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Abstract

Vision Language Models (VLMs) extend the001
capacity of LLMs to comprehensively under-002
stand vision information, achieving remark-003
able performance in many vision-centric tasks.004
Despite that, recent studies have shown that005
these models are susceptible to jailbreak at-006
tacks, which refer to an exploitative technique007
where malicious users can break the safety008
alignment of the target model and generate mis-009
leading and harmful answers. This potential010
threat is caused by both the inherent vulner-011
abilities of LLM and the larger attack scope012
introduced by vision input. To enhance the013
security of VLMs against jailbreak attacks, re-014
searchers have developed various defense tech-015
niques. However, these methods either require016
modifications to the model’s internal structure017
or demand significant computational resources018
during the inference phase. Multimodal in-019
formation is a double-edged sword. While it020
increases the risk of attacks, it also provides021
additional data that can enhance safeguards.022
Inspired by this, we propose Cross-modality023
Information DEtectoR (CIDER), a plug-and-024
play jailbreaking detector designed to identify025
maliciously perturbed image inputs, utilizing026
the cross-modal similarity between harmful027
queries and adversarial images. This simple028
yet effective cross-modality information detec-029
tor, CIDER, is independent of the target VLMs030
and requires less computation cost. Extensive031
experimental results demonstrate the effective-032
ness and efficiency of CIDER, as well as its033
transferability to both white-box and black-box034
VLMs.035

1 Introduction036

The remarkable advancements in Large Language037

Models (LLMs) have significantly improved per-038

formance benchmarks in various natural language039

processing (NLP) tasks (Achiam et al., 2023; Tou-040

vron et al., 2023; Zhao et al., 2023; Chiang et al.,041

2023). To extend the capacities and open up the042

Projector

LLM
Text

Image

Input

Image 
Encoder

Alignment Inference
Feature
Extraction

Text

Figure 1: The illustration of a typical VLM architecture.

potentials of LLMs in comprehensively understand- 043

ing diverse types of data, such as visual informa- 044

tion, researchers have developed Vision Language 045

Models (VLMs) that integrate visual modalities to 046

handle vision-centric tasks. VLMs use LLMs as 047

a core, complemented by modal-specific encoders 048

and projectors, enabling them to process, reason, 049

and generate outputs from multimodal data (Yin 050

et al., 2023; Dai et al., 2024; Bai et al., 2023). A 051

typical VLM architecture is illustrated in Figure 1. 052

The widespread adoption of VLMs in various 053

applications brings significant safety challenges, 054

particularly due to inherited vulnerabilities from 055

traditional LLMs, such as the susceptibility to jail- 056

break attacks (Carlini et al., 2024; Li et al., 2024; 057

Qi et al., 2024). Jailbreak attacks refer to an ex- 058

ploitative technique where malicious users can craft 059

sophisticated-designed prompts to lead LLMs to an- 060

swer misleading or harmful questions, effectively 061

breaking the alignment and bypassing the model’s 062

safeguard. Various jailbreak attack algorithms tar- 063

geting LLMs have been proposed, which can be 064

categorized into template-based (Deng et al., 2024; 065

Chao et al., 2023; Li et al., 2023) and optimize- 066

based (Zou et al., 2023) approaches. 067

Additionally, VLMs not only inherit the vulnera- 068

bilities of LLMs but also become more susceptible 069

to jailbreak attacks due to their integration of the 070

visual modality. On the one hand, jailbreak at- 071

tacks against VLMs can originate from both the 072

textual and visual modalities, significantly broad- 073

ening the scope of potential adversarial examples 074

(Gong et al., 2023; Shayegani et al., 2023). On 075
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Figure 2: The workflow of safeguarding VLM against jailbreak attacks via CIDER.

the other hand, recent research indicates that fine-076

tuning VLMs to learn the vision modality can cause077

LLMs to disregard their previously learned safety078

alignment (Zong et al., 2024).079

The existing jailbreak attacks on VLMs can be080

categorized into two strategies. One is white-box081

optimization-based attacks, which define a loss082

function to generate imperceptible perturbations083

in the image modality (Carlini et al., 2024; Qi et al.,084

2024; Niu et al., 2024). The other is black-box085

strategies including typographically transforming086

harmful queries into images such as FigStep (Gong087

et al., 2023) or adding related images containing088

harmful text such as QR (Liu et al., 2023).089

From the defense perspective, optical character090

recognition (OCR) can serve as an effective de-091

tection tool for the second strategy but fails when092

defending against optimization-based adversarial093

attacks. In addition, Zong et al. (2024) creates094

a vision-language dataset named VLGuard con-095

taining both safe and unsafe queries and images,096

which can be used to fine-tune VLMs for improved097

safety against jailbreak attacks. However, the ef-098

fectiveness of VLGuard is only tested on FigStep099

attack and it requires the model to be white-box to100

fine-tune. Zhang et al. (2023) proposed a mutation-101

based jailbreaking detection framework named Jail-102

guard. However, the performance of Jailguard103

heavily relies on the VLMs’ original safety align-104

ment, and it significantly increases computational105

costs during the inference phase.106

Multimodal information is a double-edged107

sword: while it increases the risk of attacks, it108

also provides additional data that helps enhance109

safeguards. Inspired by this potential, we propose110

Cross-modality Information DEtectoR (CIDER),111

a plug-and-play jailbreaking detector designed to112

identify maliciously perturbed image inputs, specif-113

ically targeting optimization-based jailbreak at-114

tacks that are more imperceptible and susceptible. 115

The intuition is that optimization-based perturba- 116

tions break the VLM’s safeguards by capturing the 117

main harmful content in the malicious query. As 118

a result, the semantic distance between a harm- 119

ful query and an adversarially perturbed image is 120

significantly smaller than that between a harmful 121

query and a clean image. 122

Directly utilizing the difference between clean 123

and adversarial images on the semantic distance 124

to harmful query is challenging, as the absolute 125

value of the distance varies across different harm- 126

ful queries. To address this issue, we incorpo- 127

rate a denoiser to preprocess the vision modality, 128

using the relative shift in the semantic distance 129

before and after denoising to reflect the differ- 130

ence between clean and adversarial images. As 131

shown in Figure 2, the key insight of CIDER is 132

to identify whether an image is adversarially per- 133

turbed based on the semantic similarity between 134

image and text modality before and after denoising 135

(⟨Etext,Eimg(o)⟩ − ⟨Etext,Eimg(d)⟩). If the image 136

modality is not perturbed, the semantic similarity 137

between text and image remains stable. However, 138

the adversarially perturbed image designed for jail- 139

break will experience a significant drop. By setting 140

a threshold based on this change, we can effec- 141

tively detect adversarially perturbed images aimed 142

at jailbreaking VLMs. The detailed intuition is 143

elaborated in Section 2. 144

As a pre-detection module encapsulated before 145

any VLMs, the key advantage of CIDER is its plug- 146

and-play nature, making it independent of the target 147

model. Additionally, timely inference is crucial 148

for safeguarding VLMs. CIDER achieves this by 149

adding only denoiser procedures, ensuring efficient 150

without introducing significant inference latency. 151

In this work, we propose CIDER, an effective 152

and efficient pre-detection module that denoises 153
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and inspects each input image. For images identi-154

fied as adversarially perturbed for jailbreak pur-155

poses (where the semantic shift exceeds a pre-156

defined threshold), the VLM will refuse to gen-157

erate a response. Images deemed normal will be158

processed along with the text input for model infer-159

ence by the VLM. The workflow of safeguarding160

VLMs against jailbreak attacks using CIDER is161

illustrated in Figure 2. Our contribution can be162

summarized as follows:163

• Based on the intuition that cross-modality in-164

formation is a double-edged sword, we investi-165

gate the relationship between malicious queries166

and adversarial perturbed images in the seman-167

tic space. By incorporating a diffusion-based168

denoiser to uncover the potential of mitigat-169

ing harmful information in adversarial images170

through denoising.171

• We propose a plug-and-play jailbreaking detec-172

tor, CIDER, which can effectively safeguard173

VLMs while incurring almost no additional174

computational overhead.175

• Extensive experiments validate that CIDER176

outperforms the baseline method, achieving a177

higher detection success rate while reducing178

the computational cost as well. Experimental179

results also demonstrate its strong transferabil-180

ity across both white-box and black-box VLMs181

and attack methods.182

2 Intuition: Cross-modality information183

is a double-edged sword184

While multimodal information aggravates model185

vulnerability to jailbreak attacks, it also provides186

additional information for defense. The design of187

CIDER is based on the intuition that optimization-188

based jailbreak attacks break the VLM’s safeguards189

by sharing harmful content in the malicious query190

to the image modality. Consequently, the adversari-191

ally perturbed image is closer to the harmful query192

in the semantic space than the clean images. To193

support this intuition, we first explain the funda-194

mentals of the optimization-based jailbreak attacks195

on VLMs. Then, we design a few experiments to196

explore how cross-modal analysis can help safe-197

guard VLMs, and we analyze the semantic differ-198

ence between clean and adversarial images relative199

to harmful queries, both before and after denoising.200

201 2.1 Preliminaries: Optimization-based202

Jailbreak Attacks on VLMs203

Optimization-based VLM jailbreaking is similar204

to adversarial attacks on image classification tasks205

(Goodfellow et al., 2014), with the primary dif- 206

ference being the difference in the loss function. 207

Specifically, given a dataset D = {(q, a)} where 208

q represents the harmful queries and a is the cor- 209

responding targeted answers, the attacker aims to 210

find an adversarial image xadv that can encourage 211

the VLM F to generate a when inputting q along 212

with xadv. The objective can be formulated as: 213

xadv = argmin
xadv∈[0,1]d

log(F(a|q, xadv)) (1) 214

where F(a|q, xadv) represents the likelihood 215

that the VLM F generate answer a when given 216

the adversarial image xadv and the query q. 217

2.2 Experimental Setup 218

We design a series of experiments to explore how 219

cross-modality information can help safeguard 220

VLMs and to analyze the semantic difference be- 221

tween clean and adversarial images to harmful 222

queries, before and after denoising. We utilize 223

the image and text encoder of the state-of-the-art 224

VLM LLaVA-v1.5-7B (Liu et al., 2024) to capture 225

the semantic meanings. To measure the semantic 226

similarity, we employed cosine similarity which is 227

a standard metric widely used in information re- 228

trieval and natural language processing (Park et al., 229

2020; Pal et al., 2021). In terms of denoiser, we 230

incorporate a diffusion-based denoiser (Nichol and 231

Dhariwal, 2021) to preprocess the image modality. 232

The inputs to the VLMs consist of two modali- 233

ties: images and text queries. For malicious queries, 234

we utilize the validation set proposed in the Harm- 235

bench framework (Mazeika et al., 2024), which 236

contains 40 textual harmful behaviors across 7 se- 237

mantic categories. For images, we use 5 adver- 238

sarial images generated by an optimization-based 239

jailbreak attack Qi et al. (2024) and 5 clean images 240

from ImageNet (Deng et al., 2009). As a result, 241

we have 200 adversarial text-image pairs and 200 242

clean pairs. 243

2.3 Findings 244

According to the results displayed in Figure 3, the 245

key findings can be summarized as follows: 246

Finding 1: Adversarial images indeed contain 247

harmful information. 248
For each harmful query, we calculate the cosine 249

similarity between the queries and both clean and 250

adversarial images, denoted as ⟨EM
text,E

C
img(o)⟩ and 251

⟨EM
text,E

A
img(o)⟩ respectively. Figure 3a shows the 252

distribution of ⟨EM
text,E

C
img(o)⟩ − ⟨EM

text,E
A
img(o)⟩. It 253
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Figure 3: Experimental result. (a) the distribution of the difference between clean and adversarial images regarding
their cos-sim with harmful queries. (b) the distribution of cos-sim between harmful queries and clean/adversarial
images. (c) the change of the cos-sim during denoising. (d) the distribution of ∆cos-sim before and after denoising
of clean/adversarial images.

can be observed that the distribution is almost en-254

tirely concentrated in the negative region, indicat-255

ing that, for a specific harmful query, the semantic256

distance between it and an adversarial image is257

smaller than that between it and a clean image.258

Therefore, we can conclude that adversarial images259

indeed carry harmful information from queries.260

Finding 2: Directly utilizing the semantic261

difference between clean and adversarial262

images to harmful query is challenging263
Figure 3b shows the distribution of the absolute264

value of ⟨EM
text,E

C
img(o)⟩ and ⟨EM

text,E
A
img(o)⟩. Al-265

though the distribution differs in the peak and con-266

centration, distinguishing between adversarial and267

clean images based solely on the absolute value268

of the difference is challenging. This difficulty269

arises because the cosine similarity between differ-270

ent queries and adversarial images varies signifi-271

cantly, and the absolute value of the difference does272

not fully capture the characteristics of the images.273

Finding 3: Denoising can reduce harmful274

information but cannot eliminate275
Subsequently, we applied denoising to each image276

350 times, assessing cosine similarity with harm-277

ful queries every 50 iterations (visualization of the 278

denoising is relegated to Appendix A). Figure 3c 279

illustrates how cosine similarity between harmful 280

query and adversarial images decreases as denois- 281

ing progresses, indicating a reduction in harmful 282

information. Despite this reduction, denoised ad- 283

versarial images, when tested with harmful text 284

inputs in the VLM, still enabled a significant num- 285

ber of queries to jailbreak. Thus, while denoising 286

mitigates harmful information in images, it does 287

not eliminate their adversarial properties. 288

Finding 4: Relative shift in the semantic 289

distance before and after denoising can help 290

detect adversarial images. 291

In Figure 3d, we present the change of cosine simi- 292

larity before and after denoising (⟨EM
text,Eimg(o)⟩ − 293

⟨EM
text,Eimg(d)⟩). The distribution of cosine simi- 294

larity between harmful queries and images shifts 295

notably after denoising, contrasting with the distri- 296

bution in Figure 3b. This observed shift supports 297

our intuition that relative changes before and after 298

denoising, rather than absolute differences, provide 299

a method to distinguish adversarial images. Fig- 300

ure 3c further demonstrates this trend, showing a 301
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consistent decrease in cosine similarity between302

adversarial images and harmful queries, while the303

cosine similarity with clean images varies less.304

3 Method305

In this section, we first overview the defense306

pipeline and the components of CIDER, followed307

by introducing the threshold selection strategy.308

3.1 Overview309

CIDER is implemented on top of the VLMs to310

defense optimization-based adversarial jailbreak at-311

tacks. Figure 2 presents the overview of the CIDER312

pipeline. Specifically, given a text-image input pair,313

denoted as <text, img(o)>, CIDER calculates the314

embeddings of text and image modalities, denoted315

as Etext and Eimg(o). Then, the built-in denoiser in316

CIDER will perform 350 denoising iterations on317

the image(o), calculating the denoised embeddings318

every 50 iterations, denoted as E = Eimg(d). The319

img(o) will be identified as an adversarial example320

if any Eimg(d) ∈ E satisfy the following condition:321

⟨Etext,Eimg(o)⟩ − ⟨Etext,Eimg(d)⟩ > τ (2)322

where ⟨·⟩ represents the cosine similarity and τ is323

the predefined threshold. Consequently, CIDER324

will directly refuse to follow the user’s request by325

responding “I’m sorry, but I can not assist.” if the326

image modality is detected as adversarial. Other-327

wise, the original image and query will be fed into328

the VLM. The pseudo-code of CIDER is illustrated329

in Algorithm 1.330

Algorithm 1: CIDER defense pipeline
Input: img(o): input image, text: input query, F :

target VLM, τ : predefined threshold.
flag ← true;
for i← 0 to 350 Step 50 do

img(d)← denoiser(img(o), i);
Etext ← TextEncoder(text);
Eimg(o) ← ImgEncoder(img(o));
Eimg(d) ← ImgEncoder(img(d));
d← ⟨Etext,Eimg(o)⟩ − ⟨Etext,Eimg(d)⟩;
if d > τ then

flag ← false;

if flag = true then
Return F(img(o), text);

else
Return "I’m sorry, but I can not assist."

3.2 Threshold selection331
The threshold is selected based on the harmful332
queries and clean images ensuring that the vast333
majority of clean images pass the detection. The334
selection of threshold τ can be formulated as:335

r =

∑
I(⟨EM

text,E
C
img(o)⟩ − ⟨EM

text,E
C
img(d)⟩ < τ)

#samples
(3)336

where r represents the passing rate and EM
text, 337

EC
img(o), E

C
img(d) stand for the embeddings of input 338

query, the input image and denoised image respec- 339

tively. The threshold τ is determined by controlling 340

the passing rate r. For example, using the τ when 341

setting r to 95% as the threshold indicates allowing 342

95% percent of clean images to pass the detection. 343

The selection of the threshold significantly im- 344

pacts the effectiveness of CIDER: a threshold that 345

is too high will cause many adversarial examples 346

to be classified as clean samples, resulting in a low 347

true positive rate (TPR); conversely, a threshold 348

that is too low will lead to a high false positive rate 349

(FPR), affecting the model’s normal performance. 350
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Figure 4: TPR-FPR trade-off on validation set.

The ablation study is conducted to determine the 351

optimal threshold. By treating adversarial pairs as 352

positive samples and clean pairs as negative sam- 353

ples, we plot the TPR-FPR curve with thresholds 354

ranging from 80% to 100% in 1% increments, as 355

shown in Figure 4. Ideally, we expect high TPR 356

and low FPR (the upper left corner of the plot). 357

Therefore, we selected τ when r equals 95% as the 358

detection threshold of CIDER. 359

4 Experiment 360

In this section, we begin by outlining the configu- 361

rations of our experiments, including the models, 362

datasets, baselines, and evaluation metrics. We then 363

evaluate the effectiveness and efficiency of CIDER, 364

comparing with the baseline methods. Next, we 365

discuss the trade-off between robustness and utility. 366

Finally, we demonstrate the generalization of our 367

method. 368

4.1 Configurations 369

Models. Note that CIDER is an auxiliary model 370

that is independent to the VLMs. We use LLaVA 371

to capture the semantic meaning of each modal- 372

ity, but CIDER can be plugged into any other 373

VLMs. To demonstrate the effectiveness of CIDER, 374

we test the detection and defense performance on 375

four open-source VLMs, including LLaVA-v1.5- 376
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7B (Liu et al., 2024), MiniGPT4 (Zhu et al., 2023),377

InstructBLIP (Dai et al., 2024), and Qwen-VL378

(Bai et al., 2023), as well as the API-access VLM,379

GPT4V (Achiam et al., 2023).380

Datasets. Similar to the dataset used in Section381

2.2, we generate 800 adversarial text-image pairs382

utilizing the 160 harmful queries in Harmbench383

(Mazeika et al., 2024) and adversarial images pro-384

vided by Qi et al. (2024). To further demonstrate385

CIDER will not destroy the original utilities on386

the normal queries, we also evaluate the utility of387

CIDER protected VLMs on MM-Vet benchmark388

(Yu et al., 2023), which examines 6 core vision lan-389

guage capabilities, including recognition, optical390

character recognition (OCR), knowledge, language391

generation, spatial awareness, and math.392

Baseline and evaluation metrics. We use Jail-393

guard (Zhang et al., 2023) as a baseline, which is a394

SoTA mutation-based jailbreak detection strategy395

that protects the VLMs at the inference stage. We396

involve four evaluation metrics to demonstrate the397

performance of defending methods from different398

aspects. From the perspective of the effectiveness399

of CIDER, we incorporate detection success rate400

(DSR) and Attack success rate (ASR). DSR repre-401

sents the proportion of adversarial examples D that402

can be successfully detected:403

DSR def
=

1

|D|
∑

(q,xadv)∈D

Iadv((q, xadv)) (4)404

ASR is a standard evaluation metric indicating405

the proportion of samples that can successfully406

jailbreak VLM F and generate harmful contents,407

which can be stated as:408

ASR def
=

1

|D|
∑

(q,xadv)∈D

Iharm(G(F(q, xadv))) (5)409

G refers to an LLM classifier (Mazeika et al., 2024)410

that determines the harmfulness of a response. Iadv411

and Iadv represent the adversarial and harmful in- 412

dicator. In terms of efficiency, we measure the 413

time cost of processing a single query. In addition, 414

to evaluate the model utility on regular tasks, re- 415

sponses, we incorporate an online evaluator (MM- 416

Vet-Evaluator, 2024) provided along with MM-Vet 417

benchmark, which utilizes GPT-4 to generate a soft 418

grading score from 0 to 1 for each answer. 419

4.2 Effectiveness 420

DSR. We first demonstrate the overall DSR that 421

CIDER can achieve and compare it with the base- 422

line method, Jailguard. Table 1 shows that CIDER 423

achieves a DSR of approximately 80%, while the 424

DSR of Jailguard varies, depending on the target 425

VLMs. Note that CIDER is independent of the 426

VLMs, thus the DSR does not vary with the choice 427

of VLMs. However, Jailguard’s detection capabil- 428

ity relies heavily on the model’s safety alignment, 429

so the DSR also varies. VLMs with good alignment 430

achieve high DSR (e.g., GPT4V), while poorly 431

aligned VLMs have relatively low DSR (e.g., In- 432

structBLIP). In other words, Jailguard does not 433

significantly enhance VLM robustness against ad- 434

versarial jailbreak attacks, whereas CIDER does. 435

Nonetheless, CIDER achieves a higher DSR than 436

most of the Jailguard results, except Jailguard on 437

GPT4V. 438

Method detection success rate (↑)

Jailguard with LLaVA-v1.5-7B 39.50%
Jailguard with InstructBLIP 32.25%
Jailguard with MiniGPT4 69.50%
Jailguard with Qwen-VL 77.50%
Jailguard with GPT4V 94.00%

CIDER 79.69%

Table 1: DSR of CIDER and Jailguard

ASR. To evaluate the effectiveness of CIDER, we 439

measure the decline in ASR after applying CIDER. 440

Figure 5 compares the original ASR without de- 441

fense (red bar), ASR after CIDER (blue bar) and 442
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ASR after Jailguard (yellow bar). Note that, Jail-443

guard is solely designed to detect jailbreak input.444

To ensure a fair comparison, we add an output mod-445

ule following Jailguard’s detection. Specifically,446

if Jailguard detects a jailbreak, it will refuse to447

respond, similar to CIDER. Otherwise, the original448

input will be processed by the VLM.449

Across all models, defending with CIDER sig-450

nificantly reduces the ASR, yielding better results451

than the baseline. This indicates that CIDER effec-452

tively enhances the robustness of VLMs against453

optimization-based jailbreak attacks. The most454

notable improvements are seen in LLaVA-v1.5-455

7B, where ASR drops from 60% to 0%, and in456

MiniGPT4, from 57% to 9%. For VLMs with ini-457

tially low ASRs, such as InstructBLIP and Qwen-458

VL, ASR is reduced to approximately 2% and 1%459

respectively. Another notable disadvantage of Jail-460

guard is observed in models like GPT4V, Instruct-461

BLIP, and Qwen-VL, which already had strong462

safety alignment and resistance to adversarial at-463

tacks. In these cases, the use of Jailguard resulted464

in a slight increase in ASR.465

4.3 Efficiency466

Timely inference is crucial for safeguarding VLMs467

in real-world applications. Table 2 shows the time468

required to process a single input pair and generate469

up to 300 tokens with different VLMs, comparing470

no defense, CIDER, and Jailguard.471

Model Original CIDER Jailguard

LLaVA-v1.5-7B 6.39s 7.41s (1.13×) 53.21s (8.32×)
InstructBLIP 5.46s 6.48s (1.22×) 47.83s (8.76×)
MiniGPT4 37.00s 38.02s (1.03×) 313.78s (8.48×)
Qwen-VL 6.02s 7.04s (1.19×) 48.48s (8.05×)
GPT4V 7.55s 8.57s (1.16×) 61.04s (8.08×)

Table 2: Time cost to process a single pair of inputs.

CIDER surpasses Jailguard in efficiency, adding472

only 1.02 seconds per input pair on average, which473

is relatively acceptable compared to the original474

inference time. In contrast, Jailguard requires 8-9475

times the original processing time. Additionally,476

CIDER detection is irrelevant to the number of477

generated tokens in the query answers. Therefore,478

CIDER does not cause additional overhead when479

increasing the number of generated tokens, ensur-480

ing the stability of CIDER’s efficiency.481

4.4 Robustness-utility trade-off482

To further demonstrate CIDER’s influence on the483

original utilities on normal queries, we also eval-484

uate the utility of CIDER protected VLMs on485

MM-Vet benchmark, including recognition, OCR,486

knowledge, language generation, spatial awareness, 487

and math. As shown in Figure 6, employing CIDER 488

leads to an approximate 30% overall performance 489

decline on normal tasks. Specifically, CIDER 490

mostly affects the VLM’s recognition, knowledge, 491

and language generation capabilities, while it has 492

minimal impact on OCR, spatial awareness, and 493

math skills. We hypothesize that CIDER’s stringent 494

decision-making process, which outright rejects 495

tasks once an image is identified as adversarial, 496

hampers the model’s overall performance. To fur- 497

ther illustrate the robustness-utility trade-off, we 498

conducted an ablation study using denoised im- 499

ages as inputs for the adversarial images, termed 500

CIDER-de. The result is relegated to Appendix B. 501

To find the optimal balance between safety and 502

utility, we could design a more flexible rejection 503

strategy, such as implementing multi-level thresh- 504

olds for different types of content. This approach 505

could reduce the negative impact on the model’s 506

functionality and we leave it to our future work. 507

4.5 Generalization 508

In the previous sections, we evaluated the ASR and 509

DSR against adversarial examples generated by Qi 510

et al. (2024). To assess the generalization of our 511

defense method, which is crucial for its applica- 512

bility to other attacks, we evaluate CIDER against 513

another optimization-based jailbreak attack. We 514

generated 800 adversarial pairs using ImgJP, as 515

proposed by Niu et al. (2024). Table 3 presents 516

the drop of ASR of CIDER on four open-source 517

VLMs. The ASR for all VLMs dropped to below 518

4%, with Qwen reaching 0%. Additionally, CIDER 519

achieved a DSR of 93.87% against ImgJP. These 520

results demonstrate that CIDER effectively gen- 521

eralizes in defending against optimization-based 522

adversarial attacks, highlighting its practical utility 523

for real-world applications.

Base CIDER
Model ASR(%) ASR(%) ∆ (%)
LLaVA-v1.5-7B 61.0 3.5 57.5
InstructBLIP 4.0 1.5 2.5
MiniGPT4 52.5 4.0 48.5
Qwen-VL 6.5 0.0 6.5

Table 3: Generalization of CIDER to ImgJP
524

5 Related Work 525

Vision Language Model. A typical Vision Lan- 526

guage Model (VLM) consists of an image encoder 527

(Dosovitskiy et al., 2020) to extract feature maps, a 528

projector to align image modality information with 529
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Figure 6: VLM performance with and without CIDER on MM-Vet.

text modality, and a Large Language Model (LLM)530

to integrate textual and visual input for generating531

responses. The impressive multimodal capabili-532

ties of these models have spurred significant re-533

search interest, leading to contributions from both534

academia and industry (Achiam et al., 2023; Liu535

et al., 2024; Zhu et al., 2023; Dai et al., 2024; Bai536

et al., 2023).537

Jailbreaking VLMs. Incorporating visual informa-538

tion into the LLM framework significantly broad-539

ens its range of applications but also introduces new540

security vulnerabilities, complicating the security541

issues of VLMs. Besides transferring text jailbreak542

templates from LLMs to VLMs (Luo et al., 2024),543

effective strategies for jailbreaking VLMs include544

using gradient-based methods to generate adver-545

sarial images (Carlini et al., 2024; Qi et al., 2024;546

Niu et al., 2024), and submitting screenshots con-547

taining harmful instructions (Gong et al., 2023) or548

related images (Liu et al., 2023; Shayegani et al.,549

2023). This paper focuses on safeguarding VLMs550

against gradient-based adversarial image attacks,551

aiming to fortify VLMs against such sophisticated552

threats and ensure their robustness and reliability553

in practical applications.554

Safeguarding VLMs. Various defense mecha-555

nisms have been proposed to address vulnerabilities556

in VLMs and enhance their security and robustness.557

These mechanisms can be categorized into proac-558

tive and reactive defenses based on their preventive559

and responsive nature. Proactive defenses aim to560

prevent attacks through techniques like adversar-561

ial training (Zong et al., 2024) and reinforcement 562

learning (Chen et al., 2023) during the training 563

phase. In contrast, reactive defenses focus on de- 564

tecting attacks during the inference phase using 565

methods such as (Wang et al., 2024a; Pi et al., 2024; 566

Wang et al., 2024b). However, many of these meth- 567

ods require access to internal model parameters or 568

rely on additional large models for implementation. 569

Our approach prioritizes a reactive defense strat- 570

egy for its practicality and ease of implementation. 571

Notably, Jailguard (Zhang et al., 2023) is closely 572

related to our work, as it detects jailbreak queries 573

by analyzing variations in responses to perturbed 574

inputs. However, Jailguard’s detection success 575

heavily depends on the safety of the underlying 576

LLM and involves significant computational costs. 577

6 Conclusion 578

In this work, we propose a plug-and-play cross- 579

modality information detector, CIDER, which can 580

effectively and efficiently defend against adver- 581

sarial jailbreak attacks. Compared to previous 582

methods, CIDER achieves superior defense per- 583

formance, as evidenced by higher DSR and a sig- 584

nificant decline in ASR, while greatly reducing pro- 585

cessing time. We also evaluate the transferability 586

of CIDER to other optimization-based adversar- 587

ial attacks and demonstrate the robustness-utility 588

trade-off in VLMs. In future research, we aim to 589

improve CIDER by reducing the negative impact 590

on VLM utilities to normal tasks. Additionally, it 591

would be useful to develop defense mechanisms 592

against non-optimization-based jailbreak attacks. 593
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Limitations594

We outline the limitations of our study as follows:595

1. While CIDER is an effective, efficient, and596

user-friendly defense mechanism, it does impact597

VLM performance to some extent. We believe this598

is due to CIDER’s stringent handling of adversarial599

examples. In future work, we plan to implement600

multi-level thresholds to process adversarial ex-601

amples with varying degrees of rigor, aiming to602

maintain robust defense capabilities without com-603

promising VLM performance.604

2. CIDER is specifically designed to defend605

against optimization-based adversarial jailbreak at-606

tacks, and its effectiveness against other types of607

jailbreak attacks is uncertain. Future research will608

explore CIDER’s effectiveness against these alter-609

native attacks and develop corresponding defense610

strategies, aiming to enhance the overall security611

and resilience of VLMs against a wider array of612

adversarial threats.613

Ethics Statement614

Ensuring the security of Vision Large Language615

Models (VLMs) is crucial as they become more616

widely used in various applications. This paper617

introduces CIDER, a simple yet effective cross-618

modality information detector designed to defend619

against adversarial jailbreak attacks in VLMs. Our620

work significantly contributes to the field by pro-621

viding a tool that mitigates known vulnerabilities622

and lays the groundwork for future improvements623

in safety measures. While CIDER marks signifi-624

cant progress, it doesn’t make VLMs immune to all625

threats. Continuous evaluation and updates are cru-626

cial as VLMs evolve. By sharing CIDER and our627

findings, we aim to encourage ongoing research628

and collaboration, promoting advanced and secure629

VLMs. We are committed to addressing the eth-630

ical implications of VLM deployment, ensuring631

transparency, and prioritizing the responsible use632

of these technologies for societal benefit.633
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A Visualization of denoising807

Figure 7 presents an example of an adversarially808

perturbed image, showing the effects of denoising809

it after 100, 200, and 300 iterations.

Figure 7: An example of the denoising procedure.

810

B Ablation study on robustness-utility811

trade-off812

To further illustrate the robustness-utility trade-off,813

we perform an ablation study using denoised im-814

ages as inputs for adversarial images, referred to as815

CIDER-de. Figure 8 shows the ASR of CIDER-de816

and Figure 9 shows the MM-Vet score of it. It can817

be observed that using CIDER-de hardly impacts818

the utility of the VLM. However, this comes at the819

expense of greatly diminished defensive effective-820

ness.821
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