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Abstract

Joint Multimodal Entity and Relation Extrac-
tion (JMERE) aims to extract structured entity-
relation quintuplets from textual sequences
with social media images. Large Vision-
Language Models (LVLMs) demonstrate im-
pressive performance across various multi-
modal downstream tasks. However, due to
the complexity of quintuple extraction logic
and multimodal information fusion, higher de-
mands are placed on the model’s ability to
capture associations between modalities and
perform reasoning. Current LVLMs still per-
form poorly on the JMERE task. To ad-
dress these challenges, we propose JMERE-
R1, a novel reasoning-enhanced paradigm
for LVLMs. Our method integrates Super-
vised Fine-Tuning (SFT) with Reinforcement
Learning (RL) to guide LVLMs toward au-
tonomous reasoning in multimodal contexts.
Furthermore, we employ automatically gener-
ated Multimodal Paradigm Chain-of-Thought
(MP-CoT) data to encourage the model to fo-
cus more on Image and text interaction infor-
mation. Experimental results show that with
parameter-efficient fine-tuning and reinforce-
ment learning, the LVLM is able to develop
autonomous multimodal reasoning capabilities.
Combined with our Policy-guided approach for
multimodal information capture and associa-
tion, JIMERE-R1 enables the LVLM to achieve
significantly stronger performance.

1 Introduction

Joint Multimodal Entity and Relation Extraction
(JMERE) aims to extract entity—relation quintu-
plets from short text sequences accompanied by
auxiliary images on social media platforms (Yuan
et al., 2023). This task unifies Multimodal Named
Entity Recognition (MNER) and Multimodal Re-
lation Extraction (MRE), enabling the model to
leverage the inherent correlations between them
(Lu et al., 2018; Zheng et al., 2021b,a). Previ-
ous approaches to multimodal information extrac-
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Figure 1: Three reasoning-enhanced paradigms. Gray
arrows indicate potential reasoning paths, red indicates
the correct path, and blue indicates incorrect paths.

tion predominantly rely on discriminative models
combined with image-text alignment modules. Re-
cently, Large Vision-Language Models (LVLMs)
(Yang et al., 2024) composed of visual encoders,
cross-modal projectors, and large language models
(LLMs) demonstrate strong generalization and mul-
timodal reasoning capabilities after pretraining on
massive multimodal corpora. These advancements
raise the question: Can LVLMs be more effectively
leveraged to improve JMERE performance by har-
nessing their powerful pretraining knowledge and
reasoning abilities?

However, our experiments show that applying
conventional Supervised Fine-Tuning (SFT) to
LVLMs for JMERE tasks has notable limitations
(Trung et al., 2024; Fu et al., 2024). First, stan-
dard SFT only fits token-level probabilities to cor-
rect outputs, without directly optimizing for mul-
timodal understanding or structured output predic-
tion, which limits performance. Second, the reason-
ing behind multimodal inference is opaque, mak-
ing the extracted quintuplets hard to interpret and
hindering effective error analysis and targeted im-
provements.



Chain-of-Thought (CoT) prompting has proven
effective in eliciting reasoning from LLMs in tasks
such as arithmetic and commonsense reasoning.
We posit that similar latent reasoning processes
exist in JMERE, and that enabling LVLMs with
explicit multimodal reasoning can significantly
improve performance. Yet, to the best of our
knowledge, this direction remains underexplored.
As shown in Figure 1, we design and investigate
three CoT-enhanced learning paradigms: Chain-of-
Thought Supervised Fine-Tuning (CoT-SFT), Rein-
forcement Learning (RL) and Reasoning Enhanced
JMERE (JMERE-R1). To avoid the high cost asso-
ciated with acquiring additional human-annotated
CoT data, we adopt a strategy that generates CoT
supervision without requiring extra manual anno-
tations. Specifically, we design a specialized for-
mat called Multimodal-Paradigm CoT (MP-CoT),
which emphasizes the reasoning process involv-
ing visual understanding and image-text alignment
within LVLMs. Each CoT follows a fixed three-
part template: (1) Image Description, (2) Visal-
Text Alignment, and (3) Quintuple Reasoning.

To construct MP-CoT data, we provide input
samples and gold label to multimodal LLM, which
generates reasoning paths based on a predefined
format, with a dual-filtering mechanism to enhance
CoT quality. The generated CoT samples are then
used for parameter-efficient fine-tuning (PEFT)
(Hu et al.; Dettmers et al., 2023) of the target
LVLM. However, the CoT-SFT paradigm suffers
from fixed reasoning paths, relying on the provided
CoT annotations, which typically involve a single
reasoning path. Notably, in JMERE, there are of-
ten multiple valid reasoning paths and information
sources for extracting the same quintuple. This
motivates us to adopt reinforcement learning tech-
niques that enhance textual reasoning in LLMs (Liu
et al., 2024). By comparing multiple generated
reasoning paths and rewarding the best ones, we
encourage the model to develop more diverse and
accurate reasoning behaviors.

In our further exploration, we test whether re-
inforcement learning alone can stimulate the rea-
soning abilities of LVLMs. At each training step,
we use the GPRO algorithm (Shao et al., 2024) to
update the model. By comparing multiple reason-
ing outputs sampled for the same query with the
gold label, we provide directional rewards to guide
learning. This paradigm focuses on encouraging
autonomous reasoning within LVLMs. However,
since untrained LVLMs lack prior awareness of

the JMERE task format, their initial accuracy is
very low, making convergence difficult. As a result,
reinforcement learning alone struggles to provide
strong JMERE performance.

To address the limitations of both conven-
tional SFT and the above reasoning-inspired RL
paradigm, we propose a novel training framework
called IMERE-RI1. This approach combines CoT-
based fine-tuning with reinforcement learning to
equip LVLMs with explicit multimodal reasoning
abilities, improving both interpretability and perfor-
mance. Specifically, we first warm up the LVLMs
with SFT combined with MP-CoT, enabling the
model to better capture multimodal associations
and develop basic reasoning skills. The warm-
up phase provides a stronger starting point for
reinforcement learning, amplifying its effective-
ness. Then, the model performs On-Model Sam-
pling to get a group of responses, followed by rein-
forcement learning based on sampled predictions.
Notably, the entire training process is parameter-
efficient. Our main contributions can be summa-
rized as follows:

* We conduct the first exploration of LVLMs
on the JMERE task, extending reasoning-
augmented paradigms, such as CoT and RL
from pure-text LLMs to the multimodal set-
ting.

* To address issues such as single-path reason-
ing and weak multimodal association in ex-
isting reasoning-augmented paradigms, we
propose JMERE-R1, a multimodal training
approach that requires no costly human-
annotated CoT data. It guides LVLMs to
effectively capture multimodal associations
and perform diverse, interpretable reasoning
chains for quintuple extraction.

» Extensive experiments show that our method
significantly improves LVLM performance
on JMERE, enhances the diversity of mul-
timodal reasoning paths, and boosts inter-
pretability—offering a strong baseline and
clear direction for future research.

2 Related Work

Joint Multimodal Entity-Relation Extraction.
Early research (Yao et al., 2019; Xie et al., 2022;
Gao et al., 2024) in information extraction primar-
ily focused on the text modality, with relatively
little exploration of other modalities. With the rise
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Figure 2: Overview of JMERE-R1. The training process consists of two stages. In the first stage, distilled MP-CoT
data helps LVLMs acquire initial reasoning and format-following capabilities. In the second stage, reinforcement
learning enable LVLMs to enhance their abilities through self-exploration of multiple potential reasoning paths.

of multimodal data on social media, MNER (Lu
et al., 2018) and MRE (Zheng et al., 2021b,a) be-
come key tasks in information extraction, aiming
to leverage image data to enhance named entity
recognition and relation extraction performance.
Previous methods overlooked the interaction be-
tween these two tasks. Yuan et al. (Yuan et al.,
2023) propose the JIMERE task, which jointly per-
forms MNER and MRE. Current multimodal in-
formation extraction methods (Xu et al., 2022; Cui
et al., 2024; Wang et al., 2024) generally rely on
additional image-text alignment modules and fine-
tuning, including aligning entire images to vectors
(Yu et al., 2020), aligning visual objects with tex-
tual counterparts (Wu et al., 2020; Zheng et al.,
2020), and node alignment based on both text and
visual graphs (Zhang et al., 2021). However, the
performance of these methods is limited by the bot-
tleneck of the alignment module’s capability, mak-
ing it difficult to model the complex cross-modal
semantic relationships, which in turn prevents full
exploitation of the model’s potential. Furthermore,
these methods rely on black-box discriminative
decisions, which lack interpretability in their rea-
soning processes. This motivates us to explore a
novel paradigm to address the JMERE task.

Reasoning enhanced Large Visual Language
Models. LVLMs (Liu et al., 2023; Bai et al.,
2025) are transformative in multimodal understand-
ing and interaction. By seamlessly integrating vi-
sual perception with the natural language process-
ing power of large language models, these models
are redefining how Al interprets and understands
complex information. LVLMs are widely used
across various downstream tasks (Liu et al., 2024;

Shao et al., 2024). Currently, LVLMs typically
consist of three components: a visual encoder, a
cross-modal projector, and a large language model
(LLM). Using LVLMs for the JMERE task ef-
fectively leverages their rich pretraining knowl-
edge and robust multimodal understanding capabil-
ities. This drives us to explore how to better apply
LVLMs to the JMERE task. Recently, RL meth-
ods (Liu et al., 2024; Shao et al., 2024) gain atten-
tion for enhancing the reasoning ability of LLMs.
However, such work has primarily focused on text
modalities, with few attempts in the multimodal
space. Our work, starting from JMERE, proposes
a training framework that encourages LVLMs to
focus more on multimodal content and its associa-
tions during reasoning, thereby improving model
performance.

3 Method

Figure 2 illustrates the overall architecture of
JMERE-RI. First, a filtering mechanism is applied
to vision-capable LLMs to obtain MP-CoT data.
Then, this data is used with PEFT methods to per-
form SFT warm-up training on the LVLM. Finally,
reinforcement learning is applied to the LVLM, en-
abling the model to self-explore and fully exploit
the capabilities of both the vision and language
modules for downstream tasks.

3.1 Problem Formulations

Given an input text sequence D = {dy, da, ..., dy }
and a corresponding image M, the task is to ex-
tract a set of quintuples: y = {(e1, 11, ea,t2,7)}
where each quintuple consists of two entities e;
and eq, their corresponding types ¢; and ¢2, and a



relation type r between them. Our goal is to enable
LVLMs to jointly understand text and image, gen-
erate the relevant quintuples. Let the input instruc-
tion be denoted as I, and the output token sequence
generated by the model as Y = frra (I, D, M)
where Y is the response produced by the LVLM.
The generation probability of Y is defined as:
P(Y | I,D,M) = Tliy P(ye | 1,D, M,y<t)
where y; denotes the ¢-th token in Y, and y; rep-
resents all tokens generated before step ¢. Figure 2
illustrates an example from the JMERE task, where
the model extracts the quintuple (Josh Gordon, per,
Browns, org, member of)

3.2 CoT-SFT

MP-CoT Data. To facilitate the JMERE task, we
propose a reasoning template named MP-CoT to
guide the model in attending more effectively to
visual content and cross-modal interactions. MP-
CoT consists of three components: Image Descrip-
tion, which captures visual semantics; Visual-Text
Alignment, which highlights associations between
image and text; and Quintuple Reasoning, which
supports logical inference for structured informa-
tion extraction. We explicitly define the content of
each component in the instruction prompts, and in-
put the image, corresponding text, and ground-truth
labels into a vision-capable GPT-40! to obtain MP-
CoT data. For each instance, we generate MP-CoT
candidates five times, thereby enriching the can-
didates. The instruction templates for generating
MP-CoT data can be found in Appendix D.

Re-Prediction Filter. To further improve the
quality of the CoT data, we introduce a Re-
Prediction Filter mechanism. Specifically, the im-
age, text, and generated reasoning chain are fed
back into the original model to produce a predicted
set of quintuples. If the prediction aligns with the
reference labels, the sample is retained.

Rule-Based Score Filter. For all samples that
can perform re-prediction, we further design a scor-
ing filtering mechanism that does not require train-
ing. Specifically, our scoring focuses on the accu-
racy of image descriptions, the capture of image-
text associations, and the completeness of the rea-
soning process. We use rules for accurate descrip-
tions and In-context learning methods to enable the
model to score better. The detailed scoring criteria
of the filter, the prompt templates used by the two

'The version we use is gpt-40-2024-11-20

filtering mechanisms, and the statistics of sample
counts before and after filtering can be found in
Appendix B.

Multimodal SFT. At this stage, we perform sev-
eral epochs of fine-tuning on the LVLMs using
MP-CoT data, enabling the model to acquire ba-
sic multimodal reasoning and quintuple extrac-
tion capabilities, and to generate coherent out-
puts. The input format is denoted as (X, F'), where
X = {I, D, M} consists of the Instruction I, the
accompanying text D, and the image M; E rep-
resents the reasoning data generated under a fixed
MP-CoT paradigm. Let the set of reasoning data
be denoted as P. To align with the ultimate goal of
quintuplets extraction, and based on the token-level
probability formulation described in the Problem
Formulations section, we train the model using an
autoregressive generation loss £:

lr

ES:— Z ZlogP0+9r(yt|IJDaM7y<t)
(X,E,L;y)eP t=1

ey

where [, denotes the length of the quintuple extrac-
tion label sequence L,. 6 represents the parameters
of the LVLMs, including both the vision and the
LLM components, which are kept frozen during
training. 6, refers to the trainable parameters intro-
duced by e Low-Rank Adaptation (LoRA).

3.3 Reinforcement Learning

We further enhance the LVLM’s reasoning ability
during self-exploration by applying the Group Rel-
ative Policy Optimization (GRPO) algorithm (Shao
et al., 2024) to the model. Specifically, we sample
multiple responses from the model and assign re-
ward values to each using a rule-based approach.
Compared to using reward model (Schulman et al.,
2017) to get reward score, this method is more com-
putationally efficient and allows for direct supervi-
sion from gold-standard labels. The input prompt
template can be found in Appendix E.

Accuracy-Based Rewards. We use the On-
Model Sampling strategy to generate a set of G
responses for each prompt. For a given response
1, the corresponding gold label contains m quintu-
ples, while the decoded output contains n predicted
quintuples, among which ¢ quintuples are correct.
Inspired by standard evaluation metrics, we define



a basic quintuple accuracy reward r, as:
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Note that any response with formatting errors
or invalid quintuple structure during LVLM self-
exploration is assigned a reward of zero.

Partial Reward. Given that each JMERE in-
stance typically includes only a small number of
quintuples, we introduce an additional partial re-
ward ¥ to mitigate reward sparsity (Riedmiller
et al., 2018; Trott et al., 2019). Let w denote the to-
tal number of correctly predicted components from
(el,t1,e2,t2,r) across all quintuples. Let Y be
the model output and Y the gold label. The partial
reward is defined as:

bW __ED(Y,Y)
R T AL

where E D denotes the edit distance between the
predicted and gold responses. This fine-grained
reward provides useful learning signals, especially
when full matches are rare.

Format Reward. Inspired by recent advances in
reasoning enhancement method (Liu et al., 2024),
to further guide the model toward structured reason-
ing and extraction, we introduce a format reward
rlf . Specifically, the model’s response must follow
a predefined structure containing both <think> ...
</think> and <answer> ... </answer> segments.
This constraint aligns with the SFT training format
and helps preserve response consistency during
self-exploration:

¥ 1, ifvalid format @
—
! 0, ifinvalid format

The overall reward r; for each response is com-
puted as:
ri =r]4+arl + Brlf 5)

where « and 3 are coefficient factor for the par-
tial reward and the format reward. The advantage
A; for response i is then calculated as:

~  r; —mean(r)
Aj=——7"+= 6
! std(r) ©
where mean denotes the average, and std denotes
the standard deviation, r denotes the set of rewards
corresponding to the G generated responses. This

introduces an intra-group competition mechanism,
guiding the model toward responses with higher rel-
ative advantage. To optimize the policy, we adopt
the Group Relative Policy Optimization (GRPO)
objective. Given a query ¢ = {I, D, M }, the loss
function is defined as:

G |oi ]

71'9(01'715 ‘ q, 0i,<t) )
o1 (Oi,t ’ q, 0i,<t)

Ai,t — v - Dxe (7g || Tref)
(7

where my, my,, and m..; represent the log-
probabilities assigned to the correct tokens by the
current policy model, the old policy model at the
beginning of the training step, and the reference
policy model obtained from SFT-warmed param-
eters, respectively. |o;| is the output length of the
i-th response, and ¢ indexes the tokens within that
response. The KL divergence term is weighted by
~ to ensure the updated policy stays close to the
reference distribution.

It is worth noting that, compared to the original
GRPO method, we apply a simplified version to
reduce computational overhead. In our implemen-
tation, only a single update is performed per group
of generated responses, and we omit the advantage
clipping step (Shao et al., 2024; Schulman et al.,
2017). Similar to SFT, the training in this stage is
also parameter-efficient.

4 Experiments

4.1 Datasets

We conduct our experiments using the JMERE
dataset (Yuan et al., 2023), which is composed of
MNER (Lu et al., 2018) and MRE (Zheng et al.,
2021a) and excludes samples from the original
dataset that lack entity types or relationships be-
tween entities. To the best of our knowledge, this
is currently the only publicly available dataset for
the Joint Multimodal Entity-Relation Extraction
(JMERE) task. The entity types include Person,
Organization, Location, and Miscellaneous, while
the relation types consist of the 22 categories de-
fined in prior work (Zheng et al., 2021a). We report
precision, recall, and F1 score for both quintuple ex-
traction and entity extraction as evaluation metrics
for model performance. A quintuple is considered
correct only when the entity, entity type, and re-
lation type perfectly match the ground truth label.



JMERE MNER

Model/Micro F1(%) Precision  Recall F1 Precision  Recall F1
OCSGA+MEGA 48.21 47.99 48.10 75.27 7232 T73.77
Pipline Method AGBAN+MEGA 47.87 48.28  48.57 74.78 73.69 74.23
UMGF+MEGA 49.28 50.76  50.01 75.02 76.77  75.88
OCSGA* 52.11 4741 49.64 77.13 75.03  76.07
Joint Method AGBAN* 51.07 48.89 49.95 76.57 75.82  76.19
UMGF* 52.76 50.22 5145 77.51 76.67 77.22
EEGA 58.26 52.61 55.29 78.27 7891 78.59
SET LLaVa-1.5-7B 55.81 46.56  50.77 79.75 7493  77.27
Qwen2.5-VL-7B 56.88 47.81 51.95 81.12 76.37  78.67
CoT-SET LLaVa-1.5-7B 50.81 39.22 4427 77.70 7195 7471
Qwen2.5-VL-7B 50.54 4359  46.77 76.48 73.10  74.75
Onlv-RL LLaVa-1.5-7B 39.05 3484 36.83 70.43 68.40 69.40
y Qwen2.5-VL-7B 40.11 3453 37.11 73.33 70.51  71.89
IMERE-R1 LLaVa-1.5-7B 57.07 52.34  54.60 80.12 77.81  78.95
) Qwen2.5-VL-7B 58.99 54.84 56.84 80.14 7829  79.20

Table 1: Results on the JMERE benchmark. The scores of existing discriminative methods are from the previous
paper (Yuan et al., 2023). All LVLM-related methods are new experiments. AGBAN™* refers to using the word-pair
relation tagging in the AGBAN model. The metric values of the best-performing methods are highlighted in bold.

The detailed description of our experimental setup
can be found in Appendix A.

4.2 Baselines

Existing Method. Based on previous studies
(Yuan et al., 2023), we combine existing MNER
and MRE methods into a pipeline as our strong
JMERE baseline, as shown in Table 1. These meth-
ods include OCSGA (Wu et al., 2020), AGBAN
(Zheng et al., 2020), and UMGF (Zhang et al.,
2021) for entity and corresponding type extraction,
as well as MEGA (Zheng et al., 2021a) for entity-
relation extraction. In addition, we apply word-
pair relation tagging to the above baseline models
for joint extraction, such as OCSGA*, AGBAN*,
UMGF*, and EEGA (Yuan et al., 2023).

LVLMs. We explore the performance of LVLMs
on the JMERE task under various conditions, in-
cluding zero-shot, traditional SFT paradigm, CoT-
SFT, direct RL, and LVLMSs trained using the
JMERE-RI1 paradigm. For the base models, we se-
lect the most advanced LVLMs currently available
on public benchmark (Tang et al., 2024), includ-
ing Qwen2.5-VL-7B-Instruct (Bai et al., 2025) and
LLaVa-1.5-7B (Liu et al., 2023).

4.3 Main Rsults

The experimental results on the JMERE dataset
are shown in Table 1. We can find that: (1) Tak-
ing Qwen-2.5-VL as an example, the proposed

JMERE-R1 framework outperforms the plain SFT
paradigm by 0.53 F1 in MNER and 4.89 F1 in
JMERE. Compared to CoT-SFT, the improvements
are 4.45 F1 in MNER and 10.07 F1 in JMERE.
When compared to Only-RL, the MNER score im-
proves by 7.31 F1 and the JMERE score by 19.73
F1. Relative to existing methods, we achieve a
0.61 F1 improvement in MNER and a 1.55 F1 im-
provement in JMERE. These results show that the
JMERE-R1 training framework significantly en-
hances the performance of LVLMs on the JIMERE
task, with similar results across different base mod-
els, demonstrating robustness. (2) Our method
shows limited improvement in the NER metric. We
attribute this to the fact that the reward function in
the RL stage focuses on the overall performance
of the quintuples rather than named entity recogni-
tion. The improvement in MNER is a side effect
of the increased accuracy of the quintuple. (3) Al-
though we improve the quality of MP-CoT data
with a dual-filtering mechanism and use this data
to help the model gain reasoning abilities, models
trained with only CoT-SFT still do not outperform
the traditional SFT paradigm. This phenomenon
results from the increased length of answers caused
by the inclusion of CoT data, making the SFT train-
ing objectives no longer focus solely on the accu-
racy of the quintuple tokens. Moreover, the soft
labels from distillation data are not entirely reli-
able, which further affects the performance. (4)



Model/(%) Precision Recall F1

JMERE-R1 58.99 54.84 56.84
w/o Partial Reward 56.86 53.12 5493
w/o Rule-Based Score Filter 56.58 51.72 54.04
w/o Re-Prediction Filter 55.86 50.62 53.11
w/o All Filter 55.08 48.28 51.46
CoT-SFT 50.54 43.59 46.77
w/o Rule-Based Score Filter 47.02 41.88 44.30
w/o Re-Prediction Filter 46.67 40.47 43.35
w/o All Filter 44.44 39.37 41.76

Table 2: Ablation experiment on the JMERE test set,
with the base LVLM Qwen2.5-VL-7B-Instruct and
JMERE F1 metric.
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Figure 3: The Impact of Number of Generated Re-
sponses

When directly training LVLMs with RL, the ini-
tial model’s understanding of the JMERE task is
insufficient, especially in terms of task structure
and the types involved. This leads to poor perfor-
mance during the On-Model Sampling phase, with
insufficient positive rewards. As a result, the model
performs poorly under the Only-RL paradigm. This
highlights the importance of CoT-SFT as a warm-
up step.

4.4 Ablation Study

We perform ablation studies on the proposed
JMERE-RI1 framework using the test set to verify
the effectiveness of each component in improving
the model’s performance. The experimental results
are shown in Table 2. Below is a detailed analysis
of each component:

w/o Partial Reward. We remove the Partial Re-
ward and use only the Accuracy-Based Reward to
calculate the advantage in reinforcement learning.
The model’s performance shows a noticeable de-
crease, demonstrating that the partial reward, which
combines the quintuple components and character
accuracy, helps reduce the impact of sparse rewards
during training.

w/o Filter. We conduct separate and combined
ablation studies on the two MP-CoT filtering mech-
anisms. We report results after both the CoT-SFT
phase and the two-stage training phase. The re-
sults show that both the Re-Prediction Filter and
the Rule-Based Score Filter contribute to improve-
ments in the quality of CoT data. Additionally,
the final model performance benefits from a better
starting point at the end of the CoT-SFT phase.

4.5 Analysis and Discussion

The Number of Generated Responses. We ex-
plore the impact of the number of generated re-
sponses, GG, on model performance during rein-
forcement learning training, with results shown in
Figure 3. The experiment demonstrates that as
the number of generated responses increases, the
model’s performance progressively improves. This
suggests that in GRPO training, increasing the num-
ber of sampled responses helps the JMERE model
more accurately identify the correct reasoning path
among multiple possible options, thus assigning
more appropriate advantages to each response. Fur-
ther analysis reveals that as G increases, while the
model’s potential is not fully exploited, the per-
formance gains begin to show diminishing returns
as computational costs rise. This indicates that
although increasing the number of responses can
enhance model performance, excessively high sam-
pling rates may lead to increased computational
overhead, with performance improvements even-
tually leveling off. Therefore, in practical applica-
tions, it is crucial to adjust GG appropriately to bal-
ance performance with computational efficiency.

Case Study To visually demonstrate the effec-
tiveness of our proposed training framework, we
present the responses generated by the Qwen-2.5-
VL-Instruct model trained under different frame-
works in Figure 4. Under the direct SFT paradigm,
the model’s training primarily focuses on fitting
the existing data distribution, lacking a deep un-
derstanding of the interaction between image and
text information. As a result, the model predicts
incorrect quintuple. In the CoT-SFT paradigm, due
to the incomplete reliability of MP-CoT data and
the dispersion of the training process, the model
erroneously identifies Titan as a player training on
the field, leading to the prediction of incorrect quin-
tuple. Compared to the SFT paradigm, CoT-SFT’s
visualization of the reasoning process allows us
to quickly identify issues in the model and pro-



RT@jwyattsports : .@Jack_Conklin78
putting in work @Titans practice

Text

[@Jack_Conklin78, per, @Titans, org,
member_of]

Label

SFT
[["jwyattsports”, "per”, "Titans", "per”, "

COT-SFT

<think> 1.Description of the Image Content: ... 2.Connection Between
the Text and the Image: The image and text describe a training scene
involving a person. 3. Reasoning Process for Extracting the 5-Tuple:
Head Entity: "@Jack_Conklin78" (person).Tail Entity: "@Titans" (person),
referring to an individual player as part of the team. Relation Type: "Peer”,
since both are within the same domain (the player's association with the
team as part of the same group or practice).</think>
<answer> [["@Jack_Conklin78", "per", "@Titans",
</answer>

"per’, "Peer’]]

<think>\nThe image shows a group of individuals on a sports field, likely
participating in a practice session. The individuals are wearing athletic
gear, and some are holding protective equipment. The text \"RT
@jwyattsports : .@Jack_Conklin78 putting in work @Titans practice\"

Conklin working during a practice session. The entity types and relation
types can be inferred from the context provided by the text. </think>
<answer> [["Jack_Conklin78", "per”, "Titans", "org", "Participation in

JMERE-R1

<think> 1.Description of the Image Content: The image
depicts a football practice session with players in uniform,
wearing helmets and practicing on a grassy field. Coaches
and staff are also present, indicating an organized training
environment. 2.Connection Between the Text and the
Image: The text mentions @Jack_Conklin78 (likely a player
associated with the Tennessee Titans, "@Titans") putting in
work during practice. The image visually supports this claim
by showing players actively practicing, aligning with the idea
of training or work during practice. 3. Reasoning Process for
Extracting the 5-Tuple: Head Entity: "@Jack_Conklin78" is
identified as the primary subject mentioned in the text.
Head Entity Type: "per" (person) because it refers to an
individual player. Tail Entity: "@Titans" is mentioned in the
text and is recognized as the organization associated with
"@Jack_Conklin78." Tail Entity Type: "org" (organization)
because it refers to the Tennessee Titans football
team. Relation Type: "member_of" because the text implies
that "@Jack_Conklin78" is a member of the "@Titans"
organization and participating in their practice.</think>
<answer> [["@Jack_Conklin78", "per", "@Titans", "org",

practice"]] </answer>"

i
I
i
i
I
I
i
i
'
I
indicates that the post is a retweet about a Titans player named Jack !
I
I
i
i
I
I
I
i
i

"member_of"]] </answer>

Figure 4: Case Study on JMERE: Responses of Qwen2.5-VL-7B under Different Thinking Enhancement Paradigms

COT-SFT JMERE-R1 —— COT-SFT-VOTING —— JMERE-R1-VOTING
Precision-JMERE
F1-MNER Recall-JMERE
Recall-MNER F1-JMERE

Precision-MNER

Figure 5: The performance variation of the model after
Voting. The center point represents a value of 40% F1,
while the outermost layer represents a value of 80% F1.

vides clear directions for optimization. In the RL
paradigm, due to the model’s lack of basic under-
standing of relationship categories, it fails to effec-
tively exclude irrelevant relationship types during
self-exploration. Despite having a logically correct
reasoning process, the model still predicts an in-
correct relationship type, such as Participation in
practice. In the JMERE-R1 paradigm, with cor-
rect foundational knowledge and comprehensive
self-exploration, the model is able to make logi-
cally sound inferences and accurately identify the
correct quintuple.

Expansion of Reasoning Paths. To verify that
the JMERE-R1 framework can expand the model’s
reasoning paths and enable flexible reasoning, we
conducted multi-path reasoning experiments, fol-
lowing previous studies (Wang et al., 2023; Uesato
et al., 2022; Trung et al., 2024). Specifically, for
each test sample, we sampled 100 reasoning pro-
cesses and corresponding answers, and integrated
all results using majority voting. The experimen-

tal results are shown in Figure 5. As can be seen,
compared to the CoT-SFT paradigm, JMERE-R1
achieves a significant performance boost after in-
heritance, reaching the best performance. This
demonstrates the effectiveness of incorporating re-
inforcement learning and allowing the model to
explore on its own, which expands the model’s rea-
soning paths and pushes the performance limits of
the model. By self-exploration, the model is able to
select the optimal solution from multiple reasoning
directions, further enhancing its reasoning capa-
bilities and ability to handle complex tasks. This
also indicates that enhancing the model’s reasoning
flexibility and diversity has a positive impact on
improving its overall performance.

5 Conclusion

In this work, we propose a framework, JMERE-R1,
for training LVLMs to better perform JMERE. First,
we fine-tune LVLMs using distilled and filtered
MP-CoT data to equip them with basic reasoning
and quintuple extraction abilities. Then, we train
the model with reinforcement learning by combin-
ing accuracy-based and partial reward functions,
guiding the model to enhance its reasoning abili-
ties through self-exploration. The partial reward
function integrates the accuracy of the quintuples
with character-level precision, helping to mitigate
sparse reward issues and preventing reasoning path
collapse. Experimental results and further analysis
show that the model trained with our framework
significantly outperforms existing methods on the
public IMERE benchmark. JMERE-RI1 effectively
enhances the reasoning capabilities of LVLMs and
broadens the reasoning paths, improve both the
precision and diversity of the model’s reasoning.



Limitations

The reward functions used during the reinforce-
ment learning phase—including partial and format-
based rewards—aim to guide the model’s reasoning
process. However, they often fail to fully capture
the complexity of reasoning paths, leading to sub-
par performance in certain edge cases. The prob-
lem of reward sparsity still affects the model’s ac-
curacy. We design more fine-grained reward strate-
gies to improve performance. Although we adopt
parameter-efficient tuning and the GRPO training
scheme to reduce computational cost, reinforce-
ment learning with multi-response sampling still
introduces considerable overhead. We further op-
timize the computational efficiency of our method
in ongoing work.
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A Implement Details

In our experiments, we use 4 A40-48GB GPUs
for training and adopt DeepSpeed’s Zero-2 stage
optimization. For the SFT and CoT-SFT baseline
models, we train the models for 20 epochs with a
learning rate of 2e-5 and a warm-up ratio of 6%.
We select the best-performing checkpoint on the
validation set. This training duration is sufficient
for the SFT model to converge. During training,
the batch size per GPU is set to 2, resulting in a to-
tal batch size of 8. In the CoT-SFT warm-up phase,
we train the model for 5 epochs with a learning rate
of 2e-5. In the reinforcement learning phase and
the RL baseline, we train the model for 30 epochs
with a learning rate of 2e-6, and we select the best
checkpoint on the validation set. The weight coeffi-
cient for partial reward, «, is set to 0.2, the weight
coefficient for format reward, j3, is set to 0.1, and
the KL coefficient, J, is set to 0.01. During testing,
we uniformly set the generation temperature to 0.8,
with a maximum generation length of 2048. In
the Low-Rank Adaptation (LoRA) for parameter-
efficient fine-tuning, we set the rank to 128 and the
merging ratio to 64.

B Filter Details

In this section, we provide a detailed presentation
of the prompt used by the dual-filtering mecha-
nism. Figure 8 illustrates the prompt used by the
Re-Prediction Filter, which inputs both the original
data and the generated reasoning process into the
model, and the generated results are used to filter
out data that does not match the labels. Figure 9
presents the prompt used by the Rule-Based Score
Filter, where we input the generated MP-CoT rea-
soning data and the original data into the model,
along with the predefined discrete scoring rules.
After scoring, we first filter out all samples with a
score below 0.7. If a sample has multiple generated
reasoning data, we select the one with the highest
score. If there are multiple reasoning data with the
same highest score, one is randomly selected.
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Figure 6: The error between GPT-40 and human scores.

Reliability of the Scoring Filter. We conduct a
manual evaluation to verify the reliability of the
Rule-Based Score Filter. Specifically, we randomly
select 100 samples from the training set, resulting
in a total of 500 MP-CoT instances. Ten annota-
tors are divided into two groups, with each person
scoring 200 responses based on predefined rules.
For each response, we calculate the average of four
human-provided scores and use it as the reference
to compute the error range of GPT-40’s scores. The
results, shown in Figure 6, indicate that the major-
ity of GPT-40’s scores fall within an error margin
of 0.1, demonstrating that its scoring is reliable
under fixed discrete rules.

Number of MP-CoT Instance. Figure 7 shows
the change in the number of MP-CoT samples be-
fore and after the two-stage filtering mechanism.
The results demonstrate that the filtering mecha-
nism effectively removes noisy samples and low-
quality reasoning data. The final sample count is
3534, compared to the original training set size
of 3618, indicating that the filtering process effec-
tively preserves sample integrity while removing
invalid data.

C Zero-Shot Test

We test the performance of GPT-40 and two base
models in a zero-shot setting. The The test prompt
is the same as the RL prompt, except that the fixed-
format reasoning instruction is removed. The Re-
sults are shown in Table 3. Overall, these models
do not perform well, further proving the necessity
of training LVLMs specifically for the JMERE task.
These test results also provide a strong benchmark
for future LVLM-based methods.
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Figure 7: The change in the number of MP-CoT samples
after filtering at each stage.

Model/(%) Precision Recall F1

ChatGPT4o 9.95 1747 12.68
Qwen2.5-VL-7B 7.27 14.10  9.60
LLaVa-1.5-7B 7.41 13.30 9.52

Table 3: Ablation experiment on the JMERE test set,
with the base LVLM Qwen2.5-VL-7B-Instruct and
JMERE F1 metric.

D MP-CoT Distill Prompt

We present the prompt template for obtaining MP-
CoT data in Figure 10. In the prompt, we provide
the image, text, and labels. Additionally, we spec-
ify the three components that must be included in
the MP-CoT.

E RL Prompt

In this section, we provide a detailed description of
the prompt used during the reinforcement learning
phase of IMERE-R1, as shown in Figure 11. We in-
put the text, image, and type ranges into the model
and instruct it to output the reasoning results in a
fixed format. The "Only-RL baseline" also uses the
same set of prompts.



Image:

Task: Based on the text, image, and reasoning process,
provide the final five-tuple answer. The output format is:
[Entity1, Entity Type1, Entity2, Entity Type2, Relation Type]

Text: @nfltrade_rumors : Browns Placing WR Josh
Gordon On Non - Football lliness List # Browns.

Reasoning Process: <think>...... </think>

Figure 8: Prompt Template for Re-Prediction Filter

Image:

Text: @nfltrade_rumors : Browns Placing WR Josh
Gordon On Non - Football lliness List # Browns.

Task: Evaluate the reasoning process of a given answer
and assign a score based on the following additive
criteria. please only output the score

Scoring Rules:

Add +0.1 if the answer includes a description of an
image.

Add +0.2 If the image description accurately reflects the
image content.

Add +0.2 If the answer includes an analysis of the
connection between the image and the accompanying
text.

Add +0.3, if the reasoning process includes a detailed inf
erence of the knowledge quintuple [Entity 1, Entity Type
1, Entity 2, Entity Type 2, Relation Type], including justific
ation for entity extraction, rationale for determining each
entity type, and the basis for relation type classification."
It's not enough to simply infer where the knowledge qui
ntuple is extracted from.

Add +0.2 If there is reflection that leads to overturning a
n incorrect conclusion, an additional 0.1 point may be aw
arded.

Reasoning Process: <think>...... </think> <answer>
[["Josh Gordon", "per", "Browns", "org", "member_of"]]

</answer>

Image:

Given an image and associated social media text, extrac
t a 5-tuple in the form [head entity, head entity type, tail
entity, tail entity type, relation type]. Provide the extractio
n process, including:

1. A description of the image content.
2. The connection between the text and the image.

3. A reasoning process for extracting the 5-tuple (keep it
concise).

The text data is: {@nfltrade_rumors : Browns Placing WR
Josh Gordon On Non - Football Iliness List # Browns.}
The 5-tuple is:{[Josh Gordon, per, Browns, org, member
of]}

Figure 10: Prompt Template for Obtaining MP-CoT
Data

Image:

Text: @nfltrade_rumors : Browns Placing WR Josh
Gordon On Non - Football lliness List # Browns.

Please extract entity relation quadruples from the social
media image and text, including entity types and relation

types.
Range of entity types: <org> <misc> <per> <loc>

Range of relation types: <place_of residence> <alumi>
<neighbor> <awarded> <alternate_names> <part_of>
<subsidiary> <siblings> <contain> <nationality>
<race> <peer> <parent> <held_on> <locate_at>
<religion> <member_of> <place of birth> <charges>
<present_in> <couple>

The output format should be [[ent1, ent1 type, ent2, ent2
type, relation typel]l.

text: @nfltrade_rumors : Browns Placing WR Josh Gordon
On Non - Football lliness List # Browns.

First output the thinking process in <think> </think>
tags and then output the final answer in <answer>
</answer> tags.

Figure 9: Prompt Template for Rule-Based Score Filter
Figure 11: Prompt Template for reinforcement learning
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