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ABSTRACT

Designing profitable and reliable trading strategies is challenging in the highly
volatile cryptocurrency market. Existing works applied deep reinforcement learn-
ing methods and optimistically reported increased profits in backtesting, which
may suffer from the false positive issue due to overfitting. In this paper, we pro-
pose a practical approach to address backtest overfitting for cryptocurrency trading
using deep reinforcement learning. First, we formulate the detection of backtest
overfitting as a hypothesis test. Then, we train the DRL agents, estimate the proba-
bility of overfitting, and reject the overfitted agents, increasing the chance of good
trading performance. Finally, on 10 cryptocurrencies over a testing period from
05/01/2022 to 06/27/2022 (during which the crypto market crashed two times),
we show that the less overfitted deep reinforcement learning agents have a higher
return than that of more overfitted agents, an equal weight strategy, and the S&P
DBM Index (market benchmark), offering confidence in possible deployment to a
real market.

1 INTRODUCTION

A profitable and reliable trading strategy in the cryptocurrency market is critical for hedge funds
and investment banks. Deep reinforcement learning methods prove to be a promising approach
(Fang et al., 2022), including crypto portfolio allocation (Jiang & Liang, 2017; Ang et al., 2022) and
trade execution (Hambly et al., 2021). However, three major challenges prohibit the adoption and
deployment in a real market: 1) the cryptocurrency market is highly volatile; 2) the historical market
data have a low signal-to-noise ratio (Conrad et al., 2018); and 3) there are large fluctuations (e.g.,
market crash) in the cryptocurrency market.

Existing works may suffer from the backtest overfitting issue. Many methods (Xiong et al., 2018; Liu
et al., 2021; Yang et al., 2020) adopted a walk-forward backtest method and optimistically reported
increased profits in backtesting. The walk-forward method divides data in a training-validation-
testing manner, but using a single validation set can easily result in overfitting. Another approach
(Jiang & Liang, 2017) considered a k-fold cross-validation method (essentially leave one period out)
with an assumption that the training set and the validation sets are draw from an IID process, which
does not hold in financial tasks. For example, (Liu & Tsyvinski, 2021) showed that there is a very
strong time-series momentum effect in crypto returns. Finally, DRL algorithms are highly sensitive
to hyperparameters, resulting in high variability of DRL algorithms’ performance (Clary et al., 2019;
Henderson et al., 2018; Mania et al., 2018). A researcher may get ‘lucky’ on the validation set and
obtain a false positive agent. A key question from practitioners is that “are the results reproducible
under different market situations?"

This paper proposes a practical approach to address the backtest overfitting issue. Researchers in the
DRL cryptocurrency trading niche submit papers containing overfitted backtest results. The value
of a quantitative metric for detecting overfitting will be significant. First, we formulate the detection
of backtest overfitting as a hypothesis testing. Such a test employs an estimated probability of
overfitting to determine whether a trained agent is acceptable. Second, we provide detailed steps
to estimate the probability of backtest overfitting. If the probability exceeds the threshold of the
hypothesis test, we reject it. Finally, on 10 cryptocurrencies over a testing period from 05/01/2022
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to 06/27/2022 (during which the crypto market crashed two times), we show that the less overfitted
deep reinforcement learning agents have a higher return than that of the more overfitted agents, an
equal weight strategy, and the S&P DBM Index (market benchmark), offering confidence in possible
deployment to a real market. The DRL-based strategy appears to be related to the volatility-managed
strategies - buy (sell) when volatility is high (low), and is popular in the asset management industry
(Moreira & Muir, 2017). We hope DRL practitioners may apply the proposed method to ensure that
their chosen agents do not overfit during the training period.

The remainder of this paper is organized as follows. Section 2 reviews related works. Section 3
describes the cryptocurrency trading task. Section 4 proposes a practical approach to address the
backtest overfitting issue. Section 5 presents performance evaluations. We conclude the paper in
Section 6.

2 RELATED WORKS

Existing works can be classified into three categories: 1) backtest using the walk-forward method
and 2) backtest using cross-validation methods.

2.1 BACKTEST USING WALK-FORWARD

The Walk-Forward (WF) method is the most widely applied backtest practice. WF trains a DRL
agent over a training period and then evaluates its performance over a subsequent validation period.
However, WF validates in one market situation, which can easily result in overfitting (Agarwal
et al., 2021; Lin et al., 2021; Chan et al., 2019). WF may not be a good representative of future
performance, as the validation period can be biased, e.g., a significant uptrend. Therefore, we want
to train and validate under a variety of market situations in order to avoid overfitting and make the
agent more robust.

2.2 BACKTEST USING CROSS-VALIDATION

Conventional methods (Jiang & Liang, 2017) used k-fold cross-validation (KCV) to backtest agents’
trading performance. The KCV method partitions the dataset into k subsets, generating k folds.
Then, for each trial, select one subset as the testing set and the rest k − 1 subsets as the training set.
However, there are still risks of overfitting. First, a k-fold cross-validation method splits data by
drawing from an IID process, which is a bold assumption for financial markets (Robinson & Sims,
1994). Second, the testing set generated by a cross-validation method could have a substantial bias
(De Prado, 2018).

We will employ an improved approach. Existing research results ignore the backtest overfitting issue
and give the false impression that the DRL-based trading strategy may be ready to deploy on markets
(Varoquaux & Cheplygina, 2021; Bouthillier et al., 2021; Dodge et al., 2020). WF only tests a single
market situation with high statistical uncertainty, and KCV takes a false IID assumption without
control for leakage. Therefore, we suggest a combinatorial cross-validation method that tracks the
degree of overfitting during the training process. The combinatorial CV method simulates a higher
variety of market situations, reducing overfitting by averaging results.

2.3 BACKTEST WITH HYPERPARAMETER TUNING

DRL agents are highly sensitive to hyperparameters, as can be seen from the implementations of
Stable Baselines3 (Raffin et al., 2021), RLlib (Liang et al., 2018), Raylib (Liaw et al., 2018), Uni-
tyML (Juliani et al., 2018) and TensorForce (Kuhnle et al., 2017). The selection of hyperparameters
takes a lot of time and strongly influences the learning result. Several cloud platforms provide hy-
perparameter tuning services.
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Figure 1: The correlation matrix of features.

Figure 2: Illustration of combinatorial splits. Split
the data into N = 5 groups, k = 2 groups for the
train set (red) and the rest N − k = 3 groups for
the second set (blue).

3 CRYPTOCURRENCY TRADING USING DEEP REINFORCEMENT LEARNING

First, we model a cryptocurrency trading task as a Markov Decision Process (MDP). Then, we build
a market environment using historical market data and describe the general setting for training a
trading agent. Finally, we discuss the backtest overfitting issue.

3.1 MODELING CRYPTOCURRENCY TRADING

Assuming that there are D cryptocurrencies and T time stamps with t = 0, 1, ..., T − 1. We use a
deep reinforcement learning agent to make trading actions, which can be either buy, sell, or hold.
An agent observes the market situation, e.g., prices and technical indicators, and takes actions to
maximize the cumulative return. We model a trading task as a Markov Decision Process (MDP)
(White, 1991) as follows

• State st = [bt,ht,pt,ft] ∈ R1+(I+2)D, where bt ∈ R+ is the cash amount in the account,
ht ∈ RD

+ denotes the share holdings, pt ∈ RD
+ denotes the prices at time t, ft ∈ RID is a feature

vector for D cryptocurrencies and each has I technical indicators, and R+ denotes non-negative
real numbers.

• Action at ∈ RD: an action changes the non-negative share holdings ht ∈ RD
+ , i.e., ht+1 =

ht + at, where positive actions increase ht, negative actions decrease ht, and zero actions keep
ht unchanged.

• Reward r(st, at, st+1) ∈ R is defined as a return when taking action at at state st and arriving at
a new state st+1. Here, we set it as the change of portfolio value, i.e., r(st, at, st+1) = vt+1−vt,
where vt = pT

t ht + bt ∈ R+.

• Policy π(at|st) is the trading strategy, which is a probability distribution over actions at state st.

We consider 15 features that are used by existing papers (Xiong et al., 2018; Zhang et al., 2020;
Yang et al., 2020; Liu et al., 2021), e.g., open-high-low-close-volume (OHLCV) and 9 technical
indicators. Over the training period (from 02/02/2022 to 04/30/2022, as shown in Fig. 3), we
compute Pearson correlations of the features and obtain a correlation matrix in Fig. 1. We list the 9
technical indicators as follows:

• Relative Strength Index (RSI) measures price fluctuation.

• Moving Average Convergence Divergence (MACD) is a momentum indicator for moving aver-
ages.

• Commodity Channel Index (CCI) compares the current price to the average price over a period.

• Directional Index (DX) measures the trend strength by quantifying the amount of price movement.

• The rate of change (ROC) is the speed at which variable changes over a period (Gerritsen et al.,
2020).
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• Ultimate Oscillator (ULTSOC) measures the price momentum of an asset across multiple time-
frames (Gudelek et al., 2017).

• Williams %R (WILLR) measures overbought and oversold levels (Ni & Yin, 2009).
• On Balance Volume (OBV) measures buying and selling pressure as a cumulative indicator that

adds volume on up-days and subtracts volume on down-days (Gerritsen et al., 2020).
• The Hilbert Transform Dominant (HT) is used to generate in-phase and quadrature components

of a detrended real-valued signal to analyze variations of the instantaneous phase and amplitude
(Nava et al., 2016).

As shown in Fig. 1, if two features have a correlation exceeding ±60%, we drop either one of the
two. Finally, I = 6 uncorrelated features are kept in the feature vector ft ∈ R6D, which are trading
volume, RSI, DX, ULTSOC, OBV, and HT. Since the OHLC prices are highly correlated, pt in st
is chosen to be the close price over the period [t, t+ 1]. Note that the close price of period [t, t+ 1]
equals to the open price of period [t + 1, t + 2]. The feature vector ft characterizes the market
situation. For the case D = 10, st has size 81.

3.2 BUILDING MARKET ENVIRONMENT

We build a market environment by replaying historical data, following the style of OpenAI Gym
(Brockman et al., 2016). A trading agent interacts with the market environment in multiple episodes,
where an episode replays the market data (time series) in a time-driven manner from t = 0 to
t = T − 1. At the beginning (t = 0), the environment sends an initial state s0 to the agent that
returns an action a0. Then, the environment executes the action at and sends a reward value rt and
a new state st+1 to the agent, for t = 0, ..., T − 1. Finally, sT−1 is set to be the terminal state. The
market environment has the following three functions:

• reset function resets the environment to s0 = [b0,h0,p0,f0] where b0 is the investment capital
and h0 = 0 (zero vector) since there are no share holdings yet.

• step function takes an action at and updates state st to st+1. For st+1 at time t + 1, pt+1 and
ft+1 are accessible by looking up the time series of market data, and update bt+1 and ht+1 as
follows:

bt+1 = bt − pT
t at,

ht+1 = ht + at.
(1)

• reward function computes r(st, at, st+1) = vt+1 − vt as follows:

r (st,at, st+1) =
(
bt+1 + pT

t+1ht+1

)
−

(
bt + pT

t ht

)
. (2)

3.2.1 TRADING CONSTRAINTS

1). Transaction fees.

Each trade has transaction fees, and different brokers charge varying commissions. For cryptocur-
rency trading, we assume that the transaction cost is 0.3% of the value of each trade. Therefore, (2)
becomes

r (st,at, st+1) =
(
bt+1 + pT

t+1ht+1

)
−
(
bt + pT

t ht

)
− ct, (3)

and the transactions fee ct is
ct = pT

t |at| × 0.3%, (4)
where |at| means taking entry-wise absolute value of at.

2). Non-negative balance. We do not allow short, thus we make sure that bt+1 ∈ R+ is non-
negative,

bt+1 = bt + pT
t a

S
t + pT

t a
B
t ≥ 0, for t = 0, ..., T − 1, (5)

where aS
t ∈ RD

− and aB
t ∈ RD

+ denote the selling orders and buying orders, respectively, such that
at = aS

t +aB
t . Therefore, action at is executed as follows: first execute the selling orders aS

t ∈ RD
−

and then the buying orders aB
t ∈ RD

+ ; and if there is not enough cash, a buying order will not be
executed.
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3). Risk control. The cryptocurrency market regularly drops in terms of market capitalization,
sometimes even ≥ 70%. To control the risk for these market situations, we employ the Cryptocur-
rency Volatility Index, CVIX (Bonaparte, 2021a). Extreme market situations increase the value of
CVIX. Once the CVIX exceeds a certain threshold, we stop buying and sell all our cryptocurrency
holdings. We resume trading once the CVIX returns under the threshold.

3.3 TRAINING A TRADING AGENT

A trading agent learns a policy π(at|st) that maximizes the discounted cumulative return R =∑∞
t=0 γ

tr (st,at, st+1), where γ ∈ (0, 1] is a discount factor and r (st,at, st+1) is given in (3).
The Bellman equation gives the optimality condition for an MDP problem, which takes a recursive
form as follows:

Qπ(st,at) = Est+1
[r(st, at, st+1)] + γEat+1

[Qπ(st+1, at+1)] . (6)

There are tens of DRL algorithms that can be adapted to crypto trading. Popular ones are TD3
(Fujimoto et al., 2018), SAC (Haarnoja et al., 2018), and PPO (Schulman et al., 2017).

Next, we describe a general flow of agent trading. At the beginning of training, we set hyperpa-
rameters such as the learning rate, batch size, etc. DRL algorithms are highly sensitive to hyper-
parameters, meaning that an agent’s trading performance may vary significantly. We have multiple
sets of hyperparameters in the training stage for different trials. Each trial trains with one set of
hyperparameters and obtains a trained agent. Then, we pick the DRL agent with the best performing
hyperparameters and re-train the agent on the whole training data.

3.4 BACKTEST OVERFITTING ISSUE

Backtest (De Prado, 2018) uses historical data to simulate the market and evaluates the performance
of an agent, namely, how would an agent have performed should it have been run over a past time
period. Researchers often perform backtests by splitting the data into two chronological sets: one
training set and one validation set. However, a DRL agent usually overfits an individual validation
set that represents one market situation, thus, the actual trading performance is in question.

Backtest overfitting occurs when a DRL agent fits the historical training data to a harmful extent.
The DRL agent adapts to random fluctuations in the training data, learning these fluctuations as
concepts. However, these concepts do not exist, damaging the performance of the DRL agent on
unseen states.

4 PRACTICAL APPROACH TO ADDRESS BACKTEST OVERFITTING

We propose a practical approach to address the backtest overfitting issue (Bailey et al., 2016). First,
we formulate the problem as a hypothesis test and reject agents that do not pass the test. Then, we
describe the detailed steps to estimate the probability of overfitting, p ∈ [0, 1].

4.1 HYPOTHESIS TEST TO REJECT OVERFITTED AGENTS

We formulate a hypothesis test to reject overfitted agents. Mathematically, it is expressed as follows{
H0 : p < α, NOT overfitted,
H1 : p ≥ α, overfitted.

(7)

where α > 0 is the level of significance.

The hypothesis test (7) is expected to reject two types of false-positive DRL agents. 1) Existing
methods may have reported overoptimistic results since many authors were tempted to go back and
forth between training and testing periods. This type of information leakage is a common reason for
backtest overfitting. 2). Agent training is likely to overfit since DRL algorithms are highly sensitive
to hyperparameters (Clary et al., 2019; Henderson et al., 2018; Mania et al., 2018). For example,
one can train agents with PPO, TD3, or SAC algorithm and then reject agents that do not pass the
test. We set the level of significance α according to the Neyman-Pearson framework (Neyman &
Pearson, 1933).
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4.2 ESTIMATING PROBABILITY OF OVERFITTING

We estimate the probability of overfitting using the cumulative return vector. The cumulative return
vector is defined as R = (vt − v0)/v0, where vt is the portfolio value at time step t and v0 is the
original capital. We estimate the probability of overfitting via three general steps.

• Step 1: For each hyperparameter trial, average the cumulative returns on the validation sets (of
length T ′) and obtain Ravg ∈ RT ′

.

• Step 2: For H trials, stack Ravg into a matrix M ∈ RT ′×H .
• Step 3: Based on M , we compute the probability of overfitting p.

Cross-validation (Browne, 2000) allows training-and-validating on different market situations.
Given a training time period, we perform the following steps:

• Step 1 (Training-validation data splits): as shown in Fig. 2, divide the training period with T
data points into N groups of equal size, k out of N groups construct an validation set and the rest

N − k groups as an training set, resulting in J =

(
N

N − k

)
combinatorial splits. The training

and validation sets have (N − k)(T/N) and T ′ = k(T/N) data points, respectively.
• Step 2 (One trial of hyperparameters): set a new set of parameters for hyperparameter tuning.
• Step 3: In each training-validation data split, we train an agent using the training set and then

evaluate the agent’s performance metric for each validation set, i = 1, ...,H . After training on all
splits, we take the mean performance metric over all validation sets.

Step 2) and Step 3) constitute one hyperparameter trial. Loop for H trials and select the set of
hyperparameters (or DRL agent) that performs the best in terms of mean performance metric over
all splits. This procedure considers various market situations, resulting in the best performing DRL
agent over different market situations. However, a training process involving multiple trials will
result in overfitting (Bailey et al., 2014). We want to measure the probability of overfitting.

Consider a probability space (T ,F ,P), where T represents the sample space, F the event space and
P the probability space. A sample c ∈ T is a split of matrix M across rows. For instance, we split
M into four subsets:

M1,M2,M3,M4 ∈ RT ′/4×H . (8)

A sample c could be any split of M , such as:

c =

[
M1

M2

]
, IS set c̄ =

[
M3

M4

]
, OOS set (9)

An agent is overfitted if its best performance in the IS set has an expected ranking that is lower than
the median ranking in the OOS set (Bailey et al., 2016). For a sample c ∈ T , let Rc ∈ RH and
R

c ∈ RH denote the IS and OOS performance of the columns of a sample c, respectively. We rank
Rc and R̄c from low values to high values, resulting in rc and r̄c (for example, [1, 3, 2], where 3
corresponds to the best performance metric). Define ϵ as the index of the best performing IS strategy.
Then, we check the corresponding OOS rank r̄c[ϵ] and define a relative rank ωc as follows:

ωc =
r̄c[ϵ]

H + 1
, for c ∈ T . (10)

Define a logit function (Barker, 2005) as follows:

λc = ln
ωc

1− ωc
, for c ∈ T . (11)

If ωc < 0.5, we have λc < 0, meaning that the best strategy IS has an expected ranking lower
than the OOS set, which is overfitting. High logit values indicate coherence between IS and OOS
performance, indicating a low level of overfitting. Finally, the probability of overfitting is computed
as follows (Bailey et al., 2016):

p =

∫ 0

−∞
f(λ)dλ, (12)
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where f(λ) denotes the distribution function of λ.

Finally, we discuss how to set the level of significance α. In our problem, the percentage of se-
lected IS strategies with an expected ranking lower than the median ranking of OOS determines the
probability of overfitting. The relative OOS rank is a uniform distribution. According to (Heyde,
1963), such a uniform’s logit is normally distributed. In agreement with a standard application of
the Neyman-Pearson framework (Neyman & Pearson, 1933), we can set the level of significance α,
which is the probability of incorrectly rejecting the null hypothesis in favor of the alternative when
the null hypothesis is true.

5 PERFORMANCE EVALUATIONS

First, we describe the experimental settings and the compared methods and metrics. Then, we show
that the proposed method can help reject two types of overfitted agents. Finally, we present the
backtest performance to verify that our hypothesis test helps increase the chance of good trading
performance.

5.1 EXPERIMENTAL SETTINGS

We select 10 cryptocurrencies with high trading volumes: AAVE, AVAX, BTC, NEAR, LINK, ETH,
LTC, MATIC, UNI, and SOL. We assume a trade can be executed at the market price and ignore the
slippage issue because a higher trading volume indicates higher market liquidity.

Data split: We use five-minute-level data from 02/02/2022 to 06/27/2022. We split it into a training
period (from 02/02/2022 to 04/30/2022) and a testing period (from 05/01/2022 to 06/27/2022, during
which the crypto market crashed two times), as shown in Fig. 3. The training period splits further
into IS-OOS sets for estimating p as in Section 4.2.

Training with combinatorial cross-validation: there are in total T = 25055 = 87 (days) ×
24 (hours) × 60/5 (minutes) − 1 datapoints in the training time period, and T ′ = 16704 =
58 (days) × 24 (hours) × 60/5 (minutes) in the testing time period. We divide the training data
set into N = 5 equal-sized subsets, each subset has 5011 datapoints. We perform the combinatorial
cross-validation method with N = 5 and k = 2, where each data split has k = 2 validation sets and
N − k = 3 training sets. Therefore, the total number of training-validation splits is J = 10.

Hyperparameters: we list six tunable hyperparameters in Table 2. Their values are based on the
implementations of Stable Baselines3 (Raffin et al., 2021), RLlib (Liang et al., 2018), Ray Tune
(Liaw et al., 2018), UnityML (Juliani et al., 2018) and TensorForce (Kuhnle et al., 2017). There are
in total 2700 = 5× 4× 5× 3× 3× 3 combinations.

Trials H: for any distribution over a sample space with a finite maximum, the maximum of 50 ran-
dom observations lies within the top 5% of the actual maximum, with 90% probability. Specifically,
1− (1− 0.05)H > 0.9 requires H > 50 assuming the optimal region of hyperparameters occupies
at least 5% of the grid space.

Volatility index CVIX (Crypto VIX) (Bonaparte, 2021b): the total market capitalization of the
crypto market crashed two times in our testing period, namely, 05/06/2022 - 05/12/2022 and
06/09/2022 - 06/15/2022. We take the average CVIX value over those time frames as our threshold,
CVIXt = 90.1.

Level of significance α: we allow a 10% probability of incorrectly rejecting the null hypothesis in
favour of the alternative when the null hypothesis is true (type I error), α = 10%.

5.2 COMPARED METHODS AND METRICS

We consider two cases where the proposed method helps reject overfitted agents.

5.2.1 CONVENTIONAL DEEP REINFORCEMENT LEARNING AGENTS

First, the walk-forward method (Park et al., 2020; Moody & Saffell, 2001; Deng et al., 2016; Yang
et al., 2020; Li et al., 2019) applies a training-validation-testing data split. On the same training-
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Table 1: Selected hyperparameters for each
DRL algorithm.

Hyperparameter PPO TD3 SAC
Learning rate 7.5e-3 3e-2 1.5e-2
Batch size 512 3080 3080
Gamma 0.95 0.95 0.97
Net dimension 1024 2048 1024
Target step 5e4 2.5e3 2.5e3
Break step 4.5e4 6e4 4.5e4

Figure 3: Data split: train and validate an agent in the
blue period, and test its performance in the green pe-
riod.

Table 2: The hyperparameters and their values.

Hyperparameter Description Range
Learning rate Step size during the training process [3e−2, 2.3e−2, 1.5e−2, 7.5e−3, 5e−6]
Batch size Number of training samples in one iteration [512, 1280, 2048, 3080]
Gamma γ Discount factor [0.95, 0.96, 0.97, 0.98, 0.99]
Net dimension Width of hidden layers of the actor network [29, 210, 211]
Target step Explored target step number in the environment [2.5e3, 3.75e3, 5e3]
Break step Total timesteps performed during training [3e4, 4.5e4, 6e4]

validation set, we train with H = 50 different sets of hyperparameters, all with PPO algorithm
(Schulman et al., 2017) and then calculate p (Bailey et al., 2014). Second, we train another conven-
tional agent using the PPO algorithm and the k-fold cross-validation (KCV) method with k = 5.

5.2.2 DEEP REINFORCEMENT ALGORITHMS WITH DIFFERENT HYPERPARAMETERS

DRL algorithms are highly sensitive to hyperparameters, resulting in high variability of trading
performance (Clary et al., 2019; Henderson et al., 2018; Mania et al., 2018). We use the probability
of overfitting to measure the likelihood that an agent is overfitted. We tune the hyperparameters in
Table 2 for three agents, TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018) and PPO, and
calculate p for each agent with each set of hyperparameters for H = 50 trials.

5.2.3 PERFORMANCE METRICS

We use three metrics to measure an agent’s performance:

• Cumulative return R = v−v0
v0

, where v is the final portfolio value, and v0 is the original capital.

• Volatility σ = std(Rt), where Rt =
vt−vt−1

vt−1
, and t = 0, ..., T − 1.

• Probability of overfitting p. We split M into 14 submatrices, analyze all possible combinations,
and set the threshold α = 10% (Neyman & Pearson, 1933).

The cumulative return measures the profits. The widely used volatility measures the degree of
variation of a trading price series over time; the amount of risk.

5.2.4 BENCHMARKS

We compare with two benchmark methods: an equal-weight portfolio and the S&P Cryptocurrency
Broad Digital Market Index (S&P BDM Index).

• Equal-weight strategy: at time t0, distribute the available cash b0 equally over all D available
cryptocurrencies.

• S&P BDM index (Indices & Methodology, 2022): the S&P broad digital market index S&P tracks
the performance of cryptocurrencies with a market capitalization greater than $10 million.

5.3 REJECT CONVENTIONAL AGENTS

Fig. 4 shows the logit distribution function f(λ) for conventional agents described in Section 5.2.1.
The area under f(λ) for the domain [−∞, 0] is the probability of overfitting p. The peaks represent
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Figure 4: Logit distribution f(λ) of three conven-
tional agents.

Figure 5: Logit distribution f(λ) of three DRL
agents.

Table 3: Performance comparison.

Metrics × Method S&P BDM Index Equal-weight PPO WF PPO KCV PPO TD3 SAC
Cumulative return −50.78% −47.78% −49.39% −55.54% −34.96% −59.08% −59.48%
Volatility 5.81e−2 4.19e−3 2.79e−3 3.49e−3 2.01e−3 3.51e−3 3.78e−3
Prob. of overfitting p - - 17.5% 7.9% 8.0% 9.6% 21.3%

the outperforming DRL agents, as an agent’s success is sensitive to the hyperparameter set. These
outperforming trials deliver the same relative rank more often, and the logits are a function of the
relative rank. We compare our PPO approach to conventional PPO WF and PPO KCV. The WF and
KCV methods have pWF = 17.5% > α and pKCV = 7.9% < α, respectively. For the WF method,
we accept the alternative hypothesis H1 and conclude that it is overfitting.

5.4 REJECT OVERFITTED AGENTS

Table 1 presents the hyperparameters selected for each agent. Fig. 5 shows the logit density function
for the DRL agents in Section 5.2.2. The probabilities of overfitting are: pPPO = 8.0% < α,
pTD3 = 9.6% < α and pSAC = 21.3% > α. We accept alternative hypothesis H1 and conclude that
SAC is overfitted. Finally, TD3 has a dominant part of the logit distribution at a high logit domain
(≈ 4). High logit values indicate coherence between IS and OOS performance.

5.5 BACKTEST PERFORMANCE

Fig. 6 and Fig. 7 show the backtest results. When the CVIX indicator surpasses 90, the agent stops
buying and sells all cryptocurrency holdings. Fig. 6 and Table 3 compare conventional agents, mar-
ket benchmarks and our approach. Compared to PPO WF and PPO KCV, our method outperforms
the other two agents with at least a 15% increase in the cumulative return. The lower volatility of
PPO indicates that our method is more robust to risk. Fig. 7 and Table 3 show the backtest results of
the DRL agents. The cumulative return of the PPO agent is significantly better (> 24%) than those
of agents TD3 and SAC. Also, in terms of volatility, the PPO agent is superior. Finally, compared
to the benchmarks, the performance of our approach is more excellent in terms of cumulative return
and volatility. From our method and experiments, we conclude that the superior agent is PPO.

6 CONCLUSION

In this paper, we have shown the importance of addressing the backtesting overfitting issue in cryp-
tocurrency trading with deep reinforcement learning. Results show that the least overfitting agent
PPO (with combinatorial CV method) outperforms the conventional agents (WF and KCV methods),
two other DRL agents (TD3 and SAC), and the S&P DBM Index in cumulative return and volatility,
showing good robustness. For future work it will be interesting to 1). explore the evolution of the
probability of overfitting during training and for different agents; 2). test limit order setting and trade
closure; 3). explore large-scale data, such as all currencies corresponding to the S&P BDM index;
and 4). consider more features for the state space, including fundamentals and sentiment features.
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Figure 6: The average trading cumulative return curves for conventional agents. From 05/01/2022 to
06/27/2022, the initial capital is $1, 000, 000.

Figure 7: The average trading cumulative return curves for DRL algorithms. From 05/01/2022 to 06/27/2022,
the initial capital is $1, 000, 000.

A CUMULATIVE RETURN CURVES

Figures 6 and 7 give an overview of the trading cumulative return curves for conventional agents,
and for different DRL algorithms, respectively. The timespans are from 05/01/2022 to 06/27/2022,
with an initial trading capital of $1, 000, 000. Note that trading stops as soon as CVIX surpasses the
90.1 threshold.
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