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Abstract

The AI community has shown substantial in-
terest in the concept of world models: internal
representations that simulate aspects of the ex-
ternal world, track entities and states, capture
causal relationships, and enable prediction of
consequences. This contrasts with representa-
tions based solely on statistical correlations. A
key motivation behind this research direction is
the argument that humans possess such mental
world models, and finding evidence of similar
representations in Al models might indicate
that these models truly “understand” the world
in a human-like way. In this position paper, we
argue that human-level understanding extends
beyond mental world models alone. We exam-
ine illuminating cases from prior philosophical
work on understanding—including analyses of
computational systems, physical theories, and
mathematical proofs—to demonstrate how hu-
man understanding goes beyond just mental
world models. By highlighting these distinc-
tions, we hope to stimulate deeper discussion
about what constitutes true understanding in
both human and artificial contexts.

1 Introduction

In artificial intelligence, the concept of world mod-
els raises fundamental questions across domains:
Do LLM representations track world states and the
transitions between them, and do they use these
representations to predict next tokens? Do video-
generation models create representations of physi-
cal laws and spatial geometry, predicting future
frames by simulating these learned laws of na-
ture? At its core, the world model hypothesis asks
whether neural networks capture and reproduce the
actual causal processes that generated their data, or
whether they merely manipulate surface patterns
and capture correlations without intermediate repre-
sentations that mirror real-world mechanisms (An-
dreas, 2024). World models can thus be conceptu-
alized as systems that track distinct states and the

causal relationships between them, allowing pre-
dictions by maintaining representations of entities,
their states, and the rules governing transitions (see
§A for related work on world models in Al).

The motivation for studying world models stems
from the human experience of mental visualiza-
tion and picturing, along with our ability to men-
tally simulate these visualized mental models. A
quintessential example is the heliocentric model of
the solar system, where humans visualize the sun,
planets, and other celestial bodies as entities with
specific states (positions, velocities) that transition
according to physical laws governing their orbits.
It is important to note that while people generally
talk about mental models of the real world, we do
not have direct access to the real world—we re-
ceive nerve signals from sense organs which are
converted to electrical activity in the brain—hence,
what we really mean is a world model of some the-
ory of the real world, like the heliocentric model.
Therefore, such mental models can exist even for
superseded theories, like the geocentric model with
its epicycles, or Bohr’s model of electrons orbiting
the atomic nucleus in discrete paths.

This intuitive appeal of world models raises the
question: if Al models (e.g., LLMs) can main-
tain such world states and model state transitions
rather than just leveraging surface-level correla-
tions, would this constitute human-like understand-
ing? It is often argued that since mental world
models are an integral component of how humans
understand the physical world, the presence of
world models in Al systems implies human-like un-
derstanding capabilities (LeCun, 2022; Ng, 2023;
Mitchell, 2025a; Ser et al., 2025). In this position
paper, however, we argue that while world mod-
els represent an advance beyond mere surface
patterns, they fail to capture human-level un-
derstanding across various domains of physical
reasoning and problem-solving.

While both world models and understanding lack
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Figure 1: Left: Conceptual illustration of physical arrangement of dominoes in a computational system (Hofstadter, 2007). Right:
A schematic world-model representation showing states and causal relationships between dominoes. While the world model
can track physical states (standing or fallen dominoes) and predict how one domino causes another to fall, it fails to capture
the abstract mathematical concept of primality that fundamentally explains the system’s behavior. (Note: Text labels on right
diagram are included to improve the readability of the diagram, but are not a part of the actual state representation.)

universally agreed-upon definitions, the growing
interest in world models within Al research makes
exploring the distinction between world models and
understanding valuable. We examine three cases
from philosophical work (see §A for related work):
(1) Hofstadter (2007)’s analysis of a computer built
from falling dominoes, (2) Popper (1979)’s ac-
count of understanding physical theories through
their problem situations, and (3) Pdlya (1949)’s
distinction between verifying and understanding
mathematical proofs. These cases demonstrate that
understanding exists in multiple degrees and the
world-model conception falls significantly short of
human-level understanding.

2 Case Studies: Understanding Beyond
World Models

This section examines three cases where world
models fall short of human-level understanding:
a computer built from falling dominoes, Bohr’s
atomic theory, and mathematical proofs.

2.1 Understanding a Computer Built from
Dominoes

Consider Hofstadter (2007)’s thought experiment
of a computer built from millions of spring-loaded
dominoes. In this system, when a domino falls,
it pops back up after a fixed time, thereby propa-
gating signals along carefully arranged networks.
With such a system, we can implement a mechani-
cal computer where signals travel down stretches
of dominoes that bifurcate, join together, propagate
in loops, and jointly trigger other signals. Relative
timing is of course crucial, but the specific imple-

mentation details are not relevant to our discussion.
The basic idea is that a precisely arranged network
of domino chains can function as a computer pro-
gram for carrying out computations—in this case,
determining if a number is prime. (For a more
detailed explanation, see §B.)

To test primality, the system takes input by plac-
ing exactly that many dominoes (e.g., 641) end-to-
end in a designated “input stretch.” When triggered,
the system runs various tests for divisibility by po-
tential factors. If any divisor is found, a signal trav-
els down a specific “divisor stretch,” indicating the
number is not prime. Conversely, if no divisors are
found, a signal travels down a “prime stretch,” con-
firming primality. Figure 1 provides a schematic
illustration of this conceptual arrangement.

A world model approach to understanding this
system would track each domino’s position (stand-
ing or fallen) at each moment and simulate the phys-
ical propagation of falling patterns. When asked
why a particular domino never falls when the input
is 641, such a model might answer, “Because none
of its neighboring dominoes ever fall.” This answer,
while physically accurate, merely shifts attention
to other dominoes. Tracing backward through the
causal chain would eventually lead to a statement
of the kind: “That domino did not fall because
none of the patterns of motion initiated by the first
domino ever include it.” This mechanistic track-
ing of states fails to capture the true understanding.
The true understanding lies in recognizing that 641
is prime, an abstract mathematical property that ex-
plains the entire pattern of domino behaviors. This
understanding cannot be obtained by simply track-



ing the states of dominoes falling or not falling—no
amount of state tracking can reveal the fundamen-
tal mathematical concept of primality that governs
the system’s behavior.

2.2 Understanding Physical Theories

Popper (1979) argues that understanding a physical
theory means understanding the problem situation
that led to proposing that particular theory as a solu-
tion. By “problem situation,” he means not only the
problems one tries to solve but also their historical
context—the problems together with theories that
failed to solve them, and the criticisms that gen-
erated new problems requiring solutions. Under-
standing involves grasping this cycle of problem,
tentative solution, criticism, and new problem—
that is, why a theory failed and how a new problem
emerged. It encompasses the entire historical situa-
tion surrounding the problem.

Consider Bohr’s atomic theory (Bohr, 1913)!:
Bohr proposed that electrons orbit the nucleus in
discrete, fixed energy levels rather than in contin-
uous paths as described by classical physics. The
key to understanding it is not merely visualizing
electrons jumping between orbits but recognizing
what Bohr attempted to explain with these electron
jumps: the sharp, discrete spectral lines observ-
able in atomic spectra. To explain these definite,
discrete lines, Bohr had to assume certain discrete-
ness in electron movement possibilities, leading to
the concept of jumps between tracks. Crucial to
this explanation is the energy transfer mechanism
Bohr proposed: when an electron jumps from an
outer orbit to an inner orbit, the atom loses energy,
which is emitted in the form of light radiation. The
specific frequencies of light observed in spectral
lines correspond directly to the energy differences
between the allowed electron orbits. This mecha-
nism explains why spectral lines appear at precise
frequencies rather than a continuous spectrum.

Without knowing why Bohr introduced this
somewhat unnatural model—to explain discrete
spectral lines—one cannot truly understand his
theory as a solution to a specific problem situa-
tion. The apparent unnaturalness of electrons being
constrained to certain orbits and making quantum
jumps between them only makes sense in light of
the problem Bohr was solving. As Popper (1979)
notes, someone who is just presented with the Bohr
theory, without knowing that the theory was in-

'For a quick refresher of Bohr’s theory, see §C.

vented in order to explain the phenomenon of dis-
crete spectral lines, will simply not understand the
theory as a solution of a certain problem situation.

The world model alone (electrons orbiting in dis-
crete paths) doesn’t capture the theory’s purpose
and significance. World models in Al similarly
emphasize internal simulation—Tlike picturing elec-
trons on orbits—but as Popper (1979) argues, pic-
turing is not understanding. An AI model might
successfully simulate atomic transitions without
grasping their importance in broader theoretical
context, just as someone might visualize Bohr’s or-
bital structure without comprehending its explana-
tory role in solving the spectral line problem.

2.3 Understanding Mathematical Proofs

Mathematical proofs, while often considered purely
abstract logical structures, have a fascinating con-
nection to computation through the Curry-Howard
correspondence (Howard et al., 1980). This cor-
respondence establishes an isomorphism between
formal proofs and computer programs—every valid
proof can be mapped to a computation that pro-
duces the conclusion from the premises, and every
correct computation corresponds to a proof that the
output follows from the input. This isomorphism
allows us to analyze how world models might ap-
proach mathematical reasoning, where logical steps
can be viewed analogously to states and deductive
reasoning to state transitions.

When asked why a particular conclusion holds,
such a model would trace backward through the
chain of logical states. For example, consider Eu-
clid’s famous proof that there are infinitely many
primes (Heath et al., 1956) (see §D for the proof).
The final state might show “Therefore, there are
infinitely many prime numbers.” The immediately
preceding state might contain “Since our assump-
tion led to a contradiction, the original assumption
that there are finitely many primes must be false.’
The state before that might show “But this contra-
dicts our earlier result that N + 1 is divisible by no
prime on our list.”” Working backwards, we might
find “Consider NV + 1, where N is the product of
all primes on our list.” This approach amounts to
mere verification—confirming that each state tran-
sition (logical step) adheres to the rules of logical
deduction and that the chain of states connects the
premises to the conclusion. But does such verifica-
tion constitute human-like understanding? No. It’s
a common observation in mathematics that there
is an important difference between understanding
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a proof and verifying it. As Poincare (1914) ob-
serves:

Does understanding the demonstra-
tion of a theorem consist in examining
each of the syllogisms of which it is
composed in succession, and being con-
vinced that it is correct and conforms to
the rules of the game? [...]

[Majority of mathematicians] want
to know not only whether all the syllo-
gisms of a demonstration are correct, but
why they are linked together in one order
rather than in another. As long as they
appear to them engendered by caprice,
and not by an intelligence constantly con-
scious of the end to be attained, they do
not think they have understood.

For an agent with a world-model conception of
understanding, the state transitions in a proof ap-
pear as if “engendered by caprice.” This parallels
our domino computer example, where tracking the
sequence of physical states fails to reveal the ab-
stract mathematical principles that explain why the
system works. Pdlya (1949) calls such a superfi-
cial understanding “deus ex machina” (“God from
the machine”). Pélya (1949) further explains what
constitutes better understanding:

Look here, I am not here just to ad-
mire you. I wish to learn how to do prob-
lems by myself. Yet I cannot see how it
was humanly possible to hit up on your
... definition. So what can I learn here?
How could I find such a ...definition by
myself?

As per this, truly understanding a proof involves
re-enacting the discovery process. This requires
comprehending, to some extent, the subject’s his-
tory and the problems the author attempted to
solve. Pélya (1949) terms this “a plausible story
of discovery”—understanding the subject’s history,
the intermediate problems, their tentative solutions,
why these solutions failed, and how they led to the
final approach. We refer readers to Pélya (1949)
for an excellent detailed walkthrough of this dis-
tinction applied to a real analysis problem.

This idea of “a plausible story of discovery” is
remarkably similar to Popper (1979)’s “problem
situation” concept discussed earlier. The indepen-
dent development of similar ideas across different

domains suggests this conception of understanding
may capture something common to how humans
understand across various fields.

3 A Possible Counterargument

A counterargument can be proposed that world
models could include psychological or social ab-
stractions as states themselves. For instance, in
the domino computer example, the concept of pri-
mality and the statement “641 is prime” could be
represented as a state and connected to the physi-
cal configurations of different dominoes. Similarly,
for Bohr’s theory, discrete spectral lines could be
represented as a state and mapped to the mental
picture of electrons orbiting in discrete paths.

However, if “states” in a world model can en-
code rich abstractions (e.g., mathematical proper-
ties, problem-solving strategies, historical context),
then the concept of a world model becomes vacu-
ously powerful—virtually anything can be labeled
a world model if states are sufficiently enriched.
This undermines the explanatory value of the con-
cept itself. If the explanatory work is done by the
state representation rather than the model’s dynam-
ics, calling it a “world model” adds little to our un-
derstanding of the agent’s capabilities—it simply
presupposes understanding in the state representa-
tions rather than explaining how it emerges.

4 Conclusion and Future Directions

In this position paper we have argued that men-
tal world models, while superior to textual corre-
lations, fall short of human-level understanding
across our three case studies of the domino-based
computer, Bohr’s atomic theory, and mathematical
proofs. For future directions, connections between
philosophical theories of understanding and Al re-
search could be productive. For example, Hamami
and Morris (2024) have already formalized similar
ideas to those we discuss in §2.3, proposing diag-
nostics for failures of understanding in mathemat-
ical proofs. Their framework might help develop
behavioral benchmarks to assess how well LLMs
understand proofs. Similarly, insights from philo-
sophical theories of understanding (Popper, 1979)
and explanations (Deutsch, 2011) (explanations
provide understanding, the latter being the goal of
the former) could inform future research directions.
Our work advances the Al research discourse by
highlighting the fundamental gap between world
models and human-level understanding.



5 Limitations

While our work highlights an important distinc-
tion between human-level understanding and world-
models, testing for the understanding outlined in
this position paper in LLMs remains challenging.
While prompt-based behavioral tests may be cre-
ated for our case studies, these tests cannot reli-
ably distinguish the understanding described in
this paper from surface-level pattern recognition.
Contrasting world-models with the understanding
defined in our analysis using mechanistic inter-
pretability methods remains even more elusive.
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A Related Work

World Models in AI. The term “world model”
has become a buzzword in the AI community and
is considered by many a key ingredient for build-
ing general intelligence (LeCun, 2022; Ding et al.,
2024). However, it does not have a universally
accepted definition. Milliere and Buckner (2024)
describe it as internal representations that simulate
aspects of the external world. LeCun (2022) de-
scribes it as a system that captures causal relation-
ships between world states, enabling an agent to
simulate outcomes, reason, and plan by represent-
ing entities and rules governing their transitions.

For LLMs, Li et al. (2023) arrive at a landmark
result showing that a language model trained to
play Othello developed an internal world model
of the game. Similar evidence of internal world
models has been found in LL.Ms trained on chess
(Karvonen, 2024). Some research suggests these
world models may not be clean, human-like mental
models, but rather collections of learned heuris-
tics (Karvonen et al., 2024; Nikankin et al., 2024).
For an excellent discussion of this topic, we refer
readers to (Mitchell, 2025b).

Recent advances in multimodal models have ex-
panded world models to explicit simulators pre-
dicting future physical states. Models like Sora
(OpenAl, 2024) and WorldGPT (Yang et al., 2024)
function as world simulators by generating videos
that aim to approximate physical laws. These mod-
els maintain temporal consistency while simulating
physical interactions. Beyond videos, embodied
world models create interactive environments for
robotics (Wu et al., 2023) and autonomous driving
(Gao et al., 2024).

For a comprehensive survey on world models,
we refer readers to (Ding et al., 2024).

Philosophical Perspectives on Understanding.
“Understanding” has been a subject of intense de-
bate and scholarly investigation in philosophy liter-
ature for decades, with numerous competing theo-
ries and frameworks proposed to explain its nature
(Popper, 1979; Pritchard, 2014; Baumberger et al.,
2016; Paez, 2019). Explanation and understand-
ing are closely related, where the latter is seen as
the goal of the former (Friedman, 1974; Grimm,
2010; Deutsch, 2011). A key distinction in this
literature is that understanding transcends mere
knowledge acquisition. As Pritchard (2014) ar-
gues, the concepts of “knowing why” and “under-
standing why” may overlap but are not identical.
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Wilkenfeld (2013) proposed the Understanding as
Representation Manipulability (URM) framework,
defining understanding as the ability to manipu-
late mental representations to produce useful in-
ferences. This perspective aligns with educational
theories distinguishing between “deep” and “sur-
face” learning (Marton and Siljo, 1976; Beattie IV
et al., 1997), where surface learning focuses on
memorization while deep learning emphasizes con-
ceptual connections. Recent work by Reid and
Vempala (2025) has applied these philosophical
frameworks to develop hierarchical scales for quan-
tifying understanding of algorithms in both humans
and Al systems.

Central to our analysis is Popper (1979)’s con-
cept of “problem situation,” which argues that
understanding a theory means understanding the
problems it was designed to solve, along with
their historical context. A problem situation en-
compasses the entire historical cycle: problem,
tentative solution, criticism, and new problem—
understanding why a theory failed and how a new
problem emerged. Poincare (1914) makes a simi-
lar observation about mathematical understanding,
noting that it goes beyond examining each syllo-
gism to grasping why they are linked in a partic-
ular order rather than appearing “engendered by
caprice.” P6lya (1949)’s “plausible story of discov-
ery” complements these views—true understanding
requires re-enacting the discovery process rather
than merely verifying logical steps. These frame-
works all highlight how understanding involves
grasping historical context, problem-solving moti-
vation, and the path of discovery.

B Hofstadter’s Domino Chainium

Hofstadter (2007) introduces the thought experi-
ment of a “domino chainium”—a computer built
from dominoes with special properties. In this sys-
tem, each domino is spring-loaded so that after be-
ing knocked down, it automatically returns to its up-
right position after a short “refractory” period. This
feature allows signals to propagate through the sys-
tem repeatedly, enabling complex computational
processes. The domino chainium functions as a
mechanical computer where signals travel through
carefully arranged networks of dominoes. These
signals can bifurcate (split into multiple paths), join
together, and propagate in loops—creating a phys-
ical implementation of a computer program. The
precise timing of domino falls is crucial to the func-

tioning of this system, as it determines how signals
propagate and interact throughout the network.

In Hofstadter’s example, this system is specifi-
cally designed to determine whether a number is
prime. To test if a number is prime, one places ex-
actly that many dominoes (e.g., 641) end-to-end in
a designated “input stretch” of the network. When
the first domino tips, it initiates a cascade that in-
cludes all the dominoes in the input stretch. This
triggers a series of processes throughout the net-
work, including various loops that test the input
number for divisibility by different potential fac-
tors (2, 3, 5, etc.).

If any of these tests finds a divisor, a signal trav-
els down a specific path called the “divisor stretch,”
with falling dominoes indicating that the input num-
ber is not prime. Conversely, if all divisibility tests
fail (meaning no divisors are found), a signal trav-
els down a different path called the “prime stretch,”
with falling dominoes confirming the number’s pri-
mality. The system thus physically implements the
algorithm for primality testing through the propaga-
tion of falling dominoes. The physical arrangement
of dominoes embodies the logical structure of the
primality test, with each part of the network serving
a specific computational purpose—whether testing
divisibility by a particular number, processing the
results of these tests, or signaling the final outcome.

C Bohr’s Atomic Theory

Bohr’s atomic theory (Bohr, 1913), proposed by
Niels Bohr in 1913, was developed to address a
specific problem in physics: explaining the dis-
crete spectral lines emitted by atoms. When el-
ements are heated or subjected to electrical dis-
charges, they emit light that forms a unique pattern
of discrete lines rather than a continuous spectrum
when passed through a prism. This phenomenon
contradicted classical physics, which predicted that
electrons orbiting a nucleus would emit a continu-
ous spectrum of electromagnetic radiation.

To explain these observations, Bohr introduced
several radical postulates. First, he proposed that
electrons can only orbit the nucleus in certain dis-
crete, stable orbits (energy levels) where they do
not emit radiation. Second, he suggested that elec-
trons can jump between these allowed orbits. When
an electron moves from a higher-energy orbit to a
lower-energy orbit, it emits a photon with energy
equal to the difference between the two orbital en-
ergy levels. The frequency of this photon corre-



sponds directly to a specific spectral line.

This mechanism provided a direct explanation
for why spectral lines appear at precise frequen-
cies rather than forming a continuous spectrum.
Bohr’s model successfully explained the observed
hydrogen spectrum and introduced the concept of
quantization to atomic physics, laying groundwork
for the development of quantum mechanics.

D Euclid’s Proof of Infinite Primes

Euclid’s proof (Heath et al., 1956) that there are
infinitely many prime numbers proceeds by contra-
diction. The proof begins by assuming that there
are only finitely many prime numbers, which we
can list as p1, p2,p3, ..., pn. Given this assump-
tion, Euclid constructs a new number /N by mul-
tiplying all these primes together and adding 1:
N=(p1 XpaXp3X...xpp)+1

This number N is now examined. There are two
possibilities: either N is prime, or /N is composite
(not prime). If NV is prime, then we have found a
prime number not in our original list, contradict-
ing our assumption that we had listed all prime
numbers. If N is composite, then N must be di-
visible by some prime number q. However, this
prime ¢ cannot be any of the primes in our original
list (p1, p2, - - . , Pn) because dividing N by any of
these primes always leaves a remainder of 1. There-
fore, ¢ must be a prime number not in our original
list, again contradicting our assumption.

Since both cases lead to a contradiction, our ini-
tial assumption must be false. Therefore, there
must be infinitely many prime numbers.
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