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ABSTRACT

Modeling the complex three-dimensional (3D) dynamics of relational systems
is an important problem in the natural sciences, with applications ranging from
molecular simulations to particle mechanics. Machine learning methods have
achieved good success by learning graph neural networks to model spatial
interactions. However, these approaches do not faithfully capture temporal
correlations since they only model next-step predictions. In this work, we propose
Equivariant Graph Neural Operator (EGNO), a novel and principled method that
directly models dynamics as trajectories instead of just as next-step prediction.
Different from existing methods, EGNO explicitly learns the temporal evolution
of 3D dynamics where we formulate the dynamics as a function over time and
learn neural operators to approximate it. To capture the temporal correlations
while keeping the intrinsic SE(3)-equivariance, we develop equivariant temporal
convolutions parameterized in the Fourier space and build EGNO by stacking the
Fourier layers over equivariant networks. Comprehensive experiments in multiple
domains, including particle simulations, human motion capture, and molecular
dynamics, demonstrate the significantly superior performance of EGNO against
existing methods, thanks to the equivariant temporal modeling.

1 INTRODUCTION

Modeling the dynamics of many body systems in Euclidean space is an important problem in machine
learning (ML) at all scales (Tenenbaum et al., 2011; Battaglia et al., 2016), ranging from interactions
of atoms in a molecule or protein to interactions of celestial bodies in the universe. Traditional
methods tackle these physical dynamics by Newton’s laws along with interactions calculated from
physical rules, e.g., Coulomb force for modeling systems with charged particles (Kipf et al., 2018).
Such calculations based on physical rules typically are very computationally expensive and slow, and
recently researchers are studying alternative ML approaches by learning neural networks (NNs) to
automatically capture the physical rules and model the interactions in a data-driven fashion. Along
this research direction, considerable progress has been achieved in recent years by regarding objects
as nodes and interactions as edges and learning graphs neural networks (GNNs) and learn the spatial
interactions via message-passing schemes. (Battaglia et al., 2016; Kipf et al., 2018; Sanchez-Gonzalez
et al., 2019; Martinkus et al., 2021; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020).

Among the advancements, Equivariant GNN (EGNN) is a state-of-the-art approach with impressive
results in modeling physical dynamics in 3D Euclidean space (Thomas et al., 2018; Satorras et al.,
2021; Huang et al., 2022). EGNNs possess equivariance to roto-translational transformations in
the Euclidean space, which has been demonstrated as a vital inductive bias to improve generaliza-
tion (Köhler et al., 2019; Fuchs et al., 2020; Han et al., 2022; Xu et al., 2022). However, these methods
typically model the dynamics by only learning to predict the next state given the current state, failing
to faithfully capture the temporal correlation along the trajectory. As a result, performance is still
often unsatisfactory without fully understanding the dynamics as systems evolve through time.

Our contributions: In this paper, we propose Equivariant Graph Neural Operator (EGNO), a novel
and principled method to overcome the above challenge by directly modeling the entire trajectory
dynamics instead of just the next time-step prediction. Different from existing approaches, EGNO
predicts dynamics as a temporal function that is not limited to a fixed discretization. Our framework
is inspired by the neural operator (NO) (Li et al., 2020; Kovachki et al., 2021b;a), specifically, Fourier
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Figure 1: Illustration of EGNO. EGNO blocks (green) can be built with any EGNN layers (blue)
and the proposed equivariant temporal convolution layers (yellow). Consider discretizing the time
window ∆T into P points {∆t1, . . . ,∆tP }. Given a current state G(t), we will first repeat its features
by P times, concatenate the repeated features with time embeddings, and feed them into L EGNO
blocks. Within each block, the temporal layers operate on temporal and channel dimensions while the
EGNN layers operate on node and channel dimensions. Finally, EGNO can predict future dynamics
as a function fG(t) and decode a trajectory of states {G(t+∆tp)}Pp=1 in parallel.

neural operator (FNO) (Li et al., 2021; Zheng et al., 2023), which has shown great effectiveness in
learning maps between function spaces with desirable discretization convergence guarantees. Our
core idea is to formulate the physical dynamics as a function over time and learn neural operators
to approximate it. The main challenge in developing EGNO is to capture the temporal correlations
while still keeping the SE(3)-equivariance in the Euclidean space. To this end, we develop equivariant
temporal convolution layers in the Fourier space and realize EGNO by stacking them with equivariant
networks, as shown in Figure 1. Our key innovation is that we notice the equivariance property of
Fourier and inverse Fourier transforms and keep this equivariance in Fourier space with special kernel
integral operators. These designs result in an efficient operator learning framework that is capable of
mapping a current state directly to the solution trajectories, while retaining 3D spatial equivariance.

EGNO enjoys several unique advantages compared to existing GNN-based methods, thanks to the
proposed equivariant operator learning framework. Firstly, our method explicitly learns to model
the trajectory while still keeping the intrinsic symmetries in Euclidean space. This, in practice,
leads to more expressive modeling of underlying dynamics and achieves higher state prediction
accuracy. Secondly, our operator formulation enables efficient parallel decoding of future states
(within a time window) with just one model inference, and the model is not limited to one fixed
temporal discretization. This allows users to run dynamics inference at any timestep size without
switching model parameters. Finally, our proposed temporal convolutional layer is very general and
can be easily combined with any specially designed EGNN layers. This permits EGNO to be easily
deployed in a wide range of different physical dynamics scenarios.

We conduct comprehensive experiments on multiple benchmarks to verify the effectiveness of the
proposed method, including particle simulations, motion captures, and molecular dynamics for both
small molecules and large proteins. Experimental results show that EGNO can consistently achieve
superior performance over existing methods by a significant margin on various datasets. For instance,
EGNO incurs a relative improvement of 36% over EGNN for Aspirin molecular dynamics, and 52%
on average for human motion capture. All the empirical studies suggest that EGNO enjoys a higher
capacity to model the geometric dynamics, thanks to the equivariant temporal modeling.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph neural networks (Gilmer et al., 2017; Kipf & Welling, 2017) are a family of neural network
architectures for representation learning on relational structures, which has been widely adopted
in modeling complex interactions and simulating physical dynamics. Early research in this field
improves performance by designing expressive modules to capture the system interactions (Battaglia
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et al., 2016; Kipf et al., 2018; Mrowca et al., 2018) or imposing physical mechanics (Sanchez-
Gonzalez et al., 2019). Beyond interactions, another crucial consideration for simulating physical
dynamics is the symmetry in Euclidean space, i.e., the equivalence w.r.t rotations and translations.
To this end, several works are first proposed to enforce translation equivariance (Ummenhofer et al.,
2019; Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020; Wu et al., 2018), and then later works
further enforce the rotation equivariance by spherical harmonics (Thomas et al., 2018; Fuchs et al.,
2020) or equivariant message passings (Satorras et al., 2021; Huang et al., 2022). In addition, some
methods (Du et al., 2022; Morehead & Cheng, 2023) also introduce architectural enhancements with
local frame construction to process geometric features while satisfying equivariance. However,
despite the considerable progress, all the models are limited to modeling only the spatial interactions
and ignore the critical temporal correlations, while in this paper, we view dynamics as a function of
geometric states over time and explicitly learn the temporal correlations.

2.2 NEURAL OPERATORS

Neural operators (Kovachki et al., 2021b) are machine learning paradigms for learning mappings
between Banach spaces, i.e., continuous function spaces (Li et al., 2020; Kovachki et al., 2021a),
which have been widely adopted as data-driven surrogates for solving partial differential equations
(PDE) or ordinary differential equations (ODE) in scientific problems. Among them, Fourier neural
operator (Li et al., 2021) is one of the state-of-the-art methods for solving PDEs across many scientific
problems (Yang et al., 2021; Wen et al., 2022). It holds several vital properties including discretization
invariance and approximation universality (Kovachki et al., 2021a;b), which is useful in our scenario
where we aim to model the dynamics as a function of 3D states over time. However, previous studies
mainly concentrate on functions defined on spatial domains (Yang et al., 2021; Wen et al., 2022) or
temporal functions with simple scalar outputs (Zheng et al., 2023). By contrast, in this paper, we
are interested in modeling geometric dynamics with temporal functions describing the evolution of
directional features where it is nontrivial to enforce the symmetry of Euclidean space.

3 PRELIMINARIES

3.1 NOTIONS AND NOTATIONS

In this paper, we consider modeling the dynamics of multi-body systems, i.e., a sequence of geometric
graphs G(t) indexed by time t. It can also be viewed as a function of 3D states over time fG : t → G(t).
Suppose we have N particles or nodes in the system, then the graph G at each timestep can be
represented as the feature map [h,Z], where h = (h1, . . . , hN ) ∈ RN×k is the node feature matrix of
k dimension (e.g., atom types and charges), and Z ∈ RN×m×3 is the generalized matrix composed
of m directional tensors in 3D. For example, Z can be instantiated as the concatenation of coordinate
matrix x ∈ RN×3 and velocity matrix v ∈ RN×3, leading to Z = [x,v] ∈ RN×2×3. Specifically, in
this paper, we consider the dynamics where h will stay unaffected w.r.t. time while Z is updated, e.g.,
for molecular dynamics, atom types will remain unchanged while positions are repeatedly updated.

3.2 EQUIVARIANCE

Equivariance is important and ubiquitous in 3D systems (Thomas et al., 2018; Fuchs et al., 2020).
Let g ∈ G denote an abstract group, then a function f : X → Y is defined as equivariant w.r.t g
if there exists equivalent transformations Tg and Sg for g such that f ◦ Tg(Z) = Sg ◦ f(Z) (Serre
et al., 1977). In this paper, we consider the Special Euclidean group SE(3) for modeling the 3D
dynamics, which is the group of 3D rotations and translations. Then transformations Tg and Sg can
be represented by a translation µ ∈ R3 and an orthogonal rotation matrix R ∈ SO(3).

As a practical example, to model dynamics by learning a function to predict G(t+1) from G(t), we hope
that any rotations and translations applied to the current state coordinate x(t) should be accordingly
applied on the predicted next one x(t+1), while the velocities v should also rotate in the same way
but remain unaffected by translations1. Such inductive bias has been shown critical in improving data
efficiency and generalization for geometric modeling (Cohen et al., 2018; Xu et al., 2023).

1Following this convention, in this paper we use RZ+ µ as the shorthand for [Rx+ µ,Rv]T.
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3.3 FOURIER NEURAL OPERATOR

Fourier neural operator (FNO) (Li et al., 2021) is an advanced data-driven approach for learning map-
pings between Banach spaces, which has been widely deployed in solving PDEs and ODEs (Kovachki
et al., 2021b;a; Zheng et al., 2023) in scientific problems. Typically, a Fourier neural operator F can
be implemented as a stack of L kernel integration layers with each kernel function parameterized by
learnable weights θ. Let σ denote nonlinear activation functions, we have

Fθ := Q ◦ σ(WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P (1)

where P and Q are lifting and projection operators parameterized by neural networks, which lift
inputs to higher channel space and finally project them back to the target domain, respectively. Wi

are point-wise linear transformations, and Ki are kernel integral operators parameterized in Fourier
space. Formally, given fi as the input function to the i-th layer, Ki is defined as:

(Kif)(t) = F−1(Mi · (Ff))(t), ∀t ∈ D, (2)

where F and F−1 denote the Fourier and inverse Fourier transforms on temporal domain D, respec-
tively, and Mi is the learnable parameters that parameterizes Ki in Fourier space. Starting from input
function a(t), we first lift it to higher dimension space by P , apply L layers of integral operators and
activation functions, and then project back to the target dimension with Q. The resulting FNO is
shown to follow the critical discretization invariance of the function domain D.

4 EQUIVARIANT GRAPH NEURAL OPERATOR

4.1 OVERVIEW

Our goal is to learn a neural operator that given the current structure G(t) (recurrently) predicts the
future structures G(t+∆t) with ∆t > 0. Previous methods (Thomas et al., 2018; Gilmer et al., 2017;
Wang & Chodera, 2023) mainly tackled the problem by learning to predict G(t+1) from G(t), while
in this paper we instead learn to predict a future trajectory {G(t+∆t) : ∆t ∼ D = [0,∆T ]} within
a time window ∆T . Let U : D → RN×m×3 denote the space of the target temporal functions that
predict future states Z(t+∆t). Assume F † to be the solution operator, we can define EGNO as Fθ

and learn it with the following objective function:

min
θ

EG(t)∼pdata
L(Fθ(G(t))(t)− F †(G(t))(t)), (3)

where L : U → R+ is any loss function such as Lp-norm. Further, the dynamics introduced in
section 3.1 can generally be described by Newtonian equations of motion

dZ =

[
dx
dv

]
=

[
v · dt

−r · dt− γv · dt

]
, (4)

where r represents the force of particle interactions, and γ is the weight controlling the potential
friction term. From equation (4), we know there exists an exact solution of Z(t) corresponding
to the solution operator F † in equation (3), which represents the solver for solving the dynamics
function, i.e., mapping a current structure G(t) to the function fG(∆t) that describes future states
G(t+∆t) for ∆t ∼ [0,∆T ]. According to neural operator theory, we have that the FNO framework
can universally approximate the dynamics and predict future geometric structures G(t+∆t) with one
forward inference, and we leave the formal statement in Appendix A.1.

4.2 EQUIVARIANT TEMPORAL CONVOLUTIONS IN FOURIER SPACE

In this part, we formally introduce our temporal convolution layers Tθ, which are built upon Fourier
integration operators Kθ to model the temporal correlations. Let f : D → G2 be the input starting
function that describes structures G(t) for time t, i.e., f(t) = [fh, fZ(t)]

T. Then the convolution layer
Tθ is implemented as:

(Tθf)(t) = f(t) + σ((Kθf)(t)), (5)

2For simplicity, in Section 4.1 we omit the subscript and use f to denote fG .
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which is a modified version of the FNO layer in equation (1). In particular, we move the nonlinearity
σ and trainable parameters to the integration layer K and leave the linear transform W as an
identical residual connection (He et al., 2016), which has shown effectiveness in various applications
including operator learning (Li et al., 2021; Zheng et al., 2023). The temporal integration layer Kθ is
implemented directly in the frequency domain, following equation (2), where we first conduct Fourier
transform over f and then multiply it with Mθ. In the following, we introduce how we design Kθ to
ensure efficient temporal modeling while keeping the crucial SE(3)-equivariance.

Equivariance. Different from typical FNO operating on non-directional function space, in this work
we aim to learn functions f(t) for predicting geometric structures G(t), where the output is directional
in 3D and requires the vital SE(3)-equivariance inductive bias. To be more specific, the convolution
layer Tθ integrates a sequence of geometric structures as inputs and outputs a new sequence of
updated structures, and the equivariance requirement means that the output ones should transform
accordingly if a global roto-translation transformation is applied on the input ones. Let R and µ
denote the rotation matrix and translation vector respectively, then we have

(Tθ(Rf + µ))(t) = (R(Tθf) + µ)(t), (6)

where Rf+µ is the shorthand for [fh,RfZ+fµ]. This means with roto-translational transformations,
the directional features will be affected while non-directional node features stay unaffected.

However, it is non-trivial to impose such equivariance into FNOs. Our key innovation is to implement
Kθ with a block diagonal matrix Mθ in equation (2). Formally, we have

(Kθf)(t) = F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
))(t), (7)

where Mh
θ ∈ CI×k×k and MZ

θ ∈ CI×m×m are two complex-valued matrices. The F and F−1 are
realized with fast Fourier transform with I being the hyperparameter to control the maximal number
of frequency modes. Then for the frequency domain, we will truncate the modes higher than I and
thus have F(fh) ∈ CI×k and F(fZ) ∈ CI×m×3 respectively3. The product of Fourier transform
results and kernel functions are given by:

[Mh
θ · (Ffh)]i,j =

k∑
l=1

(Mh
θ )i,j,l(Ffh)i,l [MZ

θ · (FfZ)]i,s =

m∑
l=1

(MZ
θ )i,s,l(FfZ)i,l (8)

for all i ∈ {1, . . . , I}, j ∈ {1, . . . , k} and s ∈ {1, · · · ,m}. The main difference between the two
products lies in that the first is simply scalar multiplications, while the second multiplies scalar with
3D vectors. Furthermore, to ensure equivariance, we implement the nonlinearity in equation (5) by

σ(Kθf) = [σ(Kθfh),KθfZ]
T, (9)

which means we skip the activation layer for Z part and thus keep its original orientations. With the
above designs, we enjoy the following crucial property:

Theorem 4.1. By parameterizing the kernel function Kθ with equations (7) and (9), we have that Tθ
is an SO(3)-equivariant operator, i.e., (Tθ(Rf))(t) = (R(Tθf))(t).

The key foundations behind the theorem are that F and F−1 are both equivariant operations, and
we keep the equivariance in the frequency domain by updating 3D directional vectors with linear
combinations. We provide the full proof for the theorem in Appendix A.

Temporal discretization. We discretize the time domain and perform discrete Fourier transforms for
better computational efficiency. Suppose the time window with length ∆T is discretized into P points.
Considering the domains of the input and output functions of temporal convolution layer Tθ are both
states G ∈ RN×(k+m×3). Then f(t) can be represented as a sequence of P states of structures, i.e., a
tensor in RP×N×(k+m×3). Thus, we can perform F and F−1 in equation (7) efficiently with fast
Fourier transform algorithm.

3Note that, k and m can be viewed as numbers of channels, and the temporal convolutions only operate on
the temporal and feature channel dimensions. Therefore, here the node dimension N is just treated as the same
as the batch dimension and omitted in the expressions.
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4.3 GENERALIZED ARCHITECTURE

As shown in Figure 1, the EGNO is very generalized and can be implemented by stacking the
proposed temporal convolutions with any existing EGNN layers (Thomas et al., 2018; Fuchs et al.,
2020; Huang et al., 2022). These equivariant layers (EL) can be abstracted as a general class of
networks that are equivariant to rotation and translation, i.e.,

hout,R · Zout + µ = ELθ(h
in,R · Zin + µ). (10)

In this paper, we choose the original EGNN (Satorras et al., 2021), one of the most widely adopted
equivariant graph networks, as the backbone. Assuming we discretize the time window ∆T into
{∆t1, . . . ,∆tP } and take the current state G(t) as input, our workflow is to first repeat its feature map
by P times, expand the features with time embeddings, and then forward the features into EGNO
blocks composed of temporal convolutions and EGNN layers. In particular, EGNN layers would only
operate on the node and channel dimension within each graph and treat the temporal dimension the
same as the batch dimension. The overall framework is described in Figure 1.

A minor remaining part of the temporal convolution layer (equation (7)) is that so far it is still
only equivariant to rotations but not translations. Yet, translation equivariance is desirable for some
geometric features like coordinates. Indeed, this part can be trivially realized by canceling the center
of mass (CoM). In detail, for temporal convolution on coordinates x, we will first move the structure
to zero-CoM by subtracting x̄ = 1

N

∑N
i=1 xi, pass it through the layer Tθ, and then add original CoM

x̄ back. Such workflow handles the translation equivariance in a simple yet effective way.

4.4 TRAINING AND DECODING

Training. The whole framework of EGNO can be efficiently trained by minimizing the integral of
the errors on decoded dynamics, i.e., minθ EG(t)∼pdata

∫
[0,∆T ]

||Fθ(G(t))(∆t)− F †(G(t))(∆t)||d∆t.
In practice, we optimize the temporally discretized version:

min
θ

EG(t)∼pdata

1

P

P∑
p=1

||Fθ(G(t))(∆tp)− F †(G(t))(∆tp)||, (11)

where {∆t1, . . . ,∆tp} are discrete timesteps in the time window [0,∆T ]. Specifically, in this paper,
we concentrate on modeling the structural dynamics, where only directional features Z are updated
and node features h stay unchanged. Therefore, the norm in the objective function will only be
calculated over Z part of the predicted structures G(t+∆t).

Decoding. One advantage of EGNO is that all modules including temporal convolutions and
equivariant networks can process data at different times in parallel. Therefore, given a current
state G(t), EGNO is capable of efficiently decoding all future structures G(t+∆tp) at timesteps
∆tp ∈ {∆t1, . . . ,∆tp} with a single model call. Then a specific one can be chosen according to user
preference for time scales, which in practice is a highly favorable property for studying molecular
dynamics at different scales (Schreiner et al., 2023).

5 EXPERIMENT

In this section, we evaluate EGNO in various scenarios, including N-body simulation (§ 5.1), motion
capture (§ 5.2), and molecular dynamics (§ 5.3) on small molecules (§ 5.3.1) and proteins (§ 5.3.2).
In § 5.4, we perform ablation studies to investigate the necessity of our core designs in EGNO. We
provide extensive visualizations in Appendix C.3.

5.1 N-BODY SYSTEM SIMULATIONS

Dataset and implementation. We adopt the 3D N-body simulation dataset (Satorras et al., 2021)
which comprises multiple trajectories depicting the dynamical system formed by N charged particles,
with movements driven by Coulomb force. We follow the experimental setup of Satorras et al. (2021),
with N = 5, time window ∆T = 10, and 3000/2000/2000 trajectories for training/validation/testing.
We use uniform discretization with P = 5, with more details deferred to Appendix B.1.
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Table 2: F-MSE in N-body simulation w.r.t. differ-
ent sizes of the training set.
|Train| 1000 3000 10000

EGNN 0.0094 0.0071 0.0051
EGNO-U (P = 5) 0.0082 0.0056 0.0036
EGNO-L (P = 5) 0.0071 0.0055 0.0038

Table 3: F-MSE in N-body simulation
w.r.t. different numbers of time steps P .
|Train|=3000 EGNO-U EGNO-L

P = 2 0.0062 0.0067
P = 5 0.0056 0.0055
P = 10 0.0057 0.0054

Evaluation metrics. We perform comparisons on two tasks, namely state-to-state (S2S) and state-to-
trajectory (S2T). They measure the prediction accuracy of the final state or the whole trajectories of
the decoded future dynamics within a time window, respectively. Formally, for S2S, we calculate
Final Mean Squared Error (F-MSE), which is the MSE between the predicted final state and the
ground truth, i.e., F-MSE = ∥x(tP )− x†(tP )∥2, where x† is the ground truth position. For S2T, we
use Average MSE (A-MSE), which instead computes the MSE averaged across all discretized time
steps along the decoded trajectory, i.e., A-MSE = 1

P

∑P
p=1 ∥x(tp) − x†(tp)∥2. These metrics are

employed throughout the experiments in this paper unless otherwise specified.

Table 1: MSE in the N-body simulation.
F-MSE

Linear (Satorras et al., 2021) 0.0819
SE(3)-Tr. (Fuchs et al., 2020) 0.0244
TFN (Thomas et al., 2018) 0.0155
MPNN (Gilmer et al., 2017) 0.0107
RF (Köhler et al., 2019) 0.0104
ClofNet (Du et al., 2022) 0.0065
GCPNet (Morehead & Cheng, 2023) 0.0070
EGNN (Satorras et al., 2021) 0.0071
EGNN-R 0.0720
EGNN-S 0.0070

EGNO 0.0054

A-MSE

EGNN-R 0.0215
EGNN-S 0.0045

EGNO 0.0022

Baselines. For S2S, we include Linear Dynamics
(Linear) (Satorras et al., 2021), SE(3)-Transformer
(SE(3)-Tr.) (Fuchs et al., 2020), Tensor Field Net-
works (TFN) (Thomas et al., 2018), Message Passing
Neural Network (MPNN) (Gilmer et al., 2017), Ra-
dial Field (RF) (Köhler et al., 2019), ClofNet (Du
et al., 2022), GCPNet (Morehead & Cheng, 2023),
and EGNN (Satorras et al., 2021). They ignore the
temporal dependency and directly predict the last
snapshot. For S2T, we extend the most competitive
baseline EGNN to two variants: EGNN-Roll is an
EGNN trained on the shortest time span and tested
by iteratively rolling out (Sanchez-Gonzalez et al.,
2020). EGNN-Sequential sequentially reads out each
frame of the trajectory from each EGNN layer.

Results. The results are listed in Table 1, where
the numbers of the baselines are taken from Sator-
ras et al. (2021). We have the following findings:
1. Our EGNO achieves the lowest error of 0.0054
in S2S setting, yielding an 18% relative enhancement over the most competitive baseline EGNN.
EGNO also surpasses other trajectory modeling variants in S2T setting by a considerable margin. 2.
EGNN-R performs poorly compared with other trajectory modeling approaches, since the error is
dramatically accumulated in each roll-out step during testing. EGNN-S is also inferior to EGNO,
due to insufficient excavation of the temporal dependency along the entire dynamics trajectory.

Data efficiency. We compare EGNO with EGNN under different data regimes where the size of the
training set sweeps over 1000, 3000, and 10000. As depicted in Table 2, EGNOs achieve much lower
simulation error than EGNN in all scenarios, and are observed to be nearly 3× more data-efficient.

The approach of temporal discretization. We study two methods of discretization for the trajectory,
namely EGNO-U, which uniformly samples {tp}Pp=1 with tp = t + p

P ∆T , and EGNO-L, which
selects the last P snapshots at the tail of the trajectory with interval δ, i.e., tp = t+∆T − δ(P − p).
In Table 2 and 3, We find that EGNO obtains promising performance regardless of the discretization
method. EGNO-L performs better than EGNO-U in terms of F-MSE when data is scarce since
it gives a more detailed description of the part near the end of the trajectory. However, EGNO-U
becomes better when P = 2, because uniform discretization is more informative in depicting the
entire dynamics. We also provide results and analyses on other datasets in Appendix C.2.

The number of discretized time steps. To investigate how the granularity of the temporal discretiza-
tion influences the performance, we switch the number of time steps P in training within {2, 5, 10}.
Interestingly, in Table 3, EGNO with P = 2 outperforms EGNN, while the performance is further
boosted when P is increased to 5, which aligns with our proposal of leveraging trajectory modeling
over snapshots. The MSEs of P = 10 remain close to P = 5 with no clear enhancement, possibly
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Table 5: MSE (×10−2) on MD17 dataset. Upper part: F-MSE for S2S. Lower part: A-MSE for S2T.
Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

RF 10.94±0.01 103.72±1.29 4.64±0.01 13.93±0.03 0.50±0.01 1.23±0.01 10.93±0.04 0.64±0.01

TFN 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.01 0.84±0.02

SE(3)-Tr. 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02

EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

EGNN-R 14.51±0.19 62.61±0.75 4.94±0.21 17.25±0.05 0.82±0.02 1.35±0.02 11.59±0.04 1.11±0.02

EGNN-S 9.50±0.10 66.45±0.89 4.63±0.01 12.88±0.01 0.45±0.01 1.00±0.02 10.78±0.05 0.60±0.01

EGNO 9.18±0.06 48.85±0.55 4.62±0.01 12.80±0.02 0.37±0.01 0.86±0.02 10.21±0.05 0.52±0.02

EGNN-R 12.07±0.11 23.73±0.30 3.44±0.17 13.38±0.03 0.63±0.01 1.15±0.02 5.04±0.02 0.89±0.01

EGNN-S 9.49±0.12 29.99±0.65 3.29±0.01 11.21±0.01 0.43±0.01 1.36±0.02 4.85±0.04 0.68±0.01

EGNO 7.37±0.07 22.41±0.31 3.28±0.02 10.67±0.01 0.32±0.01 0.77±0.01 4.58±0.03 0.47±0.01

because the trajectory with P = 5 has already been sufficiently informative for its geometric pattern
to be abundantly captured by the equivariant Fourier temporal convolution modules.

5.2 MOTION CAPTURE

Table 4: MSE (×10−2) on the motion cap-
ture dataset. The upper part is F-MSE for
S2S and the lower part is A-MSE for S2T.

Subject #35 Subject #9
Walk Run

MPNN 36.1 ±1.5 66.4 ±2.2
RF 188.0 ±1.9 521.3±2.3
TFN 32.0 ±1.8 56.6 ±1.7
SE(3)-Tr. 31.5 ±2.1 61.2 ±2.3
EGNN 28.7 ±1.6 50.9 ±0.9
EGNN-R 90.7 ±2.4 816.7 ±2.7
EGNN-S 26.4 ±1.5 54.2 ±1.9

EGNO 8.1 ±1.6 33.9 ±1.7

EGNN-R 32.0 ±1.6 277.3 ±1.8
EGNN-S 14.3 ±1.2 28.5 ±1.3

EGNO 3.5 ±0.5 14.9 ±0.9

Dataset and implementation. We further benchmark
our model on CMU Motion Capture dataset (CMU,
2003), which involves 3D trajectories captured from
various human motion movements. We focus on two
motions: Subject #35 (Walk) and Subject #9 (Run), fol-
lowing the setups and data splits in Huang et al. (2022);
Han et al. (2022). Similar to N-body simulation, the
input includes initial positions and velocities of the inter-
sections, and ∆T = 30. We use P = 5 and uniform dis-
cretization by default. More details are in Appendix B.

Results. As exhibited in Table 4, our EGNO surpasses
the baselines by a large margin on both Walk and Run
datasets and in both S2S and S2T cases, e.g., up to
around 52% on average in S2S. The error propagation
of EGNN-R becomes more severe since the motion cap-
ture involves more complex and varying dynamics than
N-body simulation. EGNN-S generally performs com-
parably to other S2S methods, while still being inferior
to EGNO which models the entire trajectory compactly.

5.3 MOLECULAR DYNAMICS

5.3.1 SMALL MOLECULES

Dataset. We adopt MD17 (Chmiela et al., 2017) dataset to evaluate the capability of our EGNO on
modeling molecular dynamics. The dataset consists of the molecular dynamics trajectories of eight
small molecules, including aspirin, benzene, etc. We follow the setup and split by Huang et al. (2022)
which randomly partitions each trajectory into 500/2000/2000 subsets for training/validation/testing
while ∆T is chosen to be 3000. We use P = 8 and uniform discretization by default.

Results. The results are illustrated in Table 5. EGNO obtains the best performance on all eight
molecules, verifying the applicability of EGNO towards modeling molecular dynamics. The per-
formance gain is most notable on Aspirin, one of the most complicated structures on MD17, where
EGNO, with an MSE of 9.18× 10−2, outperforms its backbone EGNN by 36%. Compared with
EGNN-R/S, EGNO consistently gives more accurate predictions for both S2S and S2T evaluations,
showcasing the importance of conducting equivariant temporal convolution in geometric space.

5.3.2 PROTEINS

Dataset and implementation. We use the Adk equilibrium trajectory dataset (Seyler & Beckstein,
2017) integrated in the MDAnalysis (Richard J. Gowers et al., 2016) toolkit, which depicts the

8



Under review as a conference paper at ICLR 2024

molecular dynamics trajectory of apo adenylate kinase. We follow the setting and split of Han
et al. (2022). We use P = 4 by default. We additionally consider EGHN (Han et al., 2022), the
state-of-the-art model on this benchmark, as a baseline. To investigate the compatibility of our
approach with different backbones, we incorporate equivariant temporal convolution into EGHN by
inserting it to the end of each block in EGHN (details in Appendix B.4) and name it EGHNO.

Table 6: F-MSE on AdK equilibrium trajectory dataset.
Linear RF MPNN EGNN EGHN EGNO EGHNO

2.890 2.846 2.322 2.735 2.034 2.231 1.801

Results. The results are presented in
Table 6. Equipped with our equiv-
ariant temporal convolution, EGHNO
achieves state-of-the-art on this chal-
lenging benchmark. Furthermore,
both EGNO and EGHNO offer significant increment to the performance to their original backbones,
i.e., EGNN and EGHN, showing that our equivariant temporal convolution is highly compatible with
various backbones, indicating its broad applicability to a diverse range of models and tasks.

5.4 ABLATION STUDIES

We conduct ablation studies on the N-body system simulation task and motion capture dataset to
inspect the role of the designed parts, with the results summarized in Table 7.

Table 7: Ablation studies on N-body simula-
tion and Mocap-Run datasets. Numbers refer
to the F-MSE (×10−2 for Run). Columns
with h,x,v indicate whether such geometric
information is processed in equation 7.

h x v N-body Mocap-Run

EGNO
I ✓ ✓ ✓ 0.0055 33.9
II ✓ ✓ - 0.0057 35.6
III ✓ - - 0.0061 39.1
IV - - - 0.0072 48.2

EGNN 0.0071 50.9

Incorporating geometric information in tempo-
ral convolution. In § 4.2, we propose to involve
temporal convolution on geometric features [h,Z]
in frequency domain. To investigate its importance,
we implement three variants of EGNO: variant IV
discards the entire temporal convolution and reduces
to an EGNN with time embeddings; variant III only
processes the invariant feature h in the temporal con-
volution; variant II considers h,x but neglects v.
Interestingly, compared with the complete version
of EGNO (labeled by I) which incorporates h,x,v,
variant II discards the velocity v in temporal convo-
lution, which brings performance detriment on both
datasets. By further removing all directional informa-
tion, variant III, with invariant h only, incurs much worse performance. Without temporal convolution
(IV), the model cannot sufficiently capture temporal patterns and suffers from the worst performance.
Yet and still, all variants outperform EGNN remarkably thanks to geometric temporal convolution.
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Figure 2: Ablations on I .

Number of modes. We study the influence of the number of
modes I reserved in equivariant Fourier convolution with results
in Figure 2. The simulation errors are decreased notably when
I is increased from 0 to 2, with more temporal patterns with
geometric information captured and encoded in the convolution.
When I is further increased to 3, the performance improves
marginally on Mocap-Run or even becomes worse on N-body,
potentially because redundant frequencies, which encode noisy
patterns, are encapsulated and thus lead to overfitting.

6 CONCLUSION

In this paper, we present equivariant graph neural operator (EGNO), a principled method that models
physical dynamics by explicitly considering the temporal correlations within it. Our key innovation
is to formulate the dynamics as an equivariant function describing state evolution over time and learn
neural operators to approximate it. To this end, we develop a novel equivariant temporal convolution
layer parameterized in the Fourier space. Comprehensive experiments demonstrate its significantly
superior performance in modeling geometric dynamics. With EGNO as a general framework, future
work includes extending EGNO to other physical dynamics domains such as astronomical objects, or
scaling up EGNO to more challenging dynamics such as fluids and deformable materials.
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A FORMAL STATEMENTS AND PROOFS

A.1 STATEMENT OF UNIVERSALITY

We include the formal statement from Kovachki et al. (2021a;b) for the modeling capacity of EGNO
here to make the paper self-contained.
Proposition A.1. The neural operators defined in equation (1) approximates the solution operator of
the physical dynamics ODE equation (4), i.e., the mapping from a current structure G(t) to future
trajectory {G(t+∆t) : ∆t ∼ [0,∆T ]}, arbitrarily well.

A.2 PROOF OF THEOREM 4.1

In this section, we prove Theorem 4.1, which justifies that our proposed architecture is SO(3)-
equivariant. We recall that our action is defined on functions f = [fh, fZ]

T : D → RN×(k+m×3)

(where fh is the D → RN×k node feature component and fZ : D → RN×m×3 is the spatial feature
component) by

(Rf)(t) = [fh(t),RfZ(t)]
T. (12)

We first analyze the action of the Fourier transform, showing that it is equivariant:
Lemma A.2 (Fourier Action Equivariance). The actions of the Fourier and Inverse Fourier Transform
are SO(3)-equivariant.

Proof. F is a dimension-wise Fourier transform that maps from (RD → RG) → CI×G , where I is
the truncation on the number of the Fourier coefficients. For our purposes, this maps our input function
f : D → RN×(k+m×3) to CI×(k+m×3) space4. The action of R is the standard matrix-tensor action
on the FfZ ∈ CI×m×3 component

R · Ff = R · [Ffh,FfZ]
T = [Ffh,R · FfZ]

T (13)

Conversely, we have that

F(R · f) = F [fh,R · fZ]T = [Ffh,F(R · fZ)]T (14)

We need to show that R · FfZ = F(R · fZ). This can be done by recalling that the Fourier transform
F is a linear operator (even when it is discrete as given here). As such, we can write out the
equivariance directly here on a dimension-wise basis:

(R · FfZ)ij· = R

[
(FfZ)ij1
(FfZ)ij2
(FfZ)ij3

]
(15)

=

[
R11(FfZ)ij1 +R12(FfZ)ij2 +R13(FfZ)ij3
R21(FfZ)ij1 +R22(FfZ)ij2 +R23(FfZ)ij3
R31(FfZ)ij1 +R32(FfZ)ij2 +R33(FfZ)ij3

]
(16)

=

[F((R11fZ)ij1 + (R12fZ)ij2 + (R13fZ)ij3)
F((R21fZ)ij1 + (R22fZ)ij2 + (R23fZ)ij3)
F((R31fZ)ij1 + (R32fZ)ij2 + (R33fZ)ij3)

]
(17)

= (F · (RfZ))ij· (18)

which is the desired F equivariance.

To show that the inverse Fourier transform F−1 acts equivariantly, we could easily apply the same
linearity condition on F−1 and go through the details. However, we can do this more directly through
a categorical argument:

F(R · F−1fZ) = R · FF−1fZ = R · fZ =⇒ R · F−1fZ = F−1(R · fZ)
Note that F−1 is only right inverse of F and is only a full inverse when the function domain is
restricted to all functions with trivial Fourier coefficients for degrees > I . However, it can be applied
on the left side here since R · F−1fZ is in this function class since this class is closed under scalar
multiplication and addition (so it is closed under the action of R).

4Note that, the Fourier transform only operates on the temporal dimension and the node dimension N can be
trivially regarded as the same as the batch dimension, so we omit that dimension in our proof.
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This leads directly to the full proof of the theorem.

Proof of Theorem 4.1. Recall that our neural operator is given in full form by

Tθf = f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (19)

The equivariance is shown directly

R · Tθf = R ·
(
f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
))

)
(20)

= R · f +R · σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (21)

= R · f + σ ◦R · (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (22)

= R · f + σ ◦ (F−1(R ·
[
Mh

θ 0
0 MZ

θ

]
· (F

[
fh
fZ

]
)) (23)

= R · f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
·R · (F

[
fh
fZ

]
)) (24)

= R · f + σ ◦ (F−1(

[
Mh

θ 0
0 MZ

θ

]
· (FR ·

[
fh
fZ

]
)) (25)

= Tθ(R · f) (26)

Line 22 follows since σ is an identity operator on Z component. Lines 23 and 25 are the inverse and
regular Fourier transforms and follows from Lemma A.2. The only new line is 24, which follows since
MZ

θ is a scalar multiplication for each component (which commutes with the matrix multiplication
from R). Therefore, we have that our neural operator is equivariant, as desired.

B EXPERIMENT DETAILS

B.1 DATASET DETAILS

N-body Simulation. Originally introduced in Kipf et al. (2018) and further extended to the 3D
version by Satorras et al. (2021), the N-body simulation comprises multiple trajectories, each of
which depicts a dynamical system formed by N charged particles with their movements driven by
the interacting Coulomb force. For each trajectory, the inputs are the charges, initial positions, and
velocities of the particles. We follow the experimental setup of Satorras et al. (2021), with N = 5,
time window ∆T = 10, and 3000 trajectories for training, 2000 for validation, and 2000 for testing.
We take P = 5 by default. In accordance with Satorras et al. (2021), the input node feature is
instantiated as the magnitude of the velocity ∥v∥2, the edge feature is specified as cicj where ci, cj
are the charges, and the graph is constructed in a fully-connected manner without self-loops.

MD17. MD17 (Chmiela et al., 2017) data consists of the molecular dynamics trajectories of eight
small molecules. We randomly split each one into train/validation/test sets with 500/2000/2000 pairs
of state and later trajectories, respectively. We choose ∆T = 5000 as the time window between the
input state and the last snapshot of the prediction trajectories, and calculate the difference between
each as the input velocity. We also compute the norm of velocities and concatenate them with the atom
type as the node feature. We follow the conventions in this field to remove the hydrogen atoms and
focus on the dynamics of heavy atoms. For the graph structure, we follow previous studies (Shi et al.,
2021; Xu et al., 2022) to expand the original molecular graph by connecting 2-hop neighbors. Then
we take the concatenation of the hop type, the atomic types of connected nodes, and the chemical
bond type as the edge feature.
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Table 8: Summary of hyperparameters for EGNO on all datasets.
batch lr wd layer hidden timestep time emb num mode

N-body 100 1e-4 1e-8 4 64 5 32 2
Walk/Run 12 5e-4 1e-10 6 128 5 32 2
MD17 100 1e-4 1e-15 5 64 8 32 2
Protein 8 5e-5 1e-4 4 128 4 32 2

CMU Motion Capture. CMU Motion Capture dataset (CMU, 2003) involves 3D trajectories captured
from various human motion movements. We focus on two motions: Subject #35 (Walk) and Subject
#9 (Run), following the setups and data splits in Huang et al. (2022); Han et al. (2022). Subject
#35 contains 200/600/600 trajectories for training/validation/testing, while Subject #9 contains
200/240/240. We view the joints as edges and their intersections (31 in total) as nodes. Similar
to N-body simulation, the input includes initial positions and velocities of the intersections, and
∆T = 30. We use P = 5 and uniform discretization by default.

Protein. We use the preprocessed version (Han et al., 2022) of the Adk equilibrium trajectory
dataset (Seyler & Beckstein, 2017) integrated in the MDAnalysis (Richard J. Gowers et al., 2016)
toolkit. In detail, the AdK equilibrium dataset depicts the molecular dynamics trajectory of apo
adenylate kinase with CHARMM27 force field (MacKerell Jr et al., 2000), simulated with explicit
water and ions in NPT at 300 K and 1 bar. The meta-data is saved every 240 ps for a total of 1.004
µs. We adopt the split by Han et al. (2022) which divides the entire trajectory into a training set with
2481 sub-trajectories, a validation set with 827, and a testing set with 878 trajectories, respectively.
The backbone of the protein is extracted, and the graph is constructed using cutoff with radius 10Å.

B.2 MORE IMPLEMENTATION DETAILS

Time embedding. In EGNO, we need to make the model aware of the time position for the structures
in the trajectory. To this end, we add “time embeddings” to the input features. We implement the
time embedding with sine and cosine functions of different frequencies, following the sinusoidal
positional encoding in Transformer (Vaswani et al., 2017). For timestep ∆ti, the time embedding is
implemented by:

emb2j = sin(i/100002j/demb),

emb2j+1 = cos(i/100002j/demb),
(27)

where demb denotes the dimension defined for time embeddings, as shown in Table 8.

Fast Fourier Transform. In this paper, the FFT algorithm is realized by PyTorch implementation.
While FFT algorithms are often more efficient when applied to sequences whose lengths are powers
of 2, many FFT implementations, including PyTorch implementation, have optimizations that allow
them to efficiently process time series of arbitrary lengths.

The requirement for power-of-2 lengths is related to certain specific FFT algorithms rather than
a fundamental limitation of the FFT itself. In many cases like PyTorch, the FFT implementation
is designed with the Cooley-Tukey FFT Algorithm for General Factorizations, which can handle
sequences of arbitrary length, including those that are not powers of 2.

Complex numbers. In our paper, the Fourier kernel in equations (7) and (8) are defined as complex
tensors. We implement the complex tensor with two tensors to represent the real and imaginary
components of complex numbers, and use torch. view as complex to convert the two tensors into
the complex one. The computation is roughly as efficient as typical real tensors.

B.3 HYPERPARAMETERS

We provide detailed hyperparameters of our EGNO in Table 8. Specifically, batch is for batch
size, lr for learning rate, wd for weight decay, layer for the number of layers, hidden for
hidden dimension, timestep for the number of time steps, time emb for the dimension of time
embedding, num mode for the number of modes (frequencies). We adopt Adam optimizer (Kingma
& Ba, 2014) and all models are trained towards convergence with an earlystopping of 50 epochs on
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the validation loss. In particular, for EGHNO, we require additional hyperparemeters: the number of
pooling layers is 4, the number of decoding layers is 2, and the number of message passing layer is 4,
the same as Han et al. (2022). For the baselines, we strictly follow the setup in previous works and
report the numbers from them in the S2S setting. For S2T, we keep the backbone EGNN the same
number of layers and hidden dimension as ours for EGNN-R and EGNN-S, ensuring fairness.

Equivariant GNN Layer

Temporal Convolution Layer

Equivariant Pooling Equivariant GNN Layer

Temporal Convolution Layer

Equivariant Un-Pooling
·····

·····

Repeated states	{!(")} Function "$($)

Figure 3: Illustration of EGHNO. Here, we omit the input state repetition and time embedding
conditioning process in Figure 1 and concentrate on the model details.

B.4 MODEL DETAILS OF EGHNO

Here we provide an illustration of EGHNO in Figure 3 to show the details of its architecture. In
addition to the equivariant GNN layers, we have the equivariant pooling and unpooling layers
introduced in the equivariant graph hierarchical network (EGHN) (Han et al., 2022). To realize
EGHNO, we also stack the temporal convolution layers before each EGNN layer similar to EGNO
(Figure 1). In particular, we follow EGHN and add jump connections between the equivariant
unpooling layer and the corresponding low-level pooling layer, which helps to capture the low-level
details of large geometric systems.

C MORE EXPERIMENT RESULTS

C.1 MORE ABLATION STUDIES

We provide more ablation studies in this section to justify the capacity of EGNO.

Table 9: Average MSE in the N-body simulation. Results of EGNN-
R, EGNN-S, and EGNO are directly taken from Table 1 and the
experiments share the same setup.

EGNN-R EGNN-S EGNO EGNO-T2T EGNO-TB

A-MSE 0.0215 0.0045 0.0022 0.0020 0.0039

Trajectory-to-trajectory.
Instead of inputting rep-
etitions of G(t), we can
also input a sequence of
previous structures to the
model, which leads to a
trajectory-to-trajectory
(T2T) model. We test this model on N-body simulation and report the result as follows, named
EGNO-T2T. The A-MSE on the predicted trajectory is reported in table 9.

As shown in the result, our EGNO can handle the T2T task and even achieve better results. However,
we emphasize that, although this implementation achieved better results than the original EGNO,
we do not want to highlight this because EGNO and all baseline models only operate on a single
input point and EGNO-T2T makes use of more input information. Therefore, we take this just as an
ablation study and leave detailed investigations of the T2T framework as a promising future direction.

Temporal Bundling. Brandstetter et al. (2022) introduces the temporal bundling (TB) method, which
tackles the state-to-trajectory task in an orthogonal direction, by factorizing future trajectory. We view
TB as a mixture of our designed EGNN-R baseline and EGNO-IV variant in ablation study (table 7):
EGNN-R learns to predict trajectory by rolling out and EGNO-IV learns to predict trajectory in
parallel with a single model call, while TB proposed to factorize trajectory as multiple blocks and
learns to predict blocks one by one. We tested such EGNN-TB on the N-body simulation benchmark
by factorizing trajectory into blocks of size K=2. The A-MSE result is reported in table 9, which is
the accumulated error for unrolling trajectory.

16



Under review as a conference paper at ICLR 2024

Table 11: MSE (×10−2) on MD17 dataset.
Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

EGNO-U 9.18 48.85 4.62 12.80 0.37 0.86 10.21 0.52
EGNO-L 9.32 57.39 4.62 12.80 0.35 0.84 10.25 0.57

As shown in the result, EGNN-TB is indeed more expressive than EGNN-R and EGNN-S. However,
our method still achieved much better results, which demonstrates the effectiveness of the proposed
Fourier method to directly model the temporal correlation over the whole sequence.

However, we want to highlight two points here: 1) Brandstetter et al. (2022) is related to EGNO on
the temporal modeling side. Another key contribution of EGNO is imposing geometric symmetry
into the model, making EGNO fundamentally different from Brandstetter et al. (2022). 2) Even for
temporal modeling, the TB method actually is orthogonal to the Fourier-based method, where we can
still factorize predictions as blocks while using Fourier operators to predict each block. Therefore,
these two methods are not in conflict and we leave the novel combination as future works.

Neural ODE. For modeling dynamics as a trajectory, another approach is to learn neural ODEs as
surrogates to modeling the gradient field between two states, which capture the temporal correlation
by reparameterizing an ODE. ODE and Fourier operator learning can be viewed as two orthogonal
methods to model the dynamics. In this section, we first present empirical comparisons, and then
discuss the methodological differences and connections.

We follow the setup described in Appendix A.7.2 of Du et al. (2022) to implement an EGNN trained
with ODE objectives, named EGNN-ODE, and test the methods by their interpolation (inter) and
extrapolation (extra) settings in our N-body simulation task. For EGNO, we evaluate the interpolation
by sampling more timesteps to query the trajectory from the output function, implemented by
repeating the input more times and concatenating extra time embeddings specified by the additionally
queried intermediate timesteps, similar to our approach in the experiment of Appendix C.4. The
extrapolation is evaluated by unrolling the prediction of the dynamics towards the additionally queried
timesteps. In this way, both the ODE formulation and our Fourier operator learning approach are
capable of handling interpolation and extrapolation scenarios. We report the A-MSE results for both
inter and extra trajectories in Table 10.

Table 10: Average MSE in the N-
body simulation. Inter and Extra
denote the interpolation and extrap-
olation task respectively.

Method Inter Extra

EGNN-ODE 0.0034 0.0620
EGNO 0.0022 0.0358

Empirically, as shown in the results, the errors of using ODE
for both inter and extra are higher than EGNO, due to the error
accumulated during solving step by step. By contrast, EGNO
yields the prediction over a sequence of structures within the
trajectory in parallel with one model call, which mitigates error
accumulation in the iterative ODE-solving procedure. More-
over, when conducting the experiment we observed that lever-
aging ODE indeed introduced significant computation overhead
in both training and inference especially when the step size is
small, while our EGNO, by modeling the trajectory in the Fourier domain, enables parallel decoding
and thus enjoys very high efficiency for both training and inference.

Methodologically, indeed, we realize there is even potential to combine ODE and FNO. To be more
specific, we can also roll out the dynamics with EGNO for additional timesteps, and utilize the closest
predicted point as the initial value to solve the ODE towards other test-time queried time steps. This
could potentially offer better prediction accuracy as well as efficiency for ODEs. We leave further
studies of the novel combination as future work.

C.2 DISCRETIZATION METHODS

We present more results and discussions on the selection of discretization methods. On Motion
Capture, EGNO-U achieves F-MSE of 8.1 on Walk and 33.9 on Run, while EGNO-L obtains 11.2
on Walk and 31.6 on Run. The results on MD17 are depicted in Table 11. On protein data, EGNO-U
has an F-MSE of 2.231, EGNO-L has an F-MSE of 2.231, EGHNO-U has an F-MSE of 1.801, and
EGHNO-L has an F-MSE of 1.938. On Motion Capture, EGNO-U performs better than EGNO-L
on Walk, while it becomes slightly worse than EGNO-L for the other, i.e., Run. We speculate that
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since running incurs more significant vibrations of the positions in the movements, EGNO-L, by
focusing more on the last short period of the trajectory, permits better generalization than EGNO-U,
which instead operates on a uniform sampling along the entire trajectory, whereas on the more stable
dataset, walking, the prevalence of EGNO-U is observed. EGNO-U and EGNO-L yield similar
simulation error on MD17 and protein data, since the molecular trajectories are relatively stable with
small vibrations around the metastable state, making the temporal sampling less sensitive.

C.3 QUALITATIVE VISUALIZATIONS

N-body and Motion Capture. We provide visualizations of the dynamics predicted by EGNO in this
section. The results of particle simulations, Mocap-Walk, and Mocap-Run are shown in Figures 4
to 6 respectively. As shown in these figures, our EGNO can produce not only accurate final snapshot
predictions but also reasonable temporal interpolations by explicitly modeling temporal correlation.

Figure 4: Visualization of the trajectory generated by EGNO with uniform discretization on the
N-body simulation dataset. The input is in cyan, the ground truth final snapshot is in red, and the
predicted trajectory is in blue. The opacity changes as time elapses.

Protein. We provide visualizations of the protein molecular dynamics predicted by EGNO in Figure 7.
As shown in the figure, our EGNO can produce accurate final snapshot predictions and also tracks
the folding dynamics of the protein. Interesting observations can be found at the bottom regions, e.g.,
the alpha helix structures, where EGNO gives not only close-fitting predictions but also reasonable
temporal interpolations.

C.4 ZERO-SHOT GENERALIZATION TOWARDS DISCRETIZATION STEPS

We investigate how EGNO generalizes to different discretization steps (i.e., different choices of
P ) in a zero-shot manner. To be specific, we load the checkpoint of the trained model with the
default discretization steps P shown in Table B.3 and directly conduct inference by setting the
number of time steps to 2P . In particular, for the time embeddings with input {∆t1, · · · ,∆tP },
we uniformly interpolate in between for the additional time steps, leading to {∆t1/2,∆t1, (∆t1 +
∆t2)/2,∆t2, · · · , (∆tP−1 +∆tP )/2,∆tP }, 2P points in total. This process increases the temporal
resolution without any additional training.

We provide qualitative results in Figure 8. Interestingly, EGNO generalizes to the increased temporal
resolution with 2P time steps promisingly by yielding accurate and smooth trajectories on top of the
low resolution counterparts with P time steps. This capability is remarkably meaningful in the sense
that we could potentially train our EGNOs on large scale data with low temporal resolution, and
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Figure 5: Visualization of the trajectory generated by EGNO with uniform discretization on Motion
Capture Walk. The input is in cyan, the ground truth final snapshot is in red, and the predicted
trajectory is in blue. The opacity changes as time elapses.

Figure 6: Visualization of the trajectory generated by EGNO with uniform discretization on Motion
Capture Run. The input is in cyan, the ground truth final snapshot is in red, and the predicted
trajectory is in blue. The opacity changes as time elapses.
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Figure 7: Visualization of the trajectory generated by EGNO with uniform discretization on Protein.
The input is in blue, the ground truth final snapshot is in red, and the predicted trajectory is in green.
The darkness of green changes as time elapses.

𝑃 2𝑃 𝑃 2𝑃

Figure 8: Qualitative comparison of zero-shot generalization towards discretization steps. The
sub-figures in columns indexed by P (resp. 2P ) have P (resp. 2P ) time steps. The two sub-figures in
the same row share exactly the same initial conditions. Figures on the left are from Motion Capture
Run. Figures on the right are from N-body simulation. Better viewed in color.

conduct offline inference per the user’s requirement on the temporal resolution. EGNO enjoys the
strong generalization we demonstrate here since it directly models the temporal correlations in the
frequency domain instead of leveraging temporal operations like rolling out. This observation aligns
with the discretization invariance of Fourier Neural Operators (FNOs) manifested in Li et al. (2021).
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