3.

Characterizations for All Possible Notions of Generation. Finally, Main Theorem 1 combined
with simple observations are sufficient to characterize all possible notions of generation at a certain
granularity as explained in Figure 2.

No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
(i.e., Exact Breadth) Weak Angluin’s Condition All Countable Collections

Finite Missing Elements Weak Angluin’s Condition
(i.e., Approximate Breadth) Weak Angluin’s Condition All Countable Collections

Infinite Present Elements All Countable Collections
(i.e., Infinite Coverage) All Countable Collections All Countable Collections

Finite Present Elements All Countable Collections All Countable Collections All Countable Collections

|supp(G)∖K | = 0 |supp(G)∖K | < ∞ |supp(G)∖K | = ∞

|K∖supp(G) | = 0

|K∖supp(G) | < ∞

|K ∩ supp(G) | = ∞

|K ∩ supp(G) | < ∞

Figure 2: Characterizations of All Possible Notions of Generation: This figure lists all possible notions
of language generation (at a certain granularity) and the condition characterizing each notion.
Rows capture the extent of breadth (i.e., how many elements are missed from the target language).
Columns capture the extent of hallucinations (i.e., how many elements outside of the target lan-
guage are included). Generation becomes easier as one moves down the rows and/or to the right
along columns. To achieve any notion in the last column, it is sufficient to generate the whole
domain (i.e., ensure supp(G) = X) and to achieve any notion in the last two rows, it is sufficient
to use the extension of [KM24]’s algorithm from Proposition 1.3.

Roadmap. We already proved Item 1 in Section 1.4. In Section 2, we discuss Items 2 and 3. In par-
ticular, Section 2.1 provides the unconditional characterization for generation with exact breadth,
Section 2.2 provides the unconditional characterization for generation with approximate breadth,
Section 2.3 gives the result for exhaustive generation, and Section 2.4 provides the unconditional
characterization for unambiguous generation. This set of results also has implications for the sta-
tistical setting of [KMV24], which is introduced and discussed in Section 2.5. Finally, in Section 3,

7

we discuss the notion of stability and present results characterizing when different notions of sta-
ble generation with breadth are achievable. Before proceeding to the formal statements and proofs
of our results, we discuss related works.

1.6 Recent Works on Language Generation With Breadth

Independent and Concurrent Work. Independently and concurrently to the current paper, Charikar
and Pabbaraju [CP24b] also obtained the same characterization for generation with (exact) breadth
and exhaustive generation. After learning about each other’s results via personal communication,
we coordinated with Charikar and Pabbaraju [CP24b], and decided to give the same name to the
characterizing condition (the “weak Angluin’s condition”).

Comparison with [CP24b]. Compared to [CP24b], we characterize some additional notions
of breadth (e.g., the notions of approximate breadth and unambiguous generation appearing in
[KMV24]; see Figures 1 and 2 for details) and also explore the landscape of language generation
with stable generators (Section 3 and Figure 4).

Other Results of [CP24b]. On the other hand, [CP24b] show that non-uniform generation (with-
out breadth) is achievable for all countable collections given access to a certain oracle for L, and
they prove that membership oracle access to L is not sufficient for uniform generation, even when
L consists of only two languages. Finally, they propose and study a setting of generation with
feedback, reminiscent of active learning: they provide a dimension whose finiteness characterizes
whether a collection L admits an algorithm that generates uniformly from L with feedback. In
fact, these additional results were already present in [CP24a], an earlier version of [CP24b], which
preceded our work.

In the remainder of this section, we draw a comparison of our work and the works of [KMV24]
and [CP24a] (which is an earlier version of [CP24b]). Both prior works provide results that our
work builds upon. We also note that there has been additional recent work on language generation
by Li, Raman, and Tewari [LRT24], who generalize the results of Kleinberg and Mullainathan
[KM24] to non-countable collections, characterize uniform generatability and introduce and study
non-uniform generatability.

Results of [KMV24] for Exact Breadth. Regarding Definition 4 for consistent generation with
breadth in the limit, the work of [KMV24] shows an impossibility result conditioned on the decid-
ability of the membership oracle problem (MOP; see Definition 19): for any language collection
that is not identifiable in the limit, no generating algorithm, for which the MOP is decidable, can
generate with breadth. They complement this negative result with an algorithm (for which MOP
is decidable) that generates with breadth for all collections of languages identifiable in the limit.

Results of [KMV24] for Relaxations of Breadth. [KMV24] provide two stronger versions of
this result. First, they show that for any language collection that is not identifiable in the limit,
no generating algorithm, that is stable and for which the MOP is decidable, can achieve either
generation with approximate breadth in the limit (i.e., Definition 5) or unambiguous generation
in the limit (i.e., Definition 7). For these impossibility results, the generating algorithms need to

8

be stable in the sense that after a finite amount of rounds, their support is stabilized and does not
change. Stability is well motivated and already appears as a requirement for identification in the
limit in the original definition of [Gol67] (see Definition 1).

Other Results of [KMV24]. We underline that all these results are corollaries of a broader col-
lection of results that operate in a statistical setting, building on an early work of [Ang88] and
[BHMvY21]; we refer to [KMV24] for further details.

Results of [CP24a] for Exhaustive Generation. Concurrently and independently of [KMV24],
Charikar and Pabbaraju [CP24a] studied language generation with breadth via exhaustive gener-
ation (Definition 18).3 As we have already mentioned, [CP24a] provided a collection of languages
that illustrates the separation between generation with exact breadth and exhaustive generation.
More concretely, they proved that there exists a generator that achieves Definition 18 for this col-
lection, but there does not exist a generator that satisfies exact breadth (Definition 4). Furthermore,
[CP24a] presented a countable collection of languages and proved that no algorithm can generate
exhaustively in the limit from this collection, which immediately implies that there does not exist
a generator that achieves (exact) breadth in the limit for this collection. This unconditional lower
bound, i.e., without requiring decidability of the MOP, resolves a question asked by [KMV24]. In
fact, a simple adaptation of the proof of [CP24a] can be used to show that no algorithm can achieve
generation with approximate breadth for this particular collection.

Comparison of Exhaustive Generation with Definitions of Breadth from [KMV24]. By in-
specting the original definition of exhaustive generation (Definition 18) and approximate breadth
(Definition 5), it is immediate that Definition 18 is stronger (perhaps not strictly) than Definition 5,
and seemingly incomparable with Definition 7.3

Other Results of [CP24a]. Finally, as mentioned before, [CP24a]’s work also presents other
results, which do not fall in the intersection of [KMV24] and [CP24a] and, instead, are more closely
related with the recent work of [LRT24].

Comparing [CP24a] and [KMV24]. In summary, the impossibility result of [CP24a] holds for
two specific language collections but is unconditional. In contrast, the lower bounds of [KMV24]
hold for all non-identifiable language collections but require some restrictions on the generators:
For generation with exact breadth (Definition 4), MOP should be decidable; for generation with
approximate breadth (Definition 5) or unambiguous generation (Definition 7), MOP should be
decidable and the generator should be stable. Moreover, [CP24a] give a non-identifiable collection
for which exhaustive generation is possible, but generation with (exact) breadth is not, thus also
showing that exhaustive generation is strictly easier than identification.

Brief Summary of Our Results and Comparison With [CP24a; KMV24]. In this work, we give
conditions that characterize when each of the above notions of breadth can be achieved, signifi-
cantly strengthening some of the results of both [KMV24] and [CP24a]. Our characterizations for

3As mentioned before, [CP24b], which is the updated version of [CP24a], relaxed the definition of exhaustive gener-
ation from Definition 18 to Definition 6. Concretely, the original definition (Definition 18) does not allow the generator
to hallucinate, while the updated one (Definition 6) allows for finite hallucinations. The two definitions turn out to
be characterized by the same condition (see Section 5). The same characterization also holds for the notion of relaxed
exhaustive generation mentioned in Remark 4 of [CP24b], which does not require coverage of the target language.

9

(exact) breadth and unambiguous generation, generalize the lower bound technique in [CP24a]
from the specific family they consider to all language collections via a different construction based
on Angluin’s condition. Further, our characterizations of approximate breadth and exhaustive
generation, are based on a weaker variant of Angluin’s condition that we introduce. Next, like
[KMV24] and building on their machinery, we also study the implications of these characteriza-
tions in the statistical setting, where the observed strings are sampled from an underlying distri-
bution and not chosen by an adversary. Finally, following [KMV24], we also study the landscape
of generation when the generating algorithm is required to be stable and, perhaps surprisingly,
find that several notions of generation are significantly harder to achieve with stable generators
compared with unstable generators.

2 Main Results: Unconditional Characterizations

In this section, we present all the unconditional results provided in this work. Additional results
for stable generators appear in Section 3.

2.1 Unconditional Characterization of Generation With (Exact) Breadth

In this section, we prove a strong impossibility result for language generation with exact breadth.
This provides a stronger version of a result by [KMV24] for the in-the-limit setting which excluded
generators for which the MOP (Definition 19) is undecidable.

Lemma 2.1 (Impossibility for Generation with Exact Breadth). Let L be a countable collection of
languages that is not identifiable in the limit. Then, no algorithm can generate with breadth from L in the
limit.

If L is identifiable in the limit, then recent work by [KMV24] shows that consistent generation with
breadth is possible in the limit. This algorithm combined with Lemma 2.1 gives us the following
result, which completely characterizes generation with breadth in the Gold-Angluin model.

Theorem 2.2 (Characterization of Generation with Exact Breadth). For any countable collection of
languages L, one of the following holds.

1. If L satisfies Definition 2, then there is a generator that generates with breadth from L in the limit.

2. If L does not satisfy Definition 2, then no generator can generate with breadth from L in the limit.

Notation. For any enumeration E, we use the notation E(i) to denote its i-th element, E(1 : i) to
denote its first i elements, and E(i : ∞) to denote all but the first i − 1 elements.

Proof of Lemma 2.1. Since L is not identifiable in the limit, it does not satisfy Angluin’s condition
(Definition 2). Hence, there exists a language L∗ ∈ L such that the following holds:

for all finite subsets T ⊆ L∗ , there exists a language LT ∈ L , T ⊆ LT and LT ⊊ L∗ . (5)

Fix L∗ ∈ L to be any language for which this holds. Let E∞
∗ be an arbitrary enumeration of L∗,

without repetitions. Let K and E∞
K respectively denote the target language and its enumeration

that we will construct to show the impossibility result.

10

We will show that for any generating algorithm G = (Gn) there exists a choice of the target
language K in L (which may be different from L∗) and an enumeration E∞

K of it such that if K is the
target language and the adversary provides enumeration E∞

K to G , then the algorithm G cannot
generate with breadth from K in the limit.

We will construct the enumeration iteratively and select K based on the generating algorithm.
The construction of the enumeration proceeds in multiple (possibly infinite) phases. At any point
t ∈ N of the interaction, we denote by St the set of elements enumerated so far.

Phase 1 of Construction. To construct the first phase, we present the generator with the first
element of the enumeration of L∗, i.e., xi1 := E∞

∗ (1). Let Lj1 be some language such that xi1 ∈ Lj1
and Lj1 ⊊ L∗, i.e., it is a proper subset of L∗. Notice that such a language is guaranteed to exist by
picking T = {xi1} in the violation of Angluin’s condition (5).

• Subphase A (Enumerate Lj1 Until Generator Generates with Breadth from Lj1): Consider
an enumeration E∞

1 of the language Lj1 that is constructed by traversing E∞
∗ and using the

elements of Lj1 that appear in it, in the same order as they appear, i.e., for every i ∈ N it
holds that E∞

1 (i) is the i-th element of Lj1 that appears in E∞
∗ . Notice that this is indeed

a valid enumeration of Lj1 as Lj1 is a subset of L∗. At any round t of the first phase, the
adversary presents the element E∞

1 (t) to the generator.

Consider two cases: i) either there is some finite t1 ∈ N such that St1 ∪ supp(Gt1) = Lj1 or ii)
there is no such t1 ∈ N. In the latter case, we pick the target language K = Lj1 and the target
enumeration E∞

K = E∞
1 , and the lower bound follows. Hence, assume that we are in the

former case, and let x̂1 be the first element of E∞
1 for which the condition holds. Note that

St1 is the set of strings shown to the generating algorithm after which it starts to generate
with breadth from Lj1 .

Let Ŝ1 be the set of elements of E∞
∗ that appear before x̂1 in E∞

∗ and have not appeared in St1 . If
Ŝ1 ̸= ∅, we go to Subphase B.1 and, otherwise if Ŝ1 = ∅, we go to Subphase B.2.

• Subphase B.1 (Add Any Skipped Elements): We will use the set Ŝ1 to extend the con-
struction of the target enumeration E∞

K . To do this, we enumerate the elements from Ŝ1 in an
arbitrary order and we fix the prefix of the target enumeration E∞

K to be (St1 , Ŝ1). Notice that
this step is well-defined since we are only adding to the already constructed enumeration.
Let t̂1 be the total number of elements enumerated so far. Notice that t̂1 = ∞ if and only
if Case i) (from Subphase A) holds, in which case the lower bound already follows. Hence,
assume for the continuation of the proof that t̂1 < ∞. Now we terminate the first phase
(without going to Subphase B.2).

• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Lj1): Notice that Ŝ1 =

∅ if and only if we did not skip any element of E∞
∗ during the traversal in Subphase A. If we

indeed did not skip elements of E∞
∗ we continue traversing it and adding elements to E∞

K in
the same order as we see them in E∞

∗ until we find some element that does not belong to Lj1 .
We also include this element in the enumeration E∞

K , we fix t̂1 to be the number of elements
enumerated so far and we terminate the first phase.

Notice that so far in our construction, we have enumerated the first t̂1 elements of E∞
∗ .

11

Now we continue our construction inductively for phases ℓ = 2, 3, Consider any ℓ ≥
2. Suppose our construction continued from Phase 1 until Phase ℓ. Then, Phase ℓ + 1 of our
construction is as follows.

Phase ℓ+ 1 of Construction. For the (ℓ+ 1)-th phase, consider the set E∞
∗ (1 : t̂ℓ) that has been

enumerated so far. By construction,

E∞
∗ (1 : t̂ℓ) ̸⊆ Ljℓ , E∞

∗ (1 : t̂ℓ) ⊆ L∗ , and E∞
∗ (1 : t̂ℓ) is finite .

We will now apply the violation of Angluin’s condition (5) with T = E∞
∗ (1 : t̂ℓ). This means that

there must exist some jℓ+1 ̸∈ {j1, j2, . . . , jℓ} such that

Ljℓ+1 ∈ L , Ljℓ+1 ⊊ L∗ , and E∞
∗ (1 : t̂ℓ) ⊆ Ljℓ+1 .

We now perform analogs of each subphase in Phase 1.

• Subphase A (Enumerate Ljℓ+1 Until Generator Generates with Breadth from Ljℓ+1): Con-
sider an enumeration E∞

ℓ+1 of Ljℓ+1 whose first t̂ℓ strings are E∞
∗ (1 : t̂ℓ) and whose remaining

strings are constructed by traversing E∞
∗ (t̂ℓ + 1 : ∞) and selecting strings that belong to Ljℓ+1 ,

in the same order as they appear in E∞
∗ . Notice that this is indeed a valid enumeration of Ljℓ+1

as Ljℓ+1 is a subset of L∗. At any round t of this phase, the adversary presents the element
E∞
ℓ+1(t + t̂ℓ) to the generator.

Consider two cases: i) either there is some finite tℓ+1 ≥ t̂ℓ + 1 such that Stℓ+1 ∪ supp(Gtℓ+1) =

Ljℓ+1 or ii) there is no such tℓ+1 ∈ N. In the latter case, we pick the target language K = Ljℓ+1

and the enumeration E∞
K = E∞

ℓ+1, and the lower bound follows. Hence, assume that we are
in the former case, and let x̂ℓ+1 be the first element of E∞

ℓ+1 for which the condition holds.
Note that Stℓ+1 is the set of strings shown to the generating algorithm after which it starts to
generate with breadth from Ljℓ+1 .

Let Ŝℓ+1 be the set of strings of E∞
∗ that appear before x̂ℓ+1 in E∞

∗ and have not appeared in the
enumeration Stℓ+1 . If Ŝℓ+1 ̸= ∅, we go to Subphase B.1 and, otherwise if Ŝℓ+1 = ∅, we go to
Subphase B.2.

• Subphase B.1 (Add Any Skipped Elements): We will use the set Ŝℓ+1 to extend the con-
struction of the target enumeration E∞

K . To do this, we enumerate the elements from Ŝℓ+1

in an arbitrary order and we fix the prefix of the target enumeration E∞
K to be (Stℓ+1 , Ŝℓ+1).

Notice that this step is well-defined since we are only adding to the already constructed enu-
meration. Let t̂ℓ+1 be the set of elements enumerated so far. Notice that t̂ℓ+1 = ∞ if and only
if Case i) (from Subphase A) holds, in which case the lower bound already follows. Hence,
assume for the continuation of the proof that t̂ℓ+1 < ∞. Now we terminate the (ℓ + 1)-th
phase without going to Subphase B.2.

• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Ljℓ+1): Notice that
Ŝℓ+1 = ∅ if and only if we did not skip any element of E∞

∗ during the traversal in Subphase
A. If we indeed did not skip elements of E∞

∗ we continue traversing it and adding elements
to E∞

K in the same order as we see them in E∞
∗ until we find some element that does not

belong to Ljℓ+1 . We also include this element in the enumeration E∞
K , we set t̂ℓ+1 to be the

number of elements enumerated so far and we terminate Phase ℓ+ 1.

12

Figure 3: Illustration of the Construction in the Proof of Lemma 2.1. Fix any enumeration
a, b, c, d, e, f , g, . . . of the language L∗, depicted in the first row. The enumeration of K is initially
empty in the construction and this is depicted in the second row. To begin the construction, we
apply the contrapositive to Angluin’s condition with T = {a} (i.e., with the set highlighted in
blue in the first row). This results in a language L1 that contains T and is a subset of L∗. For this
illustration, suppose that the enumeration of L1 is as presented in the fourth row. The elements
shared between L1 and L∗ are highlighted in red in the third row. From the fourth row, we can
see that the strings in L1’s enumeration, E∗

1 , follow the same relative order as in E∞
∗ . Further, note

that c, d, and f are skipped from the enumeration since they do not belong to L1 (i.e., they are not
highlighted in red). Now, the algorithm in the proof is trained on the enumeration E∞

1 (Subphase
A), and we consider two cases: Case (i): Assume that after seeing element e, the algorithm starts
generating with breadth. Then we update E∞

K by adding all elements of E∞
1 until e and then add

all the elements that we skipped from E∞
∗ ; this is shown in the fifth row where we added c and

d. This scenario corresponds to Subphase B.1 in the proof since at least one element from the
enumeration of E∞

∗ was skipped during Subphase A. Next, we again apply the contrapositive to
Angluin’s condition. This time, we set T = {a, b, e, c, d} (denoted in blue in the sixth row), and,
then repeat the process. Case (ii): Assume that the algorithm generates with breadth after seeing
b. Then, we update E∞

K by adding a, b and then the first element that is not in L1, i.e., c. This is de-
picted in the seventh row. This scenario corresponds to Subphase B.2 in the proof since no strings
from E∞

∗ were skipped during Subphase A. Next, we again apply the contrapositive to Angluin’s
condition. This time, we use T = {a, b, c} (denoted in blue in the last row) and repeat the process.

Notice that so far we have enumerated the first t̂ℓ+1 > t̂ℓ + 1 elements of E∞
∗ .

13

Inductive Argument. As explained, we continue the construction of the target enumeration
inductively. If there is some phase ℓ such that Case ii) (in Subphase A) is activated, then the lower
bound follows. Let us now assume that Case ii) is not activated for any phase ℓ ∈ N. Then, we
have constructed an enumeration of L∗ (by construction of the sets Stℓ and Ŝℓ for each ℓ ∈ N) such
that St ∪ supp(Gt) ̸= L∗ for infinitely many t ∈ N. Now, the lower bound follows by setting the
target language K = L∗ and the target enumeration to the one we have constructed inductively
over all phases.

2.2 Unconditional Characterization of Generation With Approximate Breadth

In this section, we show that the following strict weakening of Angluin’s condition characterizes
language generation with approximate breadth (recall Definition 5).

Definition 9 (Weakening of Angluin’s Condition). Fix a language collection L = {L1, L2, . . . }. The
collection L is said to satisfy the weak Angluin’s condition if for any index i, there is a tell-tale, i.e., a finite
set of strings Ti such that Ti is a subset of Li, i.e., Ti ⊆ Li, and the following holds:

For all j ≥ 1 such that Lj ⊇ Ti, one of the following holds.

• Either Lj is not a proper subset of Li; or

• Lj is a proper subset and misses finitely many elements of Li, i.e.,
∣∣Li \ Lj

∣∣ < ∞.

Further, the tell-tale oracle is a primitive that, given an index i, outputs an enumeration of the set Ti.

In Remark 3, we give a collection L, taken from [CP24a], which witnesses that the above modifi-
cation of Angluin’s condition is a strict weakening of Definition 2.

Remark 3 (Separation Between Definition 2 and Definition 9 [CP24a]). We highlight that there is a
separation between the collections of languages that satisfy Definition 2 and Definition 9, which
is taken from [CP24a]. Let X = N, Li = N \ {i}, and L = {N, L1, L2, . . .} . Then, L does not
satisfy Definition 2 but satisfies Definition 9. Thus, Definition 9 is a strictly weaker condition than
Definition 2.

We note that [KMV24] showed that if the MOP is decidable for the generator and the generator
is stable (see Section 3 for a discussion on stability and Definition 11 for a formal definition),
then Angluin’s original condition characterizes language generation with approximate breadth.
Hence, the following result shows a generator that is (1) unstable or (2) has an undecidable MOP
can generate a strictly larger set of language collections with approximate breadth than stable
generators with decidable MOP.

Theorem 2.3 (Characterization of Generation with Approximate Breadth). For any countable col-
lection of languages L, one of the following holds.

1. If L satisfies Definition 9, then there is a generator that generates with approximate breadth from
L in the limit.

2. If L does not satisfy Definition 9, then no generator can generate with approximate breadth from
L in the limit.

14

We will prove the result in two parts. First, we show that if L satisfies Definition 9 then there
exists some algorithm which generates from L with consistency and approximate breadth in the
limit. For this result, we consider two algorithms: the first one that has access to a “subset oracle”
for L (which can answer queries of the form “Is Li ⊆ Lj?”) (Lemma 2.4) and the second one only
has access to a membership oracle for L (which can answer queries of the form “given a string w
and i, is w ∈ Li?”) and the tell-tale oracle from Definition 9 (Lemma 2.6). Interestingly, the former
algorithm is (essentially) the one proposed by [KM24]. Subsequently, we will show that if L does
not satisfy Definition 9, then no algorithm can generate from L with consistency and approximate
breadth in the limit.

Lemma 2.4 (Function for Generation with Approximate Breadth). Let L be a countable collection
of languages that satisfies Definition 9. Then, there exists a generating algorithm that, given access to a
membership oracle for L and a subset oracle for L (that given indices i, j outputs Yes if Li ⊆ Lj and No
otherwise), generates from L with approximate breadth in the limit.

This proof is inspired by the proof of Theorem B.2 in [KMV24], the difference is that, instead of
using Angluin’s condition (Definition 2), we use its weakening (Definition 9).

Proof of Lemma 2.4. The algorithm A is illustrated below. This algorithm follows the steps of the
generation algorithm of [KM24] (see Steps 1 to 5). The only change is in its last Step 6 where it
generates a random sample from the set of interest.

for t ∈ {1, 2, . . . } do:

1. Observe element xt and let St be the set of all elements observed so far.

2. Construct a version space Vt consisting of all languages in L≤t consistent with St, i.e.,

Vt :=
{

Lj : 1 ≤ j ≤ t , Lj ⊇ St
}

.

Define a language Li ∈ Vt to be critical if Li is the smallest-index language in Vt or Li is a
subset of all languages preceding it in Vt, i.e., Li ⊆ Lj for all 1 ≤ j < i.

3. If Vt = ∅, output an arbitrary element of X and go to the next iteration.

4. Construct the set Ct ⊆ Vt of all critical languages.

To construct the set of critical languages Ct the algorithm needs access to the subset oracle.

5. Let Li be the largest-indexed language in the set of critical languages Ct.

6. output a sample from any distribution whose support is Li \ St. This can be done in
a computable fashion by first sampling a natural number n from (e.g., the geometric
distribution on N) and then outputting the n-th string from Li \ St.

Let z be the first index such that K = Lz. The proposed algorithm generates with approximate
breadth from K when after some finite time t⋆, and for t > t⋆, the last language in the set of critical
languages Ct, Li = Li(t), satisfies that

Li ⊆ K and |K \ Li| < ∞ .

15

This condition is implied by the following two conditions.

(A) K is eventually included in set of critical languages Ct and is never removed after that.

(B) Eventually all the languages Lj with j > z that are in Ct satisfy Lj ⊆ K and
∣∣K \ Lj

∣∣ < ∞.

Result (4.3) of [KM24] shows that there is a finite time tA after which Condition (A) holds. We will
show that there is also a finite time tB after which Condition (B) holds. This shows that, for any
t ≥ max {tA, tB}, A generates with approximate breadth from K.

Condition (B) holds after a finite time. Since L satisfies the weakening of Angluin’s condition
(Definition 9), K = Lz has a finite tell-tale set Tz, such that, any language L ∈ L containing the
tell-take Tz satisfies one of the following:

• Either L is not a proper subset of K;

• Or L is a proper subset of K and satisfies |K \ L| < ∞.

(Recall that Tz is not known to us; our proof will not need this.) Fix any j > z and any time tB ≥ tA

after which K is guaranteed to be a critical language and after which St ⊇ Tz (which happens at
a finite time since Tz is finite and, so, all elements of Tz appear in the enumeration of K at some
finite time). Our goal is to show that for any t ≥ tB, and any j > z for which Lj is in Ct, it holds
that

Lj ⊆ K and
∣∣K \ Lj

∣∣ < ∞ .

By the definition of critical languages and the fact that Lj appears after K = Lz in the set of critical
languages (as j > z), it follows that Lj ⊆ K. Hence, it remains to show that

∣∣K \ Lj
∣∣ < ∞. To

see this, observe that since Lj ∈ Ct and Ct ⊆ Vt, Lj is in the version space Vt and, hence, by the
definition of Vt, Lj ⊇ St. Therefore, in particular, Lj ⊇ Tz (as St ⊇ Tz). Now, Definition 9 combined
with the observation that Lj ⊆ K implies that

∣∣K \ Lj
∣∣ < ∞ as required.

Building on the result of Kalavasis, Mehrotra, and Velegkas [KMV24] (Corollary B.2 in their pa-
per), the previous result shows that the function4 of Kleinberg and Mullainathan [KM24] with
access to a subset query oracle achieves the “best-of-three” worlds for generation, without requir-
ing any prior information about L, only subset and membership oracle access.

Corollary 2.5. Let L be a countable collection of languages. Exactly one of the following holds for the
subset-oracle-based function of Kleinberg and Mullainathan [KM24].

• If L satisfies Angluin’s condition, the function generates with exact breadth in the limit.

• If L does not satisfy Angluin’s condition but satisfies the weak Angluin’s condition, the function
generates with approximate breadth in the limit.

• If L does not satisfy the weak Angluin’s condition, the function generates with infinite coverage in
the limit.

4To be precise, the function is that of [KM24] together with a process to sample from a language given membership
access to it; see e.g., Step 6 in the Algorithm of Lemma 2.4.

16

Next, we give an algorithm that generates with approximate breadth without requiring access to
a subset oracle.

Lemma 2.6 (Algorithm for Generation with Approximate Breadth). Let L be a countable collection
of languages that satisfies Definition 9. Then, there exists a generating algorithm that, given access to
a membership oracle for L and the tell-tale oracle from Definition 9, generates from L with approximate
breadth in the limit.

Proof of Lemma 2.6. Let Sn be the set of elements the adversary has enumerated up to round n ∈ N.
For every i, n ∈ N, let Ti

n be the first n elements enumerated from the tell-tale oracle when called
on language Li. Let also x1, x2, . . . , be an enumeration of the domain X. Our proof is reminiscent of
Angluin’s approach [Ang80], and the generating algorithm requires only one extra step, namely
removing the elements x1, . . . , xn from the support of the outputted distribution. However, due to
the relaxed condition we are using, our analysis is more technically involved.

For every round n ∈ N, the generating algorithm constructs the sets Ti
n using the tell-tale

oracle for all languages Li with 1 ≤ i ≤ n. Let gn ∈ N, 1 ≤ gn ≤ n, be the smallest number (if any)
such that Sn ⊆ Lgn and Tgn

n ⊆ Sn. If no such number exists, let Gn be some arbitrary distribution.
Otherwise, let Gn be a distribution with supp(Gn) = Lgn \ (Sn ∪ {x1, . . . , xn}).5

Fix a canonical enumeration x1, x2, . . . of X.

for n ∈ {1, 2, . . . } do:

1. Let Sn be the set of all elements observed so far.

2. Create the list L≤n = {L1, . . . , Ln}.

3. For each language Li in L≤n, let Ti = TellTaleOracle(Li), i ∈ [n].

4. Truncate the outputs of the oracle and keep only their first n elements

Ti
n = (Ti(1), . . . , Ti(n)), i ∈ [n] .

5. Find smallest index gn ∈ {1, . . . , n} such that Sn ⊆ Lgn and Tgn
n ⊆ Sn.

This is the minimum indexed language in L≤n that is consistent and its truncated tell-tale is
contained in the observed elements.

6. If no such gn exists, output an arbitrary point from X and go to the next iteration.

7. Otherwise, define a distribution Gn with supp(Gn) = Lgn \ (Sn ∪ {x1, . . . , xn}).

The intuition for removing the first n elements x1, . . . , xn of the canonical enumeration of X
is as follows. A bad scenario for our algorithm is that there exists some language Lgn in the
enumeration of L before Lz = K such Step 5 will be stuck on Lgn . Then we can guarantee that
|Lgn \ K| < ∞. Since this set is finite, by removing parts of the enumeration of X of increasing

5One can sample from this distribution in a computable fashion.

17

but finite size, we will eventually remove |Lgn \ K|, and obtain a sampler that (i) is consistent
and (ii) misses only finitely many elements from K.

8. Output a sample from the distribution Gn.

We will show that this algorithm generates with approximate breadth in the limit. Let K be the
target language and z ∈ N be the smallest number such that Lz = K. We consider two cases.

Case A (z = 1): Sn ⊆ L1, ∀n ∈ N and since the tell-tale set T1 of L1 is finite and the adversary
presents a complete presentation of K, it holds that T1

n ⊆ Sn for sufficiently large n. Thus, in the
limit, it holds that gn = 1, thus supp(Gn) = L1 \ (Sn ∪ {x1, . . . , xn}), and the proof is concluded by
noting that supp(Gn) ⊆ K and |Sn ∪ {x1, . . . , xn}| < ∞, for all sufficiently large n.

Case B (z > 1): We now move on to the case z > 1. Then, for every language Li, 1 ≤ i ≤ z − 1,
that precedes Lz, exactly one of the following holds:

(i) either there exists some xji ∈ Lz but xji /∈ Li, or

(ii) Lz ⊊ Li.

If Case (i) holds, then there exists some ni ∈ N such that Sni ̸⊆ Li. Thus, since there are finitely
many languages before z for which Case (i) holds, after finitely many n ∈ N all of them will have
been contradicted by Sn. Thus, we consider some n0 ∈ N large enough so that for all n ≥ n0 every
language Li, 1 ≤ i ≤ z − 1, for which Sn ⊆ Li satisfies Lz ⊊ Li.

Let I = {i1, . . . , iℓ} be the set of the indices for which the previous holds. For every j ∈ I, and
for all j′ ∈ N for which the tell-tale set of Lj is a subset of Lj′ , i.e., T j ⊆ Lj′ , one of the following two
cases hold by the definition of the weak Angluin’s condition: (a) either Lj′ is not a proper subset
of Lj or (b)

∣∣Lj \ Lj′
∣∣ < ∞.

Consider j′ = z and any j ∈ I. Since, by construction, Lz ⊊ Lj, the previous argument shows
that either (I) T j ̸⊆ Lz or (II)

∣∣Lj \ Lz
∣∣ < ∞.

If j falls into Case (I) then for large enough n it holds that T j
n ̸⊆ Lz, thus T j

n ̸⊆ Sn, and due to
the way we have defined gn, gn ̸= j.6 Thus, we let I′ be the set of indices j ∈ N, 1 ≤ j ≤ z − 1, such
that T j ⊆ Lz and Lz ⊊ Lj and, hence, since we fall into Case (II) the previous argument implies
that

∣∣Lj \ Lz
∣∣ < ∞ for each j ∈ I′.

We consider again two cases: if I′ = ∅, then for large enough n it holds that gn = z. Hence, the
correctness follows from the previous arguments.

We now handle the more complicated case I′ ̸= ∅. Let j∗ be the first element of I′. For
large enough n, the choice of gn will stabilize to j∗. To see this, notice that Sn ⊆ Lj∗ for all n ∈
N, T j∗

n = T j∗ for sufficiently large n (since T j∗ is finite), and since T j∗ ⊆ Lz (and the adversary
presents a complete presentation of Lz), for large enough n it holds that T j∗

n ⊆ Sn. Thus, indeed
for all sufficiently large n it holds that gn = j∗. By definition of I′, it holds that

∣∣Lj∗ \ Lz
∣∣ < ∞.

Let xℓj∗ be the largest element of the enumeration of X for which xℓj∗ ∈ Lj∗ but xℓj∗ /∈ Lz (this
always exists as j∗ ∈ I′ and, hence, Lz ⊊ Lj∗ and

∣∣Lj∗ \ Lz
∣∣ < ∞.). For n ≥ ℓj∗ it holds that

6Observe that if we had assumed the stronger Definition 2 (Angluin’s condition), then this step implies that we can
identify Lz in the limit, since only Case (I) is valid. This is exactly how the tell-tale-based algorithm of [Ang80] works.

18

Lj∗ \ {x1, . . . , xn} ⊆ Lz. This shows that, indeed, supp(Gn) ⊆ K, for large enough n, since we
set supp(Gn) = Lj∗ \ (Sn ∪ {x1, . . . , xn}). Moreover, since Lz ⊊ Lj∗ , and |{x1, . . . , xn}| < ∞, it
holds that

∣∣Lz \
(

Lj∗ \ {x1, . . . , xn}
)∣∣ < ∞, for all n ∈ N. Hence, the generator generates with

approximate breadth from K in the limit.

Remark 4. The generating algorithm that achieves approximate breadth in the limit for languages
that satisfy the weak version of Angluin’s condition has the property that the Membership Oracle
Problem is decidable. Hence, by the results of [KMV24], it cannot be stable, and, indeed, it is not
since its support changes at each iteration.

Finally, we state the impossibility result for language generation with approximate breadth, which
together with the previous algorithm imply Theorem 2.3.

Lemma 2.7 (Impossibility for Generation with Approximate Breadth). Let L be a countable collection
of languages that does not satisfy Definition 9. Then, there is no generating algorithm that generates with
approximate breadth from L in the limit.

The proof of Lemma 2.7 follows using a similar construction as in the proof of Lemma 2.1. We
prove the lower bound (Lemma 2.7) using a generalization of Lemma 2.1 which holds for any
notion of breadth satisfying a certain uniqueness criterion. We defer this generalization and its
implications to Section 4, and provide a sketch of the approach below.

Proof Sketch of Lemma 2.7. The proof idea for Lemma 2.7 is as follows. We perform the construction
as in Section 2.1 (see e.g., Figure 3). In contrast to the exact breadth case, we now use the contra-
positive of the weak Angluin’s condition. Concretely, the contrapositive to the weak Angluin’s
criterion implies that there exists a language L∗ ∈ L such that the following hold:

∀ finite T ⊆ L∗ , ∃LT ∈ L , such that T ⊆ LT , LT ⊊ L∗ , and |L∗ \ LT| = ∞ .

We will use this language L∗ and proceed with the construction without change. At each phase i,
we use some language Lji as in the proof of Lemma 2.1. There are two cases. First, the easy case
is when the algorithm never generates with approximate breadth from Lji . Then we set K = Lji
and we are done. Hence, assume that for infinitely many phases, the algorithm generates with
approximate breadth from the corresponding languages. Then, we will set K = L∗. This is because
(i) each language Lji misses infinitely many elements from L∗ (by the contrapositive of the weak
Angluin’s condition) and (ii) there is a time step ti where the generating algorithm generates with
approximate breadth from Lji for all i ∈ N. Combining (i) and (ii), we get that the algorithm
infinitely often misses infinitely many elements from L∗, giving the desired lower bound.

2.3 Unconditional Characterization of Exhaustive Generation

Next we show that Definition 9 also characterizes exhaustive generation (Definition 6). This
shows that exhaustive generation in the limit is indeed equivalent to generation with approximate
breadth in the limit. In fact, we will show that if L does not satisfy Definition 9 then generation
under a notion of breadth weaker than Definition 6 is not possible. Moreover, we will show an
algorithm that achieves the stronger variant of Definition 6 which requires zero hallucinations in

19

the enumeration after some finite n (instead of finitely many). In particular, this result shows that
the two versions of exhaustive generation considered by [CP24a; CP24b] are characterized by the
same condition.

Theorem 2.8 (Characterization of Exhaustive Generation). For any countable collection of lan-
guages L, one of the following holds.

1. If L satisfies Definition 9, then there is a generator that generates exhaustively from L in the limit.

2. If L does not satisfy Definition 9, then no generator can generate exhaustively from L in the limit.

As in the previous section, we will prove this result in two parts. The first part of the theorem fol-
lows immediately from a modification of the algorithm for generation with approximate breadth.
We refer to the upcoming Lemma 2.9 for details. As before, we give two algorithms: the first one
has access to certain additional oracles and the second one requires access to the tell-tale oracle in
Definition 9. Subsequently, we prove the second part of the theorem in Lemma 2.11.

We first give a function that achieves exhaustive generation.

Lemma 2.9 (Function for Exhaustive Generation). Let L be a countable collection of languages that
satisfies Definition 9. Then, there exists a generating algorithm that, given access to a membership oracle
for L, a subset oracle for L (that given indices i, j outputs Yes if Li ⊆ Lj and No otherwise) and a finite
difference oracle for L (that given indices i, j with Li ⊂ Lj outputs Yes if |Lj \ Li| < ∞ and No otherwise),
exhaustively generates from L (and is consistent with the target language) in the limit.

The generation in the above result satisfies a property stronger than Definition 6:

Remark 5. In addition to achieving exhaustive generation, the generator is consistent with the
target language and, hence, does not have any hallucinations.

The generator in Lemma 2.9 is as follows.

Fix the following: a special character x0 /∈ X and a canonical enumeration x1, x2, . . . of X.
Initialize ℓ0 = 0.
for t ∈ {1, 2, . . . } do:

1. Observe element xt and let St be the set of all elements observed so far.

2. Construct a version space Vt consisting of all languages in L≤t consistent with St, i.e.,

Vt :=
{

Lj : 1 ≤ j ≤ t , Lj ⊇ St
}

.

3. If Vt = ∅, output an arbitrary element of X and go to the next iteration.

Define a language Li ∈ Vt to be critical if Li is the smallest-indexed language in Vt or Li is a
subset of all languages preceding it in Vt, i.e., Li ⊆ Lj for all 1 ≤ j < i.

4. Construct the set Ct = {Lit
1
⊇ Lit

2
⊇ · · · ⊇ Lit

j
} ⊆ Vt of critical languages for some j ≤ t.

To construct the set of critical languages Ct the algorithm needs access to the subset oracle.

20

5. Find the smallest indexed language L = L(t) in Ct such that |L \ Lit
j
| < ∞. Create the set

C′
t by removing all the languages in Ct before L.

To perform this filtering, the algorithm needs access to the finite difference oracle.

6. If C′
t = ∅, output an arbitrary element of X and go to the next iteration.

7. Let Li = Li(t) be the minimum indexed language in the set of filtered critical languages
C′

t.

8. If i(t) ̸= i(t − 1), set ℓt = 0; else ℓt = ℓt−1 + 1.

9. output the enumeration of Li \ {x0, . . . , xℓt} induced by the canonical enumeration of X
fixed at the start.

Proof of Lemma 2.9. We will show that the above function exhaustively generates and is consistent
with the true language in the limit. Let K be the target language and z ∈ N be the smallest number
such that Lz = K. We will use the case analysis of Lemma 2.6. Fix some symbol x0 /∈ X.

Case A (z = 1): Since z = 1, the true language is the first critical language and is never filtered
from C′

t. Moreover, the counters ℓt will never be reset (in Step 8) and, in fact, satisfy ℓt = t. Hence,
for each t ∈ N, the algorithm Gt enumerates the set K \ (St ∪{x0, . . . , xt}) induced by the canonical
enumeration of X. It follows that, for each removed xi, there is some t where it is the first element
of the output enumeration. Further, the output enumeration is always consistent with K. Hence,
the resulting generator exhaustively generates K. In fact, it has the stronger property that it never
hallucinates.

Case B (z > 1): Consider the languages before Lz in the enumeration of L. There are two cases:
For any i < z, either there exists an element that belongs to Lz but not Li or Lz ⊆ Li. If the first case
holds, then eventually the distinguishing element will appear in the enumeration of K and make Li

inconsistent. Hence, let us assume that for all i < z, we only care about indices i for which Li ⊋ Lz.
We claim that eventually the index of Step 5 stabilizes in the limit. In particular, we will show that
it stabilizes to the smallest index i∗ such that Li∗ ⊇ Lz and |Li∗ \ Lz| < ∞; note that if there is no
language Li ⊋ Lz, then i∗ must be z. Before proving this claim, we show that it implies the result.
Let 1 ≤ i∗ ≤ z be the index that Step 5 eventually stabilizes on. We know that Li∗ ⊇ K (by our
earlier argument that any index 1 ≤ i ≤ z not satisfying this property is eliminated after a finite
time) and |Li∗ \ K| < ∞ (by construction). We now show how to exhaustively generate K in the
limit, this corresponds to Steps 8 and 9 of the above function. To see this, observe that as |Li∗ \K| <
∞, after a finite number of steps Li∗ \ {x0, . . . , xℓt} ⊆ K (and, hence, the algorithm eventually
stops hallucinating). Further, since at step t (for large enough t), we output the enumeration of
Li∗ \ {x0, . . . , xℓt} induced by the canonical enumeration of X, it follows, for each removed xi, there
is some t where it is the first element of the output enumeration. Hence, the resulting generator
exhaustively generates K. In fact, it has the stronger property that it eventually stops making any
hallucinations.

Proof of the claim. It remains to prove our claim that the index of Step 5 stabilizes in the limit.
Since L satisfies the weak Angluin’s condition, then K has a finite tell-tale set TK. We condition on

21

the following events: (A) K is a critical language, and (B) St ⊃ TK. Condition (A) is satisfied for
any t ≥ z and (B) is satisfied after a finite time since TK is finite and all its elements appear at a
finite point in the enumeration of K. Conditioned on these events the critical list Ct is of the form

Lit
1
⊇ Lit

2
⊇ · · · ⊇ K ⊇ Ljt

1
⊇ . . .

First, observe that there are finitely many languages before K in this list: this is because K appears
at a finite point in this list. Next, we claim that conditioned on the above events the indices it

1, it
2, . . .

of the languages appearing before K in the list never change. The proof is via induction.

• Base Case: First, consider the first index it
1. It is defined as the smallest index language

consistent with St. Moreover, due to the structure above it has the property that Lit
1
⊇ K

and, hence, it never becomes inconsistent with St′ for t′ ≥ t. Therefore, the index it
1 never

changes in subsequent steps.

• Induction Step: Next, we complete the induction argument, suppose indices it
1, it

2, . . . , it
r never

change in subsequent steps, then we claim that the index it
r+1 (if it exists) also never changes

in subsequent steps. This is because it
r+1 is defined as the smallest indexed language that is

(1) consistent with St and (2) has the property that Lit
r+1

⊆ Lit
r
. The former always holds for

all subsequent t′ ≥ t since Lit
r+1

⊇ St ⊇ TK and the latter holds for all subsequent t′ ≥ t since
it
r never changes.

Now we are ready to prove that the index i(t) selected in Step 5 stabilizes. Recall that i(t) is the
smallest index satisfying that (1) Li(t) appears before K in the critical list and (2) |Li(t) \ Lit

j
| =

|Li(t) \ K| + |K \ Lit
j
| < ∞. Observe that |Li(t) \ Lit

j
| = |Li(t) \ K| + |K \ Lit

j
| and, by construction,

|K \ Lit
j
| < ∞ and, therefore, Condition (2) is equivalent to |Li(t) \ K| < ∞. Fix any t satisfying

Conditions A and B above and the corresponding i(t). For all subsequent t′ ≥ t, Li(t) continues
to appear before K in the critical list since we proved that all indices before K in the critical list
stabilize. Further, |Li(t) \ K| < ∞ since it is independent of t′. Therefore, i(t) = i(t′) since i(t)
satisfies both properties that determine i(t′). It follows that for t′ ≥ t, the index selected in Step 5
never changes.

Moreover, a small adaptation of the proof of Lemma 2.6 gives a generator that generates exhaus-
tively (Definition 6) in the limit provided one has access to the tell-tale oracle from Definition 9.

Lemma 2.10 (Algorithm for Exhaustive Generation). Let L be a countable collection of languages that
satisfies Definition 9. Then, there exists a generating algorithm that, given access to a membership oracle
for L and the tell-tale oracle from Definition 9, exhaustively generates from L in the limit.

Proof of Lemma 2.10. The argument in the proof of Lemma 2.6 shows that the choice of the index
gn stabilizes in the limit. Moreover, K ⊆ Lgn and

∣∣Lgn \ K
∣∣ < ∞. To achieve exhaustive generation,

the only modification needed is that we keep track of another index ℓn which is initialized at 0,
increases by 1 in every round, and every time the choice of gn changes, we reset ℓn = 0. The
enumeration we output is Lgn \ {x0, . . . , xℓn} , where we use the notational convention that x0 is
some special element that does not appear in X. Moreover, the sequence in which the element
appears in the enumeration is the natural order induced by (some canonical) enumeration of X.

22

Assume that n is large enough so that gn has stabilized. It is easy to see two things: for every
element x̂ of Lgn , there exists some finite round n̂ ∈ N such that x̂ is the first element in the
enumeration we have outputted. Moreover, since Lz ⊆ Lgn and

∣∣Lgn \ Lz
∣∣ < ∞, after some finite

n ∈ N it holds that Lgn \ {x0, . . . , xℓn} ⊆ Lz. Moreover, every time an element xi is omitted from
the enumeration we output, there has been some prior iteration where it has been the first element
in the enumeration. These arguments show that the modified generator is an exhaustive generator
for L.

Finally, we state the impossibility result for exhaustive language generation, which together with
the previous algorithm imply Theorem 2.8.

Lemma 2.11 (Impossibility for Exhaustive Generation). Let L be a countable collection of languages
that does not satisfy Definition 9. Then, there is no generating algorithm that exhaustively generates from
L in the limit.

The second part of the theorem follows by building on the construction in the proof of Lemma 2.1.
We defer the formal proof to Appendix B. Also see Section 5, where we show that the construction
in the proof of Lemma 2.1 implies an impossibility result for any notion of breath satisfying certain
criterion (Definition 17) and that exhaustive generation satisfies this criterion (Observation 5.2).

2.4 Unconditional Characterization of Unambiguous Generation

In this section, we characterize the language collections for which unambiguous generation in the
limit is possible. We start with an impossibility result. Lemma 2.12 is a stronger version of a result
by [KMV24] for unambiguous generation in the limit which showed that generators that are stable
and for which the MOP is decidable cannot generate unambiguously. In contrast, our result below
holds for all generators.

Lemma 2.12 (Impossibility for Unambiguous Generation). Let L be a countable collection of languages
that is not identifiable in the limit. Then, no algorithm can unambiguously generate from L in the limit.

The proof of Lemma 2.12 follows from the construction in the proof of Lemma 2.1. We defer
the formal proof to Appendix A. Also see Section 4, where we show that the construction in the
proof of Lemma 2.1 implies an impossibility result for any notion of breath satisfying a uniqueness
criterion (Definition 15) and that unambiguous generation satisfies this uniqueness criterion (Ob-
servation 4.2). To be more precise, the uniqueness criterion for unambiguous generation is that,
roughly speaking, for any pair L ̸= L′ of different languages in the class L, any algorithm that
unambiguously generates from L, cannot unambiguously generate from L′ at the same time. This
is immediate from the definition of unambiguous generation since the algorithm should be strictly
closer (in symmetric difference) to L than any other L′ ∈ L. Hence, in Section 4, we show how to
obtain unconditional lower bounds for all notions of breadth that satisfy such uniqueness criteria,
and, as an application, we prove Lemma 2.12. Complementing Lemma 2.12, if L is identifiable in
the limit, then [KMV24] shows that consistent generation with breadth is possible in the limit and,
hence, unambiguous generation is also possible in the limit. Hence, we get the following result
which completely characterizes generation with breadth in the Gold-Angluin model.

23

Theorem 2.13 (Characterization of Unambiguous Generation). For any countable collection of lan-
guages L, one of the following holds.

1. If L satisfies Definition 2, then there is a generator that unambiguously generates from L in the
limit.

2. If L does not satisfy Definition 2, then no generator can unambiguously generate from L in the
limit.

2.5 Implications to Language Generation in the Statistical Setting

Our results have direct implications to the statistical setting that [KMV24] considered. In this set-
ting, there is a countable language collection L, a “valid” distribution P supported on a language
K ∈ L, and the generating algorithm takes as input string drawn i.i.d. from P. For every different
notion of breadth considered in Section 1.3, one can define an error function for the generating
algorithm (Gn)n∈N as

er (Gn) = 1 {¬P(Gn)} , (6)

where P(·) is a predicate defined based on the underlying notion of breadth and its value is True
if the breadth property is achieved by Gn and False, otherwise.

Given this definition (6), [KMV24] define the error rate for generation with breadth via the uni-
versal rates framework of Bousquet, Hanneke, Moran, van Handel, and Yehudayoff [BHMvY21].

Definition 10 (Error Rate [BHMvY21]). Let L be a countable collection of languages, er be an error
function defined in Equation (6), and R : N → [0, 1] be a rate function such that limn→∞ R(n) = 0. We
say that rate R(·) is achievable for L if there exists a generating algorithm G = (Gn) such that

∀ P ∈ Val(L) ∃ C, c > 0 such that E [er(Gn)] ≤ C · R(c · n) ∀n ∈ N ,

where Val(L) the set of all valid distributions with respect to L. Conversely, we say that no rate faster
than R(·) is achievable for L if for any generating algorithm G = (Gn) there exists a valid distribution
P and c, C > 0 such that E [er (Gn)] ≥ C · R(c · n), for infinitely many n ∈ N. We say that no rate
is achievable for L if for any generating algorithm G = (Gn) there exists a valid distribution P such that
lim supn→∞ E [er (Gn)] > 0.

[KMV24] proved bounds in this statistical setting for language identification, generation with ex-
act breadth for algorithms for which the MOP is decidable,7 and generation with approximate
breadth for algorithms that are stable in the limit,8 and for which the MOP is decidable. To get
these results, [KMV24] showed connections between the online setting considered in the previous
sections and the statistical setting. Using the new results in this work, and the results of [KMV24],
we can get characterizations for the statistical rates under these two notions of breadth removing
the requirement for decidability of the MOP oracle and stability of the generating algorithm.

7Recall this is a mild technical condition that requires that the generating algorithm can answer queries about
whether a string x is in its support.

8Roughly speaking, stability means that after finitely many steps, the support of the distribution outputted by the
generating algorithm does not change. For the formal definition, see Definition 11.

24

Theorem 2.14 (Rates for Generation with Exact Breadth). For any non-trivial collection of languages
L no rate faster than e−n is achievable for generation with exact breadth. Moreover, For any collection that
is identifiable in the limit, there exists an algorithm that achieves generation with exact breadth at rate e−n.
Conversely, for any non-identifiable collection, no rate is achievable for generation with exact breadth.

For the non-triviality requirement, we refer the interested reader to [KMV24]. The e−n lower
bound and upper bound follow immediately from their results. The lower bound for no rates
achievable follows from the approach of [KMV24] (with a few modifications in their construction)
and Lemma 2.1. For brevity, we only sketch the modifications here:

• [KMV24] make use of a construction of [Ang88] which connects the adversarial setting “in-
the-limit” to the statistical setting “in-the-limit” (Theorem 5.6 in their paper) for language
identification. A similar result can be shown for generation with exact breadth.

• [KMV24] make use of majority votes over learners that identify the target language. In
Lemma 5.8 they use the voting scheme, (a modification of) Angluin’s result [Ang88], and
the Borel-Cantelli lemma to show that no rate is achievable for language identification, for
collections that do not satisfy Angluin’s criterion (Definition 2). The same approach can be
used to derive the lower bound for generation with exact breadth, by using a slightly differ-
ent majority voting scheme. At a very high level, following [KMV24]9 we split the dataset
into different batches and train the generating algorithm, and we can show that for large
enough n, a c-fraction of these generators satisfies the generation with exact breadth prop-
erty (for, e.g., c > 2/3). In order to combine their outputs, we define an (implicit) distribution
as follows: we keep sampling from all the batches until a c-fraction of them outputs the
same element. It is not hard to see that (i) this process terminates in finite time,10 (ii) only
elements of K have positive probability of being outputted, (iii) every element of K has a
positive probability of being outputted.

A similar result can be obtained for language generation with approximate breadth, using the
criterion from Definition 9.

Theorem 2.15 (Rates for Generation with Approximate Breadth). For any non-trivial collection of
languages L no rate faster than e−n is achievable for generation with approximate breadth. For any collec-
tion that satisfies Definition 9, there exists an algorithm that achieves generation with approximate breadth
at rate e−n. Conversely, for any collection that does not Definition 9, no rate is achievable for generation
with exact breadth.

The above pair of results provides statistical rates for language generation with exact and approx-
imate breadth. Obtaining statistical rates for unambiguous generation is an interesting direction.

3 The Role of Stability in Language Identification and Generation

In his original work, Gold [Gol67] defined language identification in the limit by requiring that
the guess of the learner stabilizes to some index i ∈ N that corresponds to an occurrence of the

9The same approach has been used extensively in the universal rates literature, starting from [BHMvY21].
10One small complication is that if a c-fraction does not satisfy the desired property, the algorithm might not termi-

nate. To fix that, in every step we either terminate with probability 1/2 or we do the sampling strategy we described
with probability 1/2. If we terminate, we run the algorithm from [KM24] to generate a valid string from K.

25

target language. Interestingly, we can show that stability for language identification in the limit
comes without loss of generality: if there exists an algorithm that, in the limit, oscillates between
different guesses of the target language, then it can be converted to an algorithm which, in the
limit, identifies the same index of the target language (see, e.g., Lemma 5.4 from [KMV24]).11

Hence, it is natural to ask whether generation in the limit can be achieved using stable generating
algorithms.

Definition 11 (Stable Generating Algorithm [KMV24]). A generating algorithm (Gn) is stable for a
language collection L if for any target language K ∈ L and for any enumeration of K, there is some finite
n∗ ∈ N such that for all n, n′ ≥ n∗, it holds that supp(Gn) = supp(Gn′).

[KMV24] showed that for every collection L that does not satisfy Angluin’s condition (Defini-
tion 2), no generating algorithm that (1) is stable and (2) for which the MOP (Definition 19) is de-
cidable, can achieve generation with approximate breadth in the limit (Theorem C.1 in [KMV24]).
Recall that Theorem 2.3 shows that, for every collection that satisfies the weak Angluin’s condi-
tion (Definition 9), there exists an (unstable) generating algorithm for which the MOP is decidable
and achieves approximate breadth in the limit. Moreover, Definition 9 is strictly weaker than
Definition 2. Thus, these results already show that the stability requirement makes the problem
of generation with approximate breadth strictly more challenging, for all natural algorithms for
which the MOP is decidable.

3.1 Characterization of Stable Generation With Approximate Breadth

In this section, we characterize stable generation with approximate breadth. The main result is
that achieving generation with approximate breadth becomes significantly harder if one insists
on having a stable generator. Recall that if one does not require the generator to be stable, then
generation with approximate breadth is possible if and only if the language collection satisfies the
weak Angluin’s condition (Definition 9). The main result of this section states that if stability is
required, then generation with approximate breadth is possible if and only if the language collec-
tion is identifiable (i.e., if and only if it satisfies Angluin’s condition; Definition 2), a much stronger
criterion compared to the weak Angluin’s condition.

Theorem 3.1 (Characterization of Generation With Approximate Breadth For Stable Genera-
tors). For any countable collection of languages L, one of the following holds.

1. If L satisfies Definition 2, then there is a stable generator that generates with approximate breadth
from L in the limit.

2. If L does not satisfy Definition 2, then no stable generator can generate with approximate breadth
from L in the limit.

To get this result, we first need to give a lower bound for language collections that do not satisfy
Angluin’s condition. This is provided in the next lemma.

Lemma 3.2. Let L be a countable collection of languages that is not identifiable in the limit. Then, no stable
algorithm can generate from L with approximate breadth in the limit.

11We suspect that this result was known in prior work, but we could not find a better reference for it.

26

Now, the characterization of Theorem 3.1 follows since if L is identifiable in the limit, then there
is a generator that generates with exact breadth from L in the limit and, hence, by definition, also
generates with approximate breadth from L in the limit and is stable.

In the rest of the section, we give an overview of the proof of Lemma 3.2. The proof of
Lemma 3.2 uses a construction very similar to the construction in the proof of Lemma 2.1. We
defer the complete construction to Appendix C and just present the implication of the construc-
tion which is sufficient to prove Lemma 3.2.

Lemma 3.3. Let L be a countable collection of languages that is not identifiable in the limit. Let G = (Gn)

be a stable generating algorithm. If G generates with approximate breadth from L in the limit, then there
is a language L∗ ∈ L, an enumeration E⋆ of L∗, a sequence of distinct languages L1, L2, · · · ∈ L, and a
strictly increasing sequence t(1), t(2), · · · ∈ N, such that the following holds.

• For each i ∈ N, Lt(i) is a proper subset of L∗, i.e., Lt(i) ⊊ L∗; and

• Given strings from E⋆ as input, for each i ∈ N, Gt(i) generates with approximate breadth from Lt(i).

Recall that in the proof of Lemma 2.1 we (implicitly) showed the same result except the notion
of breadth was “(exact) breadth” instead of “approximate breadth.” To gain some intuition, note
that in the case of exact breadth, the above result already gives us a contradiction to the fact that G
generates with exact breadth from L in the limit: indeed, t1, t2, . . . gives us infinitely many points
at which G generates with breadth from a language different from L∗ and, hence, by definition,
does not generate with breadth from L∗. This contradiction must imply that no stable generator
can generate with breadth from any non-identifiable collection.

The contradiction with approximate breadth is less clear since, for a fixed i, generator Gt(i) can
generate with approximate breadth from both Lt(i) and L∗. Indeed, if the generator is unstable
(i.e., it can change its support infinitely often), then there is no contradiction – and generation with
approximate breadth is possible for certain non-identifiable collections (Theorem 2.3). Hence, to
obtain a contradiction, we need to leverage the stability of the generator.

Proof of Lemma 3.2. Consider the construction in Lemma 3.3. Let K = L∗ and suppose that the
adversary follows the enumeration E⋆.

Let CB, CS : N → N be two counters: for each t, CB(t) counts the number of values 1 ≤ i ≤ t
for which Gi does not generate with approximate breadth from L∗ and CS(t) counts the number of
values 2 ≤ i ≤ t for which supp(Gi) ̸= supp(Gi−1). In other words, CB(t) is the number of times
G does not generate with approximate breadth from L∗ in the first t-steps and CS(t) is the number
of times G changes its support in the first t-steps.

Toward a contradiction suppose that G is stable and generates with approximate breadth from
K in the limit (when given the enumeration E⋆). This, by definition, implies that

lim
t→∞

CB(t) < ∞ and lim
t→∞

CS(t) < ∞ . (7)

The former implies that there are only finitely many values of i ∈ N such that Gt(i) does not
generate with approximate breadth from Lt(i) (where t(i) and Lt(i) are from Lemma 3.3). In other
words, there are infinitely many values, say, τ(1) < τ(2) < · · · ∈ N, such that, for each i, Gτ(i)
generates with approximate breadth from L∗. Moreover, Lemma 3.3 says that, for each i ∈ N, Gτ(i)

27

generates with approximate breadth from Lτ(i). Since Gτ(i) generates with approximate breadth
from both L∗ and Lτ(i) and Lτ(i) ⊊ L∗, it follows that: for each i ∈ N,

Lτ(i) = supp(Gτ(i)) ∪ R where R ⊆ L∗ \ supp(Gτ(i)) . (8)

Fix any i. Let
s(i) :=

∣∣∣L∗ \ supp(Gτ(i))
∣∣∣ .

Since Gτ(i) generates with approximate breadth from L∗, s(i) < ∞. We claim that

supp(Gτ(i)) ̸= supp(Gτ(i+j)) for some 1 ≤ j ≤ S(i) := 2s(i) + 1 . (9)

Proof of Equation (9). To see this, toward a contradiction, suppose that

supp(Gτ(i)) = supp(Gτ(i+1)) = · · · = supp(Gτi+S(i)) .

This combined with Equation (8) implies that, for each 1 ≤ j ≤ S(i), Lτ(i+j) = supp(Gτ(i)) ∪ Rj

for some finite set Rj ⊆ L∗ \ supp(Gτ(i)). Since all of L1, L2, . . . are different, it must hold that
all of R1, R2, . . . , RS(i) are different. This is a contradiction since each Ri is a subset of Ri ⊆ L∗ \
supp(Gτ(i)) and there are only S(i)− 1 = 2s(i) such subsets.

Completing the Proof of Lemma 3.2. Equation (9) shows that, for each i ∈ N, starting from the
τ(i)-th step, the support of the generator changes after finitely many steps. Since τ1, τ2, . . . ,∈ N is
a strictly increasing and infinite sequence, this implies that the support of the generator changes
infinitely often as it is provided more and more examples and, hence, limt→∞ CS(t) = ∞ which
contradicts the fact that G is stable (7). Hence, our assumption that G is stable and generates with
approximate breadth from L in the limit must be false. Therefore, no stable generator can generate
with approximate breadth from any non-identifiable collection.

3.2 A Collection for Which No Stable Generator Has Infinite Coverage

The next result shows that there is a language collection L for which there exists an algorithm
that achieves approximate breadth in the limit, but no stable algorithm can achieve the (strictly)
weaker notion of generating with infinite coverage in the limit. The collection L is due to [CP24a],
who observed that a trivial generating algorithm that does not get any input generates from L

exhaustively in the limit. Since exhaustive generation implies, by definition, generation with ap-
proximate breadth, we only need to prove the impossibility result for generation with infinite
coverage by stable generators.

We first provide the collection and then state the result.

Example 1 ([CP24a]). Let X = N, L∞ = N, for every i ∈ N let Li = N \ {i} , and let L =

{L∞, L1, L2, . . .} . Notice that every pair of languages Li, Lj ∈ L differ in at most two elements, so
it follows that L satisfies Definition 9. To see that it does not satisfy Angluin’s condition (Defini-
tion 2), consider the language L∞. Then, for every finite subset T ⊆ L∞ there is some language LT

such that T ⊆ LT and LT ⊊ L∞.

28

We continue with the statement of the theorem.

Theorem 3.4. There exists a countable collection of languages L that satisfies the weak Angluin’s condition
(Definition 9), and for which no stable generating algorithm can achieve generation with infinite coverage
in the limit (Definition 8).

Proof. Consider the collection defined in Example 1. Since it satisfies the weak Angluin’s condition
(Definition 9), by Theorem 2.3, it follows that there exists an algorithm that achieves generation
with approximate breadth in the limit.12 Assume towards contradiction that there exists a stable
generating algorithm G = (Gn)n∈N that achieves generation with infinite coverage in the limit. We
will pick a target language and an enumeration of it that witnesses the lower bound based on the
given algorithm G . We denote the target language by K and the target enumeration by E∞

K . Like
in the previous proofs, for any enumeration E, we use the notation E(i) to denote its i-th element,
E(1 : i) to denote its first i elements, and E(i : ∞) to denote all but the first i − 1 elements.

As in the previous proofs of the impossibility results, we consider several phases for our con-
struction. First, we start with the enumeration E∞

N = (1, 2, 3, . . .). Notice that this is a valid enu-
meration for L∞. We consider two cases: (I) either there is some n ∈ N such that |supp(Gn)| = ∞,
or (II) if there is no such n the lower bound follows immediately by picking K = N and the hard
enumeration E∞

K = E∞
N. For the continuation of the proof, assume that the former case holds and

let n1 denote the first timestep for which this holds. Notice that up to that point we have enumer-
ated (1, . . . , n1). Let n̂1 ∈ N be the smallest number strictly greater than n1 that is in the support
of Gn1 . Notice that such a number must exist because |supp(Gn1)| = ∞.

We now extend the target enumeration E∞
K (1 : n̂1 − 1) = (1, 2, . . . , n̂1 − 1). Notice that this is

well-defined since we only add elements to the already constructed enumeration. We continue
building the target enumeration by skipping the element n̂1 and including the element n̂1 + 1 to it,
i.e., the n̂1-th element of the constructed enumeration is n̂1 + 1. We continue adding consecutive el-
ements to the enumeration E∞

K until the first timestep n > n̂1 + 1 such that supp(Gn) ̸= supp(Gn1)

and |supp(Gn)| = ∞. Notice that if no such n exists the lower bound already follows by picking
the target language K = Ln̂1 and the constructed target enumeration. This is because in every
timestep either supp(Gn) = supp(Gn1) (and therefore supp(Gn) ̸⊆ K because n̂1 ∈ supp(Gn)) or
|supp(Gn)| < ∞, hence the algorithm does not achieve generation with infinite coverage in the
limit. For the continuation of the proof, let n2 denote the first timestep for which supp(Gn2) ̸=
supp(Gn1) and |supp(Gn2)| = ∞. We then add the element n̂1 to the constructed prefix of the
enumeration E∞

K and terminate the first phase.
Notice that at the end of the first phase we have enumerated all the elements {1, 2, . . . , n2 − 1}

and the support of the generating algorithm has changed at least once or we have the desired
lower bound. We continue inductively in exactly the same way until (I) either some phase cannot
be terminated in which case the lower bound follows because the property of infinite coverage
in the limit is not achieved or (II) we construct infinitely many phases which witness infinitely
many changes in the support of the generating algorithm, hence showing it cannot be stable. This
concludes the proof.

12As we explained, this also follows from the work of [CP24a].

29

3.3 Sufficient Condition for Stable Generation With Infinite Coverage

In this section, we provide a sufficient condition on the language collection L that guarantees
the existence of a stable generating algorithm that generates with infinite coverage in the limit.
In particular, we can show that if a collection has finite closure dimension [LRT24], then there
exists a stable generating algorithm that achieves infinite coverage in the limit. First, we give the
definition of the closure dimension [LRT24], which is inspired by a result of [KM24] on uniform
generation13 from finite sets of languages.

Definition 12 (Closure Dimension [LRT24]). The closure dimension of L, denoted by d(L), is the largest
natural number ℓ ∈ N for which there exist distinct x1, . . . , xℓ ∈ X such that

V(x1, . . . , xℓ) := {L ∈ L : {x1, . . . , xℓ} ⊆ L} ̸= ∅ and

∣∣∣∣∣∣ ⋂
L∈V(x1,...,xℓ)

L

∣∣∣∣∣∣ < ∞ .

If for every ℓ ∈ N there exists a set of distinct elements that satisfies this condition we say that d(L) = ∞.

In general the closure dimension can be ∞, but due to a result of [KM24], we know that all collec-
tions of languages with finitely many languages have finite closure dimension. In order to design
an algorithm that achieves stable infinite coverage for any collection L that has a finite closure
dimension, we will make use of a stronger oracle for L than just the membership oracle to it.
Namely, we define the version space intersection (VSI) membership oracle as follows.

Definition 13 (Membership Oracle to Version Space Intersection (VSI)). The membership oracle to
VSI is a primitive that, given a set of distinct elements x1, . . . , xn ∈ X and a target element x ∈ X, returns

1
{

x ∈ ∩L∈V(x1,...,xn)L
}

.

We remark that for finite collections L this oracle can be computed just with membership oracle
to L, but for countable collections this oracle might not be computable.

Proposition 3.5 (Adaptation of Lemma 3.2 in [LRT24]). Let L be a collection of languages with d(L) <
∞ (Definition 12). There exists a stable (Definition 11) generating algorithm G = (Gn) for L that, given
the value of d(L), achieves infinite coverage (Definition 8) using access to a VSI membership oracle for L,
after taking as input d(L) + 1 distinct elements.

In particular, since the closure dimension of any finite collection of languages is finite [KM24], for
any finite collection of languages, there exists a stable generating algorithm that achieves infinite
coverage. It is not hard to see that for such collections, the VSI oracle can be implemented using
only membership oracle to languages in L.

Corollary 3.6 (Stable Generation for Finite Collections). For every finite collection of languages L, the
following hold:

1. There exists a stable generating algorithm that achieves generation with exact breadth in the limit,
using only membership oracle access to L.

13The exact definition of uniform generation is not important for our work. At a high level, this condition asks
whether there exists some d ∈ N such that after the generator observes d different strings from any target language of
L, then it can generate unseen strings that belong to K.

30

2. There exists a stable generating algorithm that achieves generation with infinite coverage after taking
as input d(L) + 1 distinct strings, using only membership oracle access to L.

Moreover, for finite collections, a stronger property is possible: the results of [KMV24] (see Propo-
sition 3.9 in their work) show that for finite collections there exists a stable generating algorithm
that achieves exact breadth in the limit (and, hence, also infinite coverage), but there might not be
an upper bound on the elements needed to achieve this property.14

Finally, we prove Proposition 3.5.

Proof of Proposition 3.5. Our proof is inspired by the Lemma 3.2 from [LRT24]. The only modi-
fication is that now the algorithm stops using new elements beyond the d(L) + 1 elements re-
quired to achieve infinite coverage. Moreover, we discuss the type of access to L needed that is
sufficient to achieve this property, which was not the focus of Li, Raman, and Tewari [LRT24].
Let K ∈ L be any target language and x1, . . . , xd(L)+1 ∈ K be any d(L) + 1 distinct elements of
the target language. First, notice that since x1, . . . , xd(L)+1 ∈ K, V(x1, . . . , xd(L)+1) ̸= ∅, as K ∈
V(x1, . . . , xd(L)+1). By the definition of the closure dimension (Definition 12) and since |K| = ∞
(recall that language generation is not meaningful with finite languages and, hence, throughout
this work, we consider all languages are infinite),∣∣∣∣∣∣ ⋂

L∈V(x1,...,xd(L)+1)

L

∣∣∣∣∣∣ = ∞ and
⋂

L∈V(x1,...,xd(L)+1)

L ⊆ K .

Thus, the generating algorithm can stabilize its support to be T :=
⋂

L∈V(x1,...,xd(L)+1)
L and never

change it from this point on during the interaction with the adversary. Notice that given access
to a VSI membership oracle for L the learner can indeed sample from a distribution supported on
T as follows: first sample a natural number n̂ (e.g., from a geometric distribution on N) and then
query the VSI membership oracle with the set of elements x1, . . . , xd(L)+1 and the target element
xn̂.15 Repeat the process until the oracle returns Yes. Notice that this process terminates with
probability 1, and the support of the induced distribution is exactly T.

As a final note on our discussion on stability, it is worth pointing out that there are collections that
do not satisfy the weak Angluin’s condition, nevertheless there is a stable generating algorithm
that achieves infinite coverage after observing one example from the target language. The example
is due to Charikar and Pabbaraju [CP24a].

Example 2 (Stable Infinite Coverage ≠⇒ Weak Angluin’s Condition). Define the domain X and
the language collection L as follows

X = Z and L = {L∞ := Z, La := {a + i, i ∈ N} : a ∈ Z} ,

14To be precise, Proposition 3.9 in [KMV24] gives an algorithm to identify finite collections in the limit. This algorithm
immediately gives an algorithm for generation with exact breadth: once we know an index z such that K = Lz, we can
sample a natural number (from, e.g., an exponential distribution on N) and output the i-th element of Lz. The latter, in
turn, can be found using the membership oracle to Lz.

15To be formal, we need to use a different enumeration of the strings of X and the strings that define the target version
space. We overload the notation for simplicity.

31

where Z is the set of integer numbers. Notice that both X and L are countable, and each L ∈ L is
also countable. Consider the language L∞ and any finite T ⊆ L∞. Let iT be the smallest element
of the subset T. Then, T ⊆ LiT , LiT ⊊ L∞, and |L∞ \ LiT | = ∞. Hence, this collection does not
satisfy the weak Angluin’s condition. Consider the generating algorithm G which in every round
n outputs a distribution with supp (Gn) = N \ S1, where S1 is the input in round 1. It is not hard
to see that for any target language K, this generating algorithm achieves infinite coverage, and is,
by definition, stable.

3.4 Generation With Increasing Coverage: A Strengthening of Stability

A key observation in [KM24] is that their generator’s support can decrease when it sees new
strings from the target K and, in fact, for many language collections the number of valid strings
omitted from its support can grow without bound, which is an extreme form of mode collapse. In
this light, one can view stability as a property that avoids such extreme mode collapse: any stable
generator can only change its support finitely many times. A natural question is whether we can
achieve something stronger than stability and, yet, more tractable than breadth. To capture this
phenomenon, we introduce the following notion of generation with strictly increasing coverage.

Definition 14 (Generation with Strictly Increasing Coverage). Let L be a countable collection of lan-
guages. A generating algorithm G = (Gn) is said to have strictly increasing coverage for L in the limit if,
for any K ∈ L and enumeration of K, there is an n∗ ≥ 1 such that for all n ≥ n∗, after seeing n elements
of the enumeration, the following hold

• supp (Gn) ⊆ supp (Gn+1) , and

• either supp (Gn) = K or there exists some n′ > n such that supp (Gn) ⊊ supp (Gn′) .

Intuitively, if a generator satisfies this property of strictly increasing coverage, then, at a high
level, one may gather that it learns something new about the target language each time it sees a
new string from it.

To gain intuition about when increasing coverage is achievable, let us consider two extremes.
On the one hand, it is not hard to see that achieving approximate breadth along with strictly
increasing coverage is significantly harder than achieving approximate breadth along: This is be-
cause if a generator has approximate breadth, then after seeing sufficiently many strings from
K, its support only misses a finite number of strings from K and, then, if it further has strictly
increasing coverage, its support eventually becomes equal to K implying exact breadth which is
only achievable for collections satisfying Angluin’s condition (Lemma 2.1). On the other hand, if
one is not required to have infinite coverage16 (a requirement already weaker than any notion of
breadth), then it is easy to achieve strictly increasing coverage: consider the generator G in Propo-
sition 1.3, which achieves infinite coverage for any collection L, and post-process the algorithm
to have a support of size at most t on round t. Since eventually G ’s support has infinitely many
elements (as it achieves infinite coverage), it follows that the support of the above post-processed

16For the subsequent discussion, we use the equivalent version of the definition of infinite coverage (Definition 8)
which allows the support of the generator to contain strings from the set Sn, which is the set of all strings enumerated
so far.

32

variant increases infinitely many times, implying that the post-processed variant achieves strictly
increasing coverage.

Thus, the most interesting question is whether there is a generator that achieves infinite cover-
age – a property between breadth and consistent generation – while also having strictly increasing
coverage. Our next result shows that there are collections for which this is indeed possible. The
collection we use to show this result does not satisfy the weak Angluin’s condition, so one can-
not achieve even the weakest notion of breadth (namely, approximate breadth or equivalently
exhaustive generation) for this collection.

Proposition 3.7. There exists a countable collection of languages L that does not satisfy the weak Angluin’s
condition (Definition 9) and for which there exists a generating algorithm G = (Gn) that can achieve infinite
coverage (Definition 8) and has strictly increasing coverage in the limit (Definition 14).

Proof. Consider the collection of arithmetic progressions used in Example 2. As we discussed, this
collection does not satisfy the weak Angluin’s condition. Let Sn be the set of elements enumerated
up to round n and let t̂n denote the smallest element of Sn. Then, it is immediate that the generating
algorithm that outputs a distribution supported on

{
t̂n, t̂n + 1, . . .

}
achieves infinite coverage and

has strictly increasing coverage in the limit.

We remark that the generating strategy in the above result uses information about the structure of
L, and not just membership access to it.

3.5 Landscape of Language Generation With Stable Algorithms

Our results on stable generation under various notions of breadth can be summarized as follows.

1. For stable generators, language generation with (exact) breadth in the limit is characterized
by Angluin’s condition. On the one hand, if L satisfies Definition 2, then there is a stable
algorithm that generates with (exact) breadth in the limit due to [KMV24]. On the other
hand, if L does not satisfy Angluin’s condition, then no generator can generate with (exact)
breadth in the limit (and so stable algorithms are excluded too) (Lemma 2.1).

2. For stable generators, unambiguous generation in the limit is also characterized by An-
gluin’s condition. If L satisfies Definition 2, then there is a stable algorithm that generates
unambiguously in the limit due to [KMV24]. If L does not satisfy Angluin’s condition, then,
in this work, we provide an unconditional lower bound for unambiguous generation in the
limit (Lemma 2.12).

3. For stable generators, generation with approximate breadth in the limit is characterized by
Angluin’s condition. The algorithm follows from the exact breadth case. The lower bound
is given in Lemma 3.2.

4. Since exhaustive generation is (i) implied by generation with (exact) breadth, and (ii) implies
approximate breadth, it is also characterized by Angluin’s dimension for stable generating
algorithms.

33

5. There is a collection (see Example 1 and Theorem 3.4) of languages that satisfies the weak
Angluin’s condition (hence there exists a non-stable generator that achieves approximate
breadth for this collection), but for which the strictly weaker requirement of generation with
infinite coverage is not possible by a stable generator. Conversely, there is a collection (see
Example 2) that does not satisfy the weak Angluin’s condition but for which there exists a
stable generator that achieves infinite coverage.

6. For every collection that has a finite closure dimension, there exists a stable generating algo-
rithm that achieves infinite coverage, given access to the membership oracle to VSI (Defini-
tion 13).

(a) Unconditional Characterizations (b) Characterization With Stable Generators

Figure 4: Comparison of Generation in the Limit With and Without Requiring Stability. Each contain-
ment illustrated by a border is strict, i.e., for each border there is a language collection that satisfies
the outer containment but not the inner containment. Concretely, in the figure on the left, there
are (1) language collections that do not satisfy the Weak Angluin’s Condition (Definition 9) (see
Example 2), (2) language collections that satisfy the Weak Angluin’s Condition, but not Angluin’s
condition (see Example 1), and (3) there are language collections which satisfy Angluin’s Condi-
tion (Definition 2) (e.g., all finite collections). The figure on the right depicts the characterization
for stable generators. In addition to what is depicted there, there are (1) language collections that
satisfy the weak Angluin’s condition and for which infinite coverage is not achievable (see The-
orem 3.4) and (2) language collections for which infinite coverage is achievable but that do not
satisfy the weak Angluin’s Condition (Definition 9) (see Example 2). We note that (1) and (2) are
not depicted in the right figure.

4 Extension to Any Notion of Breadth Satisfying Uniqueness

The goal of this section is to introduce an abstraction of the notions of breadth discussed in this
manuscript and show that it is possible to extend the proof of Lemma 2.1 for these more general
notions and get stronger results. As implications of this generalization, we will prove Lemma 2.7
and Lemma 2.12 in Appendix A. To this end, we present an unconditional lower bound for lan-
guage generation with breadth that applies to any notion of language generation with breadth
which satisfies the following uniqueness criterion.

34

Definition 15 (Uniqueness Criterion). Consider any notion B of language generation with breadth. We
say that B satisfies the uniqueness criterion with respect to a language collection L if for any pair of distinct
languages L, L′ ∈ L, no generator can satisfy B for both L and L′ simultaneously, i.e., if a generating
algorithm generates with breadth from L, then it cannot generate with breadth from L′ and vice versa.

If B satisfies the uniqueness criterion for all language collections L, then we simply say that B satisfies
the uniqueness criterion.

To gain some intuition of this criterion, we consider a few notions of generation with breadth that
we discussed in Section 1.3.

1. (Generation With Exact Breadth): First, consider the exact breadth (Definition 4). It satis-
fies the uniqueness criterion with respect to any language collection L: this is because if a
generator G generates a language L with breadth, i.e., supp(G) = L, then it necessarily does
not generate any other language L′ ̸= L with breadth.

Observation 4.1. Generation with (exact) breadth (Definition 4) satisfies the uniqueness criterion.

2. (Unambiguous Generation): Next, consider unambiguous generation (Definition 7). It
also satisfies the uniqueness criterion with respect to any language collection. To see this,
consider any distinct languages L ̸= L′. Suppose a generator G unambiguously generates
from L. This implies that

|supp(G)△L| < min
L′′∈L, L′′ ̸=L

∣∣supp(G)△L′′∣∣ .

However, setting L′′ = L′ implies that |supp(G)△L| < |supp(G)△L′| which shows that G
does not unambiguously generate from L′. This proves the following result.

Observation 4.2. Unambiguous generation (Definition 7) satisfies the uniqueness criterion.

3. (Generation With Approximate Breadth): Finally, consider generation with approximate
breadth (Definition 5). In general, it does not satisfy the uniqueness criterion. To see this,
consider a language collection L consisting of two languages L1 ⊆ L2 that differ on finitely
many elements: a generator whose support is L1 generates with approximate breadth from
both L1 and L2 simultaneously.

Observation 4.3. There are language collections L for which generation with approximate breadth
does not satisfy the uniqueness criterion.

It is not too hard to see that this is the only reason why uniqueness might be violated for
generation with approximate breadth.

Observation 4.4. Consider any language collection L satisfying that, for any pair of distinct lan-
guages L, L′ ∈ L with L ⊆ L′, L′ and L differ in infinitely many elements (i.e., |L′ \ L′| = ∞).
Generation with approximate breadth satisfies the uniqueness criterion with respect to L.

We will use this observation in the next section to complete the proof of the characterization
of generation with approximate breadth by a weakening of Angluin’s criterion.

35

Having developed some intuition about the uniqueness criterion, we are ready to state the main
result in this section: An unconditional lower bound for language generation with breadth for any
notion of breadth that satisfies the uniqueness criterion (for all language collections).

Definition 16. Consider any notion B of language generation with breadth. We will say that an algorithm
generates with B-breadth from L in the limit, if it can generate with breadth with respect to notion B in the
limit.

We have the following result, whose proof appears in Appendix A.

Theorem 4.5 (Impossibility for Any Notion of Breadth Satisfying Uniqueness). Let B be any notion
of generation that satisfies the uniqueness criterion. Let L be a countable collection of languages that is not
identifiable in the limit. Then, no algorithm can generate with B-breadth from L in the limit.

5 Extension to Any Notion of Breadth Satisfying Finite Non-Uniqueness

This section presents a relaxation of the notion of uniqueness introduced in the previous section.
We show that it is possible to extend the proof of Lemma 2.7 to this notion. As implications of
this generalization, we prove that the two notions of exhaustive generation proposed by [CP24a]
and [CP24b] respectively are characterized by the weak Angluin’s condition. We begin with the
definition of the relaxation of uniqueness.

Definition 17 (Finite Non-Uniqueness Criterion). Consider any notion B of language generation with
breadth. We say that B satisfies the finite non-uniqueness criterion with respect to a language collection L

if for any pair of distinct languages L, L′ ∈ L, a generator can satisfy B for both L and L′ simultaneously
if and only if they differ on a finite number of elements, i.e., |L△L′| < ∞. If B satisfies the finite non-
uniqueness criterion for all language collections L, then we simply say that B satisfies the finite non-
uniqueness criterion.

This is a strict relaxation of the uniqueness condition introduced in the previous section. Hence,
in particular, all notions of breadth satisfying the uniqueness condition also satisfy the finite non-
uniqueness condition. To gain further intuition, let us consider some notions of breadth that did
not satisfy the uniqueness condition and check whether they satisfy the finite-non-uniqueness
condition.

1. (Generation With Approximate Breadth): Consider generation with approximate breadth
(Definition 5). We saw in the last section that it does not satisfy the uniqueness criterion
(Observation 4.3). However, it does satisfy finite non-uniqueness: To see this, consider any
pair of languages L and L′ that differ in infinitely many elements, i.e., |L△L′| = ∞. Now,
if a generator G generates a language L with approximate breadth, i.e., supp(G) ⊆ L and
|L \ supp(G)| < ∞, then it necessarily does not generate L′ with approximate breadth since
if it did then it must imply that

∣∣L△L′∣∣ = ∣∣L \ L′∣∣+ ∣∣L′ \ L
∣∣ supp(G) ⊆ L, L′

≤ |L \ supp(G)|+
∣∣L′ \ supp(G)

∣∣ < ∞ .

which contradicts the fact that |L△L′| = ∞.

36

Observation 5.1. Generation with approximate breadth (Definition 5) satisfies the finite non-uniqueness
criterion.

2. (Exhaustive Generation): Next, we turn to exhaustive generation. Recall that in the for-
mulation of exhaustive generation, the generating algorithm is a sequence of mappings from
sequences of the domain to enumerations of the domain. Let G(1 : ∞) be the set containing all
the items G enumerates. We claim that exhaustive generation satisfies finite non-uniqueness.
To see this, consider any pair of languages L and L′ that differ in infinitely many elements,
i.e., |L△L′| = ∞. Now, if a generator G generates exhaustively generates both L and L′, then,
by definition,

|L \ G(1 : ∞)| ,
∣∣L′ \ G(1 : ∞)

∣∣ , |G(1 : ∞) \ L| ,
∣∣G(1 : ∞) \ L′∣∣ < ∞ . (10)

This contradicts the fact that |L△L′| = ∞ since∣∣L△L′∣∣ =
∣∣L \ L′∣∣+ ∣∣L′ \ L

∣∣
≤

(∣∣G(1 : ∞)△L′∣∣+ |L \ G(1 : ∞)|
)
+

(
|G(1 : ∞)△L|+

∣∣L′ \ G(1 : ∞)
∣∣)

≤ 3 ·
(
|L \ G(1 : ∞)|+ |G(1 : ∞) \ L|+

∣∣L′ \ G(1 : ∞)
∣∣+ ∣∣G(1 : ∞) \ L′∣∣)

(10)
< ∞ .

Observation 5.2. Exhaustive generation (Definition 6) satisfies the finite non-uniqueness criterion.

3. (A Variant of Exhaustive Generation from [CP24a]): Next, we consider the first version of
exhaustive generation, which appeared in [CP24a].

Definition 18 (Variant of Exhaustive Language Generation in the Limit [CP24a]). A generat-
ing algorithm G = (Gn) is said to be an exhaustive generator in the limit for a language collection
L = {L1, L2, . . . } if, for any K ∈ L and enumeration of K, there is an n∗ ≥ 1, such that for all
n ≥ n∗, after seeing n elements of the enumeration,

∞⋃
i=1

Gn(i) ⊆ K and Sn ∪
n−1⋃
j=1

Gj(1) ∪
∞⋃

i=1

Gn(i) ⊇ K , (11)

where Sn is the set of elements enumerated until round n.

This notion is strictly stronger than the second version of exhaustive generation in Defini-
tion 6 and, hence, also satisfies the finite non-uniqueness criterion.

Observation 5.3. Definition 6 (i.e., the variant of exhaustive generation from [CP24a]) satisfies the
finite non-uniqueness criterion.

37

Remark 6 (Comparison of Definition 18 and Generation with Approximate Breadth). We re-
mark that this variant of exhaustive generation is weaker (perhaps not strictly) than gener-
ation with approximate breadth (Definition 5). In particular, an algorithm that satisfies the
above definition also satisfies Definition 5. To see this, note that exhaustive generation im-
plies that after some finite time, the generator misses only finitely many elements of the tar-
get language (i.e., the set Sn ∪

⋃n−1
j=1 Gj(1) has finitely many elements). Hence, lower bounds

for generation with approximate breadth imply lower bounds for exhaustive generation.

Having developed some intuition about the finite non-uniqueness criterion, we are ready to state
the main result of this section: An unconditional lower bound for language generation with
breadth for any notion of breadth that satisfies the finite non-uniqueness criterion (for all language
collections).

Theorem 5.4 (Impossibility for Any Notion of Breadth Satisfying Finite Non-Uniqueness). Let B be
any notion of generation that satisfies the finite non-uniqueness criterion. Let L be any countable collection
of languages that does not satisfy the weak Angluin’s condition (Definition 9). Then, no algorithm can
generate with B-breadth from L in the limit.

An immediate implication of Theorem 5.4 and observations from earlier in this section is that no
generator can achieve generation with approximate breadth, exhaustive generation, or the variant
of exhaustive generation from [CP24a] for any language collection that does not satisfy the weak
Angluin’s condition (Definition 9). This combined with algorithms presented earlier immediately
implies the following equivalence result.

Corollary 5.5 (Equivalence of Approximate Breadth, Exhaustive Generation and Its Variant). Let
L be any countable collection of languages. The following are equivalent.

• L satisfies the weak Angluin’s condition (Definition 9).

• There is an algorithm that generates with approximate breadth from L in the limit.

• There is an algorithm that exhaustively generates (Definition 6) L in the limit.

• There is an algorithm that generates according to Definition 18 (i.e., the variant of exhaustive gener-
ation from [CP24a]) for L in the limit.

The proofs of Theorem 5.4 and Corollary 5.5 appear in Appendix B.

6 Conclusion

In this section, we summarize the results of this manuscript. We show the following character-
izations that significantly strengthen the results of [CP24a; KMV24] (see Sections 1.5 and 1.6 for
further discussion).

• Generation with infinite coverage (Definition 8) (but no breadth) is achievable for all countable
collections by a small modification of the algorithm of [KM24] (Lemma 2.4, also see Lemma 2.6).

38

• Generation with exact breadth in the limit is characterized by Angluin’s condition. If Definition 2
(Angluin’s condition) holds for L, then L is identifiable in the limit, and there is a generating al-
gorithm that generates with breadth from L in the limit. Otherwise, no algorithm can generate
with breadth from L in the limit (Theorem 2.2).

• Generation with approximate breadth in the limit is characterized by the weaker variant of An-
gluin’s condition (Definition 9). If Definition 9 holds for L, then there is a generating algorithm
that generates with approximate breadth from L in the limit. Otherwise, no algorithm can
generate with approximate breadth from L in the limit (Theorem 2.3).

• Exhaustive generation in the limit is equivalent to generation with approximate breadth in the
limit (Theorem 2.8).

• Unambiguous generation in the limit is characterized by Angluin’s condition (Theorem 2.13). If
Definition 2 holds for L, then L is identifiable in the limit, and there is a generating algorithm
that unambiguously generates from L in the limit. Otherwise, no algorithm can unambigu-
ously generate from L in the limit.

Moreover, we derive additional results for stable generators, a natural property of generators
derived from the work of Gold [Gol67]. For the family of stable generators for which the MOP
is also decidable, [KMV24] show that Angluin’s condition characterizes all the above notions of
breadth, i.e., Definitions 4 to 7. We strengthen this result by removing the requirement of MOP’s
decidability in [KMV24]’s result. In particular, we show that the family of stable generators (which
may or may not have a decidable MOP), can achieve language generation with breadth from
collection L – for any notion of breadth (Definitions 4 to 7) – if and only if L satisfies Angluin’s
condition (see the right plot of Figure 4). Interestingly, we show that there are collections which
satisfy the weak Angluin’s condition, nevertheless there does not exist a stable generator that
achieves infinite coverage – a notion of breadth that is achievable for all countable collections
by non-stable learners. This demonstrates that the landscape of generation looks significantly
different for stable generators than for unstable generators.

We believe the above results provide a clear picture of the landscape of language generation in
the limit.

Acknowledgments

We thank Moses Charikar and Chirag Pabbaraju, the authors of [CP24a], for coordinating the
arXiv submissions of their updated work [CP24b] and this work. We thank Jon Kleinberg for
a discussion regarding the representation of the generators. We thank Manolis Zampetakis for
feedback on a draft of this paper. Alkis Kalavasis was supported by the Institute for Foundations
of Data Science at Yale. Grigoris Velegkas was supported by the AI Institute for Learning-Enabled
Optimization at Scale (TILOS).

39

References

[Ang79] Dana Angluin. “Finding Patterns Common to a Set of Strings (Extended Abstract)”.
In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing. STOC
’79. Atlanta, Georgia, USA: Association for Computing Machinery, 1979, pp. 130–
141. ISBN: 9781450374385. DOI: 10.1145/800135.804406. URL: https://doi.org/
10.1145/800135.804406 (cit. on p. 1).

[Ang80] Dana Angluin. “Inductive Inference of Formal Languages From Positive Data”. In:
Information and Control 45.2 (1980), pp. 117–135. ISSN: 0019-9958. DOI: https://doi.
org/10.1016/S0019-9958(80)90285-5. URL: https://www.sciencedirect.com/
science/article/pii/S0019995880902855 (cit. on pp. 1, 2, 6, 17, 18).

[Ang88] Dana Angluin. Identifying Languages From Stochastic Examples. Yale University. De-
partment of Computer Science, 1988. URL: http://www.cs.yale.edu/publications/
techreports/tr614.pdf (cit. on pp. 1, 9, 25).

[BHMvY21] Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon van Handel, and Amir Yehu-
dayoff. “A Theory of Universal Learning”. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing. STOC 2021. Virtual, Italy: Association
for Computing Machinery, 2021, pp. 532–541. ISBN: 9781450380539. DOI: 10.1145/
3406325.3451087. URL: https://doi.org/10.1145/3406325.3451087 (cit. on pp. 1,
9, 24, 25).

[CP24a] Moses Charikar and Chirag Pabbaraju. Exploring Facets of Language Generation in the
Limit. 2024. arXiv: 2411.15364 [cs.DS]. URL: https://arxiv.org/pdf/2411.
15364v1 (cit. on pp. 1, 3, 5, 8–10, 14, 20, 28, 29, 31, 36–39, 45).

[CP24b] Moses Charikar and Chirag Pabbaraju. Exploring Facets of Language Generation in the
Limit. 2024. arXiv: 2411.15364 [cs.DS]. URL: https://arxiv.org/pdf/2411.
15364v2 (cit. on pp. 3, 8, 9, 20, 36, 39).

[Gol67] E. Mark Gold. “Language Identification in the Limit”. In: Information and Control
10.5 (1967), pp. 447–474. ISSN: 0019-9958. DOI: https://doi.org/10.1016/S0019-
9958(67)91165-5. URL: https://www.sciencedirect.com/science/article/pii/
S0019995867911655 (cit. on pp. 1, 9, 25, 39).

[KM24] Jon Kleinberg and Sendhil Mullainathan. “Language Generation in the Limit”. In:
Advances in Neural Information Processing Systems. Vol. 37. 2024. URL: https : / /
arxiv.org/abs/2404.06757 (cit. on pp. 1–8, 15, 16, 25, 30, 32, 38).

[KMV24] Alkis Kalavasis, Anay Mehrotra, and Grigoris Velegkas. On the Limits of Language
Generation: Trade-Offs Between Hallucination and Mode Collapse. 2024. arXiv: 2411.
09642 [cs.LG]. URL: https://arxiv.org/abs/2411.09642 (cit. on pp. 1, 3–10,
14–16, 19, 23–26, 31, 33, 38, 39, 48).

[LRT24] Jiaxun Li, Vinod Raman, and Ambuj Tewari. Generation Through the Lens of Learning
Theory. 2024. arXiv: 2410.13714 [cs.LG]. URL: https://arxiv.org/abs/2410.
13714 (cit. on pp. 8, 9, 30, 31).

40

https://doi.org/10.1145/800135.804406
https://doi.org/10.1145/800135.804406
https://doi.org/10.1145/800135.804406
https://doi.org/https://doi.org/10.1016/S0019-9958(80)90285-5
https://doi.org/https://doi.org/10.1016/S0019-9958(80)90285-5
https://www.sciencedirect.com/science/article/pii/S0019995880902855
https://www.sciencedirect.com/science/article/pii/S0019995880902855
http://www.cs.yale.edu/publications/techreports/tr614.pdf
http://www.cs.yale.edu/publications/techreports/tr614.pdf
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://arxiv.org/abs/2411.15364
https://arxiv.org/pdf/2411.15364v1
https://arxiv.org/pdf/2411.15364v1
https://arxiv.org/abs/2411.15364
https://arxiv.org/pdf/2411.15364v2
https://arxiv.org/pdf/2411.15364v2
https://doi.org/https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/https://doi.org/10.1016/S0019-9958(67)91165-5
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://arxiv.org/abs/2404.06757
https://arxiv.org/abs/2404.06757
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2411.09642
https://arxiv.org/abs/2410.13714
https://arxiv.org/abs/2410.13714
https://arxiv.org/abs/2410.13714

A The Proof of Theorem 4.5 and Implications

The proof of Theorem 4.5 is an extension of the proof of Lemma 2.1.

Because the proofs of Theorem 4.5 and Lemma 2.1 are very similar, we highlight the changes in red.

Proof of Theorem 4.5. As before, for any enumeration E, we use the notation E(i) to denote its i-th
element, E(1 : i) to denote its first i elements, and E(i : ∞) to denote all but the first i − 1 elements.
Since L is not identifiable in the limit, it does not satisfy Angluin’s condition (Definition 2). Hence,
there exists a language L∗ ∈ L such that the following holds:

for all finite subsets T ⊆ L∗ , there exists a language LT ∈ L , T ⊆ LT and LT ⊊ L∗ . (12)

Fix L∗ ∈ L to be any language for which this holds. Let E∞
∗ be an arbitrary enumeration of L∗,

without repetitions. Let K and E∞
K respectively denote the target language and its enumeration

that we will construct to show the impossibility result.
We will show that for any generating algorithm G = (Gn) there exists a choice of the target

language K in L (which may be different from L∗) and an enumeration of it such that if K is the
target language and the adversary provides enumeration E∞

K to G , then the algorithm G cannot
generate with breadth in the limit.

We will construct the enumeration iteratively and select K based on the generating algorithm.
The construction of the enumeration proceeds in multiple (possibly infinite) phases. At any point
t ∈ N of the interaction, we denote by St the set of elements enumerated so far.

Phase 1 of Construction. To construct the first phase, we present the generator with the first
element of the enumeration of L∗, i.e., xi1 := E∞

∗ (1). Let Lj1 be some language such that xi1 ∈ Lj1
and Lj1 ⊊ L∗, i.e., it is a proper subset of L∗. Notice that such a language is guaranteed to exist by
picking T = {xi1} in the violation of Angluin’s condition (12).

• Subphase A (Enumerate Lj1 Until Generator Generates with Breadth from Lj1): Consider
an enumeration E∞

1 of the language Lj1 that is constructed by traversing E∞
∗ and using the

elements of Lj1 that appear in it, in the same order as they appear, i.e., for every i ∈ N it
holds that E∞

1 (i) is the i-th element of Lj1 that appears in E∞
∗ . Notice that this is indeed

a valid enumeration of Lj1 as Lj1 is a subset of L∗. At any round t of the first phase, the
adversary presents the element E∞

1 (t) to the generator.

Consider two cases: i) either there is some finite t1 ∈ N such that Gt1 generates with B-
breadth from Lj1 or ii) there is no such t1 ∈ N. In the latter case, we pick the target language
K = Lj1 and the target enumeration E∞

K = E∞
1 , and the lower bound follows since we have

found a pair of K and E∞
K for which the generator never achieves B-breadth. Hence, assume

that we are in the former case, and let x̂1 be the first element of E∞
1 for which the condition

holds. Note that, at this point, Gt1 does not generate with B-breadth from L∗ since B satisfies
the uniqueness criterion and Lj1 ̸= L∗. Further, note that St1 is the set of strings shown to the
generating algorithm after which it starts to generate with breadth from Lj1 .

Let Ŝ1 be the set of elements of E∞
∗ that appear before x̂1 in E∞

∗ and have not appeared in St1 . If
Ŝ1 ̸= ∅, we go to Subphase B.1 and, otherwise if Ŝ1 = ∅, we go to Subphase B.2.

41

• Subphase B.1 (Add Any Skipped Elements): We will use the set Ŝ1 to extend the con-
struction of the target enumeration E∞

K . To do this, we enumerate the elements from Ŝ1 in an
arbitrary order and we fix the prefix of the target enumeration E∞

K to be (St1 , Ŝ1). Notice that
this step is well-defined since we are only adding to the already constructed enumeration.
Let t̂1 be the total number of elements enumerated so far. Notice that t̂1 = ∞ if and only
if Case i) (from Subphase A) holds, in which case the lower bound already follows. Hence,
assume for the continuation of the proof that t̂1 < ∞. Now we terminate the first phase
(without going to Subphase B.2).

• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Lj1): Notice that Ŝ1 =

∅ if and only if we did not skip any element of E∞
∗ during the traversal in Subphase A. If we

indeed did not skip elements of E∞
∗ we continue traversing it and adding elements to E∞

K in
the same order as we see them in E∞

∗ until we find some element that does not belong to Lj1 .
We also include this element in the enumeration E∞

K , we fix t̂1 to be the number of elements
enumerated so far and we terminate the first phase.

Notice that so far in our construction, we have enumerated the first t̂1 elements of E∞
∗ .

Now we continue our construction inductively for phases ℓ = 2, 3, Consider any ℓ ≥
2. Suppose our construction continued from Phase 1 until Phase ℓ. Then, Phase ℓ + 1 of our
construction is as follows.

Phase ℓ+ 1 of Construction. For the (ℓ+ 1)-th phase, consider the set E∞
∗ (1 : t̂ℓ) that has been

enumerated so far. By construction,

E∞
∗ (1 : t̂ℓ) ̸⊆ Ljℓ , E∞

∗ (1 : t̂ℓ) ⊆ L∗ , and E∞
∗ (1 : t̂ℓ) is finite .

We will now apply the violation of Angluin’s condition (12) with T = E∞
∗ (1 : t̂ℓ). This means that

there must exist some jℓ+1 ̸∈ {j1, j2, . . . , jℓ} such that

Ljℓ+1 ∈ L , Ljℓ+1 ⊊ L∗ , and E∞
∗ (1 : t̂ℓ) ⊆ Ljℓ+1 .

We now perform analogs of each subphase in Phase 1.

• Subphase A (Enumerate Ljℓ+1 Until Generator Generates with Breadth from Ljℓ+1): Con-
sider an enumeration E∞

ℓ+1 of Ljℓ+1 whose first t̂ℓ strings are E∞
∗ (1 : t̂ℓ) and whose remaining

strings are constructed by traversing E∞
∗ (t̂ℓ + 1 : ∞) and selecting strings that belong to Ljℓ+1 ,

in the same order as they appear in E∞
∗ . Notice that this is indeed a valid enumeration of Ljℓ+1

as Ljℓ+1 is a subset of L∗. At any round t of this phase, the adversary presents the element
E∞
ℓ+1(t + t̂ℓ) to the generator.

Consider two cases: i) either there is some finite tℓ+1 ≥ t̂ℓ + 1 such that Gtℓ+1 generates with
B-breadth from Ljℓ+1 or ii) there is no such tℓ+1 ∈ N. In the latter case, we pick the target
language K = Ljℓ+1 and the enumeration E∞

K = E∞
ℓ+1, and the lower bound follows since we

have found a pair of K and E∞
K for which the generator never achieves B-breadth. Hence,

assume that we are in the former case, and let x̂ℓ+1 be the first element of E∞
ℓ+1 for which the

condition holds. Note that, at this point, Gtℓ+1 goes not generate with B-breadth from L∗ since
B satisfies the uniqueness criterion and Ljℓ+1 ̸= L∗. Further, note that Stℓ+1 is the set of strings
shown to the generating algorithm after which it starts to generate with breadth from Ljℓ+1 .

42

Let Ŝℓ+1 be the set of strings of E∞
∗ that appear before x̂ℓ+1 in E∞

∗ and have not appeared in the
enumeration Stℓ+1 . If Ŝℓ+1 ̸= ∅, we go to Subphase B.1 and, otherwise if Ŝℓ+1 = ∅, we go to
Subphase B.2.

• Subphase B.1 (Add Any Skipped Elements): We will use Ŝℓ+1 to extend the construction of
the target enumeration E∞

K . To do this, we enumerate the elements from Ŝℓ+1 in an arbitrary
order and we fix the prefix of the target enumeration E∞

K to be (Stℓ+1 , Ŝℓ+1). Notice that this
step is well-defined since we are only adding to the already constructed enumeration. Let
t̂ℓ+1 be the set of elements enumerated so far. Notice that t̂ℓ+1 = ∞ if and only if Case i) (from
Subphase A) holds, in which case the lower bound already follows. Hence, assume for the
continuation of the proof that t̂ℓ+1 < ∞. Now we terminate the (ℓ + 1)-th phase without
going to Subphase B.2.

• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Ljℓ+1): Notice that
Ŝℓ+1 = ∅ if and only if we did not skip any element of E∞

∗ during the traversal in Subphase
A. If we indeed did not skip elements of E∞

∗ we continue traversing it and adding elements
to E∞

K in the same order as we see them in E∞
∗ until we find some element that does not

belong to Ljℓ+1 . We also include this element in the enumeration E∞
K , we set t̂ℓ+1 to be the

number of elements enumerated so far and we terminate Phase ℓ+ 1.

Notice that so far we have enumerated the first t̂ℓ+1 > t̂ℓ + 1 elements of E∞
∗ .

Inductive Argument. As explained, we continue the construction of the target enumeration
inductively. If there is some phase ℓ such that Case ii) (in Subphase A) is activated, then the lower
bound follows. Let us now assume that Case ii) is not activated for any phase ℓ ∈ N. Then, we
have constructed an enumeration of L∗ (by construction of the sets Stℓ and Ŝℓ for each ℓ ∈ N)
such that Gt does not generate with B-breadth form L∗ for infinitely many t ∈ N. Now, the lower
bound follows by setting the target language K = L∗ and the target enumeration to the one we
have constructed inductively over all phases.

A.1 The Proof of Lemma 2.12 (Impossibility for Unambiguous Generation)

In this section, we prove Lemma 2.12, which we restate below.

Lemma 2.12 (Impossibility for Unambiguous Generation). Let L be a countable collection of languages
that is not identifiable in the limit. Then, no algorithm can unambiguously generate from L in the limit.

Proof. This is a corollary of Theorem 4.5 since unambiguous generation satisfies the uniqueness
criterion as shown in Observation 4.2.

43

B The Proof of Theorem 5.4 and Implications

In this section, we prove Theorem 5.4.

Proof of Theorem 5.4. The proof of this lower bound uses the construction in the proof of Theo-
rem 4.5 with one change: now the language LT (introduced at the start of the proof) is the lan-
guage determined by the contrapositive to the weak Angluin’s criterion (Definition 9) and not the
contrapositive to the (usual) Angluin’s criterion (Definition 2). Concretely, the contrapositive to
the weak Angluin’s criterion implies that there exists a language L∗ ∈ L such that the following
holds:

∀T ⊆ L∗ , ∃LT ∈ L , such that T ⊆ LT , LT ⊊ L∗ , and |L∗ \ LT| = ∞ . (13)

We will use this language L∗ and proceed with the construction without change.
Having completed the construction, we proceed to the proof. The only place in which the

proof uses a property of the criterion for breadth is when it invokes the uniqueness criterion with
respect to the pair of languages LT and L∗ (once in Subphase A of each phase). Here, T is the
set E∞

∗ (1) in the first phase and E∞
∗ (1 : t̂ℓ) in the ℓ-th phase. Now, we cannot directly invoke the

uniqueness criterion since, in general, there are pairs of languages L, L′ for which generation with
approximate breadth does not satisfy the uniqueness criterion (Observation 4.3). However, since
|L∗ \ LT| = ∞ and since the notion of breadth B satisfies the finite non-uniqueness criterion, we
can conclude that no generator can generate with B-breadth from both L∗ and LT simultaneously,
as desired. Hence, we can use the finite non-uniqueness criterion in analyzing each phase of the
construction and the result follows as in the proof of Theorem 4.5.

B.1 The Proof of Lemma 2.7 (Impossibility for Generation With Approximate Breadth)

In this section, we prove Lemma 2.7, which we restate below.

Lemma 2.7 (Impossibility for Generation with Approximate Breadth). Let L be a countable collection
of languages that does not satisfy Definition 9. Then, there is no generating algorithm that generates with
approximate breadth from L in the limit.

Proof of Lemma 2.7. This is a corollary of Theorem 5.4 since unambiguous generation satisfies the
uniqueness criterion as shown in Observation 5.1.

B.2 The Proof of Lemma 2.11 (Impossibility for Exhaustive Generation)

In this section, we prove Lemma 2.11, which we restate below.

Lemma 2.11 (Impossibility for Exhaustive Generation). Let L be a countable collection of languages
that does not satisfy Definition 9. Then, there is no generating algorithm that exhaustively generates from
L in the limit.

Proof of Lemma 2.11. This is a corollary of Theorem 5.4 since unambiguous generation satisfies the
uniqueness criterion as shown in Observation 5.2.

44

B.3 The Proof of Corollary 5.5 (Equivalence of Approximate Breadth, Exhaustive Gen-
eration and Its Variant)

In this section, we prove Corollary 5.5, which we restate below.

Corollary 5.5 (Equivalence of Approximate Breadth, Exhaustive Generation and Its Variant). Let
L be any countable collection of languages. The following are equivalent.

• L satisfies the weak Angluin’s condition (Definition 9).

• There is an algorithm that generates with approximate breadth from L in the limit.

• There is an algorithm that exhaustively generates (Definition 6) L in the limit.

• There is an algorithm that generates according to Definition 18 (i.e., the variant of exhaustive gener-
ation from [CP24a]) for L in the limit.

Proof of Corollary 5.5. First, suppose L does not satisfy weak Angluin’s condition (Definition 9).
Then, since approximate breadth, exhaustive generation, or Definition 18 satisfy finite non-uniqueness
(Observations 5.1 to 5.3), Theorem 5.4 implies that no generator can achieve any of these notions
of generation for L in the limit.

Next, suppose that L does satisfy weak Angluin’s condition (Definition 9). Now, Lemma 2.6
and Lemma 2.9 give algorithms that, in the limit, satisfy the definition of generation with ap-
proximate breadth and exhaustive generation for L. Further, recall that apart from exhaustive
generation, the generator in Lemma 2.9 has the additional property that it does not hallucinate
(see Remark 5). Hence, it also satisfies Definition 18.

C Proof Omitted From Section 3

In this section, we prove Lemma 3.3, which we restate below.

Lemma 3.3. Let L be a countable collection of languages that is not identifiable in the limit. Let G = (Gn)

be a stable generating algorithm. If G generates with approximate breadth from L in the limit, then there
is a language L∗ ∈ L, an enumeration E⋆ of L∗, a sequence of distinct languages L1, L2, · · · ∈ L, and a
strictly increasing sequence t(1), t(2), · · · ∈ N, such that the following holds.

• For each i ∈ N, Lt(i) is a proper subset of L∗, i.e., Lt(i) ⊊ L∗; and

• Given strings from E⋆ as input, for each i ∈ N, Gt(i) generates with approximate breadth from Lt(i).

The proof of Lemma 3.3 uses a very similar construction to Lemma 2.1: Since L is non-identifiable
in the limit, it must violate Angluin’s condition. The proof selects L∗ to be a language that wit-
nesses the failure of Angluin’s condition. Then, it carefully constructs an enumeration, and during
this process constructs the sequence of languages L1, L2, . . . from the contrapositive to Angluin’s
condition by setting the (potential) tell-tale sets T to be prefixes of the enumeration being con-
structed.

For the ease of the reader, we highlight changes in the present
construction compared to the one in the proof of Lemma 2.1 in red color.

45

Proof of Lemma 3.3. As before, for any enumeration E, we use the notation E(i) to denote its i-th
element, E(1 : i) to denote its first i elements, and E(i : ∞) to denote all but the first i − 1 elements.
Since L is not identifiable in the limit, it does not satisfy Angluin’s condition (Definition 2). Hence,
there exists a language L∗ ∈ L such that the following holds:

for all finite subsets T ⊆ L∗ , there exists a language LT ∈ L , T ⊆ LT and LT ⊊ L∗ . (14)

Fix L∗ ∈ L to be any language for which this holds. Let E∞
∗ be an arbitrary enumeration of L∗,

without repetitions. Let Gn be any stable generating algorithm that generates with approximate
breadth from L. The construction of the enumeration E⋆ depends on the generator G . It proceeds
in multiple (possibly infinite) phases. At any point t ∈ N of the interaction, we denote by St the
set of elements enumerated so far.

Phase 1 of Construction. To construct the first phase, we present the generator with the first
element of the enumeration of L∗, i.e., xi1 := E∞

∗ (1). Let Lj1 be some language such that xi1 ∈ Lj1
and Lj1 ⊊ L∗, i.e., it is a proper subset of L∗. Notice that such a language is guaranteed to exist by
picking T = {xi1} in the violation of Angluin’s condition (14).

• Subphase A (Enumerate Lj1 Until Generator Generates with Approximate Breadth from
Lj1): Consider an enumeration E∞

1 of the language Lj1 that is constructed by traversing E∞
∗

and using the elements of Lj1 that appear in it, in the same order as they appear, i.e., for
every i ∈ N it holds that E∞

1 (i) is the i-th element of Lj1 that appears in E∞
∗ . Notice that this

is indeed a valid enumeration of Lj1 as Lj1 is a subset of L∗. At any round t of the first phase,
the adversary presents the element E∞

1 (t) to the generator.

Consider two cases: i) either there is some finite t1 ∈ N such that Gt1 generates with approx-
imate breadth from Lj1 (i.e.,

∣∣Lj1 \ supp(Gt1)
∣∣ < ∞) or ii) there is no such t1 ∈ N. In the latter

case, we pick the target language K = Lj1 and the target enumeration E∞
K = E∞

1 , and we get
a contradiction to the fact that G generates with approximate breadth from L in the limit.
Hence, we must be in the former case, and let x̂1 be the first element of E∞

1 for which the
condition holds. Note that St1 is the set of strings shown to the generating algorithm after
which it starts to generate with breadth from Lj1 .

Let Ŝ1 be the set of elements of E∞
∗ that appear before x̂1 in E∞

∗ and have not appeared in St1 . If
Ŝ1 ̸= ∅, we go to Subphase B.1 and, otherwise if Ŝ1 = ∅, we go to Subphase B.2.

• Subphase B.1 (Add Any Skipped Elements): We will use the set Ŝ1 to extend the construc-
tion of the enumeration E⋆. To do this, we enumerate the elements from Ŝ1 in an arbitrary
order and we fix the prefix of the enumeration E⋆ to be (St1 , Ŝ1). Notice that this step is well-
defined since we are only adding to the already constructed enumeration. Let t̂1 be the total
number of elements enumerated so far. Notice that t̂1 = ∞ if and only if Case i) (from Sub-
phase A) holds, which we saw was impossible. Hence, t̂1 < ∞. Now we terminate the first
phase (without going to Subphase B.2).

• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Lj1): Notice that Ŝ1 =

∅ if and only if we did not skip any element of E∞
∗ during the traversal in Subphase A. If we

indeed did not skip elements of E∞
∗ we continue traversing it and adding elements to E⋆ in

46

the same order as we see them in E∞
∗ until we find some element that does not belong to Lj1 .

We also include this element in the enumeration E⋆, we fix t̂1 to be the number of elements
enumerated so far and we terminate the first phase.

Notice that so far in our construction, we have enumerated the first t̂1 elements of E∞
∗ .

Now we continue our construction inductively for phases ℓ = 2, 3, Consider any ℓ ≥
2. Suppose our construction continued from Phase 1 until Phase ℓ. Then, Phase ℓ + 1 of our
construction is as follows.

Phase ℓ+ 1 of Construction. For the (ℓ+ 1)-th phase, consider the set E∞
∗ (1 : t̂ℓ) that has been

enumerated so far. By construction,

E∞
∗ (1 : t̂ℓ) ̸⊆ Ljℓ , E∞

∗ (1 : t̂ℓ) ⊆ L∗ , and E∞
∗ (1 : t̂ℓ) is finite .

We will now apply the violation of Angluin’s condition (5) with T = E∞
∗ (1 : t̂ℓ). This means that

there must exist some jℓ+1 ̸∈ {j1, j2, . . . , jℓ} such that

Ljℓ+1 ∈ L , Ljℓ+1 ⊊ L∗ , and E∞
∗ (1 : t̂ℓ) ⊆ Ljℓ+1 .

We now perform analogs of each subphase in Phase 1.

• Subphase A (Enumerate Ljℓ+1 Until Generator Generates with Approximate Breadth from
Ljℓ+1): Consider an enumeration E∞

ℓ+1 of Ljℓ+1 whose first t̂ℓ strings are E∞
∗ (1 : t̂ℓ) and whose

remaining strings are constructed by traversing E∞
∗ (t̂ℓ + 1 : ∞) and selecting strings that

belong to Ljℓ+1 , in the same order as they appear in E∞
∗ . Notice that this is indeed a valid

enumeration of Ljℓ+1 as Ljℓ+1 is a subset of L∗. At any round t of this phase, the adversary
presents the element E∞

ℓ+1(t + t̂ℓ) to the generator.

Consider two cases: i) either there is some finite tℓ+1 ≥ t̂ℓ + 1 such that Gtℓ+1 generates
with approximate breadth from Ljℓ+1 (i.e.,

∣∣Ljℓ+1 \ supp(Gtℓ+1)
∣∣ < ∞) or ii) there is no such

tℓ+1 ∈ N. In the latter case, we pick the target language K = Ljℓ+1 and the enumeration
E∞

K = E∞
ℓ+1, and we get a contradiction to the fact that G generates with approximate breadth

from L in the limit. Hence, assume that we are in the former case, and let x̂ℓ+1 be the first
element of E∞

ℓ+1 for which the condition holds. Note that Stℓ+1 is the set of strings shown to
the generating algorithm after which it starts to generate with breadth from Ljℓ+1 .

Let Ŝℓ+1 be the set of strings of E∞
∗ that appear before x̂ℓ+1 in E∞

∗ and have not appeared in the
enumeration Stℓ+1 . If Ŝℓ+1 ̸= ∅, we go to Subphase B.1 and, otherwise if Ŝℓ+1 = ∅, we go to
Subphase B.2.

• Subphase B.1 (Add Any Skipped Elements): We will use the set Ŝℓ+1 to extend the con-
struction of the enumeration E⋆. To do this, we enumerate the elements from Ŝℓ+1 in an
arbitrary order and we fix the prefix of the enumeration E⋆ to be (Stℓ+1 , Ŝℓ+1). Notice that
this step is well-defined since we are only adding to the already constructed enumeration.
Let t̂ℓ+1 be the set of elements enumerated so far. Notice that t̂ℓ+1 = ∞ if and only if Case
i) (from Subphase A) holds, which we saw was impossible. Hence, t̂ℓ+1 < ∞. Now we
terminate the (ℓ+ 1)-th phase without going to Subphase B.2.

47

• Subphase B.2 (If Nothing Skipped Enumerate An Element Outside Ljℓ+1): Notice that
Ŝℓ+1 = ∅ if and only if we did not skip any element of E∞

∗ during the traversal in Subphase
A. If we indeed did not skip elements of E∞

∗ we continue traversing it and adding elements
to E⋆ in the same order as we see them in E∞

∗ until we find some element that does not belong
to Ljℓ+1 . We also include this element in the enumeration E∞

K , we set t̂ℓ+1 to be the number of
elements enumerated so far and we terminate Phase ℓ+ 1.

Notice that so far we have enumerated the first t̂ℓ+1 > t̂ℓ + 1 elements of E∞
∗ .

Inductive Argument. As explained, we continue the construction of the target enumeration
inductively. If there is some phase ℓ such that Case ii) (in Subphase A) is activated, then we get
a contradiction to the fact that G generates with approximate breadth from L in the limit. Hence,
Case ii) must never be activated for any phase ℓ ∈ N. Then, we have constructed an enumeration
of L∗ (by construction of the sets Stℓ and Ŝℓ for each ℓ ∈ N), a sequence of distinct languages
Lj1 , Lj2 , . . . (each satisfying Lji ⊊ L∗), and a strictly increasing sequence of numbers t1, t2, · · · ∈ N,
such that, for each i, the generator Gti , generates with approximate breadth from Lj1 .

D Membership Oracle Problem

In this section, we define the Membership Oracle Problem (MOP), which is required for the im-
possibility results of [KMV24], but not required for the characterizations in our work. For more
details, we refer to Definitions 5 and 6 in [KMV24].

Definition 19 (Membership Oracle Problem [KMV24]). Given a generator G , the membership oracle
problem for G , denoted as MOP(G), is defined as follows: given the description of G and a string x, output
Yes if x ∈ supp(G) and output No otherwise.

48

	Introduction
	Language Identification in the Limit
	Language Generation in the Limit
	Language Generation With Breadth in the Limit
	Motivation for Generation With Approximate Breadth and Infinite Coverage
	Summary of Our Results
	Recent Works on Language Generation With Breadth

	Main Results: Unconditional Characterizations
	Unconditional Characterization of Generation With (Exact) Breadth
	Unconditional Characterization of Generation With Approximate Breadth
	Unconditional Characterization of Exhaustive Generation
	Unconditional Characterization of Unambiguous Generation
	Implications to Language Generation in the Statistical Setting

	The Role of Stability in Language Identification and Generation
	Characterization of Stable Generation With Approximate Breadth
	A Collection for Which No Stable Generator Has Infinite Coverage
	Sufficient Condition for Stable Generation With Infinite Coverage
	Generation With Increasing Coverage: A Strengthening of Stability
	Landscape of Language Generation With Stable Algorithms

	Extension to Any Notion of Breadth Satisfying Uniqueness
	Extension to Any Notion of Breadth Satisfying Finite Non-Uniqueness
	Conclusion
	The Proof of Theorem 4.5 and Implications
	The Proof of Lemma 2.10 (Impossibility for Unambiguous Generation)

	The Proof of Theorem 5.4 and Implications
	The Proof of Lemma 2.7 (Impossibility for Generation With Approximate Breadth)
	The Proof of Lemma 2.11 (Impossibility for Exhaustive Generation)
	The Proof of Corollary 5.5 (Equivalence of Approximate Breadth, Exhaustive Generation and Its Variant)

	Proof Omitted From Section 3
	Membership Oracle Problem

