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Abstract

In most Vision-Language models (VL) the001
understanding of the image structure is en-002
abled by injecting the position information (PI)003
about objects in the image. In our case study004
of LXMERT, a state-of-the-art VL model, we005
probe the use of the PI in the representation006
and study its effect on Visual Question An-007
swering. We show that the model is not capa-008
ble of leveraging the PI for image-text match-009
ing task on a challenge set where only position010
differs. Yet, our experiments with probing con-011
firm that the PI is indeed present in the repre-012
sentation. We introduce two strategies (i) Po-013
sitional Information Pre-training and (ii) Con-014
trastive Learning on PI using Cross-Modality015
Matching. Doing so, the model can correctly016
classify if image with detailed PI statements017
matches. Additionally to the 2D information018
from bounding boxes, we introduce the ob-019
ject’s depth as a new feature for a better ob-020
ject localization in the space. Even though we021
were able to improve the model properties as022
defined by our probes, it only has a negligible023
effect on the downstream performance. Our re-024
sults thus highlight an important issue of mul-025
timodal modeling: the mere presence of infor-026
mation detectable by a probing classifier is not027
a guarantee that the information is available in028
a cross-modal setup.029

1 Introduction030

Pre-trained Vision-Language models (Tan and031

Bansal, 2019; Lu et al., 2019; Yu et al., 2020; Chen032

et al., 2020) reached strong performance in many033

multimodal tasks such as Visual Question Answer-034

ing (Antol et al., 2015; Hudson and Manning, 2019;035

Bigham et al., 2010) or Visual Inference (Johnson036

et al., 2016; Suhr et al., 2019). All these models use037

the Transformer architecture (Vaswani et al., 2017)038

and make use of several pre-training strategies like039

Masked Cross-Modality Language Modeling (MM)040

and Cross-Modality Matching (CMM) similar to041

masked language modeling and next sentence pre- 042

diction (Devlin et al., 2019) in NLP. 043

Because the attention mechanism treats its inputs 044

as unordered sets, Transformer-based NLP mod- 045

els need to use position encodings to represent the 046

mutual position of the tokens, so the models can 047

grasp the sentence structure. The mutual position 048

of objects is equally important to understand the 049

structure of an image. VL models differ in how 050

they represent objects in the image which are typ- 051

ically represented as sets of object features and 052

PI. Therefore, object detectors are used to obtain 053

bounding box information for all objects. In many 054

models, the upper-left and lower-right corners of 055

the object’s bounding box are used as 2D informa- 056

tion to create a learnable positional encoding. In 057

addition to the spatial but flat 2D values, we de- 058

termine the depth of the objects in the image and 059

make it available as a further feature. Until now, 060

VL models recognize the objects on a flat map but 061

not in the real three-dimensional context. 062

We found that the current LXMERT model is 063

capable of forwarding PI though the model but is 064

not capable to use it to solve image-text match- 065

ing tasks where positional keywords are replaced 066

by their counterparts. Introducing two new pre- 067

training strategies, we target these unimodal and 068

multimodal evaluation schemes and improve prob- 069

ing results. Yet, no performance increase on the 070

downstream task can be identified. This is most 071

likely to the small fraction of positional related text 072

in the pre-training corpus and suboptimal results of 073

the object detector. Regarding PI type it seems to 074

be sufficient to input object center values which is 075

far less than most VL model input today. 076

2 Positional Information in VL Models 077

In NLP, the importance of word order is given great 078

attention (Ke et al., 2020; Wang and Chen, 2020). 079

Different methods exist including analytical posi- 080

tion encodings (Vaswani et al., 2017), learnable 081
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PI Type Models
∅ OSCAR, CLIP
x1, y1, x2, y2 LXMERT, M4C
x1, y1, x2, y2, a

wh ViLBERT,
Unicoder-VL,
ERNIE-ViL

x1, y1, x2, y2, a, w, h UNITER

Table 1: Positional information in Vision-Language
models. Most models use the upper-left and lower-right
of the object’s bounding box (x1, y1, x2, y2). Some
models add the relative object area ( a

wh ) or the absolute
area in combination with the image width and height
(a,w, h). The object depth (d) is not used.

additive embeddings (Devlin et al., 2019) or rela-082

tive the attention query (Shaw et al., 2018). There083

is no equivalent research that would specifically084

approach PI in VL model. However, the position085

of the objects is considered in almost all common086

Transformer-based approaches.087

In LXMERT (Tan and Bansal, 2019) the upper-088

left and lower-right corners of the object are used089

to encode its position. The same is true for M4C090

(Hu et al., 2019). Other models also use the relative091

area fraction of the objects as an additional feature.092

Although the network should be able to determine093

this feature, it is often taken explicitly into account094

as in case of ViLBERT (Lu et al., 2019), Unicoder-095

VL (Li et al., 2020a) and ERNIE-ViL (Yu et al.,096

2020). UNITER (Chen et al., 2020) uses – besides097

the objects corners – the absolute object’s area and098

the image width and height. Only OSCAR (Li et al.,099

2020b) and CLIP (Radford et al., 2021) do not use100

PI, although they use other pre-training concepts.101

See Table 1 for an overview. To our knowledge,102

there is no structured analysis of PI in VL models.103

Current models use only 2D object information.104

By introducing depth as a new feature, we represent105

objects in the 3D space. This is not only important106

to be able to define the distances between objects107

but also to have a more meaningful understanding108

of the object sizes. Using the area of the bounding109

box without depth information does not add the110

real object size information, since the sizes depend111

on the depth localization of the object.112

3 Evaluation of Positional Information113

To determine the capability of current models with114

regard to PI, we experiment with three evaluation115

methods. Firstly, we perform an intrinsic evalua-116

tion to determine whether the PI passes through the117

model. Secondly, we test if the models is capable to 118

utilize PI using the CMM task, and lastly, we report 119

extrinsic results for GQA downstream task (Hud- 120

son and Manning, 2019) on different data subsets. 121

We report the results of the probing experiment in 122

Section 5. 123

For our experiments, we used four types of PI. 124

An empty set (∅) which acts as a baseline. Object 125

center values (x, y) as a coarse identification of 126

where the object is located. Moreover, we evaluate 127

x1, y1, x2, y2, which is the standard representation 128

of bounding boxes and is also often used in VL 129

models. This PI description contains information 130

about object width, height, and area. Therefore, 131

we ignore further settings that add these types to 132

the input in our evaluation. Since we are also inter- 133

ested in analyzing depth, we investigate the setting 134

x1, y1, x2, y2, d as well. 135

Mutual Position Evaluation. In the intrinsic 136

evaluation task, we test if PI is forwarded through 137

the whole model. We use nine different pairwise 138

classifiers for different mutual positions, which are 139

applied to all detected objects. LXMERT uses a 140

fixed number of 36 object as its input. This leads 141

to a total number of 9× 36× 36 = 11, 664 classi- 142

fications for each input image. 143

We use six classifiers for 2D spatial relations 144

(operate on X and Y coordinates) and three for 145

depth information (Z coordinate). The tasks are 146

(1) whether the center of one object is more to the 147

left than that of another object, (2) the same if the 148

center is closer to the bottom, (3) whether one ob- 149

ject is completely left of the other object (without 150

an overlap), (4) and the same for being completely 151

below the other object, (5) whether one object is 152

completely inside the other bounding box, (6) and 153

if there is no overlap in the X and Y dimension. 154

Regarding depth, the model needs to correctly clas- 155

sify (7) if one object is more in the foreground 156

regarding the median value, (8) if the one object is 157

in between the inner 50% of the other object using 158

all pixel values, and (9) if all depth values of one 159

object are significantly smaller than the values of 160

the other object at a significance level of 0.05 using 161

a t-test. 162

These classification tasks have the same inputs 163

as the Masked Object Prediction (see Section 4.1.1) 164

tasks and are also constructed in the same manner 165

(see Appendix A.1). An overview of the visual 166

pre-training tasks is provided in Figure 3. Because 167

this is a probing task, the classification head (PI 168
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Original caption: “A
student works on an

academic paper at her
desk, computer screen

glowing in the
background.”

Figure 1: Pre-training data with image and description
with a PI keyword. For contrastive evaluation the key-
word is replaced by its counterpart (i.e. “foreground”).

head) is not updated during pre-training. After the169

training process has finished, all model parameters170

are frozen and only the weights in the PI heads are171

updated for 1 epoch. The average accuracy of all172

11,664 classification tasks is reported on the MS173

COCO validation dataset. In doing so, we evaluate174

the unimodal capabilities of the model to forward175

information through the whole Transformer.176

The detailed results are presented in Ap-177

pendix A.6.178

Contrastive Evaluation on PI using CMM.179

The CMM classifier can successfully match images180

and captions (91% accuracy on the balanced pre-181

training validation data). However, this says little182

about the type of information considered during the183

classification. To better assess if PI is used by the184

model, we build a challenge set consisting of pairs185

of contrastive examples. We filter the validation186

data for samples with keywords indicating spatial187

relation between object and only keep those which188

are replaceable by antonyms (see Appendix A.2).189

We run two evaluation setups: (1) We replace all190

image descriptions with a random caption of a dif-191

ferent image (following the LXMERT pre-training192

strategy). (2) We take the image and for all cap-193

tions we replace the PI keyword with its antonym,194

e.g. substitute background with foreground and195

vice versa. See Figure 1 for an example. This task196

determines if the model is able to understand PI197

in a multimodal fashion. In both cases, we only198

have samples with “no match” ground truth values199

(which is our positive class)1, and consequently we200

report recall only.201

Downstream Task Evaluation. Finally, we deter-202

mine the model’s performance on a downstream203

task. We use GQA, since it is a carefully balanced204

image question answering dataset, where PI plays205

a role. We report the 1- and 5-best accuracy. More-206

over, we evaluate (top 1) accuracy of data subsets207

1Hence, we have FP = TN = 0.

where X, Y, and Z coordinates are important. We 208

do this by selecting questions where specific PI 209

keywords are present (see Appendix A.3). 210

Since keyword search does not work perfectly 211

(e.g. Which color is the bag on the back of the 212

woman?), we employed zero-shot text classifica- 213

tion using a BART model2 (Lewis et al., 2020). For 214

zero-shot classification we need a candidate label 215

which is used as input to determine if both texts 216

(i.e. caption and candidate label) fits together. We 217

experimented with different labels and found that 218

the simple keyword “position” works best for our 219

use case. 220

Downstream evaluation is done on the GQA 221

testdev split, which has 12,578 samples, hence an 222

change of 0.1% is equivalent with approximately 223

13 more correctly classified samples. For the sub- 224

sets where X, Y, Z keywords are present the dataset 225

size is 2,050, 1,203 and 1,349 respectively. For the 226

zero-shot subset (indicated with P) the sample size 227

is 1,349. 228

4 Model and Data 229

4.1 Model 230

Our experiments are built upon LXMERT – a 231

Transformer-based model with two separate en- 232

coders for image and text modality and one cross- 233

encoder to join both. LXMERT was the only model 234

in the top-3 leaderboard in both the VQA 2019 and 235

GQA 2019 challenge, which is why we use this 236

model as the basis for our work. Details are pro- 237

vided in Section 4.1.1. A detailed description how 238

the object’s depth feature is determined is provided 239

in Section 4.1.2. 240

4.1.1 Base Model 241

LXMERT uses Faster R-CNN with ResNet-101 242

for the object detection task, originally introduced 243

by Anderson et al. (2018). The object detec- 244

tor is trained on Visual Genome (Krishna et al., 245

2017) predicting 1600 objects with 400 different 246

attributes (mostly adjectives). For LXMERT the 247

model extracts the 36 most confident objects with 248

the region-of-interest features fj , the object class 249

cj , attribute aj and the positional information pj , 250

where j indicates the object indexes j = 1, . . . , 36. 251

The feature map (R36×2048) and bounding box co- 252

ordinates (R36×4) are passed to two separate linear 253

2https://huggingface.co/facebook/
bart-large-mnli
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models with weight matrix W and bias b. The out-254

put is further processed by two layer normalizations255

(LN) and finally both results are averaged:256

f̂j = LN(WF fj + bF ) p̂j = LN(WP pj + bP )257
258

vj = (f̂j + p̂j)/2259

This leads to a unified embedding vj ∈ R36×768260

representing the content of the objects and the po-261

sitions at the same time. The image data is further262

processed in a BERT-style encoder.263

On the language side the text input is processed264

in a BERT-style encoder as well. Both outputs265

are merged in a cross-modality encoder (X-Enc)266

and passed to the output heads, where the losses267

for each pre-training strategies are calculated. The268

LXMERT architecture can be investigated in Fig-269

ure 2.270

The same pre-training strategies are used,271

namely Masked Cross-Modality Language Mod-272

eling (MM), Cross-Modality Matching (CMM), Im-273

age Question Answering (IQA), and Masked Ob-274

ject Prediction. The last one is composed of three275

tasks: two classification tasks to predict the ob-276

jects classes and attributes (ObjClassif, AttrClas-277

sif ), and a regression task to predict the feature278

vector (FeatRegr). See Tan and Bansal (2019) for279

all details. Note that all pre-training strategies fo-280

cus explicitly on the object’s features fj , cj , and aj281

and not on the PI. See Figure 3 for an illustration282

of all visual pre-training tasks.283

We used the original implementation of284

LXMERT3 and only made minor changes. We285

introduced dropout with p = 0.1 in the IQA head.286

Further, we tested different training hyperparam-287

eters to find a good ratio between model perfor-288

mance and training time. Our final pre-training289

model setup has a batch size of 2048 with a learn-290

ing rate of 10−4 (with same learning rate sched-291

uler), the fine-tuning model has a batch size of 32292

and learning rate of 10−5. Introducing PyTorch’s293

DistributedDataParallel in the code and using294

8 instead of 4 GPUs reduced the pre-training time295

from approximately 8.5 days to 41 hours. We296

used the pre-training weights reported in the pa-297

per and not in the corresponding repository (see298

Appendix A.4).299

4.1.2 Depth Information300

The datasets used for training LXMERT do not pro-301

vide any depth information. To obtain depth values302

3https://github.com/airsplay/lxmert/

Img

Depth Estimator

Object Detector VisEnc

Txt LgnEnc
X-Enc Targets

Figure 2: Architecture of LXMERT model (blue) with
depth information extension (gray). LXMERT uses ob-
ject detection from Anderson et al. (2018) and has 5
visual, 9 language and 5 cross-modality (X-Enc) lay-
ers.

dj

pj

fj

LXMERT

pj < pi, dj < di

fj

cj

aj

Figure 3: Visual components for the pre-training phase
(text components omitted). Input data (fj , pj) to
the visual encoder and training targets (fj , cj , aj) for
LXMERT’s pre-training strategies are indicated in blue.
Our additional depth data dj and PI pre-training labels
(PIP) are colored in gray.

for each pixel in the image, we used MiDaS v2.14 303

(Ranftl et al., 2020) – a state-of-the-art algorithm 304

for monocular depth estimations. It is trained on 305

diverse datasets from indoor and outdoor environ- 306

ments, containing static and dynamic images and 307

images of different quality. Hence, it fits the var- 308

ious picture types in our datasets. See Figure 4a 309

for an original COCO image and Figure 4b for the 310

depth information provided by the MiDaS model. 311

The depth predictions from MiDaS can be any 312

real number. Large numbers indicate close objects 313

and small number refers to distant objects. We lin- 314

early normalized each pixel xi with 1− xi−min(x)
max(x) 315

to obtain 0 for the closest pixel and 1 for the most 316

distant one for each individual image. 317

Since the rectangular bounding boxes do not sur- 318

round the objects perfectly, we experimented with 319

the object’s center value, the mean and median as 320

heuristic. We finally used the median, due to its 321

robustness. Furthermore, it would be conceivable 322

to additionally take the standard deviation as a mea- 323

sure for uncertainty if the object is on specific depth 324

plane or spans over a larger distance. This issue can 325

be avoided with panoptic segmentation (Kirillov 326

et al., 2019), which we leave to the future work. 327

4https://pytorch.org/hub/intelisl_
midas_v2/
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(a) Original image (b) Depth estimation

Figure 4: We use a monocular depth estimator to obtain
a pixel-level depth prediction. We normalize the output
that 0 (yellow) indicates the value that is at the very
front and 1 for the furthest pixel (violet).

Dataset X Y Z
MS COCO 2.9 11.2 6.5
VG 3.4 3.8 4.6
IQA 10.7 3.3 4.0
GQA train 28.4 5.3 4.9
GQA testdev 16.3 9.6 10.7

Table 2: Occurrence of positional keywords in per-
cent in pre-training (top lines) and downstream datasets
(bottom lines).

4.2 Data328

Following the original LXMERT setup, our models329

are pre-trained using the MS COCO (Lin et al.,330

2014) and Visual Genome (VG; Krishna et al.,331

2017) data in conjunction with the Visual Ques-332

tion Answering task (VQA). There are in total333

9.18M image-caption pairs with 180K unique im-334

ages. The average sentence length per caption is335

10.6 words for MS COCO and 6.2 words for VG.336

The sentences are short and do not provide many337

details. Using 10 words, only the main occurrence338

of the image can be described. See examples in339

Appendix A.5.340

In Table 2, we show the relative occurrence of341

PI keywords (see Appendix A.3). Pre-training data342

do not have a lot of PI in the captions or questions.343

Only Y keywords appear more often (11.2%) in344

MS COCO and X keywords in VQA (10.7%). This345

is different in GQA, which we use for downstream346

evaluation. In the train part, there are many X347

keywords, but only a few Y and Z keywords. The348

distribution in the testdev set is different. Here, the349

number of X, Y and Z questions is high.350

5 Probing Results351

This section reports the results of experiments de-352

scribed in Section 3.353

PI XYZ XY Z
Input Acc Acc Acc

Pr
ob

in
g ∅ 80.0 81.5 77.1

x, y 88.5 92.1 81.1
x1, y1, x2, y2 88.7 92.4 81.3
x1, y1, x2, y2, d 89.7 92.2 84.7

Pr
e-

tr
ai

ni
ng ∅ 88.2 88.9 82.1

x, y 91.6 94.4 86.0
x1, y1, x2, y2 92.1 94.9 86.5
x1, y1, x2, y2, d 93.9 94.8 92.2

Table 3: Mutual Position Classification Evaluation:
Mean accuracy of all 9 mutual classification tasks
(XYZ), 6 XY tasks, and 3 Z tasks for pre-trained
models for different PI inputs. Upper lines for plain
LXMERT and bottom lines with our version (PIP, CL;
see Section 6).

Mutual Position Evaluation. We determined 354

whether PI can be passed through the model us- 355

ing the classifications of the PI head. Results are 356

shown in Table 3 (top lines). Results are 80.0% for 357

no PI and over 88% for the remaining types. This 358

results confirms that the model is able to forward 359

PI through the whole Transformer layer stack. 360

Interestingly, the model is often capable of cor- 361

rectly classifying the mutual position of objects, 362

although PI is not used as model input. This is 363

most likely due to a high correlation between ob- 364

ject categories and positions. For example, “shoes” 365

are usually at the bottom and in the foreground. 366

The object detector is not powerful enough to de- 367

tect small objects in the background in general. 368

“Sky” and “clouds” are usually at the image top 369

and background. Detected objects such as “kitchen” 370

or “office” often span the whole image width and 371

therefore have their center in the middle of the X 372

axis. The latent image representation fj can be 373

used as a proxy for object types. 374

Besides from that, we can see that with more 375

PI the accuracy of this task increases by over eight 376

percent points and has a peak at 89.7% for the input 377

setting x1, y1, x2, y2, d. Switching from object 378

centers to bounding boxes only has a minor impact. 379

Yet, adding depth improves accuracy on the three 380

Z related tasks (see Appendix A.6), which boost 381

the overall performance. 382

Contrastive Evaluation on PI using CMM. To 383

further evaluate the use of PI in VL models, we 384

test if the model can utilize the information using 385

the CMM task. Table 4 (top lines) shows that the 386
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PI Permuted Permuted
Input caption PI words

Pr
ob

in
g ∅ 97.4 1.4

x, y 96.5 0.3
x1, y1, x2, y2 96.8 1.7
x1, y1, x2, y2, d 97.1 1.2

Pr
e-

tr
ai

ni
ng ∅ 96.8 78.1

x, y 97.7 79.5
x1, y1, x2, y2 97.7 79.3
x1, y1, x2, y2, d 97.1 79.5

Table 4: Contrastive Evaluation: Recall of the original
CMM tasks with random captions (left) and text-image
pairs with substituted PI antonyms (right). Upper lines
for plain LXMERT and bottom lines with our version
(PIP, CL; see Section 6).

original setting with dissimilar image-text pairs can387

be predicted almost perfectly – the recall is always388

above 96%. Hence, this pre-training strategies be-389

haves as expected for the normal data provided.390

Yet, the model cannot apply fine-grained details391

from textual PI. It is not capable to correctly reject392

that, for example, “A student works on an aca-393

demic paper at her desk, computer screen glowing394

in the foreground.” does not fit to the image from395

Figure 1. The recall is steadily below 2%.396

The model is able to pass through PI in the vi-397

sual Transformer part, but is not able to use it in a398

cross-modal fashion for solving problems. This is399

probably due to the fact that fine-grained matching400

does not play a role during pre-training. CMM is401

not constructed as indicated above (i.e. background402

vs. foreground) but to select completely dissimi-403

lar statements like "A man sits before a light meal404

served on the table of a travel trailer” to the image405

in Figure 1. To overcome this problem, we need406

more advanced negative sampling, i.e. captions407

which are closer to the original image-text pairs.408

Downstream Task Evaluation. We evaluate409

downstream performance on GQA testdev with410

four different subsets targeting X, Y, Z keywords411

and general positional (P) samples. The results (in412

Table 5) reveal that using any type of PI is better413

or equally good than not using it (except for Y in414

x1, y1, x2, y2). Although the improvements are415

small, they indicate that PI is indeed helpful in this416

downstream task.417

The best top 1 and X subset results are achieved418

by x, y input type. This might be due to the fact,419

that most object relations are distinct and center420

Figure 5: Bounding box predictions for all 36 objects
used in LXMERT. Descriptions contain predicted label
and attribute with confidence scores.

values are sufficient to track this relationship. For 421

example, the question “Is the boy in white left or 422

right of the ball?” is more common than asking 423

ambiguous questions, for example where bounding 424

boxes intersect (“Is the left boy in yellow left or 425

right of the ball?”, see Figure 5). 426

The PI input x1, y1, x2, y2, d received the best 427

results for the Y and Z subsets. Although improve- 428

ments are small, it shows that our new depth feature 429

can help solve the Z task. But also the improvement 430

on Y can be attributed to the depth input. Due to 431

the graphical perspective, objects at the top corre- 432

late with the background and objects at the bottom 433

with the foreground (see Figure 4b). Here, object 434

depth can act as a top/down proxy. 435

For the downstream evaluation, we need to keep 436

in mind that the underlining object detector is not 437

perfect. Hence, we face the issue that objects 438

asked for in the questions are not always a part 439

of LXMERT’s visual input. Moreover, our con- 440

trastive evaluation scheme shows that LXMERT 441

has difficulties to properly match image and text 442

representation in a multimodal fashion. This can 443

explain the small margin of improvements. The 444

increase of top-1 accuracy are not reflected in the 445

top-5 accuracy. 446

6 From Probing to Pre-training 447

In the previous section, we evaluated the role of PI 448

in pre-trained LXMERT. In this section, we use 449

the probing tasks as a part of model pre-training 450

to improve to weaknesses that we identified in the 451

previous section. Alongside the established strate- 452

gies we add two tasks to learn mutual positions 453

and fine-grained PI details in captions utilizing the 454

CMM task. These strategies are elaborated in the 455
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PI Input Top 1 X Y Z P Top 5
∅ 58.1 65.7 62.0 46.4 58.0 85.0
x, y 59.4 69.6 62.0 49.6 60.2 85.0
x1, y1, x2, y2 59.0 66.2 61.8 49.4 58.9 85.3
x1, y1, x2, y2, d 58.6 66.0 62.4 50.0 58.4 85.1

Table 5: Model comparison of plain LXMERT based on GQA testdev for different PI Input types. Evaluation on
Top1 and Top5 Accuracy, and on subsets only focusing on X, Y, and, Z keywords and questions which focus on
position (P) using zero-shot classification. Bold indicates the best model per column, and underling the overall
best models in conjunction with Table 6.

following.456

Positional Information Pre-training (PIP).457

Currently, all pre-training strategies rely on the458

visual features (fj , cj , aj) rather than on the PI.459

Only in a small fraction of the pre-training captions460

and questions positional keywords are present, as461

Table 2 shows. Hence, we add a new pre-training462

strategy which exclusively focuses on PI.463

We take the PI head used in Mutual Position464

Evaluation and add it as a new classification task465

which is updated during pre-training. We weight466

PIP by 10, since the initial loss is noticeably lower467

than the losses of the other strategies. Until now468

only visual representation of the object features, la-469

bels and attributes were part of pre-training. Using470

PIP, we introduce an explicit unimodal connection471

between the PI input and the PI output, which was472

not previously available (see Figure 3).473

Contrastive Learning using CMM (CL). Dur-474

ing pre-training in classical CMM in 50% of all475

cases the caption is replaced with another random476

image description. This is similar to the main pre-477

training concept of CLIP. Yet, doing so the model478

only learns to distinguish dissimilar text and im-479

ages. There are no small differences in the captions480

the model needs to be aware of.481

In line with Contrastive Evaluation on PI using482

CMM, we make CMM more complex. In 50%483

of all captions with PI keywords the word is re-484

placed by its counterpart, so that is has to learn485

fine-grained PI differences during pre-training. Dis-486

similar to PIP, this pre-training strategy only affects487

a small portion of the pre-training samples, since PI488

keywords are rare. Yet, it operates on both modali-489

ties and hence has the opportunity to connect both490

data types. This idea can also be extended to other491

attributes (like color, material, shape, activity using492

VG’s Scene Graph).493

Results. Using both pre-training strategies, we 494

train new models for all four PI input types. We 495

assess the models on the same three evaluation 496

schemes as the plain LXMERT model before. 497

Results of Mutual Position Evaluation are shown 498

in Table 3 (bottom lines). We observe an accuracy 499

increase for all input types. The largest is for the 500

empty input type with an accuracy of 88.2%, indi- 501

cating the high correlation between feature fj and 502

position pj . For the other versions improvements 503

are smaller. In Table 10 in the Appendix, the ac- 504

curacies for each of the nine classification tasks 505

are displayed. The largest increase can be seen 506

for the empty input type with up to 23.1 percent 507

points for task (1) of the 9 mutual position classi- 508

fication tasks. For classifications based on depth, 509

the best improvements are 9.7 percent points for 510

task (7) and 8.0 percent point for task (9) utilizing 511

x1, y1, x2, y2, d. This shows that the presence of 512

depth is useful as expected. 513

In the original LXMERT version, the probe on 514

Contrastive Evaluation on PI using CMM showed 515

that the model is not able to solve this task suc- 516

cessfully. Recall was steadily below 2 percent. In- 517

troducing the CL pre-training strategy increases 518

matching accuracy to over 78 percent, as shown in 519

Table 4 (bottom lines). In CMM, we are now able 520

to perform matching between visual and textual 521

representations regarding PI. As a consequence, 522

we successfully force the model to connect both 523

types in a multimodal manner. 524

The third evaluation is the downstream task. Re- 525

sults are shown in Table 6 and reveal the same 526

pattern as in Table 5, i.e. best top 1, X and P 527

accuracy for x, y and best Y and Z results for 528

x1, y1, x2, y2, d, only top 5 differs. In the two for- 529

mer probes, our extended pre-training helped the 530

model to solve these tasks. Yet interestingly, this is 531

not the case for GQA evaluation. The best results 532

for top 1 and subset tasks are obtained by plain 533

LXMERT. Only in the (not official) best 5 accuracy 534
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PI Input Top 1 X Y Z P Top 5
∅ 58.8 68.7 60.4 48.5 59.0 85.1
x1, y1 58.8 68.7 60.4 48.5 59.0 85.1
x1, y1, x2, y2, 58.7 67.6 61.5 48.3 58.6 85.4
x1, y1, x2, y2, d 58.7 67.8 62.0 49.1 59.0 85.8

Table 6: Model comparison of LXMERT with two new pre-training strategies (PIP, CL) based on GQA testdev.
Evaluates on top 1 and top 5 accuracy, and on subsets only focusing on X, Y, and, Z keywords and questions which
focus on position (P) using zero-shot classification. Bold indicates the best model per column, and underling the
overall best models in conjunction with Table 5.

evaluation our version achieves better results. One535

reason for this may be that our PIP weight is too536

high and need to be tuned in further studies.537

We found that PI has much less impact on down-538

stream results as previously thought. Simple object539

centers are often sufficient. Bounding box data,540

which add object width, height and area, do not541

add the desired information that the models utilize.542

Adding depth is marginally useful on the Z task,543

which suggests that this feature is useful.544

7 Conclusions545

Current VL models make use of different PI inputs546

without evaluating their impact. In our work, we547

inspect the effect of such PI input types and also548

investigate depth as a new input extension. In the549

original setting, the model is able to forward the550

positional information through the whole Trans-551

former layer stack but it cannot utilize it in the552

contrastive evaluation and only marginally in the553

downstream task. Overall, having any type of PI is554

helpful, though object center values are often suffi-555

cient. However, object features fj are already good556

proxies where objects are located. Because this557

can be based on spurious correlations, we propose558

pre-training methods that should make the model559

rely on PI directly.560

We introduced two new pre-training strategies.561

Firstly, Positional Information Pre-training to en-562

sure that data is passed through the model prop-563

erly and does not need to rely on feature corre-564

lations. This operates on visual component only565

and increases performance on the corresponding566

intrinsic evaluation task. Moreover, we introduce567

Contrastive Learning on PI using CMM. Doing so,568

we connect PI in the textual and visual modality.569

As a result, the model is now able to succeed in570

the contrastive evaluation task. However, these571

improvements do not affect the downstream perfor-572

mance on GQA.573

It is not enough to add different features 574

unchecked, trusting they are properly utilized by 575

the Transformer. In line with BERTology (Rogers 576

et al., 2020; Clark et al., 2019; Tenney et al., 2019), 577

studies are important to better understand what a 578

model is capable of. The same is true for pre- 579

training strategies. It is not sufficient adding new 580

pre-training strategies, although they look promis- 581

ing. With our probing experiments we tried to re- 582

ceive a better understanding of the inner workings 583

of LXMERT. We see the importance to investigate 584

differences between general concepts and impact 585

on downstream tasks. 586

We see two major issues for PI in VL models. 587

Firstly, the pre-training data contains too little frac- 588

tion of sentences with PI content. Hence, espe- 589

cially the CL pre-training strategy has not enough 590

samples to learn from. Secondly, the used object 591

detector is not very powerful (see predictions in 592

Figure 5). Newer detection models like VinVL 593

(Zhang et al., 2021) might help to have a improved 594

image representation, which consequently leverage 595

performance regarding PI context. 596
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A Appendix752

A.1 PI Classification Head753

The PI head is build up in the same manner754

as the other visual heads, i.e. Dense →755

Activation → Layer Normalization756

→ Dropout → Dense.757

A.2 PI Antonyms758

For Contrastive Evaluation, we replace some PI759

keywords with its antonyms.760

We substitute left with right, above with below,761

under with over, foreground with background, be-762

fore with behind and vice versa.763

A.3 PI Keywords764

In Table 7 we list all PI keywords used in our eval-765

uations.766

A.4 Pre-training Weights767

In Table 8 we compare pre-training weights768

from LXMERT paper (Tan and Bansal, 2019)769

and the repository version (https://github.770

com/airsplay/lxmert/).771

A.5 Text Examples772

In Table 9 we provide examples from pre-training773

and downstream tasks with highlighted keywords.774

Dim. Keywords
X left, right, beside, besides, alongside, side
Y top, down, above, below, under, beneath,

underneath, over, beyond, overhead
Z behind, front, rear, back, ahead, before,

foreground, background, before, forepart,
far end, hindquarters

Table 7: Overview of positional keywords regarding
dimension.

Version M
L

M

C
M

M

O
bj

C
la

ss
if

A
tt

rC
la

ss
if

Fe
at

R
eg

r

IQ
A

Paper 1 1 1 1 1 1
Repository 1 1 6.6 6.6 6.6 1

Table 8: Overview of pre-training weights in publica-
tion and GitHub version.

A.6 Mutual Positional Evaluation Details 775

In Table 10 we provide detailed results for all 9 776

mutual PI tasks. Tasks (1)-(6) relate to X and Y 777

coordinates and tasks (7)-(9) to Z coordinates. The 778

numbering is explained in Section 3. 779
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Dataset Example Length
MS COCO A very clean and well decorated empty bathroom 8

A panoramic view of a kitchen and all of its appliances. 11
Surfers waiting for the right wave to ride. 8
Two dogs are laying down next to each other. 9
A red stop sign with a Bush bumper sticker under the word stop. 13

VG separate kitchen areas in a home 6
older red Volkswagen Beetle car 5
a woman walking down the sidewalk 6
A bag in the woman’s left hand 7
stones under wood bench 4

GQA Are there both a television and a chair in the picture? 11
That car is what color? 5
On which side of the picture is the lamp? 9
Is the table to the left or to the right of the appliance in the center? 16
Is there a bookcase behind the yellow flowers? 8

Table 9: Text examples from different datasets with word counts. Italic stands for PI keywords that are wrongly
selected and bold words are correctly detected.

PI Input (1) (2) (3) (4) (5) (6) (7) (8) (9)
∅ 65.0 84.1 82.1 89.9 95.6 72.3 77.7 75.3 78.4
x, y 95.1 95.6 96.2 96.1 95.8 74.1 83.3 75.7 84.4
x1, y1, x, 2, y2 94.3 95.2 96.8 97.0 96.0 75.0 83.5 75.8 84.6
x1, y1, x, 2, y2, d 94.0 95.0 96.6 96.8 96.0 74.9 88.7 76.3 89.1
∅ 88.1 89.4 92.6 93.5 95.9 74.1 83.9 77.7 84.8
x, y 98.7 98.8 98.3 98.3 96.1 75.9 89.3 78.4 90.4
x1, y1, x, 2, y2 98.8 98.9 98.7 99.5 96.3 77.0 89.7 78.9 90.9
x1, y1, x, 2, y2, d 98.9 98.9 98.6 99.0 96.3 77.2 98.4 81.0 97.1

Table 10: Average accuracy per classification task (1-9) in Mutual Positional Evaluation for plain LXMERT (top)
and our version (bottom).
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