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Beyond Labels and Topics: Discovering Causal Relationships in
Neural Topic Modeling

Anonymous Author(s)∗

ABSTRACT
Topic models that can take advantage of labels are broadly used
in identifying interpretable topics from textual data. However, ex-
isting topic models tend to merely view labels as names of topic
clusters or as categories of texts, thereby neglecting the potential
causal relationships between supervised information and latent
topics, as well as within these elements themselves. In this paper,
we focus on uncovering possible causal relationships both between
and within the supervised information and latent topics to better
understand the mechanisms behind the emergence of the topics
and the labels. To this end, we propose Causal Relationship-Aware
Neural Topic Model (CRNTM), a novel neural topic model that can
automatically uncover interpretable causal relationships between
and within supervised information and latent topics, while concur-
rently discovering high-quality topics. In CRNTM, both supervised
information and latent topics are treated as nodes, with the causal
relationships represented as directed edges in a Directed Acyclic
Graph (DAG). A Structural Causal Model (SCM) is employed to
model the DAG. Experiments are conducted on three public corpora
with different types of labels. Experimental results show that the
discovered causal relationships are both reliable and interpretable,
and the learned topics are of high quality comparing with seven
start-of-the-art topic model baselines.

CCS CONCEPTS
• Information systems→ Document topic models; Data min-
ing; Web mining.
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1 INTRODUCTION
Topic modeling is a family of text mining techniques aimed at
automatically discovering representative and semantically inter-
pretable topics from textual data [6, 24]. Topic models are wildly
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Figure 1: Examples of the causal relationships (directed edges)
between the manually annotated labels and the latent topics
(nodes), as well as within these elements themselves.

used in a variety of AI tasks, including web mining and information
retrieval [14, 32]. In recent years, the incorporation of supervised
information has gained attraction in topic modeling. The supervised
information mainly contains semantic labels and text categories.
For the first branch, topic models typically map each semantic label
to a specific topic or a cluster of topics. The semantics of these
labels then serve to guide the interpretability and relevance of the
discovered topics [18, 27, 42]. Parallel to this, another significant
branch of topic models views the supervised information as cate-
gories or outcomes of texts. This perspective has been instrumental
in advancing several natural language processing (NLP) tasks, such
as document classification [8, 29].

However, despite the ability of these models to exploit super-
vised information to enhance the discovery of semantically related
topics, most existing topic models ignore the complex relationships
between supervised information and latent topics, as well as within
these elements themselves. To alleviate the problem, in this paper,
we propose a novel neural topic model that can jointly extract the
latent topics and discover potential causal relationships between
supervised information and the latent topics. Causal relationships
in textural data and its supervised information are widespread in
the real-world. The reason why we choose "causal relationship" to
model the complex relationships mentioned above is that compared
to the common relationships in topic modeling, such as correlation
[5, 34, 38] and hierarchical relationships [9, 26, 42], the applicable
scenarios of causal relationships are wider and the relationships
that can be described are more comprehensive.

Figure. 1 shows a toy instance of the causal relationships be-
tween the supervised information and the latent topics, as well as
within these elements themselves. The left side of Figure. 1 displays
the discovered latent topics with top-5 topic words in topic model-
ing, while the right side denotes some manually annotated labels.
Causal relationships are represented as the directed edges. Taking
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the node “Topic Modeling” as an example, the topic “Topic Modeling”
is influenced not only by the topic “Computer Science”, but also
by the label “Machine Learning” and “Computation and Language”.
Recognizing the causal relationships is crucial for understanding
the mechanisms behind the emergence of certain topics within
the context of specific labels. However, the causal relationships
between the supervised information and the latent topics are rarely
modeled by existing topic models. Furthermore, the causal relation-
ships cannot be replaced by correlation or hierarchical relationships
without missing semantic information.

In order to automatically discover the causal relationships dis-
cussed above, in this paper, we propose a novel neural topic model,
called Causal Relationship-Aware Neural Topic Model (CRNTM).
CRNTM takes the textual data and the supervised information
as inputs and jointly learns the causal relationship between and
within the supervised information and the latent topics. Specifically,
CRNTM is built upon the variational autoencoder (VAE) framework
with a Dirichlet distribution prior [7]. It encodes the input texts
and the supervised signals into low-dimensional latent topical rep-
resentations and then learns the inherent causal relationships both
between and within the supervised information and latent topics.
To jointly learn the three types of causal relationships, we consider
both the latent topics of documents and the supervised informa-
tion as nodes in a Directed Acyclic Graph (DAG), and the causal
relationships can be represented as the directed edges. We adopt a
Structural Causal Model (SCM) [17, 39, 41, 43] to learn the causal
relationship DAG. SCM is a type of strategy to model causal rela-
tionships between variables in causal inference based on the theory
of structural equation modeling (SEM). By integrating SCM as a
causal relationship learning module, the model can discover the in-
herent causal relationships both between and within the supervised
information and latent topics, and generate the causality enhanced
representations of the variables. We further introduce some regu-
larization functions to optimize the causal relationship matrix and
make it conform to the properties of causal relationships, including
the directed acyclicity of the DAG, the information transmission of
parent-child nodes in causal relationships, and the counterfactual
regularization.

We conduct experiments on three public corpora from the real-
world with different types of supervised information, such as age
ratings, document categories and annotated tags. We compare the
discovered topics with seven start-of-the-art topic model baselines
in terms of topic coherence, topic uniqueness and topic quality.
The experimental results show that the topics learned by our pro-
posed CRNTM are of high quality. Furthermore, we visualize the
discovered causal relationships between the variables and show
their reliability and interpretability.

Our main contributions can be summarized as follows:

• We propose a novel neural topic model that can capture the
potential relationships between supervised information (i.e.
labels) and latent topics, as well as within these elements
themselves, simultaneously.

• We employ the Structural Causal Model to jointly model the
causal relationships between supervised information and
the latent topics, since causality is widespread and covers
most situations in practice.

2 RELATEDWORK
In this section, we briefly review state-of-the-art neural topic mod-
els, along with a discussion on the interplay between supervised
information and topics in topic modeling.

2.1 Neural Topic Models
Topic modeling is wildly used in automatically uncovering rep-
resentative topics from corpora [6, 14, 15, 31]. In recently years,
neural topic modeling [19, 30] has attracted much attention thanks
to the development of deep learning.

ProdLDA is the first autoencoding variational Bayes (AEVB)
[13] based topic model, which uses a Laplace approximation to
represent the Dirichlet distribution prior. Gaussian Softmax (GSM)
[19] uses the Gaussian Softmax distribution to parameterize the
latent multinomial topic proportion of each document. W-LDA [21]
introduces Wasserstein autoencoders (WAE) [33] to topic model-
ing, allowing topic proportions to follow the Dirichlet prior. Sparse
Dirichlet variational autoencoder (DVAE Sparse) [7] implements
the rejection sampling variational inference (RSVI) as the reparam-
eterization function of the Dirichlet distribution prior in VAE based
neural topic modeling. TAN-NTM [23] uses an LSTM to extract
contextual information and an attention mechanism to identify
words relevant to each topic in topic modeling. Coordinated Topic
Modeling (CTM) [1] uses a set of well-defined topics as prior knowl-
edge for easily understandable representation. NSEM-GMHTM [9]
enhances hierarchical topic modeling by incorporating a Gaussian
mixture prior for improved sparse data handling, and explicitly
representing both hierarchical and symmetrical topic relationships
through dependency matrices and nonlinear structural equations.

Most recently, the incorporation of pre-trained language models
into topic modeling has provided contextualized semantic embed-
ding. Examples include embedded topic model (ETM) [10], Com-
binedTM [3], enhanced guided LDA model [35], BERT-Flow-VAE
[16] and BERTopic [12].

2.2 Supervised Information and Topic Models
The integration of supervised information into topic modeling,
which blends structured, labeled data with the unsupervised extrac-
tion of latent topics, is an increasingly pivotal area of study and has
the potential to greatly enhance our understanding and utilization
of text corpora. In topic modeling, supervised information are usu-
ally utilized to guide the semantic structure and enrich the quality
of the topics leading to improved model performance [36, 40]. Ex-
isting topic models that can leverage supervised information can be
broadly divided into two types: 1) Supervised information is used as
a guidance of the semantic of the topics (or a subset of topics), rep-
resentative models include Labeled LDA (LLDA) [27], Partially LDA
(PLDA) [28], Topic Attention Model [37], JoSH [18] and supervised
BERTopic [12]. 2) Supervised information, typically in the form of
category labels, is correlated with the topic proportion vectors of
each document [8, 12]. Models such as SCHOLAR [8] offer flexible
incorporation of metadata into neural topic modeling. HIMECat
[42] is a neural topic model that can integrate the label hierarchy,
metadata, and text signals for document categorization under weak
supervision. HSTM [29] is designed to model the structure in text
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concurrently capturing heterogeneity in the relationship between
text and outcomes of documents.

However, none of these models take into consideration the causal
relationships between supervised information and latent topics. To
the best of our knowledge, our work is the first one that can uncover
potential causal relationships between the supervised information
and latent topics, and jointly model the causal relationships within
these elements themselves.

3 CAUSAL RELATIONSHIP-AWARE NEURAL
TOPIC MODEL

This section provides an in-depth introduction of the proposed
CRNTM and its learning strategy. The objective of CRNTM is to
jointly discover interpretable causal relationships between and
within the supervised information and latent topical representa-
tions from the corpus and manual labels. CRNTM is built upon
the variational autoencoder (VAE) framework [7, 19]. Initially, the
model encodes the input texts and the supervised information into
low-dimensional latent topical representations based on the Dirich-
let distribution prior. Subsequently, the model endeavors to identify
the causal relationships between and within the learned latent topi-
cal representations and the supervised signals to enrich the topical
embeddings with causality via a Structural Causal Model (SCM).
An illustration of the model architecture is provided in Figure. 2,
showcasing the process from latent topical representation learning
to causal relationship identification.

3.1 Latent Topical Representation Learning
To capture the latent topical representation of a document along-
side its supervised information, we use a two-phase representation
learning method. First, a pre-encoding phase learns topical rep-
resentations that encapsulate the essential semantic information
within the input texts. Then, we jointly encode the latent variables
of the documents and the supervised information. This approach
provides a comprehensive understanding of both the latent topics
and the supervised information inherent in the document.

3.1.1 Pre-encoding for the documents. Assume the input corpus
contains a set of 𝐷 documents, denoted as {𝑥𝑑 }𝐷𝑑=1, where 𝑥𝑑 ∈ R

𝑉

represented as a vector in a 𝑉 -dimensional space using a bag-of-
words model (BoW), with 𝑉 being the size of the vocabulary. Each
document 𝑥𝑑 is associated with a set of supervised information,
denoted as 𝑙𝑑 .

Different from most VAE based neural topic models [2, 19, 44],
where the variational distribution are drawn from the Gaussian
distribution, in this paper, we use the Dirichlet distribution as a
prior for the latent topical representations. The input document
𝑥𝑑 is transformed into the Dirichlet parameter 𝛼 , which can be
represented as:

𝜆 = 𝑀𝐿𝑃 (𝑥𝑑 ),

𝛼 = log(1 + 𝑒𝜆),
(1)

where 𝑀𝐿𝑃 (·) denotes a multilayer perceptron layer, which can
transfer the input 𝑥𝑑 ∈ R𝑉 to latent topical variables, 𝜆 ∈ R𝐾 . 𝐾
denotes the number of the latent topics. 𝛼 is the Softplus function
of 𝜆 for smoothness.

Then, we can draw a topic proportion 𝜃𝑑 from a Dirichlet distri-
bution parameterized by 𝛼 . Since the Dirichlet distribution does not
support non-central differentiable reparameterization, we adopt
the proposal function of a rejection sampler as the reparameteriza-
tion function based on the rejection sampling variational inference
(RSVI) [7, 20]. In RSVI, a complex or unknown probability distribu-
tion (referred to as the target distribution), denoted as 𝑞(𝑧;𝛼), can
be sampled from an easier-to-sample proposal distribution, denoted
as 𝑟 (𝑧;𝛼), with a constant accept rate𝑀𝛼 :

𝑞(𝑧;𝛼) ≤ 𝑀𝛼𝑟 (𝑧;𝛼) . (2)

As discussed in [4], a Dirichlet distributionwith parameter vector
𝛼 can be sampled from independent Gamma distributions with the
same parameter 𝛼 . Therefore, the latent topical representation 𝑧
drawn from the Dirichlet distribution with parameter 𝛼 , i.e. 𝑧 ∼
𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼), can be simulated from the distribution with Gamma-
distributed random variables:

𝑧𝑑,𝑘 ∼ Γ(𝛼𝑘 , 1), 𝑘 = 1, ..., 𝐾, (3)

Then latent topical representation 𝑧 can be computed through
the simulated latent topical representation 𝑧:

𝑧1:𝐾 =
1∑
𝑘 𝑧𝑑,𝑘

(𝑧𝑑,1, ..., 𝑧𝑑,𝐾 )⊤ ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼1:𝐾 ) . (4)

For Gamma distribution, there exists an efficient rejection sam-
pler [20]:

𝑧 = ℎΓ (𝜖, 𝛼) := (𝛼 −
1
3
) (1 + 𝜖

√
9𝛼 − 3

)3, 𝜖 ∼ 𝑠 (𝜖) := N(0, 1), (5)

where 𝜖 is the accepted sample in the rejection sampler.
Since the rejection sampler has higher acceptance rates for higher

values of the parameter 𝛼 in the Gamma distribution, we use a shape
augmentation trick following the idea in RSVI [20] to solve the
problem. Suppose 𝐵 is a positive integer. Then, 𝑧 can be expressed

as: 𝑧 = 𝑧
∏𝐵
𝑖=1 𝑢

1
𝛼+𝑖−1
𝑖

, 𝑧 ∼ Γ(𝛼 + 𝐵, 1) and the uniform random

variable 𝑢𝑖
𝑖 .𝑖 .𝑑.∼ 𝑈 [0, 1]. Therefore, the above rejection sampling

Eq. (3) can be redefined as 𝑧 ∼ Γ(𝛼 +𝐵, 1), and the shape augmented
Eq. (5) can be redefined as:

𝑧 = ℎΓ (𝜖, 𝛼, 𝐵) := (𝛼 + 𝐵 −
1
3
) (1 + 𝜖√︁

9(𝛼 + 𝐵) − 3
)3 . (6)

3.1.2 Joint encoding for both texts and supervised information. To
leverage the supervised information inherent in the textual data and
further explore causal relationships, we propose a joint encoding of
the supervised information and latent variables of the documents.

In our model, the supervised information can take various forms
such as labels or categories associated with the texts. The model
imposes no restrictions on the type of supervised signals, allowing
for great flexibility. These signals could include both quantifiable
(numeric) and non-quantifiable (non-numeric) information. For ex-
ample, quantifiable information can be converted into real numbers,
while non-quantifiable information could be represented as binary
variables. This versatility allows a wide range of data types to be
incorporated into our model.

Specifically, we concatenate the latent topical variables of docu-
ment 𝑑 , denoted as 𝛼 , with the associated supervised information

3
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Figure 2: Network structure of CRNTM. The pre-encoding phase ingests textual data 𝑥 and learns to represent the essential
semantic information as topical representations. The joint encoding phase combines the latent topical variables with the
supervised information and encodes them into the same semantic embedding space. The causal relationship learning module
uncovers potential causal relationships both between and within the latent topics and the supervised signals and enriches the
representations with causality via a DAG. See more details in section 3.

𝑙𝑑 , and encode them in a manner similar to the pre-encoding phase
section 3.1.1:

𝜆∗ = 𝑀𝐿𝑃 (𝐶𝑜𝑛𝑡𝑎𝑐𝑡 (𝛼 ; 𝑙𝑑 ))), (7)

𝛼∗ = log(1 + 𝑒𝜆
∗
), (8)

𝑧∗ = ℎΓ (𝜖∗, 𝛼∗, 𝐵) := (𝛼∗ + 𝐵 −
1
3
) (1 + 𝜖√︁

9(𝛼∗ + 𝐵) − 3
)3, (9)

where 𝑙𝑑 ∈ R𝑆 denotes the supervised signals of document 𝑑 , and 𝑆
is the number of supervised signals. The comprehensive represen-
tation 𝑧∗ contains both the latent topic information from the text
and the supervised information.

3.2 Causal Relationship Learning
We utilize a Structural Causal Model (SCM) [39] to learn the causal
relationships between and within the latent representations and the
supervised signals. The causal relationships between the variables
can be modeled via the weighted adjacency matrix of the Directed
Acyclic Graph (DAG), denoted as 𝐴. In CRNTM, both the latent
topics and the supervised variables are considered as nodes in the
causal relationship DAG. We arrange the topics and supervised
variables as the first few nodes and the last few nodes in the DAG
respectively. Then, the causal relationships between the latent top-
ics, and between the supervised variables, can be represented by the
upper left and lower right parts of the DAG’s weighted adjacency
matrix, respectively. Meanwhile, the causal relationships between
topics and supervised variables can be represented by the remaining
parts of the adjacency matrix. In this way, we can use the weighted
adjacencymatrix to clearly represent the above three types of causal
relationships in supervised information and latent topics. The di-
mension of the weighted adjacency matrix of the DAG equals the
total number of latent topics (𝐾 ) and the supervised signals (𝑆), i.e.
𝐴 ∈ R(𝐾+𝑆 )×(𝐾+𝑆 ) . According to structural causal learning [41],
we have the following linear structural equation model (SEM):

𝐶∗
𝑑
= 𝐴T𝐶∗

𝑑
+ 𝑧♠

𝑑
= (𝐼 −𝐴T)−1𝑧♠

𝑑
, (10)

where 𝐶∗
𝑑
∈ R(𝐾+𝑆 )×𝐻 is the causal representation of document 𝑑 ,

which denotes the causal relationships enhanced representations.
𝐻 is the dimension of the causal representations. 𝑧♠

𝑑
= 𝑡 (𝑧∗

𝑑
), where

𝑡 (·) is a linear transformation layer, and 𝑧♠
𝑑
∈ R(𝐾+𝑆 )×𝐻 is an

extension of the latent topical representation, 𝑧∗
𝑑
, to make it contain

more semantic information.
In order to enhance the directionality in causal relationships,

the following constraints should be concerned: the causal represen-
tation of a node i) is not allowed to contain information from its
non-parent nodes; and ii) ought to incorporate the representation
information of its parent nodes to ensure the information trans-
formation from parents to children. Therefore, we adopt the Mask
Layer [22, 39] in CRNTM to implement the above two constraints:

𝐶𝑑,𝑖 = 𝑔𝑖 (𝐴𝑖 ◦𝐶∗𝑑 ) + 𝑧
♠
𝑑,𝑖
, (11)

where 𝐴𝑖 denotes the 𝑖𝑡ℎ column in the weighted causal adjacency
matrix 𝐴, 𝐶𝑑,𝑖 is the masked latent causal representation of the
𝑖𝑡ℎ node (topic or supervised signal) in document 𝑑 , and ◦ is the
element-wise multiplication. The function 𝑔𝑖 (·) is a mild nonlinear
function for input variables to do self reconstruction.

To better understand Eq. (11), we can consider the following
extreme cases.

• If 𝐴 𝑗,𝑖 > 0 in matrix 𝐴, the 𝑗𝑡ℎ node is a parent of the 𝑖𝑡ℎ
node. Then, [𝐴𝑖 ◦𝐶𝑑 ] 𝑗 . 0, and Eq. (11) can be expressed
as a function of 𝐶𝑑,𝑗 : 𝐶𝑑,𝑖 = 𝐺𝑖 (𝐶∗𝑑,𝑗 ).

• If 𝐴 𝑗,𝑖 = 0, [𝐴𝑖 ◦𝐶∗𝑑 ] 𝑗 ≡ 0⇒ ∀𝐺𝑖 (·),𝐶𝑑,𝑖 ≠ 𝐺𝑖 (𝐶∗𝑑,𝑗 ).
The topic proportion 𝜃𝑑 can be computed through the causal

topical representation 𝐶𝑑 :

𝜃𝑑 = softmax(𝑓 (𝐶𝑑 )), (12)

where 𝑓 (·) is a linear transformation layer, and 𝜃𝑑 ∈ R𝐾 .
In the decoding step, we reconstruct the original input doc-

uments with the topic proportion 𝜃𝑑 and the topic distribution
4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Beyond Labels and Topics: Discovering Causal Relationships in Neural Topic Modeling WWW ’24, MAY 13 - 17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝛽 ∈ R𝐾×𝑉 . The reconstruction of a word 𝑥𝑑,𝑛 in the text 𝑥𝑑 can be
modeled as 𝑥𝑑,𝑛 ∼ 𝑀𝑢𝑙𝑡 (softmax(𝜃𝑑 · 𝛽)).

3.3 Learning and Inference
Our proposed CRNTM takes the documents {𝑥𝑑 }𝐷𝑑=1 and the asso-
ciated supervised signals {𝑙𝑑 }𝐷𝑑=1 as inputs to discover the causal
relationships between and within the learned latent topical rep-
resentations and the supervised signals. The generative model of
document 𝑑 in CRNTM can be written as:

E𝑞 (𝐷 ) [
𝐷∑︁
𝑑=1

log𝑝 (𝑥1
𝑑
, 𝑥2
𝑑
|𝑢𝑑 )]

=E𝑞 (𝐷 ) [
𝐷∑︁
𝑑=1

log 𝑝 (𝑥1
𝑑
)] +E𝑞 (𝐷 ) [

𝐷∑︁
𝑑=1

log 𝑝 (𝑥2
𝑑
|𝑢𝑑 )]

≥L𝐷𝑝𝑟𝑒
+ L𝐷 𝑗𝑜𝑖𝑛𝑡

,

(13)

where 𝑥1
𝑑
and 𝑥2

𝑑
are two independent copy of 𝑥𝑑 , which are used

in the reconstruction in the the pre-encoding phase and the joint
encoding phase, respectively. L𝐷𝑝𝑟𝑒

denotes the evidence lower
bound (ELBO) of the pre-encoding phase, and L𝐷 𝑗𝑜𝑖𝑛𝑡

is the ELBO
of the joint encoding phase.

L𝐷𝑝𝑟𝑒
= E𝑞 (𝐷 )

[
E𝑞 (𝑧 |𝑥𝑑 ) [

𝑁∑︁
𝑛=1

log 𝑝 (𝑥𝑑,𝑛 |𝑧𝑑 )]

− 𝐷𝐾𝐿 (𝑞(𝑧𝑑 |𝑥𝑑 )∥𝑝 (𝑧𝑑 ))
]
,

(14)

where 𝐷𝐾𝐿 (·∥·) denotes the KL divergence.
According to RSVI, the distribution of the accepted sample 𝜖 ,

𝜋 (𝜖 ;𝜙), can be obtained by marginalizing over a uniform variable
𝑢 of the rejection sampler:

𝜋 (𝜖 ;𝛼, 𝐵) =
∫

𝜋 (𝜖,𝑢;𝛼, 𝐵)𝑑𝑢 = 𝑠 (𝜖)𝑞(ℎΓ (𝜖 ;𝛼, 𝐵))
𝑟 (ℎΓ (𝜖 ;𝛼, 𝐵))

, (15)

where 𝑟 (·) is the proposal function for the rejection sampler.
Therefore, Eq. (14) can be written as:

L𝐷𝑝𝑟𝑒
= E𝑞 (𝐷 )

[
E𝜋 (𝜖 ;𝛼,𝐵) [

𝑁∑︁
𝑛=1

log𝑝 (𝑥𝑑,𝑛 |ℎΓ (𝜖 ;𝛼, 𝐵))]

+E𝜋 (𝜖 ;𝛼,𝐵) [log
𝑝 (ℎΓ (𝜖 ;𝛼, 𝐵))

𝑞(ℎΓ (𝜖 ;𝛼, 𝐵) |𝑥𝑑 )
]
]
,

(16)

For the joint encoding phase:

L𝐷 𝑗𝑜𝑖𝑛𝑡
= E𝑞 (𝐷 )

[
E𝑞 (𝐶𝑑 |𝑧𝑑 ,𝑙𝑑 ) [

𝑁∑︁
𝑛=1

log 𝑝 (𝑥𝑑,𝑛 |𝐶𝑑 )]

− 𝐷𝐾𝐿 (𝑞(𝐶𝑑 |𝑧𝑑 , 𝑙𝑑 )∥𝑝 (𝐶𝑑 |𝑙𝑑 ))]
]
.

(17)

Moreover, to optimize the mask parameters in the Mask Layer,
we need to minimize the following equation according to Eq. (11)
[22]:

L𝑚 = E(
𝐾+𝑆∑︁
𝑖=1
∥𝐶𝑖 − 𝑔𝑖 (𝐴𝑖 ◦𝐶)∥2). (18)

Furthermore, the discovered causal adjacency matrix 𝐴 is sup-
posed to be a DAG. On the basis of DAG-GNN [41], the causal
adjacency matrix 𝐴 should satisfy the following condition:

For any 𝜌 > 0, the graph is acyclic if and only if:

𝐻 (𝐴) ≡ 𝑡𝑟
(
(𝐼 + 𝜌𝐴 ◦𝐴) (𝐾+𝑆 )

)
− (𝐾 + 𝑆) = 0.

(19)

Since we assume that the latent topical representation and the
supervised signals are causally related in this work, we further
introduce a counterfactual regularization item following [17] to
ensure the convincingness of the learned causal DAG structure. It
is a commonsense that in a causal relationship, changing the cause
leads to a change in the effect, but changing the effect does not
lead to a change in the cause. Therefore, for the nodes in the causal
DAG, the following equations holds true:

causal direction : 𝑙𝑖 → 𝐶 𝑗 ⇒ 𝐶 (𝑙𝑖 ) ≠ 𝐶 (𝑑𝑜 (𝑙𝑖 )),
anti-causal direction: 𝑙𝑛 ← 𝐶𝑚 ⇒ 𝐶 (𝑙𝑛) = 𝐶 (𝑑𝑜 (𝑙𝑛)),

(20)

where→ and← represent the direction of the causal relationship,
and 𝑑𝑜 (·) denotes the do-operation where we set 𝑙𝑖 ≠ 𝑑𝑜 (𝑙𝑖 ).

Specifically, we further train a binary classifier D to distinguish
the causal counterfactuals and the anti-causal counterfactuals. The
counterfactual representation contrastive regularizer can be written
as:

L𝑑𝑜 = E[EΩ+ (D(𝐶 (𝑑𝑜 (𝑙𝑖 )))) +EΩ− (1 − D(𝐶 (𝑑𝑜 (𝑙𝑛))))], (21)

where Ω+ = {𝑙𝑖 |𝑙𝑖 ∈ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝐶 𝑗 ),𝐶 𝑗 ∈ C, 𝑙𝑖 ∈ l},Ω− = {𝑙𝑛 |𝑙𝑛 ∈
𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝐶𝑚),𝐶𝑚 ∈ C, 𝑙𝑛 ∈ l}.

To sum up, considering the above Eq. (16), Eq. (17), Eq. (19),
Eq. (18), and Eq. (21), we get the overall loss function of the proposed
model:

L = −L𝐷𝑝𝑟𝑒
− L𝐷 𝑗𝑜𝑖𝑛𝑡

+ 𝐻 (𝐴) + L𝑚 + L𝑑𝑜 . (22)

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Corpora. We conduct experiments on three public corpora,
including Russian books1[11], ArXiv2 and StackSample3. For each
corpus, we tokenize the lowercased documents, remove the nltk
stop words, and then perform the stemming step based on the nltk
SnowballStemmer tool4, respectively. The statistics of corpora are
listed in Table 1.

Table 1: The statistics of the corpora.

Corpora Label type Label Train Test Voc

Russian books age rating, genre 37 4,492 1,000 10,000
ArXiv discipline category 20 2,228,866 10,000 10,000

StackSample question tag 20 821,724 10,000 10,000

4.1.2 Baselines and Experimental Settings. We compare the pro-
posed model with seven state-of-the-art neural topic models, in-
cluding GSM5 [19], SCHOLAR6 [8], DVAE7 [7], HIMECat8 [42],
1https://www.kaggle.com/datasets/oldaandozerskaya/fiction-corpus-for-agebased-
text-classification
2https://www.kaggle.com/datasets/Cornell-University/arxiv
3https://www.kaggle.com/datasets/stackoverflow/stacksample
4https://www.nltk.org
5We use a PyTorch version modified from the author provided Tensorflow version:
https://github.com/ysmiao/nvdm.
6https://github.com/dallascard/scholar
7https://github.com/sophieburkhardt/dirichlet-vae-topic-models
8https://github.com/yuzhimanhua/HIMECat
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Table 2: A comparison of the topic coherence (TC), topic unique (TU) and topic quality (TQ). We compute the mean value of
each metric over top-5 and top-10 topical words, and higher value represents better performance. The best results are in bold.
See more details in section 4.2.

Model
Russian books ArXiv StackSample

𝐾 = 20 𝐾 = 50 𝐾 = 20 𝐾 = 50 𝐾 = 20 𝐾 = 50

TC TU TQ TC TU TQ TC TU TQ TC TU TQ TC TU TQ TC TU TQ

GSM 0.200 0.325 0.065 0.172 0.271 0.047 0.143 0.630 0.090 0.154 0.563 0.087 0.190 0.400 0.076 0.162 0.396 0.064
SCHOLAR 0.262 0.875 0.229 0.215 0.652 0.140 0.105 0.950 0.100 0.134 0.933 0.125 0.185 0.972 0.180 0.212 0.923 0.196
DVAE 0.333 0.940 0.313 0.316 0.712 0.225 0.301 0.998 0.300 0.355 0.897 0.318 0.462 0.958 0.443 0.438 0.853 0.374

HIMECat 0.160 0.951 0.152 - - - 0.206 0.980 0.202 - - - 0.311 0.990 0.308 - - -
BERTopic 0.134 0.752 0.101 - - - 0.249 0.782 0.195 - - - 0.274 0.793 0.217 - - -
HSTM 0.054 0.995 0.054 0.044 0.981 0.043 0.015 0.748 0.011 0.018 0.540 0.010 0.034 0.75 0.026 0.026 0.666 0.017

NSEM-GMHTM 0.196 0.838 0.164 0.198 0.768 0.152 0.026 0.765 0.020 0.038 0.738 0.028 0.110 0.695 0.076 0.112 0.687 0.077
CRNTM 0.351 0.920 0.323 0.328 0.709 0.233 0.361 0.998 0.360 0.339 0.910 0.308 0.503 0.978 0.492 0.501 0.846 0.424

Table 3: Examples of the top-10 words per topic and the corresponding topic coherence (TC) values on ArXiv.

solar activity astrochemistry galactic composition hardware telecommunication astronomy particle physics carcinology Wi-Fi NLP

CMEs desorption GCS GPUs multiple-input Jupiter seesaw tumor backhaul multilingual
rope Deuterium Gyr FPGAs precoding close-in B-L lung downlink cross-lingual
CME gas-phase metal-rich FPGA MIMO planet leptogenesis breast uplink monolingual

reconnection photodissociation Fe/H CPUs multiple-output TESS vector-like cancer NOMA low-resource
corona CH3OH bulge HPC beamform super-earth NMSSM liver D2D bilingual

footpoint HCN gas-rich CUDA CSIT extrasolar CP-Even malignant QoS NMT
magnetogram isotopologues galactocentric Intel downlink GJ MSSM nodule offload BERT

eruption r-process mass-to-light ratio Nvidia OFDM Neptune slepton prostate relay corpora
Alfvén prestellar Alpha/Fe GPU CSI semi-major sneutrino lesion 5G BLEU
Hinode H2 globular NISQ multi-antenna semimajor R-Parity histology caching PLMs

0.50 0.34 0.40 0.41 0.54 0.42 0.37 0.48 0.39 0.46

supervised BERTopic9 [12], HSTM10 [29] and NSEM-GMHTM11

[9].
We conduct experiments using a variable topic number of 20

and 50 for the baseline models and our proposed model across
each of the three corpora. Following DVAE [7], we set the hidden
units of our proposed model to 100, and a dropout rate of 0.25 is
implemented. The Dirichlet prior is set to 0.01 and the shape aug-
mentation parameter 𝐵 is set to 10 both as per the DVAE source
code. We set the dimension of the causal topical representation
𝐻 to {1, 2, 4, 8, 16, 32, 64, 128}, and choose 𝐻 = 2 for Russian books,
𝐻 = 32 for ArXiv and 𝐻 = 128 for StackSample according to the
quality of the learned topics on each training set. We initialize the
learning rate at 0.001 and set the batch size to 256. The Adam opti-
mizer is employed to train our model, and the model’s performance
is monitored on a validation set, employing an early stopping strat-
egy if no improvement is observed over 30 epochs. The parameter
settings of the baseline models are kept consistent with those de-
tailed in their respective original papers.

4.2 Evaluation on Topic Quality
In topic modeling, the quality of the learned topics (TQ) [21] is
typically assessed from two perspectives: topic coherence (TC) [25]

9https://github.com/MaartenGr/BERTopic
10https://github.com/dsridhar91/hstm
11https://github.com/nbnbhwyy/NSEM-GMHTM

and topic uniqueness (TU) [21]. Topic coherence can measure the
semantic similarity between the top words within the same topic.
In this paper, we use the normalized pointwise mutual information
(NPMI) based topic coherence12. The topic coherence score for topic
𝑘 with top 𝑁 words can be computed by:

𝑇𝐶 (𝑘) =
𝑁∑︁
𝑗=2

𝑗−1∑︁
𝑖=1

log 𝑃 (𝑤𝑗 ,𝑤𝑖 )
𝑃 (𝑤𝑖 )𝑃 (𝑤𝑗 )

− log 𝑃 (𝑤𝑖 ,𝑤 𝑗 )
. (23)

On the other hand, topic uniqueness reflects the discriminative
power of a topic in relation to others, indicating the extent to which
a topic captures unique aspects of the corpus that are not covered
by other topics. TU can be computed by:

𝑇𝑈 =
1

𝐾 · 𝑁

𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

1
𝑐𝑛𝑡 (𝑛, 𝑘) , (24)

where 𝑐𝑛𝑡 (𝑛, 𝑘) is the total number of times the 𝑛𝑡ℎ word in topic
𝑘 appears in the top words across all the topics. The quantitative
measure of topic quality is calculated as the product of these two
factors: 𝑇𝑄 = 𝑇𝐶 ×𝑇𝑈 . This approach ensures that high-quality
topics are both semantically meaningful and distinct from each
other.

In the experiments, we compute the mean value of each metric
over top-5 and top-10 topical words in the discovered topics. A
12https://github.com/jhlau/topic_interpretability
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CH3OH 

solar activity
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attosecond
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Three-Nucleon 
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 sterile 

 leptogenesis

BBN
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Figure 3: Examples of the causal relationships between and within the supervised information and the latent topics. The topic
names are manually assigned based on the top-5 words. The spatial relative positions between different variables are merely for
illustrative purposes, and bear no relation to the causal relationships between the variables. In other words, these relationships
do not form a hierarchical structure. See more details in section 4.3.

higher value indicates better results for all the above three metrics.
The experimental results are shown in Table 2. Themissing value for
HIMECat and BERTopic is attributable to the fact that the number
of topics in these models is inherently linked to the total number of
supervision signals. Therefore, we adjust the topic count to match
the label count of the corresponding corpora.

The results demonstrate that our proposed CRNTM outperforms
other models in most cases, particularly concerning two crucial
metrics - topic coherence and topic quality. Despite a slightly lower
topic uniqueness compared to SCHOLAR, HIMECat and HSTM in
some cases, the topic coherence and overall metric topic quality of
CRNTM significantly exceed those of these three models. Actually,
topic uniqueness typically becomes a valuable reference primarily
when the topics generated by the model are semantically meaning-
ful. Hence, TU is more meaningful when the topics are both unique
and coherent, underlining the importance of balancing these two
metrics in topic modeling.

CRNTM outperforms all other baselines on topic quality metric,
with the exception of DVAE in some cases. Compared to DVAE,
our model achieves better results in terms of topic coherence, topic
uniqueness, and topic quality, except some occasional cases where
it falls slightly short. This indicates that our model can effectively
learn high-quality topics. Additionally, our model is capable of dis-
covering causal relationships between supervised information and
latent topics, an achievement that other baselines fail to accom-
plish. This unique capability further enhances the robustness and
interpretability of our model, providing an essential tool for deeper
understanding in topic modeling.

We further display the top-10 words of some example topics
learned from ArXiv. The topic names in the first line are manually
assigned based on the topical words. For ease of presentation and
comprehension, the top words have been lemmatized from the
stem forms in the second line. The real numbers below the words
represent topic coherence values. These examples demonstrate the
semantic coherence and interpretability of the topics discovered by
our proposed model.

1.0

0.6

1.4

0.2

20
topics

20
labels

20 topics 20 labels

Figure 4: The weighted adjacent matrix of the causal rela-
tionship DAG on ArXiv with 20 topics. See more details in
section 4.3.

4.3 Causal Relationships between Supervision
Information and Latent Topics

We demonstrate the discovered causal relationships between the
supervised information and the latent topics to show the ability of
our model in causal relationship discovery. We extract the causal
relationships from the learned weighted adjacency matrix by using
a thresholding value 0.3 to rule out cycle-inducing edges following
NOTEARS [43], since a small threshold suffices to rule out cycle-
inducing edges. Figure. 4 is the learned weighted adjacent matrix
of the causal relationship DAG on ArXiv with 20 topics. The first
20 nodes are the learned latent topics, and the last 20 ones are the
supervised variables. In the adjacent matrix, the causal relation-
ships between different topics, between supervised information,
and between supervised information and the topics are denoted
with different colors. Figure. 4 confirms that our model is capable
of simultaneously constructing causal relationship between super-
vised signals and topics, as well as within each of them individually.
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To further demonstrate the learned causal relationships, we se-
lect several discipline category (supervised information) and topics
from the DAG on ArXiv with 50 topics shown in Figure. 3. From
the examples, we can see that the discovered causal relationships
are credible and interpretable to a certain extent. For example, for
the causal relationship between the supervised information and the
latent topics, the causal chain from the topic “quantum interactions”
to the label “cond-mat” reflects the impact of quantum effects on the
macroscopic state of matter. The topic “photonics technology”→ the
label “cond-mat” is reasonable because new photonics technology
can be used to study and control the macroscopic state of matter.
For the causal relationships between topics, the causal chain from
the topic “solar activity” to the topic “particle cosmology” reveals
that it may be reasonable for solar activity to affect particle behav-
ior and distribution in the universe, because solar activity produces
a large number of high-energy particles and radiation, which can
affect particle cosmology. The topic “galactic composition” → the
topic “particle cosmology” shows the effect of the composition of
the galaxy on particle cosmology, for the composition of the galaxy
can affect the behavior and distribution of particles within it. Fur-
thermore, the proposed model can also uncover causal relationships
between supervised signals, such as causal relationships among
label “hep-ex”, “math-ph” and “physics”.

4.4 Ablation Study
To study the contribution of each component of our model, we
consider the following three types of components:

• The DAG: The restricted condition on the directed acyclic
nature of DAGs (𝐻 (𝐴)); the counterfactual regularization
in causal relationships (L𝑑𝑜 ); and the Mask Layer on causal
structure (L𝑚).

• The prior distribution: the prior distribution of the docu-
ment vectors, Gaussian distribution or Dirichlet distribu-
tion.

• The encoding phase: whether to use the pre-encoding phase.
We ablate different components in nine cases: without the Mask
Layer loss (#2 in Table 4); without the condition on the directed
acyclicity (#3); without the counterfactual regularization regulariza-
tion (#4); without directed acyclicity and counterfact (#5); without
the above three parts (#6); without the DAG network structure
and its related loss, and the model degrade into the baseline DVAE
(#7); without the pre-encoding phase (#8); replace the Dirichlet
distribution with Gaussian distribution (#9); replace the Dirich-
let distribution with Gaussian distribution and without the DAG
network structure, and the model degrade into the baseline GSM
(#10).

Table 4 shows the topic quality results of the ablation study
experiment on StackSample under 50 topics. The complete CRNTM
model achieves the best performance across most metrics, and
achieves the best overall topic quality. The removal of each part of
optimizing the DAG leads to a noticeable drop in the performance.
This indicates that our assumption of a directed acyclic causal
relationship existing between the supervised information and the
latent topics is reasonable. Incorporating the directed acyclic causal
relationship into topic modeling can effectively enhance the topic
discovering capability of the model and guide the model to better

Table 4: A comparison results of the ablation experiments on
StackSample under 50 topics. See more details in section 4.4.

# Model 𝐾 = 20 𝐾 = 50

TC TU TQ TC TU TQ

1 CRNTM .503 .978 .492 .501 .846 .424
2 w/o L𝑚 .495 .972 .481 .463 .872 .404
3 w/o 𝐻 (𝐴) .426 .912 .389 .444 .872 .387
4 w/o L𝑑𝑜 .490 .953 .467 .404 .831 .336
5 w/o (𝐻 (𝐴) + L𝑑𝑜 ) .465 .925 .430 .458 .894 .409
6 w/o (L𝑚 + 𝐻 (𝐴) + L𝑑𝑜 ) .441 .940 .415 .454 .884 .401
7 w/o DAG (DVAE) .462 .958 .443 .438 .853 .374
8 w/o pre-encoding phase .362 .962 .348 .340 .957 .325
9 N(·)+DAG .307 .978 .300 .246 .942 .232
10 GSM .190 .400 .076 .162 .396 .064

understand and capture the underlying structure of the corpus,
leading to more accurate and robust topic modeling. Moreover, the
prior distribution of the document vectors is confirmed to be a
important role in discovering interpretable topics, for models under
the Dirichlet distribution outperform than that under the Gaussian
distribution.

Furthermore, the model without the pre-encoding phase demon-
strates a significant reduction in topic coherence compared to the
complete model. This indicates the effectiveness of our model’s pre-
encoding phase, which is capable of mapping the crucial semantic
information from the input documents to the latent topic space to
provide ample semantic information in discovering causal relation-
ships. The pre-encoding phase ensures that the VAE framework
can strike a balance between learning the semantic information
of the latent topics and the causal relationship structure of the
topics. This allows the model to capture the intricate relationships
between topics and their semantic, leading to a more coherent and
interpretable topic model. In summary, each component of CRNTM
contributes significantly to its performance.

5 CONCLUSION
In this paper, we undertake an exploration into the causal relation-
ships between and within the supervised information and latent
topics in neural topic modeling. We propose Causal Relationship-
Aware Neural Topic Model (CRNTM), a novel approach designed
to automatically unravel significant causal relationships in super-
vised information and latent topics, while concurrently discovering
high-quality topics, thereby enhancing the overall interpretabil-
ity of the model. We conceptualize these causal relationships as
directed edges within a Directed Acyclic Graph (DAG), treating
both supervised information and latent topics as nodes. We employ
a Structural Causal Model (SCM) to imbue the representations of
the supervised information and the latent topics with causality,
modeling these interactions within the causal relationship DAG.
The experimental results confirm the reliability and interpretability
of the causal relationships uncovered. Moreover, they underscore
the high quality of the learned topics.
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