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Abstract001

Joint Multimodal Entity and Relation Extrac-002
tion (JMERE) aims to extract structured entity-003
relation quintuplets from textual sequences004
with social media images. Large Vision-005
Language Models (LVLMs) demonstrate im-006
pressive performance across various multi-007
modal downstream tasks. However, due to008
the complexity of quintuple extraction logic009
and multimodal information fusion, higher de-010
mands are placed on the model’s ability to011
capture associations between modalities and012
perform reasoning. Current LVLMs still per-013
form poorly on the JMERE task. To ad-014
dress these challenges, we propose JMERE-015
R1, a novel reasoning-enhanced paradigm016
for LVLMs. Our method integrates Super-017
vised Fine-Tuning (SFT) with Reinforcement018
Learning (RL) to guide LVLMs toward au-019
tonomous reasoning in multimodal contexts.020
Furthermore, we employ automatically gener-021
ated Multimodal Paradigm Chain-of-Thought022
(MP-CoT) data to encourage the model to fo-023
cus more on Image and text interaction infor-024
mation. Experimental results show that with025
parameter-efficient fine-tuning and reinforce-026
ment learning, the LVLM is able to develop027
autonomous multimodal reasoning capabilities.028
Combined with our Policy-guided approach for029
multimodal information capture and associa-030
tion, JMERE-R1 enables the LVLM to achieve031
significantly stronger performance.032

1 Introduction033

Joint Multimodal Entity and Relation Extraction034

(JMERE) aims to extract entity–relation quintu-035

plets from short text sequences accompanied by036

auxiliary images on social media platforms (Yuan037

et al., 2023). This task unifies Multimodal Named038

Entity Recognition (MNER) and Multimodal Re-039

lation Extraction (MRE), enabling the model to040

leverage the inherent correlations between them041

(Lu et al., 2018; Zheng et al., 2021b,a). Previ-042

ous approaches to multimodal information extrac-043
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Figure 1: Three reasoning-enhanced paradigms. Gray
arrows indicate potential reasoning paths, red indicates
the correct path, and blue indicates incorrect paths.

tion predominantly rely on discriminative models 044

combined with image-text alignment modules. Re- 045

cently, Large Vision-Language Models (LVLMs) 046

(Yang et al., 2024) composed of visual encoders, 047

cross-modal projectors, and large language models 048

(LLMs) demonstrate strong generalization and mul- 049

timodal reasoning capabilities after pretraining on 050

massive multimodal corpora. These advancements 051

raise the question: Can LVLMs be more effectively 052

leveraged to improve JMERE performance by har- 053

nessing their powerful pretraining knowledge and 054

reasoning abilities? 055

However, our experiments show that applying 056

conventional Supervised Fine-Tuning (SFT) to 057

LVLMs for JMERE tasks has notable limitations 058

(Trung et al., 2024; Fu et al., 2024). First, stan- 059

dard SFT only fits token-level probabilities to cor- 060

rect outputs, without directly optimizing for mul- 061

timodal understanding or structured output predic- 062

tion, which limits performance. Second, the reason- 063

ing behind multimodal inference is opaque, mak- 064

ing the extracted quintuplets hard to interpret and 065

hindering effective error analysis and targeted im- 066

provements. 067
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Chain-of-Thought (CoT) prompting has proven068

effective in eliciting reasoning from LLMs in tasks069

such as arithmetic and commonsense reasoning.070

We posit that similar latent reasoning processes071

exist in JMERE, and that enabling LVLMs with072

explicit multimodal reasoning can significantly073

improve performance. Yet, to the best of our074

knowledge, this direction remains underexplored.075

As shown in Figure 1, we design and investigate076

three CoT-enhanced learning paradigms: Chain-of-077

Thought Supervised Fine-Tuning (CoT-SFT), Rein-078

forcement Learning (RL) and Reasoning Enhanced079

JMERE (JMERE-R1). To avoid the high cost asso-080

ciated with acquiring additional human-annotated081

CoT data, we adopt a strategy that generates CoT082

supervision without requiring extra manual anno-083

tations. Specifically, we design a specialized for-084

mat called Multimodal-Paradigm CoT (MP-CoT),085

which emphasizes the reasoning process involv-086

ing visual understanding and image-text alignment087

within LVLMs. Each CoT follows a fixed three-088

part template: (1) Image Description, (2) Visal-089

Text Alignment, and (3) Quintuple Reasoning.090

To construct MP-CoT data, we provide input091

samples and gold label to multimodal LLM, which092

generates reasoning paths based on a predefined093

format, with a dual-filtering mechanism to enhance094

CoT quality. The generated CoT samples are then095

used for parameter-efficient fine-tuning (PEFT)096

(Hu et al.; Dettmers et al., 2023) of the target097

LVLM. However, the CoT-SFT paradigm suffers098

from fixed reasoning paths, relying on the provided099

CoT annotations, which typically involve a single100

reasoning path. Notably, in JMERE, there are of-101

ten multiple valid reasoning paths and information102

sources for extracting the same quintuple. This103

motivates us to adopt reinforcement learning tech-104

niques that enhance textual reasoning in LLMs (Liu105

et al., 2024). By comparing multiple generated106

reasoning paths and rewarding the best ones, we107

encourage the model to develop more diverse and108

accurate reasoning behaviors.109

In our further exploration, we test whether re-110

inforcement learning alone can stimulate the rea-111

soning abilities of LVLMs. At each training step,112

we use the GPRO algorithm (Shao et al., 2024) to113

update the model. By comparing multiple reason-114

ing outputs sampled for the same query with the115

gold label, we provide directional rewards to guide116

learning. This paradigm focuses on encouraging117

autonomous reasoning within LVLMs. However,118

since untrained LVLMs lack prior awareness of119

the JMERE task format, their initial accuracy is 120

very low, making convergence difficult. As a result, 121

reinforcement learning alone struggles to provide 122

strong JMERE performance. 123

To address the limitations of both conven- 124

tional SFT and the above reasoning-inspired RL 125

paradigm, we propose a novel training framework 126

called JMERE-R1. This approach combines CoT- 127

based fine-tuning with reinforcement learning to 128

equip LVLMs with explicit multimodal reasoning 129

abilities, improving both interpretability and perfor- 130

mance. Specifically, we first warm up the LVLMs 131

with SFT combined with MP-CoT, enabling the 132

model to better capture multimodal associations 133

and develop basic reasoning skills. The warm- 134

up phase provides a stronger starting point for 135

reinforcement learning, amplifying its effective- 136

ness. Then, the model performs On-Model Sam- 137

pling to get a group of responses, followed by rein- 138

forcement learning based on sampled predictions. 139

Notably, the entire training process is parameter- 140

efficient. Our main contributions can be summa- 141

rized as follows: 142

• We conduct the first exploration of LVLMs 143

on the JMERE task, extending reasoning- 144

augmented paradigms, such as CoT and RL 145

from pure-text LLMs to the multimodal set- 146

ting. 147

• To address issues such as single-path reason- 148

ing and weak multimodal association in ex- 149

isting reasoning-augmented paradigms, we 150

propose JMERE-R1, a multimodal training 151

approach that requires no costly human- 152

annotated CoT data. It guides LVLMs to 153

effectively capture multimodal associations 154

and perform diverse, interpretable reasoning 155

chains for quintuple extraction. 156

• Extensive experiments show that our method 157

significantly improves LVLM performance 158

on JMERE, enhances the diversity of mul- 159

timodal reasoning paths, and boosts inter- 160

pretability—offering a strong baseline and 161

clear direction for future research. 162

2 Related Work 163

Joint Multimodal Entity-Relation Extraction. 164

Early research (Yao et al., 2019; Xie et al., 2022; 165

Gao et al., 2024) in information extraction primar- 166

ily focused on the text modality, with relatively 167

little exploration of other modalities. With the rise 168
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Figure 2: Overview of JMERE-R1. The training process consists of two stages. In the first stage, distilled MP-CoT
data helps LVLMs acquire initial reasoning and format-following capabilities. In the second stage, reinforcement
learning enable LVLMs to enhance their abilities through self-exploration of multiple potential reasoning paths.

of multimodal data on social media, MNER (Lu169

et al., 2018) and MRE (Zheng et al., 2021b,a) be-170

come key tasks in information extraction, aiming171

to leverage image data to enhance named entity172

recognition and relation extraction performance.173

Previous methods overlooked the interaction be-174

tween these two tasks. Yuan et al. (Yuan et al.,175

2023) propose the JMERE task, which jointly per-176

forms MNER and MRE. Current multimodal in-177

formation extraction methods (Xu et al., 2022; Cui178

et al., 2024; Wang et al., 2024) generally rely on179

additional image-text alignment modules and fine-180

tuning, including aligning entire images to vectors181

(Yu et al., 2020), aligning visual objects with tex-182

tual counterparts (Wu et al., 2020; Zheng et al.,183

2020), and node alignment based on both text and184

visual graphs (Zhang et al., 2021). However, the185

performance of these methods is limited by the bot-186

tleneck of the alignment module’s capability, mak-187

ing it difficult to model the complex cross-modal188

semantic relationships, which in turn prevents full189

exploitation of the model’s potential. Furthermore,190

these methods rely on black-box discriminative191

decisions, which lack interpretability in their rea-192

soning processes. This motivates us to explore a193

novel paradigm to address the JMERE task.194

Reasoning enhanced Large Visual Language195

Models. LVLMs (Liu et al., 2023; Bai et al.,196

2025) are transformative in multimodal understand-197

ing and interaction. By seamlessly integrating vi-198

sual perception with the natural language process-199

ing power of large language models, these models200

are redefining how AI interprets and understands201

complex information. LVLMs are widely used202

across various downstream tasks (Liu et al., 2024;203

Shao et al., 2024). Currently, LVLMs typically 204

consist of three components: a visual encoder, a 205

cross-modal projector, and a large language model 206

(LLM). Using LVLMs for the JMERE task ef- 207

fectively leverages their rich pretraining knowl- 208

edge and robust multimodal understanding capabil- 209

ities. This drives us to explore how to better apply 210

LVLMs to the JMERE task. Recently, RL meth- 211

ods (Liu et al., 2024; Shao et al., 2024) gain atten- 212

tion for enhancing the reasoning ability of LLMs. 213

However, such work has primarily focused on text 214

modalities, with few attempts in the multimodal 215

space. Our work, starting from JMERE, proposes 216

a training framework that encourages LVLMs to 217

focus more on multimodal content and its associa- 218

tions during reasoning, thereby improving model 219

performance. 220

3 Method 221

Figure 2 illustrates the overall architecture of 222

JMERE-R1. First, a filtering mechanism is applied 223

to vision-capable LLMs to obtain MP-CoT data. 224

Then, this data is used with PEFT methods to per- 225

form SFT warm-up training on the LVLM. Finally, 226

reinforcement learning is applied to the LVLM, en- 227

abling the model to self-explore and fully exploit 228

the capabilities of both the vision and language 229

modules for downstream tasks. 230

3.1 Problem Formulations 231

Given an input text sequence D = {d1, d2, ..., dn} 232

and a corresponding image M , the task is to ex- 233

tract a set of quintuples: y = {(e1, t1, e2, t2, r)} 234

where each quintuple consists of two entities e1 235

and e2, their corresponding types t1 and t2, and a 236
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relation type r between them. Our goal is to enable237

LVLMs to jointly understand text and image, gen-238

erate the relevant quintuples. Let the input instruc-239

tion be denoted as I , and the output token sequence240

generated by the model as Y = fLLM (I,D,M)241

where Y is the response produced by the LVLM.242

The generation probability of Y is defined as:243

P (Y | I,D,M) =
∏l

t=1 P (yt | I,D,M, y<t)244

where yt denotes the t-th token in Y , and y<t rep-245

resents all tokens generated before step t. Figure 2246

illustrates an example from the JMERE task, where247

the model extracts the quintuple (Josh Gordon, per,248

Browns, org, member of)249

3.2 CoT-SFT250

MP-CoT Data. To facilitate the JMERE task, we251

propose a reasoning template named MP-CoT to252

guide the model in attending more effectively to253

visual content and cross-modal interactions. MP-254

CoT consists of three components: Image Descrip-255

tion, which captures visual semantics; Visual-Text256

Alignment, which highlights associations between257

image and text; and Quintuple Reasoning, which258

supports logical inference for structured informa-259

tion extraction. We explicitly define the content of260

each component in the instruction prompts, and in-261

put the image, corresponding text, and ground-truth262

labels into a vision-capable GPT-4o1 to obtain MP-263

CoT data. For each instance, we generate MP-CoT264

candidates five times, thereby enriching the can-265

didates. The instruction templates for generating266

MP-CoT data can be found in Appendix D.267

Re-Prediction Filter. To further improve the268

quality of the CoT data, we introduce a Re-269

Prediction Filter mechanism. Specifically, the im-270

age, text, and generated reasoning chain are fed271

back into the original model to produce a predicted272

set of quintuples. If the prediction aligns with the273

reference labels, the sample is retained.274

Rule-Based Score Filter. For all samples that275

can perform re-prediction, we further design a scor-276

ing filtering mechanism that does not require train-277

ing. Specifically, our scoring focuses on the accu-278

racy of image descriptions, the capture of image-279

text associations, and the completeness of the rea-280

soning process. We use rules for accurate descrip-281

tions and In-context learning methods to enable the282

model to score better. The detailed scoring criteria283

of the filter, the prompt templates used by the two284

1The version we use is gpt-4o-2024-11-20

filtering mechanisms, and the statistics of sample 285

counts before and after filtering can be found in 286

Appendix B. 287

Multimodal SFT. At this stage, we perform sev- 288

eral epochs of fine-tuning on the LVLMs using 289

MP-CoT data, enabling the model to acquire ba- 290

sic multimodal reasoning and quintuple extrac- 291

tion capabilities, and to generate coherent out- 292

puts. The input format is denoted as (X,E), where 293

X = {I,D,M} consists of the Instruction I , the 294

accompanying text D, and the image M ; E rep- 295

resents the reasoning data generated under a fixed 296

MP-CoT paradigm. Let the set of reasoning data 297

be denoted as P . To align with the ultimate goal of 298

quintuplets extraction, and based on the token-level 299

probability formulation described in the Problem 300

Formulations section, we train the model using an 301

autoregressive generation loss ℓs: 302

ℓs = −
∑

(X,E,Lr)∈P

lr∑
t=1

logPθ+θr(yt|I,D,M, y<t)

(1) 303

where lr denotes the length of the quintuple extrac- 304

tion label sequence Lr. θ represents the parameters 305

of the LVLMs, including both the vision and the 306

LLM components, which are kept frozen during 307

training. θr refers to the trainable parameters intro- 308

duced by e Low-Rank Adaptation (LoRA). 309

3.3 Reinforcement Learning 310

We further enhance the LVLM’s reasoning ability 311

during self-exploration by applying the Group Rel- 312

ative Policy Optimization (GRPO) algorithm (Shao 313

et al., 2024) to the model. Specifically, we sample 314

multiple responses from the model and assign re- 315

ward values to each using a rule-based approach. 316

Compared to using reward model (Schulman et al., 317

2017) to get reward score, this method is more com- 318

putationally efficient and allows for direct supervi- 319

sion from gold-standard labels. The input prompt 320

template can be found in Appendix E. 321

Accuracy-Based Rewards. We use the On- 322

Model Sampling strategy to generate a set of G 323

responses for each prompt. For a given response 324

i, the corresponding gold label contains m quintu- 325

ples, while the decoded output contains n predicted 326

quintuples, among which c quintuples are correct. 327

Inspired by standard evaluation metrics, we define 328
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a basic quintuple accuracy reward rq as:329

rqi =
2 · c

n · c
m

c
n + c

m

=
2c

m+ n
(2)330

Note that any response with formatting errors331

or invalid quintuple structure during LVLM self-332

exploration is assigned a reward of zero.333

Partial Reward. Given that each JMERE in-334

stance typically includes only a small number of335

quintuples, we introduce an additional partial re-336

ward rpi to mitigate reward sparsity (Riedmiller337

et al., 2018; Trott et al., 2019). Let w denote the to-338

tal number of correctly predicted components from339

(e1, t1, e2, t2, r) across all quintuples. Let Ŷ be340

the model output and Y the gold label. The partial341

reward is defined as:342

rpi =
w

5n
+ (1− ED(Ŷ , Y )

max(|Ŷ |, |Y |)
) (3)343

where ED denotes the edit distance between the344

predicted and gold responses. This fine-grained345

reward provides useful learning signals, especially346

when full matches are rare.347

Format Reward. Inspired by recent advances in348

reasoning enhancement method (Liu et al., 2024),349

to further guide the model toward structured reason-350

ing and extraction, we introduce a format reward351

rfi . Specifically, the model’s response must follow352

a predefined structure containing both <think> ...353

</think> and <answer> ... </answer> segments.354

This constraint aligns with the SFT training format355

and helps preserve response consistency during356

self-exploration:357

rfi =

{
1, if valid format
0, if invalid format

(4)358

The overall reward ri for each response is com-359

puted as:360

ri = rqi + αrpi + βrfi (5)361

where α and β are coefficient factor for the par-362

tial reward and the format reward. The advantage363

Âi for response i is then calculated as:364

Âi =
ri −mean(r)

std(r)
(6)365

where mean denotes the average, and std denotes366

the standard deviation, r denotes the set of rewards367

corresponding to the G generated responses. This368

introduces an intra-group competition mechanism, 369

guiding the model toward responses with higher rel- 370

ative advantage. To optimize the policy, we adopt 371

the Group Relative Policy Optimization (GRPO) 372

objective. Given a query q = {I,D,M}, the loss 373

function is defined as: 374

ℓGRPO(θ) = − 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

375[
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
· Âi,t − γ · DKL (πθ ∥πref)

]
(7)

376

where πθ, πθold and πref represent the log- 377

probabilities assigned to the correct tokens by the 378

current policy model, the old policy model at the 379

beginning of the training step, and the reference 380

policy model obtained from SFT-warmed param- 381

eters, respectively. |oi| is the output length of the 382

i-th response, and t indexes the tokens within that 383

response. The KL divergence term is weighted by 384

γ to ensure the updated policy stays close to the 385

reference distribution. 386

It is worth noting that, compared to the original 387

GRPO method, we apply a simplified version to 388

reduce computational overhead. In our implemen- 389

tation, only a single update is performed per group 390

of generated responses, and we omit the advantage 391

clipping step (Shao et al., 2024; Schulman et al., 392

2017). Similar to SFT, the training in this stage is 393

also parameter-efficient. 394

4 Experiments 395

4.1 Datasets 396

We conduct our experiments using the JMERE 397

dataset (Yuan et al., 2023), which is composed of 398

MNER (Lu et al., 2018) and MRE (Zheng et al., 399

2021a) and excludes samples from the original 400

dataset that lack entity types or relationships be- 401

tween entities. To the best of our knowledge, this 402

is currently the only publicly available dataset for 403

the Joint Multimodal Entity-Relation Extraction 404

(JMERE) task. The entity types include Person, 405

Organization, Location, and Miscellaneous, while 406

the relation types consist of the 22 categories de- 407

fined in prior work (Zheng et al., 2021a). We report 408

precision, recall, and F1 score for both quintuple ex- 409

traction and entity extraction as evaluation metrics 410

for model performance. A quintuple is considered 411

correct only when the entity, entity type, and re- 412

lation type perfectly match the ground truth label. 413
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JMERE MNER
Model/Micro F1(%) Precision Recall F1 Precision Recall F1

Pipline Method
OCSGA+MEGA 48.21 47.99 48.10 75.27 72.32 73.77
AGBAN+MEGA 47.87 48.28 48.57 74.78 73.69 74.23
UMGF+MEGA 49.28 50.76 50.01 75.02 76.77 75.88

Joint Method

OCSGA∗ 52.11 47.41 49.64 77.13 75.03 76.07
AGBAN∗ 51.07 48.89 49.95 76.57 75.82 76.19
UMGF∗ 52.76 50.22 51.45 77.51 76.67 77.22
EEGA 58.26 52.61 55.29 78.27 78.91 78.59

SFT LLaVa-1.5-7B 55.81 46.56 50.77 79.75 74.93 77.27
Qwen2.5-VL-7B 56.88 47.81 51.95 81.12 76.37 78.67

CoT-SFT LLaVa-1.5-7B 50.81 39.22 44.27 77.70 71.95 74.71
Qwen2.5-VL-7B 50.54 43.59 46.77 76.48 73.10 74.75

Only-RL LLaVa-1.5-7B 39.05 34.84 36.83 70.43 68.40 69.40
Qwen2.5-VL-7B 40.11 34.53 37.11 73.33 70.51 71.89

JMERE-R1 LLaVa-1.5-7B 57.07 52.34 54.60 80.12 77.81 78.95
Qwen2.5-VL-7B 58.99 54.84 56.84 80.14 78.29 79.20

Table 1: Results on the JMERE benchmark. The scores of existing discriminative methods are from the previous
paper (Yuan et al., 2023). All LVLM-related methods are new experiments. AGBAN∗ refers to using the word-pair
relation tagging in the AGBAN model. The metric values of the best-performing methods are highlighted in bold.

The detailed description of our experimental setup414

can be found in Appendix A.415

4.2 Baselines416

Existing Method. Based on previous studies417

(Yuan et al., 2023), we combine existing MNER418

and MRE methods into a pipeline as our strong419

JMERE baseline, as shown in Table 1. These meth-420

ods include OCSGA (Wu et al., 2020), AGBAN421

(Zheng et al., 2020), and UMGF (Zhang et al.,422

2021) for entity and corresponding type extraction,423

as well as MEGA (Zheng et al., 2021a) for entity-424

relation extraction. In addition, we apply word-425

pair relation tagging to the above baseline models426

for joint extraction, such as OCSGA∗, AGBAN∗,427

UMGF∗, and EEGA (Yuan et al., 2023).428

LVLMs. We explore the performance of LVLMs429

on the JMERE task under various conditions, in-430

cluding zero-shot, traditional SFT paradigm, CoT-431

SFT, direct RL, and LVLMs trained using the432

JMERE-R1 paradigm. For the base models, we se-433

lect the most advanced LVLMs currently available434

on public benchmark (Tang et al., 2024), includ-435

ing Qwen2.5-VL-7B-Instruct (Bai et al., 2025) and436

LLaVa-1.5-7B (Liu et al., 2023).437

4.3 Main Rsults438

The experimental results on the JMERE dataset439

are shown in Table 1. We can find that: (1) Tak-440

ing Qwen-2.5-VL as an example, the proposed441

JMERE-R1 framework outperforms the plain SFT 442

paradigm by 0.53 F1 in MNER and 4.89 F1 in 443

JMERE. Compared to CoT-SFT, the improvements 444

are 4.45 F1 in MNER and 10.07 F1 in JMERE. 445

When compared to Only-RL, the MNER score im- 446

proves by 7.31 F1 and the JMERE score by 19.73 447

F1. Relative to existing methods, we achieve a 448

0.61 F1 improvement in MNER and a 1.55 F1 im- 449

provement in JMERE. These results show that the 450

JMERE-R1 training framework significantly en- 451

hances the performance of LVLMs on the JMERE 452

task, with similar results across different base mod- 453

els, demonstrating robustness. (2) Our method 454

shows limited improvement in the NER metric. We 455

attribute this to the fact that the reward function in 456

the RL stage focuses on the overall performance 457

of the quintuples rather than named entity recogni- 458

tion. The improvement in MNER is a side effect 459

of the increased accuracy of the quintuple. (3) Al- 460

though we improve the quality of MP-CoT data 461

with a dual-filtering mechanism and use this data 462

to help the model gain reasoning abilities, models 463

trained with only CoT-SFT still do not outperform 464

the traditional SFT paradigm. This phenomenon 465

results from the increased length of answers caused 466

by the inclusion of CoT data, making the SFT train- 467

ing objectives no longer focus solely on the accu- 468

racy of the quintuple tokens. Moreover, the soft 469

labels from distillation data are not entirely reli- 470

able, which further affects the performance. (4) 471
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Model/(%) Precision Recall F1

JMERE-R1 58.99 54.84 56.84
w/o Partial Reward 56.86 53.12 54.93
w/o Rule-Based Score Filter 56.58 51.72 54.04
w/o Re-Prediction Filter 55.86 50.62 53.11
w/o All Filter 55.08 48.28 51.46

CoT-SFT 50.54 43.59 46.77
w/o Rule-Based Score Filter 47.02 41.88 44.30
w/o Re-Prediction Filter 46.67 40.47 43.35
w/o All Filter 44.44 39.37 41.76

Table 2: Ablation experiment on the JMERE test set,
with the base LVLM Qwen2.5-VL-7B-Instruct and
JMERE F1 metric.

54

55

56

57

58

2 3 4 5 6 7 8 9 
Number of Responses

M
ic
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 F

1

Figure 3: The Impact of Number of Generated Re-
sponses

When directly training LVLMs with RL, the ini-472

tial model’s understanding of the JMERE task is473

insufficient, especially in terms of task structure474

and the types involved. This leads to poor perfor-475

mance during the On-Model Sampling phase, with476

insufficient positive rewards. As a result, the model477

performs poorly under the Only-RL paradigm. This478

highlights the importance of CoT-SFT as a warm-479

up step.480

4.4 Ablation Study481

We perform ablation studies on the proposed482

JMERE-R1 framework using the test set to verify483

the effectiveness of each component in improving484

the model’s performance. The experimental results485

are shown in Table 2. Below is a detailed analysis486

of each component:487

w/o Partial Reward. We remove the Partial Re-488

ward and use only the Accuracy-Based Reward to489

calculate the advantage in reinforcement learning.490

The model’s performance shows a noticeable de-491

crease, demonstrating that the partial reward, which492

combines the quintuple components and character493

accuracy, helps reduce the impact of sparse rewards494

during training.495

w/o Filter. We conduct separate and combined 496

ablation studies on the two MP-CoT filtering mech- 497

anisms. We report results after both the CoT-SFT 498

phase and the two-stage training phase. The re- 499

sults show that both the Re-Prediction Filter and 500

the Rule-Based Score Filter contribute to improve- 501

ments in the quality of CoT data. Additionally, 502

the final model performance benefits from a better 503

starting point at the end of the CoT-SFT phase. 504

4.5 Analysis and Discussion 505

The Number of Generated Responses. We ex- 506

plore the impact of the number of generated re- 507

sponses, G, on model performance during rein- 508

forcement learning training, with results shown in 509

Figure 3. The experiment demonstrates that as 510

the number of generated responses increases, the 511

model’s performance progressively improves. This 512

suggests that in GRPO training, increasing the num- 513

ber of sampled responses helps the JMERE model 514

more accurately identify the correct reasoning path 515

among multiple possible options, thus assigning 516

more appropriate advantages to each response. Fur- 517

ther analysis reveals that as G increases, while the 518

model’s potential is not fully exploited, the per- 519

formance gains begin to show diminishing returns 520

as computational costs rise. This indicates that 521

although increasing the number of responses can 522

enhance model performance, excessively high sam- 523

pling rates may lead to increased computational 524

overhead, with performance improvements even- 525

tually leveling off. Therefore, in practical applica- 526

tions, it is crucial to adjust G appropriately to bal- 527

ance performance with computational efficiency. 528

Case Study To visually demonstrate the effec- 529

tiveness of our proposed training framework, we 530

present the responses generated by the Qwen-2.5- 531

VL-Instruct model trained under different frame- 532

works in Figure 4. Under the direct SFT paradigm, 533

the model’s training primarily focuses on fitting 534

the existing data distribution, lacking a deep un- 535

derstanding of the interaction between image and 536

text information. As a result, the model predicts 537

incorrect quintuple. In the CoT-SFT paradigm, due 538

to the incomplete reliability of MP-CoT data and 539

the dispersion of the training process, the model 540

erroneously identifies Titan as a player training on 541

the field, leading to the prediction of incorrect quin- 542

tuple. Compared to the SFT paradigm, CoT-SFT’s 543

visualization of the reasoning process allows us 544

to quickly identify issues in the model and pro- 545
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RT@jwyattsports : .@Jack_Conklin78 
putting in work @Titans practice

Image

Text

Label

[@Jack_Conklin78, per, @Titans, org, 
member_of]

 <think> 1.Description of the Image Content: The image 
depicts a football practice session with players in uniform, 
wearing helmets and practicing on a grassy field. Coaches 
and staff are also present, indicating an organized training 
environment.  2.Connection Between the Text and the 
Image:  The text mentions @Jack_Conklin78 (likely a player 
associated with the Tennessee Titans, "@Titans") putting in 
work during practice. The image visually supports this claim 
by showing players actively practicing, aligning with the idea 
of training or work during practice. 3. Reasoning Process for 
Extracting the 5-Tuple: Head Entity: "@Jack_Conklin78" is 
identified as the primary subject mentioned in the text.   
Head Entity Type: "per" (person) because it refers to an 
individual player.  Tail Entity: "@Titans" is mentioned in the 
text and is recognized as the organization associated with 
"@Jack_Conklin78."   Tail Entity Type: "org" (organization) 
because  i t  re fers  to  the  Tennessee  T i tans  footba l l 
team.  Relation Type: "member_of" because the text implies 
that "@Jack_Conklin78" is a member of the "@Titans" 
organization and participating in their practice.</think>
 <answer> [["@Jack_Conklin78", "per", "@Titans", "org", 
"member_of"]] </answer>

JMERE-R1SFT

COT-SFT

RL
<think>\nThe image shows a group of individuals on a sports field, likely 
participating in a practice session. The individuals are wearing athletic 
gear, and some are holding protective equipment. The text \"RT 
@jwyattsports : .@Jack_Conklin78 putting in work @Titans practice\" 
indicates that the post is a retweet about a Titans player named Jack 
Conklin working during a practice session. The entity types and relation 
types can be inferred from the context provided by the text. </think>
<answer> [["Jack_Conklin78", "per", "Titans", "org", "Participation in 
practice"]] </answer>"

[["jwyattsports", "per", "Titans", "per", "Peer"]]

 <think> 1.Description of the Image Content: ....  2.Connection Between 
the Text and the Image: The image and text describe a training scene 
involving a person. 3. Reasoning Process for Extracting the 5-Tuple: 
Head Entity: "@Jack_Conklin78" (person).Tail Entity: "@Titans" (person), 
referring to an individual player as part of the team. Relation Type: "Peer", 
since both are within the same domain (the player's association with the 
team as part of the same group or practice).</think>
 <answer> [["@Jack_Conklin78", "per", "@Titans", "per", "Peer"]] 
</answer>

Figure 4: Case Study on JMERE: Responses of Qwen2.5-VL-7B under Different Thinking Enhancement Paradigms

Precision-JMERE

Recall-JMERE

F1-JMERE

Precision-MNER

Recall-MNER

F1-MNER

COT-SFT JMERE-R1 COT-SFT-VOTING JMERE-R1-VOTING

Figure 5: The performance variation of the model after
Voting. The center point represents a value of 40% F1,
while the outermost layer represents a value of 80% F1.

vides clear directions for optimization. In the RL546

paradigm, due to the model’s lack of basic under-547

standing of relationship categories, it fails to effec-548

tively exclude irrelevant relationship types during549

self-exploration. Despite having a logically correct550

reasoning process, the model still predicts an in-551

correct relationship type, such as Participation in552

practice. In the JMERE-R1 paradigm, with cor-553

rect foundational knowledge and comprehensive554

self-exploration, the model is able to make logi-555

cally sound inferences and accurately identify the556

correct quintuple.557

Expansion of Reasoning Paths. To verify that558

the JMERE-R1 framework can expand the model’s559

reasoning paths and enable flexible reasoning, we560

conducted multi-path reasoning experiments, fol-561

lowing previous studies (Wang et al., 2023; Uesato562

et al., 2022; Trung et al., 2024). Specifically, for563

each test sample, we sampled 100 reasoning pro-564

cesses and corresponding answers, and integrated565

all results using majority voting. The experimen-566

tal results are shown in Figure 5. As can be seen, 567

compared to the CoT-SFT paradigm, JMERE-R1 568

achieves a significant performance boost after in- 569

heritance, reaching the best performance. This 570

demonstrates the effectiveness of incorporating re- 571

inforcement learning and allowing the model to 572

explore on its own, which expands the model’s rea- 573

soning paths and pushes the performance limits of 574

the model. By self-exploration, the model is able to 575

select the optimal solution from multiple reasoning 576

directions, further enhancing its reasoning capa- 577

bilities and ability to handle complex tasks. This 578

also indicates that enhancing the model’s reasoning 579

flexibility and diversity has a positive impact on 580

improving its overall performance. 581

5 Conclusion 582

In this work, we propose a framework, JMERE-R1, 583

for training LVLMs to better perform JMERE. First, 584

we fine-tune LVLMs using distilled and filtered 585

MP-CoT data to equip them with basic reasoning 586

and quintuple extraction abilities. Then, we train 587

the model with reinforcement learning by combin- 588

ing accuracy-based and partial reward functions, 589

guiding the model to enhance its reasoning abili- 590

ties through self-exploration. The partial reward 591

function integrates the accuracy of the quintuples 592

with character-level precision, helping to mitigate 593

sparse reward issues and preventing reasoning path 594

collapse. Experimental results and further analysis 595

show that the model trained with our framework 596

significantly outperforms existing methods on the 597

public JMERE benchmark. JMERE-R1 effectively 598

enhances the reasoning capabilities of LVLMs and 599

broadens the reasoning paths, improve both the 600

precision and diversity of the model’s reasoning. 601
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Limitations602

The reward functions used during the reinforce-603

ment learning phase—including partial and format-604

based rewards—aim to guide the model’s reasoning605

process. However, they often fail to fully capture606

the complexity of reasoning paths, leading to sub-607

par performance in certain edge cases. The prob-608

lem of reward sparsity still affects the model’s ac-609

curacy. We design more fine-grained reward strate-610

gies to improve performance. Although we adopt611

parameter-efficient tuning and the GRPO training612

scheme to reduce computational cost, reinforce-613

ment learning with multi-response sampling still614

introduces considerable overhead. We further op-615

timize the computational efficiency of our method616

in ongoing work.617
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A Implement Details 773

In our experiments, we use 4 A40-48GB GPUs 774

for training and adopt DeepSpeed’s Zero-2 stage 775

optimization. For the SFT and CoT-SFT baseline 776

models, we train the models for 20 epochs with a 777

learning rate of 2e-5 and a warm-up ratio of 6%. 778

We select the best-performing checkpoint on the 779

validation set. This training duration is sufficient 780

for the SFT model to converge. During training, 781

the batch size per GPU is set to 2, resulting in a to- 782

tal batch size of 8. In the CoT-SFT warm-up phase, 783

we train the model for 5 epochs with a learning rate 784

of 2e-5. In the reinforcement learning phase and 785

the RL baseline, we train the model for 30 epochs 786

with a learning rate of 2e-6, and we select the best 787

checkpoint on the validation set. The weight coeffi- 788

cient for partial reward, α, is set to 0.2, the weight 789

coefficient for format reward, β, is set to 0.1, and 790

the KL coefficient, λ, is set to 0.01. During testing, 791

we uniformly set the generation temperature to 0.8, 792

with a maximum generation length of 2048. In 793

the Low-Rank Adaptation (LoRA) for parameter- 794

efficient fine-tuning, we set the rank to 128 and the 795

merging ratio to 64. 796

B Filter Details 797

In this section, we provide a detailed presentation 798

of the prompt used by the dual-filtering mecha- 799

nism. Figure 8 illustrates the prompt used by the 800

Re-Prediction Filter, which inputs both the original 801

data and the generated reasoning process into the 802

model, and the generated results are used to filter 803

out data that does not match the labels. Figure 9 804

presents the prompt used by the Rule-Based Score 805

Filter, where we input the generated MP-CoT rea- 806

soning data and the original data into the model, 807

along with the predefined discrete scoring rules. 808

After scoring, we first filter out all samples with a 809

score below 0.7. If a sample has multiple generated 810

reasoning data, we select the one with the highest 811

score. If there are multiple reasoning data with the 812

same highest score, one is randomly selected. 813
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Figure 6: The error between GPT-4o and human scores.

Reliability of the Scoring Filter. We conduct a814

manual evaluation to verify the reliability of the815

Rule-Based Score Filter. Specifically, we randomly816

select 100 samples from the training set, resulting817

in a total of 500 MP-CoT instances. Ten annota-818

tors are divided into two groups, with each person819

scoring 200 responses based on predefined rules.820

For each response, we calculate the average of four821

human-provided scores and use it as the reference822

to compute the error range of GPT-4o’s scores. The823

results, shown in Figure 6, indicate that the major-824

ity of GPT-4o’s scores fall within an error margin825

of 0.1, demonstrating that its scoring is reliable826

under fixed discrete rules.827

Number of MP-CoT Instance. Figure 7 shows828

the change in the number of MP-CoT samples be-829

fore and after the two-stage filtering mechanism.830

The results demonstrate that the filtering mecha-831

nism effectively removes noisy samples and low-832

quality reasoning data. The final sample count is833

3534, compared to the original training set size834

of 3618, indicating that the filtering process effec-835

tively preserves sample integrity while removing836

invalid data.837

C Zero-Shot Test838

We test the performance of GPT-4o and two base839

models in a zero-shot setting. The The test prompt840

is the same as the RL prompt, except that the fixed-841

format reasoning instruction is removed. The Re-842

sults are shown in Table 3. Overall, these models843

do not perform well, further proving the necessity844

of training LVLMs specifically for the JMERE task.845

These test results also provide a strong benchmark846

for future LVLM-based methods.847

0

4,000

8,000

12,000

16,000

20,000

Number of MP-COT Instance

First Generate After Re-Prediction Filter After Rule-Based Score Filter

Figure 7: The change in the number of MP-CoT samples
after filtering at each stage.

Model/(%) Precision Recall F1

ChatGPT4o 9.95 17.47 12.68
Qwen2.5-VL-7B 7.27 14.10 9.60
LLaVa-1.5-7B 7.41 13.30 9.52

Table 3: Ablation experiment on the JMERE test set,
with the base LVLM Qwen2.5-VL-7B-Instruct and
JMERE F1 metric.

D MP-CoT Distill Prompt 848

We present the prompt template for obtaining MP- 849

CoT data in Figure 10. In the prompt, we provide 850

the image, text, and labels. Additionally, we spec- 851

ify the three components that must be included in 852

the MP-CoT. 853

E RL Prompt 854

In this section, we provide a detailed description of 855

the prompt used during the reinforcement learning 856

phase of JMERE-R1, as shown in Figure 11. We in- 857

put the text, image, and type ranges into the model 858

and instruct it to output the reasoning results in a 859

fixed format. The "Only-RL baseline" also uses the 860

same set of prompts. 861
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Task: Based on the text, image, and reasoning process, 
provide the final five-tuple answer. The output format is: 
[Entity1, Entity Type1, Entity2, Entity Type2, Relation Type]

Text:   @nfltrade_rumors : Browns Placing WR Josh 
Gordon On Non - Football Illness List # Browns.

Reasoning Process: <think>...... </think>

Image:

Figure 8: Prompt Template for Re-Prediction Filter

Text:   @nfltrade_rumors : Browns Placing WR Josh 
Gordon On Non - Football Illness List # Browns.

Task: Evaluate the reasoning process of a given answer 
and assign a score based on the following additive 
criteria.  please only output the score  
Scoring Rules:  
Add +0.1 if the answer includes a description of an 
image. 
Add +0.2 If the image description accurately reflects the 
image content.
Add +0.2 If the answer includes an analysis of the 
connection between the image and the accompanying 
text. 
Add +0.3, if the reasoning process includes a detailed inf
erence of the knowledge quintuple [Entity 1, Entity Type 
1, Entity 2, Entity Type 2, Relation Type], including justific
ation for entity extraction, rationale for determining each 
entity type, and the basis for relation type classification." 
It's not enough to simply infer where the knowledge qui
ntuple is extracted from.       
Add +0.2 If there is reflection that leads to overturning a
n incorrect conclusion, an additional 0.1 point may be aw
arded.

Reasoning Process: <think>...... </think> <answer> 
[["Josh Gordon", "per", "Browns", "org", "member_of"]] 
</answer>

Image:

Figure 9: Prompt Template for Rule-Based Score Filter

  Given an image and associated social media text, extrac
t a 5-tuple in the form [head entity, head entity type, tail 
entity, tail entity type, relation type]. Provide the extractio
n process, including:

 1. A description of the image content.

 2. The connection between the text and the image.

 3. A reasoning process for extracting the 5-tuple (keep it 
concise).

 The text data is: {@nfltrade_rumors : Browns Placing WR 
Josh Gordon On Non - Football Illness List # Browns.}
 The 5-tuple is:{[Josh Gordon, per, Browns, org, member 
of]}

Image:

Figure 10: Prompt Template for Obtaining MP-CoT
Data

Text:   @nfltrade_rumors : Browns Placing WR Josh 
Gordon On Non - Football Illness List # Browns.

Please extract entity relation quadruples from the social 
media image and text, including entity types and relation 
types.

Range of entity types: <org> <misc> <per> <loc> 

Range of relation types: <place_of_residence> <alumi> 
<neighbor> <awarded> <alternate_names> <part_of> 
<subsidiary> <siblings> <contain> <nationality> 
<race> <peer> <parent> <held_on> <locate_at> 
<religion> <member_of> <place_of_birth> <charges> 
<present_in> <couple> 

The output format should be [[ent1, ent1 type, ent2, ent2 
type, relation type]]. 

text: @nfltrade_rumors : Browns Placing WR Josh Gordon 
On Non - Football Illness List # Browns.

First output the thinking process in <think> </think> 
tags and then output the final answer in <answer> 
</answer> tags.

Image:

Figure 11: Prompt Template for reinforcement learning
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