GRMM: Real-Time High-Fidelity Gaussian Morphable Head Model
with Learned Residuals
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Figure 1. GRMM provides disentangled control over a base 3DMM and learned residuals, fitting unseen identities from input images
and enabling novel view synthesis and expression editing while preserving identity. It produces photorealistic 1K-resolution full-head
renderings with diverse expressions in real time, achieving up to 75 fps. As part of this work, we also contribute EXPRESS-50, a dataset
of 50 identities with 60 distinct expressions aligned across subjects, enabling consistent modelling of expression residuals.

Abstract

3D Morphable Models (3DMMs) enable controllable
editing of facial geometry and expressions for reconstruc-
tion, animation, and AR/VR, but traditional PCA-based
mesh models are limited in resolution, detail, and pho-
torealism.  Neural volumetric methods improve realism
but remain too slow for interactive use. Recent Gaus-
sian Splatting (3DGS)- based facial models achieve fast,
high-quality rendering but still rely solely on a mesh-
based 3DMM prior for expression control, thereby limit-
ing their ability to capture fine-grained geometry, expres-
sions, and full-head coverage. We introduce GRMM, the
first full-head Gaussian 3D morphable model that aug-
ments a base 3DMM with residual geometry and ap-
pearance components, additive refinements that recover
high-frequency details such as wrinkles, fine skin tex-
ture, and hairline variations. GRMM provides disentan-
gled control through low-dimensional, interpretable pa-
rameters (e.g., identity shape, facial expressions) while
separately modelling residuals that capture subject- and
expression-specific detail beyond the base model’s capac-
ity. Coarse decoders produce vertex-level mesh deforma-
tions, fine decoders represent per-Gaussian appearance,

and a lightweight CNN refines rasterised images for en-
hanced realism, all while maintaining 75 FPS real-time
rendering. To learn consistent, high-fidelity residuals, we
present EXPRESS-50, the first dataset with 60 aligned ex-
pressions across 50 identities, enabling robust disentangle-
ment of identity and expression in Gaussian-based 3DMM:s.
Across monocular 3D face reconstruction, novel-view syn-
thesis, and expression transfer, GRMM surpasses state-of-
the-art methods in fidelity and expression accuracy while
delivering interactive real-time performance. Project page:
https://mohitm1994. github.io/GRMM/

1. Introduction

High-fidelity 3D face modelling is essential for VR, AR,
animation, and digital avatar creation. A widely used class
of methods, 3D Morphable Models (3DMMs) [3, 11] com-
pactly and controllably represent facial geometry and ap-
pearance using low-dimensional parametric spaces. How-
ever, achieving photorealism, real-time efficiency, and ex-
pressiveness remains challenging, as current methods strug-
gle to capture fine details while maintaining real-time per-
formance. Traditional mesh-based 3DMMs [3, 4, 21, 460]
are efficient and interpretable but limited in resolution and
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unable to represent fine-scale geometry and texture vari-
ation. Neural rendering [13, 47] and volumetric meth-
ods [14, 15, 51] improve visual fidelity, but are computa-
tionally heavy and struggle with large deformations or ex-
treme expressions. More recently, 3D Gaussian Splatting
(3DGS)[16] has enabled high-resolution rendering at inter-
active rates. However, 3DGS-based facial models[45, 50]
still rely solely on coarse-mesh-based 3DMM priors for ex-
pression control, limiting their expressivity and their abil-
ity to capture subtle, identity- or expression-specific detail.
Furthermore, these models are not publicly available.

An additional bottleneck is the scarcity of datasets with
both high expression diversity and cross-identity expres-
sion alignment. While recent datasets [20, 25, 26] improve
identity coverage, they typically provide limited expression
variability and lack the alignment required for disentangled
identity—expression learning.

To address these limitations, we propose the Gaussian
Residual Morphable Model (GRMM), the first open-source,
full-head 3D Gaussian morphable model with learned resid-
uals: additive refinements to both geometry and appearance
that recover high-frequency details such as wrinkles, skin
microstructure, and hairline variation beyond the capacity
of a base 3DMM. GRMM offers independent control over
(i) interpretable low-dimensional 3DMM parameters (iden-
tity shape, facial expression, head pose) and (ii) residual
parameters that encode fine-scale, identity- and expression-
specific deviations. This separation enables precise, compo-
sitional manipulation of facial attributes without sacrificing
realism (Figure 1).

Technically, GRMM is based on a 3DMM [21] with a
mesh-based base to produce a coarse head shape and pre-
dicts residual deformations using lightweight MLPs driven
by low-dimensional identity and expression codes. UV-
anchored Gaussian primitives deform coherently with the
mesh, preserving spatial consistency and cross-identity cor-
respondence. Convolutional decoders predict per-Gaussian
appearance for detailed geometry and texture, while an
image-space CNN refines rasterised images to recover sur-
face details not fully captured by the Gaussians. The result
is real-time 1K-resolution rendering at 75 FPS.

To support learning disentangled residuals, we introduce
EXPRESS-50, a multi-view dataset containing 50 identities
each performing 60 consistently aligned expressions. Ex-
pression alignment is achieved via over 150 hours of frame-
by-frame manual annotation, ensuring that all subjects ex-
hibit semantically matched expressions (including challeng-
ing motions such as tongue movement). This alignment en-
ables cross-identity supervision for robust residual disen-
tanglement and improves generalisation to unseen subjects
and expressions.

In summary, our contributions are:

* GRMM, the first open-source, full-head residual Gaus-

sian morphable model that achieves high expressivity,
fine-grained control, and real-time 1K rendering at 75
FPS, outperforming prior morphable face models in both
quality and flexibility.

* A novel architecture that separates base 3DMM control
from learned residual geometry and appearance, com-
bined with enhanced mesh topology and UV mapping that
explicitly models teeth and inner-mouth regions. Thus,
enabling high rendering quality, speed, and expressivity.

* EXPRESS-50, i.e., a new multi-view image dataset with
50 identities and 60 aligned facial expressions, extends
the corpus of existing datasets in the literature and serves
as an essential ingredient to obtaining the results demon-
strated in this paper.

2. Related Work

Mesh-based head models. Parametric 3D face models
represent facial geometry, expression, and identity using
low-dimensional parameters. The seminal 3D Morphable
Model (3DMM) by Blanz and Vetter [3] aligns a fixed-
topology mesh to 3D scans through non-rigid registra-
tion and learns shape and appearance spaces via PCA [1].
Subsequent works [21, 40] introduced multilinear models
with separate control over facial components (e.g., jaw and
eyes), which have become standard priors for reconstruc-
tion and tracking [18, 35, 36]. FaceScape [46] improved
realism with high-resolution geometry and diverse expres-
sions, but mesh-based 3DMMs remain constrained by lin-
ear subspaces and limited expressiveness for fine details.
To overcome this, non-linear mesh 3DMMs [30, 38, 39]
use deep networks to learn complex mappings from latent
codes to mesh geometry, improving reconstruction quality
and facial variation. However, these models often act as
black boxes, sacrificing interpretability and editability, and
typically remain limited to facial regions without support-
ing full-head modelling. Delta models such as DECA [12]
and EMOCA [9] enhance detail with UV-space displace-
ments but remain restricted to the facial region. Gener-
ative approaches, such as Morphable Diffusion [7], lever-
age diffusion models conditioned on 3DMMs to synthesise
avatars from a single image; however, they lack explicit
control over identity and expression, and cannot represent
the mouth interior or hair. Our method unifies the control-
lability of mesh-based 3DMMs with learned full-head per-
vertex deltas and 3D Gaussian refinement, thereby retaining
interpretability while capturing high-frequency details that
exceed the limits of linear or face-only models.

Implicit parametric head models. Implicit representa-
tions have driven significant progress in neural parametric
head modelling. SDF-based methods [13, 47] avoid fixed
mesh topology and better capture complex structures like
hair. NeRF-based approaches [15, 42, 51] achieve photore-
alistic heads without explicit geometry, while hybrid tech-



niques [6, 14, 24] combine mesh priors with volumetric
fields for improved controllability and realism, often using
large-scale capture datasets. However, NeRF-based models
exhibit low rendering efficiency, necessitating trade-offs be-
tween quality and speed. In contrast, our method predicts
mesh-based deformations in a delta space and adds fine-
scale details using 3D Gaussians, enabling efficient render-
ing while preserving control and high-frequency detail.

3D Gaussians-based head representations. 3D Gaus-
sian splatting (3DGS) has recently emerged as a powerful
approach for photorealistic novel-view rendering with real-
time performance [16, 41]. Initially developed for rigid
scenes, it has been extended to dynamic domains, including
human heads and faces. The 3D Gaussian Parametric Head
Model (GPHM) [45] adapts 3DGS for facial geometry by
representing the head with a dense set of Gaussians trained
on datasets such as NeRSemble [20] and FaceVerse [43],
achieving high-quality synthesis. However, GPHM relies
on MLP decoding, lacks clear separation between coarse
geometry and fine detail, and uses 3DMM fitting and key-
points for reconstruction, which limits its expressiveness.
HeadGAP [50] builds on FLAME with part-based Gaus-
sian offsets but remains constrained by FLAME’s fixed
topology and shape space, while also inheriting the MLP
overhead. Furthermore, HeadGAP cannot sample new
identities or expressions, reducing its generative flexibil-
ity. Other re-enactment approaches, such as GAGAvatar [8]
and Portrait4D-v2 [10], use captured FLAME parameters
but can only replay observed motions. Despite these ad-
vances, building a generative, expressive, and efficient head
model remains an open challenge. Our approach combines
mesh-based 3DMM control with full-head geometric deltas
and 3D Gaussian refinement. We utilise a lightweight MLP
for vertex geometry and convolutional decoders for per-
Gaussian parameters, thereby avoiding the need for heavy
per-Gaussian MLPs. This design reduces runtime, separates
coarse geometry from fine details, and allows for sampling
of identities and expressions.

Multiview head datasets. Several multiview head
datasets have been developed to advance 3D head mod-
elling. FaceScape [46] captures 938 subjects with 20
expressions using high-resolution multiview images,
primarily featuring East Asian identities and excluding
hair. NeRSemble [20] comprises 300 identities in con-
trolled setups, offering good subject diversity but limited
expression coverage [28]. RenderMe-360 [26] captures
500 subjects with full 360-degree views, including complex
hairstyles and accessories, but offers only 12 expressions
per subject. AVA-256 [25] extends diversity by supporting
256 identities under consistent illumination and broad ex-
pression coverage, but it suffers from background matting
and unnatural colour distribution, which complicates 3D

reconstruction. Although these datasets improve diversity
and fidelity, they lack expression alignment across identi-
ties, which is critical for learning morphable models with
precise identity-expression control.

We complement these datasets with our EXPRESS-50
dataset, which provides expression alignment across 50 di-
verse identities. EXPRESS-50 captures a broader range of
expressions than existing datasets, ensuring consistent cor-
respondence across subjects. This alignment is essential for
learning expressive, identity-disentangled morphable mod-
els.

3. Method

We present GRMM, a real-time, high-fidelity full-head
morphable model that augments a mesh-based 3D Mor-
phable Model (3DMM) with learned geometry and appear-
ance residuals using 3D Gaussian splatting. Section 3.1 in-
troduces our new EXPRESS-50 dataset and the associated
preprocessing pipeline, which together form a key contribu-
tion enabling consistent expression alignment across iden-
tities. Section 3.2 outlines the Gaussian attributes, image
model, and camera model used to define the 3D representa-
tion and projection process. Section 3.3 describes the model
structure, and Section 3.4 details the training methodology.
Finally, Section 3.5 presents the inference process, includ-
ing refinement steps for full-head reconstruction.

3.1. Expression-Aligned Datasets

We train our model on two datasets: EXPRESS-50, a new
dataset collected for complex facial expression modelling,
and RenderMe-360 [26], a publicly available 4D human
head dataset. EXPRESS-50 complements RenderMe-360
by providing a rich set of high-intensity expressions, while
RenderMe-360 offers broader identity coverage. Data are
captured using a 360-degree camera rig with 24 hardware-
synchronised Sony RXO II cameras, which record 4K
videos at 25 fps and are arranged to capture the full human
head, including scalp hair. The rig is covered with LED
strips to ensure uniform illumination. EXPRESS-50 con-
tains 50 identities performing 60 expressions, recorded at
3840x2160. RenderMe-360 includes 500 subjects perform-
ing 12 expressions, captured with 60 synchronised cameras
at a resolution of 2448x2048.

Preprocessing. We preprocess both datasets using ex-
pression alignment, tracking, image preprocessing, and
depth generation. All images are downsampled by a factor
of 4 and used for subsequent processing. A key contribution
is the manual alignment of expressions across identities,
which improves the disentanglement of identity and expres-
sion residuals. Age and gender statistics for EXPRESS-50
are provided in the supplemental material (Section 7). We
will also release the dataset with annotations, expression la-
bels, and preprocessing outputs. All cameras are calibrated



using a static structure with distinctive features, and we use
Metashape [2] to estimate intrinsic and extrinsic parame-
ters.

Expression Alignment. We manually annotate peak ex-
pressions in the EXPRESS-50 and RenderMe-360 datasets
to ensure consistent expression alignment across identi-
ties. In EXPRESS-50, each subject follows a scripted
sequence of 60 expressions demonstrated via a reference
video. For a chosen reference identity, we manually se-
lect the frame where each expression is most prominent to
serve as the canonical example. For the remaining 49 iden-
tities, we select the peak-expression frame that best matches
each canonical frame, thereby ensuring visual and semantic
alignment across subjects. In RenderMe-360, each of the
12 expressions is provided as a short video sequence per
identity. We observe that the final frame in each sequence
typically captures the peak of the intended expression, so
we annotate the last frame of each video as the aligned ex-
pression frame. We use 280 RenderMe-360 identities for
alignment, excluding those with heavy makeup or large ac-
cessories that obscure the face. Together, these datasets
comprise 330 unique identities that offer broad coverage of
facial shapes and expressions. Examples of consistent ex-
pression alignment are included in the supplementary mate-
rial.

Tracking. To recover coarse facial geometry, we estimate
FLAME [21] parameters: neck pose Oycck, jaw pose Qjay,
€XPression Cexp, and identity aiq. We adopt landmark- and
photometry-based tracking using VHAP [29] to fit FLAME
to annotated frames, obtaining a tracked mesh M., =
(Vyee; F), where F is the face connectivity, global pose
(R, t) per frame. For RenderMe-360 and EXPRESS-50,
68 facial landmarks from [5] guide the tracking.

Ground-Truth Depth Generation. To obtain high-
quality ground truth depth images Igzpth for supervision,
we adopt ProbeSDF [37], a state-of-the-art surface recon-
struction method. We apply it to each time step in our
dataset to raycast depth from the optimised 3D surface.

Image Preprocessing. Foreground masks are extracted
with RMBG-2.0 [49] for RenderMe-360 and Background-
MattingV2 [22] for EXPRESS-50, while Sapiens [17] pro-
vides additional facial masks to remove the torso and focus
on the face.

3.2. Preliminaries

Image Generation Model. We build upon 3D Gaussian
Splatting (3DGS) [16], where each primitive is parameter-
ized by position p, rotation r, scale s, opacity o, and color
c. Following RaDe-GS [48], we render depth from Gaus-
sian attributes, and further attach a learnable feature vector
f; € R3? to each primitive for richer mid-level appearance.

The complete attribute set is
B = {pv r,s,o,¢, f}7 Irgbv Ideptha Ifeature = R(B, 71—K,E)a

(1)
where R is a differentiable rasterizer with camera intrinsics
K and extrinsics E. To ensure a consistent reference frame,
we transform cameras into the canonical FLAME space:

the=K-E-[R t], )

where R,t are the tracked FLAME mesh orientation
and translation obtained from the preprocessing step Sec-
tion 3.1.

GaussianHeads. Our GRMM method adapts the Gaus-
sianHeads (GH) [34] architecture, which maps primitives
to UV space of a template mesh. Unlike GH, designed
for subject-specific reconstruction, our method generalises
across identities and expressions with a different formula-
tion and training strategy. Given expression code z,; and
view direction d, GH predicts primitive attributes as

{Vévéra(spa(;svoac} = DGH(zem;D7d)7 (3)

where v are mesh vertex deformations, {0,, ., d; } are ro-
tation, translation and scale offsets relative to the template,
and o, c denote opacity and colour.

3.3. Gaussian Residual Morphable Model

Our goal is to generate a high-fidelity head model for un-
seen identity and expression. Our method comprises a set
of decoders (Figure 2), Dormm := {Prmesh, @1, o, Papp
and a refinement network V¥, .s. The mesh decoder ®,,,.s7,
predicts vertex deformations for vy, the transform decoder
@1 outputs Gaussian primitive transformations, the opacity
decoder ®,, estimates primitive opacities, and the color de-
coder @, produces view-dependent appearance. All mod-
ules take as input the residual identity code z;4, residual
expression code Ze.yp, neck pose ek, jaw pose Gjaw, €x-
pression coefficients axp, and view direction d, generating
a complete head model with photorealistic rendering.

{v57 57“7 6pa 557 o,C, f} - DGRMM(zid7 Zexp; aexpa

4
6nf:c]w 0jaw7 d) @

The refinement network V.. refines the rendered image
I,¢p, which is obtained from Equation 1. Each component
is introduced in detail in the following sections.

Leveraging Expression Alignment. We represent each
subject with a learnable residual identity latent code z;; €
R®!2 and each facial expression with a learnable global ex-
pression residual latent code z.., € R?°°. Each expres-
sion is associated with a single z.,, that is shared across all
identities. This design promotes a clear separation between
identity and expression residuals.
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Figure 2. Method pipeline. Identity and expression latents z;q € R®'? and ze,;, € R?®, together with FLAME pose/expression
parameters (Oneck, Ojaw, Qexp ), drive the coarse mesh decoder ®pesh to predict per-vertex displacements vs. Adding these to the tracked
mesh M. with vertices vy yields the deformed mesh Mg = (vq, F). UV-anchored 3D Gaussians with initial (pin, I'in, Sin) are placed
on M. The transformation decoder @1 (2;q, Zesp) outputs UV-aligned maps 8, d,, ds to refine position, rotation, and scale; the opacity
decoder ®, (2z;q) and appearance decoder ®app(2z:4, d) produce opacity, RGB, and a 32-D feature map. A differentiable rasterizer renders

Ligb, Laepth, Iteature, Where Iaepsn is normalized to 15054

RGB image I.

Mesh Decoder The mesh decoder ®,,.,;, predicts per-
vertex identity and expression displacements. We use a
shared MLP preceding the decoder to fuse identity and pose
features, thereby improving conditioning and enabling dis-
entangled geometry prediction. A shared MLP processes
the identity and pose inputs:

fbase = MLPshared([zida enecka ejaw])a (5)

where z;y; € R5%'2 is the residual identity code, and
Onecks Ojaw € R3 are pose parameters. Identity displace-
ments are predicted as:

(6)

V§id = cI)mesh,id(fbase);

where vsiq € RM*3 and N, is the number of mesh ver-

tices. FLAME expression modulation is applied to the con-
catenated identity—expression feature:

fexp = [fbase7 Ze:ch Zexp S R2567 (7)
[77[3] = MLPFiLM(anp)7 Qexp € RlOO’ (8)
f.exp = fexp +70 fexp + ,8, (9)

where MLPg;\ outputs the scale v € R¢ and shift B €
R4 parameters for feature-wise linear modulation (FiLM).
Expression displacements are then computed as:

Vi,exp = (I)mesh,exp(fexp)~ (10)
The final deformed mesh is:
Vd = Vyec + Vs,id + Mface V§,exps (11)

and provided as input to the screen-space CNN W,.¢, which outputs the final

where M, .. masks teeth vertices to prevent expression off-
sets. We add teeth vertices following VHAP and extend
FLAME with inner-mouth faces, forming My = (vq4,F).
FLAME enhancements are provided and ablated in the sup-
plemental material (Section 9). Additionally, we ablate the
importance of ®,,,.s5, in Section 12.

Gaussian Primitive Initialisation. We initialize Ny =
Ng 3D Gaussians by uniformly sampling the UV space of
the 3DMM mesh at resolution Ny X Ng with Ny = 512.
Each Gaussian is positioned via barycentric interpolation
on the deformed mesh My with vertices v4, and initialized
with zero rotation r;, and scale s;,. To model the mouth in-
terior, we extend the FLAME UV map with separate regions
for teeth and mouth interior (see Section 9).

Decoding the Gaussian Primitive Attributes. To enable
high-resolution real-time rendering, we decode the proper-
ties of each Gaussian using efficient CNN decoders. Fol-
lowing [27, 32], these decoders map identity and expression
codes (2z;q, Zezp) to geometric and appearance attributes,
capturing fine transformations and view-dependent colour.
Transformation decoder ®7 maps z;q and z.z, to an
offset map of size N, x N x 10, corresponding to the offsets
of position (9,), rotation (4,) and scale (J5) for the initial
values pin, Tin, and s;,. The updated Gaussian parameters
are:
s = ds. (12)

p:pin+5pa I‘:(ST,

Position offsets §,, capture fine-scale surface variation, in-
cluding facial hair and inner-mouth geometry.



Opacity decoder @, predicts a map of size Ny x Ng x 1,
where each value represents the opacity o; of a Gaussian
and is only conditioned on z;4.

Appearance decoder ®,,, predicts a map of size N, x
N, x 35, where each entry contains RGB colour ¢; € R3x1
and a learned feature vector f; € R32%1; this decoder is
conditioned on z;4 and the view direction d.

Refinement Network. We use a CNN in the screen space,
W ,f, to refine the rendered results. The image resolution re-
mains unchanged (1K) before and after refinement. Please
refer to our video for a clearer illustration. We also ablate
the importance of the refinement network in the supplemen-
tary material (Section 12). This refinement enhances ap-
pearance priors that are difficult to capture for our 3DGS-
based model without altering the underlying 3D representa-
tion, similar to the approaches in [44, 50].

[Irgba Ifeatur67 Idepth] = R(Ba ﬂ-i:{#t% (13)
I= \Pref([Irglu Ifea,ture7 gf;ﬁﬂ)v (14)
The rendered depth image is standardised for W, by ap-

. . o . orm
plying min-max normalisation, resulting in I;27%.

3.4. Training and Losses

Given the GRMM representation, our proposed model is
learned end-to-end using multi-view image supervision to
train the decoders and refinement network. For this, we op-
timise the following objective function:

L = Lrec(I; I*) + Lrec(Irgba I*) +
)\depth . Ldepth(Ideptha Ilepth> + Lreg . (15)

Here, I* denotes the ground-truth RGB image. Ly is the
reconstruction loss computed between both the image-space
prediction I from refinement network and the rendered im-
age L., against I*. Lgepy, is the L2 loss between the pre-
dicted and ground-truth depth images, scaled by the weight
Adeptn- Finally, Ly, represents additional regularization
terms applied during training. Specifically, image recon-
struction loss:

Liee = )\llLll + /\ssimLssim + )\percherc (16)

consists of L1 loss Lj;, SSIM loss Ly, and perceptual loss
Lperc with the VGG [33] as the backbone. Meanwhile, the
training regularisation loss:

Lr'eg = /\sLs + )\ZLZ + )\laleap7 (17)

Here, L is a regularisation term on the scale parameters,
which encourages the scale of Gaussian primitives s to stay
within a constrained range as follows:

1/ max(s; 4,1077) if s;4 < 0.1
Ly = mean(ls), Is = < (s;,4 — 10.0)? if s;,4 > 10.0
0 otherwise,
(18)

where s; 4,d € {z,y,z} denotes the scale value of each
Gaussian primitive i along each axis, and mean(-) is the
average operation across all dimensions, similar to [32].
Lj,p represents a smoothness regularization term for the de-
formed mesh Mg, and L, is the Ly-norm of z;4 and z.), to
improve the disentanglement.

In our experiments, we set \;; = 0.8, Agsim = 0.2,
Apere = 0.04, A, = 0.001, A\jqp, = 0.01, Ay = 0.1 and
Adepth =0.5.

3.5. Fitting via Inverse Rendering

Given a single- or multi-view RGB portrait, we obtain 3D
face tracking with VHAP and align inputs (Sec. 3.1). We
use a two-stage optimisation.

Stage 1 (latent inversion). With decoders fixed, we op-
timise the latent codes z;q and z,,;, by minimising

LY = Liee(,T%) 4 Liee(Tigp, I¥) + A L. (19)

Stage 2 (prior-preserving refinement). We then fix z;,4
and z,,;, and fine-tune Dgrvy for by minimising

Lig-?t) = Lrec(L I*) + Lrec(Irgb> I*) + >\loc Lloc- (20)

Lioc is a PTI [31]-inspired locality regulariser that con-
strains updates to a small neighbourhood of the pretrained
solution, preserving the prior. We set A\, = 0.1. We de-
fine and ablate L, in detail in the supplementary material
(Section 11).

4. Experiments

We evaluate GRMM on the RAVDESS [23] dataset for
monocular 3D face reconstruction, using 10 randomly se-
lected identities. To assess novel-view synthesis across
diverse expressions, we further sample 10 identities from
NeRSemble [20], 5 from RenderMe, and 3 from EXPRESS-
50. RAVDESS provides monocular RGB videos of acted
emotions, whereas NeRSemble provides multi-view record-
ings that capture complex expressions and head motion.
We report ablation studies in Section 4.1, and present re-
sults on downstream applications including monocular fit-
ting, novel-view synthesis, and expression transfer in Sec-
tion 4.2. Additionally, examples of disentangled parametric
control for the inverted identities are included in the supple-
mentary material (Section 14).

4.1. Ablations

No-residuals (direct 3DMM conditioning). In this vari-
ant, we remove residual parameterisation and condition the
network directly on the FLAME parameters.

{V67 57’7 5;)7 557 0,C, f} = DGRMM(aid7 Qlexp, Oneck; Ojawa d) .

(21)
Learning residuals z;4 and .., over FLAME parameters
enhances identity and expression representations, yielding



finer hair and appearance details and improved mouth artic-
ulation (see Figure 3).

FRENY
fRER8R

Ground Truth With Residuals ~ W/O Residuals Ground Truth With Residuals ~ W/O Residuals

Figure 3. Residual parameterisation improves reconstruction
fidelity. Qualitative ablation under the reconstruction setting,
comparing W/O residuals vs. With residuals. Residuals produce
finer hair, detail and better mouth articulation (e.g., for ID1, EXP2
the mouth cannot roll in without residuals), with higher PSNR
(dB) on reconstruction: W/O residuals 28.91 vs. With residuals
30.54 (+1.63). Please zoom in for details.

Combining Datasets. We conduct an ablation study to
assess the impact of combining EXPRESS-50 and Ren-
derMe. Using camera views as input, we fit our model
to target identities from NeRSemble. Figure 4 and Ta-
ble 1 compare models trained without EXPRESS-50, with-
out RenderMe, and with both datasets. Joint training clearly
improves fidelity in identity and expression, highlighting
the complementary strengths of RenderMe-360 for identity
generalisation and EXPRESS-50 for expression generalisa-

’!

Ground Truth Ours W/O RenderMe

Input Frame

Figure 4. Combining datasets improves novel view synthe-
sis. (left to right) Ground truth, without EXPRESS-50, with-
out RenderMe-360, and ours. Training on the combined datasets
yields higher fidelity in identity and expression when rendering
novel views.

W/O EXPRESS-50

Table 1. Combining Datasets. Joint training clearly enhances
both identity and expression fidelity, showcasing the complemen-
tary strengths of RenderMe-360 for identity generalisation and
EXPRESS-50 for expression generalisation.

Method PSNRT SSIM1T LPIPS |
W/O EXPRESS-50 | 24.56 0.87 0.126
W/O RenderMe 25.27 0.90 0.115
Ours - Full Model 27.40 0.92 0.091

Table 2. Novel-view synthesis. Quantitative comparison on held-
out views. GRMM achieves the best performance, substantially
improving over MoFaNeRF and HeadNeRF.

Method PSNRT SSIMT LPIPS |
MoFaNeRF | 13.89  0.55 0.372
HeadNeRF | 1742 085 0.178
Ours 3085 097  0.072

Table 3. Monocular reconstruction. Quantitative comparison us-
ing RMSE and FID. GRMM outperforms MoFaNeRF and Head-
NeREF, indicating improved pixel accuracy and perceptual fidelity.

Method RMSE| FID|
MoFaNeRF 0.193 290.786
HeadNeRF 0.067 116.34
Ours 0.022 74.34

4.2. Comparisons and Application

In this section, we demonstrate applications of GRMM in
monocular image fitting, novel-view synthesis, and expres-
sion transfer. These applications showcase the generalisa-
tion capacity of our model to unseen identities, expressions
and views.

Compared Methods. We compare GRMM with pub-
licly available parametric head models, including Head-
NeRF [15], MoFaNeRF [51], and Morphable Diffusion [7].
For fairness, we compute quantitative errors only over the
common visible region using a shared mask. Morphable
Diffusion is not a volume-rendering method and relies on a
conditioning camera for viewpoint control, which limits its
generalisation to unseen camera setups. As a result, we do
not report quantitative metrics for Morphable Diffusion; in-
stead, we evaluate it qualitatively and through a user study.
The user study focuses on novel-view, expression, and iden-
tity consistency, with full details in the supplementary ma-
terial (Section 10).

Novel-view Synthesis. We evaluate GRMM for the task
of novel-view synthesis for different identities in our eval-
uation set. We fit our model to a single viewpoint as de-
scribed in Section 3.5 and evaluate its performance on two
held-out views. Our method shows improved fitting and
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Figure 5. Novel view synthesis (left) and monocular reconstruction (right). Left: given one or a few posed views, GRMM synthesises
unseen viewpoints while preserving identity and expression. Right: from a single RGB frame, GRMM reconstructs the subject and renders
both the input and novel views. We compare against Morphable Diffusion [7], MoFaNeRF [51], and HeadNeRF [15] in both settings. FID
is reported only in the monocular inversion setting, where GRMM achieves lower FID than all other baselines. Please zoom in for details.

novel-view synthesis quality, as shown in Figure 5 and Ta-
ble 2. Note that for the related methods, we use their pub-
licly available inference code without any modifications.
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Figure 6. Expression transfer. From a single frontal image,
we invert (Section 3.5), swap expression parameters, and ren-
der novel views on EXPRESS-50 and NeRSemble. GRMM pre-
serves identity and subtle expressions with multi-view consistency,
whereas Morphable Diffusion (MD) generates inconsistent ex-
pressions across views. Please zoom in for details.

Ground Truth

Input  Target

Expression Transfer. We compare GRMM to Morphable
Diffusion for expression transfer by randomly sampling tar-
get expressions for selected identities from EXPRESS-50
and NeRSemble. For each identity, we perform inversion
(Section 3.5) on a single frontal view, swap the expression
parameters, and render the results under novel views. Quali-
tatively, Morphable Diffusion struggles to capture subtle ex-
pressions and produces expression-inconsistent renderings

across novel views, whereas GRMM preserves both identity
and expressions with multi-view consistency at high resolu-
tion and real-time frame rates (see Figure 6 and the sup-
plemental video). A user study (Section 10) corroborates
these findings: participants consistently preferred GRMM
for both expression accuracy and identity preservation in
side-by-side novel-view comparisons.

5. Conclusion

We present GRMM, a Gaussian Residual Morphable Model
that overcomes key limitations of existing 3D morphable
head models and enables photorealistic, diverse facial ex-
pressions at 1K resolution in real time (75 fps). We also
introduce EXPRESS-50, a multi-view dataset with 50 iden-
tities and 60 aligned expressions, and demonstrate improved
identity generalisation and expression fidelity through joint
training with RenderMe-360. While GRMM advances the
state of the art, it remains challenged by out-of-distribution
subjects and lighting variations, highlighting the need for
more diverse training data to improve robustness. With its
ability to capture exaggerated expressions and render them
interactively, GRMM is well-suited for applications in com-
puter graphics, virtual and augmented reality, and facial an-
imation.
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