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Abstract001

The AI community has shown substantial in-002
terest in the concept of world models: internal003
representations that simulate aspects of the ex-004
ternal world, track entities and states, capture005
causal relationships, and enable prediction of006
consequences. This contrasts with representa-007
tions based solely on statistical correlations. A008
key motivation behind this research direction is009
the argument that humans possess such mental010
world models, and finding evidence of similar011
representations in AI models might indicate012
that these models truly “understand” the world013
in a human-like way. In this position paper, we014
argue that human-level understanding extends015
beyond mental world models alone. We exam-016
ine illuminating cases from prior philosophical017
work on understanding—including analyses of018
computational systems, physical theories, and019
mathematical proofs—to demonstrate how hu-020
man understanding goes beyond just mental021
world models. By highlighting these distinc-022
tions, we hope to stimulate deeper discussion023
about what constitutes true understanding in024
both human and artificial contexts.025

1 Introduction026

In artificial intelligence, the concept of world mod-027

els raises fundamental questions across domains:028

Do LLM representations track world states and the029

transitions between them, and do they use these030

representations to predict next tokens? Do video-031

generation models create representations of physi-032

cal laws and spatial geometry, predicting future033

frames by simulating these learned laws of na-034

ture? At its core, the world model hypothesis asks035

whether neural networks capture and reproduce the036

actual causal processes that generated their data, or037

whether they merely manipulate surface patterns038

and capture correlations without intermediate repre-039

sentations that mirror real-world mechanisms (An-040

dreas, 2024). World models can thus be conceptu-041

alized as systems that track distinct states and the042

causal relationships between them, allowing pre- 043

dictions by maintaining representations of entities, 044

their states, and the rules governing transitions (see 045

§A for related work on world models in AI). 046

The motivation for studying world models stems 047

from the human experience of mental visualiza- 048

tion and picturing, along with our ability to men- 049

tally simulate these visualized mental models. A 050

quintessential example is the heliocentric model of 051

the solar system, where humans visualize the sun, 052

planets, and other celestial bodies as entities with 053

specific states (positions, velocities) that transition 054

according to physical laws governing their orbits. 055

It is important to note that while people generally 056

talk about mental models of the real world, we do 057

not have direct access to the real world—we re- 058

ceive nerve signals from sense organs which are 059

converted to electrical activity in the brain—hence, 060

what we really mean is a world model of some the- 061

ory of the real world, like the heliocentric model. 062

Therefore, such mental models can exist even for 063

superseded theories, like the geocentric model with 064

its epicycles, or Bohr’s model of electrons orbiting 065

the atomic nucleus in discrete paths. 066

This intuitive appeal of world models raises the 067

question: if AI models (e.g., LLMs) can main- 068

tain such world states and model state transitions 069

rather than just leveraging surface-level correla- 070

tions, would this constitute human-like understand- 071

ing? It is often argued that since mental world 072

models are an integral component of how humans 073

understand the physical world, the presence of 074

world models in AI systems implies human-like un- 075

derstanding capabilities (LeCun, 2022; Ng, 2023; 076

Mitchell, 2025a; Ser et al., 2025). In this position 077

paper, however, we argue that while world mod- 078

els represent an advance beyond mere surface 079

patterns, they fail to capture human-level un- 080

derstanding across various domains of physical 081

reasoning and problem-solving. 082

While both world models and understanding lack 083
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Physical world World Model

Figure 1: Left: Conceptual illustration of physical arrangement of dominoes in a computational system (Hofstadter, 2007). Right:
A schematic world-model representation showing states and causal relationships between dominoes. While the world model
can track physical states (standing or fallen dominoes) and predict how one domino causes another to fall, it fails to capture
the abstract mathematical concept of primality that fundamentally explains the system’s behavior. (Note: Text labels on right
diagram are included to improve the readability of the diagram, but are not a part of the actual state representation.)

universally agreed-upon definitions, the growing084

interest in world models within AI research makes085

exploring the distinction between world models and086

understanding valuable. We examine three cases087

from philosophical work (see §A for related work):088

(1) Hofstadter (2007)’s analysis of a computer built089

from falling dominoes, (2) Popper (1979)’s ac-090

count of understanding physical theories through091

their problem situations, and (3) Pólya (1949)’s092

distinction between verifying and understanding093

mathematical proofs. These cases demonstrate that094

understanding exists in multiple degrees and the095

world-model conception falls significantly short of096

human-level understanding.097

2 Case Studies: Understanding Beyond098

World Models099

This section examines three cases where world100

models fall short of human-level understanding:101

a computer built from falling dominoes, Bohr’s102

atomic theory, and mathematical proofs.103

2.1 Understanding a Computer Built from104

Dominoes105

Consider Hofstadter (2007)’s thought experiment106

of a computer built from millions of spring-loaded107

dominoes. In this system, when a domino falls,108

it pops back up after a fixed time, thereby propa-109

gating signals along carefully arranged networks.110

With such a system, we can implement a mechani-111

cal computer where signals travel down stretches112

of dominoes that bifurcate, join together, propagate113

in loops, and jointly trigger other signals. Relative114

timing is of course crucial, but the specific imple-115

mentation details are not relevant to our discussion. 116

The basic idea is that a precisely arranged network 117

of domino chains can function as a computer pro- 118

gram for carrying out computations—in this case, 119

determining if a number is prime. (For a more 120

detailed explanation, see §B.) 121

To test primality, the system takes input by plac- 122

ing exactly that many dominoes (e.g., 641) end-to- 123

end in a designated “input stretch.” When triggered, 124

the system runs various tests for divisibility by po- 125

tential factors. If any divisor is found, a signal trav- 126

els down a specific “divisor stretch,” indicating the 127

number is not prime. Conversely, if no divisors are 128

found, a signal travels down a “prime stretch,” con- 129

firming primality. Figure 1 provides a schematic 130

illustration of this conceptual arrangement. 131

A world model approach to understanding this 132

system would track each domino’s position (stand- 133

ing or fallen) at each moment and simulate the phys- 134

ical propagation of falling patterns. When asked 135

why a particular domino never falls when the input 136

is 641, such a model might answer, “Because none 137

of its neighboring dominoes ever fall.” This answer, 138

while physically accurate, merely shifts attention 139

to other dominoes. Tracing backward through the 140

causal chain would eventually lead to a statement 141

of the kind: “That domino did not fall because 142

none of the patterns of motion initiated by the first 143

domino ever include it.” This mechanistic track- 144

ing of states fails to capture the true understanding. 145

The true understanding lies in recognizing that 641 146

is prime, an abstract mathematical property that ex- 147

plains the entire pattern of domino behaviors. This 148

understanding cannot be obtained by simply track- 149
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ing the states of dominoes falling or not falling—no150

amount of state tracking can reveal the fundamen-151

tal mathematical concept of primality that governs152

the system’s behavior.153

2.2 Understanding Physical Theories154

Popper (1979) argues that understanding a physical155

theory means understanding the problem situation156

that led to proposing that particular theory as a solu-157

tion. By “problem situation,” he means not only the158

problems one tries to solve but also their historical159

context—the problems together with theories that160

failed to solve them, and the criticisms that gen-161

erated new problems requiring solutions. Under-162

standing involves grasping this cycle of problem,163

tentative solution, criticism, and new problem—164

that is, why a theory failed and how a new problem165

emerged. It encompasses the entire historical situa-166

tion surrounding the problem.167

Consider Bohr’s atomic theory (Bohr, 1913)1:168

Bohr proposed that electrons orbit the nucleus in169

discrete, fixed energy levels rather than in contin-170

uous paths as described by classical physics. The171

key to understanding it is not merely visualizing172

electrons jumping between orbits but recognizing173

what Bohr attempted to explain with these electron174

jumps: the sharp, discrete spectral lines observ-175

able in atomic spectra. To explain these definite,176

discrete lines, Bohr had to assume certain discrete-177

ness in electron movement possibilities, leading to178

the concept of jumps between tracks. Crucial to179

this explanation is the energy transfer mechanism180

Bohr proposed: when an electron jumps from an181

outer orbit to an inner orbit, the atom loses energy,182

which is emitted in the form of light radiation. The183

specific frequencies of light observed in spectral184

lines correspond directly to the energy differences185

between the allowed electron orbits. This mecha-186

nism explains why spectral lines appear at precise187

frequencies rather than a continuous spectrum.188

Without knowing why Bohr introduced this189

somewhat unnatural model—to explain discrete190

spectral lines—one cannot truly understand his191

theory as a solution to a specific problem situa-192

tion. The apparent unnaturalness of electrons being193

constrained to certain orbits and making quantum194

jumps between them only makes sense in light of195

the problem Bohr was solving. As Popper (1979)196

notes, someone who is just presented with the Bohr197

theory, without knowing that the theory was in-198

1For a quick refresher of Bohr’s theory, see §C.

vented in order to explain the phenomenon of dis- 199

crete spectral lines, will simply not understand the 200

theory as a solution of a certain problem situation. 201

The world model alone (electrons orbiting in dis- 202

crete paths) doesn’t capture the theory’s purpose 203

and significance. World models in AI similarly 204

emphasize internal simulation—like picturing elec- 205

trons on orbits—but as Popper (1979) argues, pic- 206

turing is not understanding. An AI model might 207

successfully simulate atomic transitions without 208

grasping their importance in broader theoretical 209

context, just as someone might visualize Bohr’s or- 210

bital structure without comprehending its explana- 211

tory role in solving the spectral line problem. 212

2.3 Understanding Mathematical Proofs 213

Mathematical proofs, while often considered purely 214

abstract logical structures, have a fascinating con- 215

nection to computation through the Curry-Howard 216

correspondence (Howard et al., 1980). This cor- 217

respondence establishes an isomorphism between 218

formal proofs and computer programs—every valid 219

proof can be mapped to a computation that pro- 220

duces the conclusion from the premises, and every 221

correct computation corresponds to a proof that the 222

output follows from the input. This isomorphism 223

allows us to analyze how world models might ap- 224

proach mathematical reasoning, where logical steps 225

can be viewed analogously to states and deductive 226

reasoning to state transitions. 227

When asked why a particular conclusion holds, 228

such a model would trace backward through the 229

chain of logical states. For example, consider Eu- 230

clid’s famous proof that there are infinitely many 231

primes (Heath et al., 1956) (see §D for the proof). 232

The final state might show “Therefore, there are 233

infinitely many prime numbers.” The immediately 234

preceding state might contain “Since our assump- 235

tion led to a contradiction, the original assumption 236

that there are finitely many primes must be false.” 237

The state before that might show “But this contra- 238

dicts our earlier result that N +1 is divisible by no 239

prime on our list.” Working backwards, we might 240

find “Consider N + 1, where N is the product of 241

all primes on our list.” This approach amounts to 242

mere verification—confirming that each state tran- 243

sition (logical step) adheres to the rules of logical 244

deduction and that the chain of states connects the 245

premises to the conclusion. But does such verifica- 246

tion constitute human-like understanding? No. It’s 247

a common observation in mathematics that there 248

is an important difference between understanding 249

3



a proof and verifying it. As Poincare (1914) ob-250

serves:251

Does understanding the demonstra-252

tion of a theorem consist in examining253

each of the syllogisms of which it is254

composed in succession, and being con-255

vinced that it is correct and conforms to256

the rules of the game? [...]257

[Majority of mathematicians] want258

to know not only whether all the syllo-259

gisms of a demonstration are correct, but260

why they are linked together in one order261

rather than in another. As long as they262

appear to them engendered by caprice,263

and not by an intelligence constantly con-264

scious of the end to be attained, they do265

not think they have understood.266

For an agent with a world-model conception of267

understanding, the state transitions in a proof ap-268

pear as if “engendered by caprice.” This parallels269

our domino computer example, where tracking the270

sequence of physical states fails to reveal the ab-271

stract mathematical principles that explain why the272

system works. Pólya (1949) calls such a superfi-273

cial understanding “deus ex machina” (“God from274

the machine”). Pólya (1949) further explains what275

constitutes better understanding:276

Look here, I am not here just to ad-277

mire you. I wish to learn how to do prob-278

lems by myself. Yet I cannot see how it279

was humanly possible to hit up on your280

... definition. So what can I learn here?281

How could I find such a ...definition by282

myself?283

As per this, truly understanding a proof involves284

re-enacting the discovery process. This requires285

comprehending, to some extent, the subject’s his-286

tory and the problems the author attempted to287

solve. Pólya (1949) terms this “a plausible story288

of discovery”—understanding the subject’s history,289

the intermediate problems, their tentative solutions,290

why these solutions failed, and how they led to the291

final approach. We refer readers to Pólya (1949)292

for an excellent detailed walkthrough of this dis-293

tinction applied to a real analysis problem.294

This idea of “a plausible story of discovery” is295

remarkably similar to Popper (1979)’s “problem296

situation” concept discussed earlier. The indepen-297

dent development of similar ideas across different298

domains suggests this conception of understanding 299

may capture something common to how humans 300

understand across various fields. 301

3 A Possible Counterargument 302

A counterargument can be proposed that world 303

models could include psychological or social ab- 304

stractions as states themselves. For instance, in 305

the domino computer example, the concept of pri- 306

mality and the statement “641 is prime” could be 307

represented as a state and connected to the physi- 308

cal configurations of different dominoes. Similarly, 309

for Bohr’s theory, discrete spectral lines could be 310

represented as a state and mapped to the mental 311

picture of electrons orbiting in discrete paths. 312

However, if “states” in a world model can en- 313

code rich abstractions (e.g., mathematical proper- 314

ties, problem-solving strategies, historical context), 315

then the concept of a world model becomes vacu- 316

ously powerful—virtually anything can be labeled 317

a world model if states are sufficiently enriched. 318

This undermines the explanatory value of the con- 319

cept itself. If the explanatory work is done by the 320

state representation rather than the model’s dynam- 321

ics, calling it a “world model” adds little to our un- 322

derstanding of the agent’s capabilities—it simply 323

presupposes understanding in the state representa- 324

tions rather than explaining how it emerges. 325

4 Conclusion and Future Directions 326

In this position paper we have argued that men- 327

tal world models, while superior to textual corre- 328

lations, fall short of human-level understanding 329

across our three case studies of the domino-based 330

computer, Bohr’s atomic theory, and mathematical 331

proofs. For future directions, connections between 332

philosophical theories of understanding and AI re- 333

search could be productive. For example, Hamami 334

and Morris (2024) have already formalized similar 335

ideas to those we discuss in §2.3, proposing diag- 336

nostics for failures of understanding in mathemat- 337

ical proofs. Their framework might help develop 338

behavioral benchmarks to assess how well LLMs 339

understand proofs. Similarly, insights from philo- 340

sophical theories of understanding (Popper, 1979) 341

and explanations (Deutsch, 2011) (explanations 342

provide understanding, the latter being the goal of 343

the former) could inform future research directions. 344

Our work advances the AI research discourse by 345

highlighting the fundamental gap between world 346

models and human-level understanding. 347
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5 Limitations348

While our work highlights an important distinc-349

tion between human-level understanding and world-350

models, testing for the understanding outlined in351

this position paper in LLMs remains challenging.352

While prompt-based behavioral tests may be cre-353

ated for our case studies, these tests cannot reli-354

ably distinguish the understanding described in355

this paper from surface-level pattern recognition.356

Contrasting world-models with the understanding357

defined in our analysis using mechanistic inter-358

pretability methods remains even more elusive.359
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A Related Work 472

World Models in AI. The term “world model” 473

has become a buzzword in the AI community and 474

is considered by many a key ingredient for build- 475

ing general intelligence (LeCun, 2022; Ding et al., 476

2024). However, it does not have a universally 477

accepted definition. Millière and Buckner (2024) 478

describe it as internal representations that simulate 479

aspects of the external world. LeCun (2022) de- 480

scribes it as a system that captures causal relation- 481

ships between world states, enabling an agent to 482

simulate outcomes, reason, and plan by represent- 483

ing entities and rules governing their transitions. 484

For LLMs, Li et al. (2023) arrive at a landmark 485

result showing that a language model trained to 486

play Othello developed an internal world model 487

of the game. Similar evidence of internal world 488

models has been found in LLMs trained on chess 489

(Karvonen, 2024). Some research suggests these 490

world models may not be clean, human-like mental 491

models, but rather collections of learned heuris- 492

tics (Karvonen et al., 2024; Nikankin et al., 2024). 493

For an excellent discussion of this topic, we refer 494

readers to (Mitchell, 2025b). 495

Recent advances in multimodal models have ex- 496

panded world models to explicit simulators pre- 497

dicting future physical states. Models like Sora 498

(OpenAI, 2024) and WorldGPT (Yang et al., 2024) 499

function as world simulators by generating videos 500

that aim to approximate physical laws. These mod- 501

els maintain temporal consistency while simulating 502

physical interactions. Beyond videos, embodied 503

world models create interactive environments for 504

robotics (Wu et al., 2023) and autonomous driving 505

(Gao et al., 2024). 506

For a comprehensive survey on world models, 507

we refer readers to (Ding et al., 2024). 508

Philosophical Perspectives on Understanding. 509

“Understanding” has been a subject of intense de- 510

bate and scholarly investigation in philosophy liter- 511

ature for decades, with numerous competing theo- 512

ries and frameworks proposed to explain its nature 513

(Popper, 1979; Pritchard, 2014; Baumberger et al., 514

2016; Páez, 2019). Explanation and understand- 515

ing are closely related, where the latter is seen as 516

the goal of the former (Friedman, 1974; Grimm, 517

2010; Deutsch, 2011). A key distinction in this 518

literature is that understanding transcends mere 519

knowledge acquisition. As Pritchard (2014) ar- 520

gues, the concepts of “knowing why” and “under- 521

standing why” may overlap but are not identical. 522
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Wilkenfeld (2013) proposed the Understanding as523

Representation Manipulability (URM) framework,524

defining understanding as the ability to manipu-525

late mental representations to produce useful in-526

ferences. This perspective aligns with educational527

theories distinguishing between “deep” and “sur-528

face” learning (Marton and Säljö, 1976; Beattie IV529

et al., 1997), where surface learning focuses on530

memorization while deep learning emphasizes con-531

ceptual connections. Recent work by Reid and532

Vempala (2025) has applied these philosophical533

frameworks to develop hierarchical scales for quan-534

tifying understanding of algorithms in both humans535

and AI systems.536

Central to our analysis is Popper (1979)’s con-537

cept of “problem situation,” which argues that538

understanding a theory means understanding the539

problems it was designed to solve, along with540

their historical context. A problem situation en-541

compasses the entire historical cycle: problem,542

tentative solution, criticism, and new problem—543

understanding why a theory failed and how a new544

problem emerged. Poincare (1914) makes a simi-545

lar observation about mathematical understanding,546

noting that it goes beyond examining each syllo-547

gism to grasping why they are linked in a partic-548

ular order rather than appearing “engendered by549

caprice.” Pólya (1949)’s “plausible story of discov-550

ery” complements these views—true understanding551

requires re-enacting the discovery process rather552

than merely verifying logical steps. These frame-553

works all highlight how understanding involves554

grasping historical context, problem-solving moti-555

vation, and the path of discovery.556

B Hofstadter’s Domino Chainium557

Hofstadter (2007) introduces the thought experi-558

ment of a “domino chainium”—a computer built559

from dominoes with special properties. In this sys-560

tem, each domino is spring-loaded so that after be-561

ing knocked down, it automatically returns to its up-562

right position after a short “refractory” period. This563

feature allows signals to propagate through the sys-564

tem repeatedly, enabling complex computational565

processes. The domino chainium functions as a566

mechanical computer where signals travel through567

carefully arranged networks of dominoes. These568

signals can bifurcate (split into multiple paths), join569

together, and propagate in loops—creating a phys-570

ical implementation of a computer program. The571

precise timing of domino falls is crucial to the func-572

tioning of this system, as it determines how signals 573

propagate and interact throughout the network. 574

In Hofstadter’s example, this system is specifi- 575

cally designed to determine whether a number is 576

prime. To test if a number is prime, one places ex- 577

actly that many dominoes (e.g., 641) end-to-end in 578

a designated “input stretch” of the network. When 579

the first domino tips, it initiates a cascade that in- 580

cludes all the dominoes in the input stretch. This 581

triggers a series of processes throughout the net- 582

work, including various loops that test the input 583

number for divisibility by different potential fac- 584

tors (2, 3, 5, etc.). 585

If any of these tests finds a divisor, a signal trav- 586

els down a specific path called the “divisor stretch,” 587

with falling dominoes indicating that the input num- 588

ber is not prime. Conversely, if all divisibility tests 589

fail (meaning no divisors are found), a signal trav- 590

els down a different path called the “prime stretch,” 591

with falling dominoes confirming the number’s pri- 592

mality. The system thus physically implements the 593

algorithm for primality testing through the propaga- 594

tion of falling dominoes. The physical arrangement 595

of dominoes embodies the logical structure of the 596

primality test, with each part of the network serving 597

a specific computational purpose—whether testing 598

divisibility by a particular number, processing the 599

results of these tests, or signaling the final outcome. 600

C Bohr’s Atomic Theory 601

Bohr’s atomic theory (Bohr, 1913), proposed by 602

Niels Bohr in 1913, was developed to address a 603

specific problem in physics: explaining the dis- 604

crete spectral lines emitted by atoms. When el- 605

ements are heated or subjected to electrical dis- 606

charges, they emit light that forms a unique pattern 607

of discrete lines rather than a continuous spectrum 608

when passed through a prism. This phenomenon 609

contradicted classical physics, which predicted that 610

electrons orbiting a nucleus would emit a continu- 611

ous spectrum of electromagnetic radiation. 612

To explain these observations, Bohr introduced 613

several radical postulates. First, he proposed that 614

electrons can only orbit the nucleus in certain dis- 615

crete, stable orbits (energy levels) where they do 616

not emit radiation. Second, he suggested that elec- 617

trons can jump between these allowed orbits. When 618

an electron moves from a higher-energy orbit to a 619

lower-energy orbit, it emits a photon with energy 620

equal to the difference between the two orbital en- 621

ergy levels. The frequency of this photon corre- 622
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sponds directly to a specific spectral line.623

This mechanism provided a direct explanation624

for why spectral lines appear at precise frequen-625

cies rather than forming a continuous spectrum.626

Bohr’s model successfully explained the observed627

hydrogen spectrum and introduced the concept of628

quantization to atomic physics, laying groundwork629

for the development of quantum mechanics.630

D Euclid’s Proof of Infinite Primes631

Euclid’s proof (Heath et al., 1956) that there are632

infinitely many prime numbers proceeds by contra-633

diction. The proof begins by assuming that there634

are only finitely many prime numbers, which we635

can list as p1, p2, p3, . . . , pn. Given this assump-636

tion, Euclid constructs a new number N by mul-637

tiplying all these primes together and adding 1:638

N = (p1 × p2 × p3 × . . .× pn) + 1639

This number N is now examined. There are two640

possibilities: either N is prime, or N is composite641

(not prime). If N is prime, then we have found a642

prime number not in our original list, contradict-643

ing our assumption that we had listed all prime644

numbers. If N is composite, then N must be di-645

visible by some prime number q. However, this646

prime q cannot be any of the primes in our original647

list (p1, p2, . . . , pn) because dividing N by any of648

these primes always leaves a remainder of 1. There-649

fore, q must be a prime number not in our original650

list, again contradicting our assumption.651

Since both cases lead to a contradiction, our ini-652

tial assumption must be false. Therefore, there653

must be infinitely many prime numbers.654
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