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ABSTRACT

Understanding human driving behaviors is crucial for developing a reliable vehi-
cle and transportation system. Yet, data for learning these behaviors is scarce and
must be carefully labeled with events, causes, and consequences. Such data may
be more difficult to obtain in rare driving domains, such as in high-performance
multi-car racing. While large language models (LLMs) show promise in inter-
preting driving behaviors, the integration of multi-modal inputs (e.g., language,
trajectory, and more) and generation of multi-modal output in low-data regimes re-
mains under-explored. In this paper, we introduce Bi-Gen: a Bi-directional Driv-
ing Data Generator, Bi-Gen is a bi-directional multi-modal model that connects a
trained encoder-decoder architecture with a pre-trained LLLM, enabling both auto-
annotation and generation of human driving behaviors. Our experiments show
that Bi-Gen, despite its smaller size, matches the performance of much larger
models like GPT-40 in annotating driving data. Additionally, Bi-Gen generates
diverse, human-like driving behaviors, offering a valuable tool for synthetic data
generation in resource-constrained settings. Taken together, our experiments are a
significant step towards applying LLMs to complex, multi-agent driving data.

1 INTRODUCTION

Large language models (LLMs) and large multi-modal models (LMMs) have emerged as capable
and general-purpose tools for understanding driving data in the wild (Kuo et al., 2022; Felemban
etal., 2024; Li et al., 2024b; Chen et al., 2023b; Xu et al., 2024; Sima et al., 2023). However, the key
ingredient to the success of such models is the vast amounts of data required to pre-train or fine-tune
such models to contain relevant world knowledge for target tasks. This data dependency becomes a
significant limiting factor when extending LL.Ms to driving data that is not well-represented in pub-
licly available datasets. For example, most empirical human driving data is naturalistic, which in-
herently biases it against capturing rare events (e.g., safety critical scenarios, drifting, etc.). Though
synthesizing data using driving simulators or applying variance reduction techniques (e.g. impor-
tance sampling, etc.) could augment or extend existing datasets under specific scenarios (Feng et al.,
2023; Ding et al., 2023), these approaches are inadequate for generating a diverse range of driving
behaviors that capture the implicit heterogeneity of human driving. Furthermore, while some ma-
chine learning models (Wang et al., 2019; Krajewski et al., 2018; Huang et al., 2020; Phan-Minh
et al., 2020; Nayakanti et al., 2023) may function as synthetic data generators, such methods often
require significant amounts of labeled data to learn to generate realistic in-distribution examples.

To this end, we aim to to develop an efficient, low-cost multi-modal model that can quickly learn
to interpret and annotate unlabeled driving trajectories in the low-data domain of high-performance
multi-car racing (Weiss & Behl, 2020; Wurman et al., 2022; Chen et al., 2023a; Werner et al., 2023).
Learning such a model involves two core tasks: (1) trajectory generation and (2) trajectory descrip-
tion. Trajectory generation involves the creation of new driving trajectories, either conditioned on a
language prompt, a partially-complete trajectory, or some other form of driving context. Trajectory
description is the annotation of an unlabeled driving trajectory, giving the model the ability to act
as an annotator or discriminator for unlabeled data. One promising method is to extend LLMs for
the two tasks, as such models have been shown to successfully serve as both synthetic data gener-
ators for training large-scale models (Dubey et al., 2024; Adler et al., 2024) and as annotators for
unstructured data (Tan et al., 2024).
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Figure 1: Our data generation framework, Bi-Gen, is trained as a multi-task, multi-modal generative
model. (1) Bi-Gen model is trained to both annotate unlabeled trajectories in a multi-turn conversa-
tions and to generate completions to partial trajectories given language prompting. (2) At test-time,
Bi-Gen can serve to convert existing trajectories into new variations, complete partial trajectories in
accordance with a language prompt, or annotate unlabeled data in a multi-turn conversation.

The community has seen a growing interest in leveraging LLMs (e.g., GPT-4 (Achiam et al., 2023),
ChatGPT (Biswas, 2023), etc.) for trajectory generation, particularly for automated vehicles (AVs)
(Chen et al., 2023b; Lan et al., 2024; Nguyen et al., 2024; Cui et al., 2024a; Zhang et al., 2024c; Tan
et al., 2023; Munir et al., 2024). These works demonstrate a strong capability of LLMs to directly
translate high-level textual driving commands to lower-level trajectory data in the form of generated
way-points, or by aligning LLM outputs to a vehicle’s action space (e.g., steering, acceleration).
Pre-training a decoder to align the LLMs’ hidden-state to driving state vectors (Chen et al., 2023b;
Mao et al., 2023) is effective for generating immediate actions or reasoning within specific time
steps but lacks flexibility for scaling to varying time horizons. This task is complicated further by
the need to understand temporal and spatial interactions across multiple modalities and multiple
agents in a scene. Modeling such interactions requires dedicated fine-tuning of a pre-trained LLM,
and in particular requires sufficiently rich multi-agent data.

Efficient trajectory generation demands a comprehensive representation of the complex driving envi-
ronment, which necessitates the integration of multi-modal inputs. Challenges arise in establishing
multi-modal connections within LL.Ms, in terms of the representation gap across modalities, cross-
modality generalization, modality collapse, etc. (Yin et al., 2023; Zhang et al., 2024a; Peng et al.,
2023; Driess et al., 2023; Ye et al., 2024). Particularly in the human-driving domain, generation
is more complicated due to the scarcity of large-scale labeled trajectory-language paired datasets
that incorporate multiple modalities (Tan et al., 2023; Cui et al., 2024b; Shao et al., 2024). These
complexities are further amplified in the uncharted domain of high-performance multi-agent rac-
ing, which features complex multi-agent dynamics, no pre-trained data encoders, and no readily
accessible world-knowledge baked into existing LLMs.

Finally, these methods only enable one-directional generation, focusing exclusively on language-
conditioned trajectory generation. Equally important, however, is the reverse process: trajectory-
conditioned language generation. The ability to generate multi-modal outputs (i.e., language and tra-
jectory) from multi-modal inputs is essential for achieving bi-directionality in data synthesis. While
prior works have individually tackled one element of this process, a bi-directional model capable of
mutual conditional generation between language and trajectory is key to gaining a comprehensive
understanding of human driving dynamics. Without this, the model is limited in generalizing across
different driving contexts and behaviors, as it cannot fully explain or generate the diverse factors
that shape and influence various driving behaviors.

To address these gaps, we introduce a Bi-directional Driving Data Generator, Bi-Gen, an end-to-
end learning framework developed through LMM tuning. This bi-directional pipeline is capable
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of simultaneously handling both trajectory description and trajectory generation, which is particu-
larly important for low-data domains. We provide an overview of our framework in Fig. 1. Our
contributions are summarized as follows:

* Large multi-modal model for human driving comprehension: We develop a robust LMM
which effectively handles multi-modal inputs and outputs. Our experiments validate the
effectiveness of the model in comprehending diverse human driving behaviors in a complex
driving environment with limited training data.

* Bi-directional trajectory-language interaction pipeline: We present a multi-modal interac-
tion enabling both language-conditioned trajectory generation and trajectory-conditioned
language generation. We specifically show how this interaction processes trajectory inputs,
describes trajectories using natural language, and reconstructs or generates diverse trajecto-
ries conditioned on the language inputs. This enables a human user to actively query about
unlabeled data or to generate synthetic datasets to supplement small real data.

» Synthetic data generator: We further validate that Bi-Gen can serve as a synthetic data
generator and annotator on par with closed source models such as GPT-40. We demonstrate
that augmenting real data with synthetic data from Bi-Gen enables a 50% reduction in the
amount of real data required to learn a classifier for a downstream task.

2 RELATED WORK

LMMs in driving: Recent advancements in multi-modal integration in LLMs, such as Instruct-
BLIP (Li et al., 2023) and LLaVA (Liu et al., 2024), have demonstrated significant success in tasks
involving both visual and textual data, showcasing their potential for interpreting and generating
meaningful content across modalities. Aligning text with a single additional modality often involves
training a projection layer (Li et al., 2024a; Luo et al., 2023) to map features from the new modal-
ity into the language space. Most prominent efforts to integrate multiple modalities within unified
LLMs primarily target visual-language tasks, such as visual question answering, object detection
and image-text similarity (Alayrac et al., 2022; Girdhar et al., 2023; Peng et al., 2023; Wang et al.,
2023; Ye et al., 2024).

Prior work as begun to extend the application of LMMs to driving tasks, particularly for AVs. These
efforts build on the success of LMMs in visual-language tasks to improve the understanding of driv-
ing scenarios captured by onboard cameras and then generate the control signals (Xu et al., 2024;
Sima et al., 2023; Wu et al., 2023). These control signals are treated as the same modality as the text
domain, without requiring decoder transformation (i.e., controls are specified in language). How-
ever, this approach may face challenges when applied to long-horizon trajectory prediction due to
context window or memory constraints. LMMs in prior AV work also focus on single-turn interac-
tions, neglecting longer form conversations or rollouts. Moreover, the use of LMMs for learning
human driving behaviors remains less studied, and the scarcity of large-scale paired trajectory-
language datasets poses a significant challenge to advancing LMMs in this domain. The work
presented in this paper, to the best of our knowledge, is the first attempt to integrate multi-modal
inputs into LLMs to generate a diverse range of multi-modal outputs for the multi-turn inference in
the human driving domain. Our approach enables multi-turn question-answering tasks that seam-
lessly alternate between trajectory description and generation, enabling annotation or generation of
trajectory-language paired data in low-data regimes.

Trajectory-Language Interactions: Recent works focus on leveraging LLMs in trajectory gener-
ation, enabling AVs to make informed, contextually aware decisions in real-time, and guiding low-
level motion control to enhance both safety and operational efficiency (Seff et al., 2023; Nguyen
et al., 2024; Xu et al., 2024; Chen et al., 2023b). However, such approaches may introduce mod-
eling biases that might fail to capture rare events (e.g., generating unsafe trajectories). Prior works
(Nguyen et al., 2024; Kwon et al., 2023; Hu & Sadigh, 2023; Zhang et al., 2024c) addressed this by
incorporating a reinforcement learning agent to assess behavioral alignment with different trajecto-
ries by the finite state rewards. These works heavily rely on retrieval-augmented generation to pro-
vide sufficient context about trajectories. While they perform well in static or deterministic settings,
but they have struggled to generalize to interactive environments characterized by high stochasticity
and unpredictability. Our work focuses on understanding the diversity and stochastic nature of hu-
man driving behaviors, and introduces a multi-modal pipeline based on LMM tuning. This pipeline
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Figure 2: This figure depicts the two task-setups used to train Bi-Gen. (a) For the trajectory-
conditioned language generation task, Bi-Gen is trained to answer a set of questions given the map,
M, ego-trajectory, X., and opponent-trajectory, X,. (b) For the trajectory generation task, Bi-Gen
is trained to auto-regressively predict the output trajectory, X based on an generation prompt, Py,
the map, M, and the trajectory of the opponent, X,,.

enables bidirectional generative modeling, achieved through both language-conditioned trajectory
generation and trajectory-conditioned language generation.

3 LEARNING A MULTI-MODAL MODEL: BI-GEN

We extend LLaVa (Liu et al., 2024) to a multi-modal architecture as shown in Fig. 2. For both
the trajectory and language generation tasks, the model consumes an ego-agent driving trajectory
X 1T a task-specific prompt P, and any available driving environment information. We differentiate
between global, static information (e.g., map, road conditions) and local, dynamic information (e.g.,
movement of surrounding objects, vehicles, or pedestrians) in the driving environment. For a typical
annotation task given to the model (i.e., to describe the ego vehicle’s behavior), the multi-modal
input consists of a system prompt, P, , static map information M, a dynamic opponent vehicle
XLT and an ego-centric trajectory X7

To process the driving data, our model employs a trajectory encoder, g(-), that is responsible for
embedding both opponent and ego driving data into the LLM’s latent space. Specifically, for an
input sequence of trajectory states, X7, we embed X into the embedding space of the language
model, creating a sequence of 7" trajectory tokens, H.. This process is repeated for each vehicle in
the scene, translating from trajectory features into trajectory tokens that the LLM can interpret.

Similarly, a map encoder, o(-), embeds relevant map data for each sequence. As with trajectory data,
we pass a sequence of points of map data in, M., and the resulting map embedding is a sequence
of K map tokens, Hg. Prior to embedding, the map data and all driving trajectories (ego and any
opponents) are normalized into the same coordinate frame.

We built our model on top of TinyLlama (Zhang et al., 2024b), a lightweight 1B model, for easy
deployment and fast inference. The static map and trajectory encoders, o and g, are also lightweight
networks, constructed as 2-layer multi-layer perceptrons (MLPs) with residual connections. Finally,
our model includes a trajectory decoder, u(-), which is an MLP composed of two linear layers with
ReLU activation. This trajectory decoder is designed to project from the LLM’s hidden dimensions
down to the original trajectory dimension.

3.1 TRAJECTORY DESCRIPTION

The trajectory description task is formulated as a multi-turn question-answering task. The model is
given a system prompt, which includes a short task description and all relevant scene information
(all driving trajectories and map information). Finally, a language sequence, Xy, is passed to the
model as a series of N questions and answers, (X}, X}, ... XV, XV), where X and X} are the
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Figure 3: For trajectory description (left), the model is trained to interpret the map (orange), the
opponent’s trajectory (blue), and the ego trajectory (purple) to answer questions accurately. For
trajectory generation (right), the model processes the same map and opponent information, along
with a description prompt (green), to produce the user-requested trajectory. X" and X7 are used
to compute the losses used to train Bi-Gen.

first question and answer respectively. The model is then tasked with autoregressively predicting all
X, utterances. We mask out all questions, X, from the target sequence to prevent the model from
learning to play both sides of the conversation (i.e., learning to ask questions and answer them).

Fig. 2a provides a visual overview of this task. The complete input sequence to the model, H, is
given as the concatenation of LLM embeddings for the text in the system prompt, Hp, embedded
map data, H, embedded trajectory data for the opponent and ego agents, H,; and H.,, and the
LLM embeddings for the question-answer sequence, Hqg 4. This complete input sequence is then
passed through an LLM, and the LLM is tasked with predicting the answer tokens in the sequence.
We apply a LoRA (Hu et al., 2022) to tune the LLM to the task of trajectory description. Gradients
are computed as the language modeling loss between the predicted answers and the ground-truth
targets, and are applied to the map and trajectory encoders, o and g, and to the LLM via the LoRA.

3.2 TRAJECTORY GENERATION

To learn to generate new data in the driving domain, we formulate the trajectory generation task
as shown in Fig. 2b. Similar to the trajectory description task, the input is a sequence consisting
of a system prompt, static map information, dynamic opponent vehicle information, and an ego
trajectory. Unlike the trajectory description task, here we do not use any question-answering text
input, and the loss function is not a language modeling objective. Instead, we use the generation
prompt P, as the input and train a decoder, u(-) that learns to map from an LLM hidden state
back into trajectory features. The training objective is an autoregressive mean-squared error (MSE)
loss between the predicted trajectory output, X2 and the actual trajectory input, X7,

3.3 TRAINING PROCEDURE

The two tasks of trajectory description and trajectory generation can be trained independently to
achieve one-directional data generation (i.e., learning to annotate trajectories with language or learn-
ing to generate new trajectories from language prompts). However, training the two tasks together
enables the model to both see a greater diversity of data as well as learn to leverage the shared struc-
ture of the two tasks to learn a more robust model of the relationship between language and driving
data. We therefore train the two tasks jointly with a single model (Fig. 2).

As described in Sec. 3.1 & 3.2, the input token sequence includes static map information and oppo-
nent and ego trajectory data. The static map information includes inner and outer edges of the track,
centered around the ego agent’s location. Trajectory data for both agents includes three-dimensional
position and velocity and a quaternion for orientation. As mentioned above, trajectory and map data
are all normalized to the same coordinate frame before being passed to the model, and are further
normalized to have a zero-mean and unit variance for numerical stability. While future work may
consider more sophisticated feature normalization or unification strategies to further improve per-
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Figure 4: F1 for an overtake prediction task when training a model on synthetic data + real data
vs. training only on real data, and testing on unseen, real data. We show that training on synthetic
data from Bi-Gen reduces the training data requirements for learning to classify overtakes. Adding
synthetic data always improves performance on the task compared to only using with real data.

formance, such as cross-attention between map and trajectory data (Kuo et al., 2022), we found a
simple projection and self-attention strategy to be sufficient in this work.

For the trajectory description task, we randomly sample a set of six questions for each multi-turn
conversation (Table 1 in Appendix A), and we randomly sample one prompt for each trajectory
generation sample (Table 3 in Appendix B).

We present a visual example of a multi-modal input sequence for the trajectory description task in
Fig. 3 (left). The model is trained to interpret static map information (orange), dynamic opponent
information (blue), and the ego-agent trajectory (purple) to answer questions accurately. For the
trajectory generation task (Fig 3, right), the model processes the same static and dynamic informa-
tion, along with a generation prompt (green), to produce the user-requested trajectory. The predicted
tokens (red) are used to compute the auto-regressive losses to learn the model.

The joint training objective for our model is a sum of two objectives. The first is a language modeling
loss, L, between the predicted answers, Xa, and ground-truth answers, X,, for the trajectory de-
scription task. The second is a mean squared error loss, M S E, between the reconstructed trajectory
features, Xo.7 and ground-truth trajectory features Xo.7 for the trajectory generation task.

loss = w1 L(Xa, Xo) + wa MSEXZT X5T)

In this equation, wy and ws are task-specific weights, though we found empirically that the simple
setting of wy = 1, we = 1 worked well.

Bi-Gen employs an end-to-end training approach, consisting of two main steps: (1) mapping the
additional modalities into the LLM’s feature space by learning robust encoders and decoders, and
(2) tuning the entire network to extend the LLM’s implicit world-knowledge and pattern-recognition
to the new modalities and tasks. The entire process can be understood as training a combination of
compatible tokenizers to align different modalities with the LLM’s language space, and fine-tuning
the LLM to maximize its ability to exploit these new data sources. This combination of learning
processes enables bi-directional mapping and modeling between language and trajectory data.

4 EXPERIMENTS AND RESULTS

We evaluate our model’s performance in a low-data human driving domain, using training and test-
ing data sourced from a high-performance multi-car racing environment from prior work (Anony-
mous, 2024). More details on data collection and curation in the racing domain can be found in the
Appendix A. We evaluate Bi-Gen as both an annotator and a synthetic data generator.

To test Bi-Gen as an annotator, we use a trained model to annotate unseen, unlabeled racing tra-
jectories. We formulate this task as a 9-turn conversation, with randomly shuffled questions drawn
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Figure 5: We show that Bi-Gen can complete a partial trajectory, conditioned on a language prompt.
Here, we prompt Bi-Gen with a complete opponent trajectory and partial context for an ego tra-
jectory, and then provide a language description of the desired outcome. Qualitatively, we see that
generated synthetic data reflects the provided language prompt.

from the same distribution as the training data (note that the trajectories are entirely unseen for the
model). We then score the model’s ability to generate the appropriate answer for each question using
F1 with all 19 classes of possible answers (including a class for “nothing” if the model generates
unrelated text).

To test Bi-Gen as a synthetic data generator, we task the model with generating both seen and unseen
trajectories to create an entirely synthetic dataset of racing trajectories. We then use this dataset to
train a binary classifier on an overtake prediction task (i.e., does the ego-agent overtake its opponent
in this clip?). We evaluate this classifier on held-out real data, thereby measuring how accurately
the synthetic data distribution approximates the real data distribution.

Finally, we qualitatively test Bi-Gen as a full, end-to-end system as annotator and synthetic data
generator. We first task the model with answering questions about an unseen trajectory, and then ask
the model to convert the given trajectory into a new trajectory that looks different (e.g., turn a safe
trajectory into a spinout, or turn a stay-behind into an overtake).

4.1 ANNOTATOR EXPERIMENT

We first evaluate Bi-Gen as an automated labeler or annotator for entirely unseen and unlabeled
trajectory data. In this setting, we formulate the task as a multi-turn conversation, reflecting a pos-
sible deployment of our lightweight model to a real-time annotation platform. For each new sample
consisting of a system prompt, map, opponent trajectory, and ego-trajectory, we ask questions one-
at-a-time, allowing the model to generate a short response to each question before moving on to the
next question. Each sample is followed by nine total question-answer pairs.

Note that this task is more challenging than a conventional annotation task because of the sequential,
multi-turn structure of the evaluation. If the model generates an unrelated response early, or begins to
wander out-of-distribution, the entire conversation can collapse. Therefore, the model must remain
accurate for all nine turns to maximize its score.

We compare Bi-Gen to GPT-40 (Achiam et al., 2023) as a baseline for a closed-source, expensive,
large baseline model. GPT-40 is given sub-sampled trajectory data in the form of a JSON, and is
asked to answer all questions simultaneously. For both our model and GPT-40, generated answers
are binned into target topics using GPT-40 as a judge. We provide further details on this process in
Appendix C. After this binning, the F1 score for our model is 43.9%, comparable with the GPT-
40’s score of 43.8%. Despite using a fraction of parameter count of a state-of-the-art LLM, Bi-Gen
is able to achieve comparable auto-annotation accuracy, and is even able to do so in a multi-turn
conversational format.

4.2 SYNTHETIC DATA GENERATION

We next evaluate Bi-Gen as a synthetic data generator to produce new ego-centric trajectories that
approximate real data. To quantitatively evaluate the fidelity of these new trajectories, we set up
a binary classification task in which the objective is to predict whether or not the ego agent has
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Figure 6: This end-to-end pipeline example shows that Bi-Gen can comprehend the input trajectories
and track to accurately answer user questions regarding the ego-agent’s trajectory (e.g., overtakes,
spinouts, collisions, etc.). The model can then generate a new ego trajectory to convert the given
no-spinout trajectory into a spinout trajectory based on the user’s query, satisfying the user’s request.

overtaken its opponent. If the synthetic data closely approximates the real data distribution, then a
model that is trained on synthetic data should perform well on real data.

We first generate a synthetic dataset using snippets of trajectories from the training set as con-
text, and tasking the model with generating completions that conform to either an “overtake” or
a “stay-behind” prompt. We then train a small long short-term memory (LSTM) model (Hochre-
iter & Schmidhuber, 1997) to perform the binary “overtake” or “stay-behind” prediction. We train
this model on different mixtures of data, including entirely synthetic, entirely real, and synthetic
with small amounts of randomly sampled real data mixed in. For each data mixture, the model is
evaluated on entirely unseen real data.

In Fig. 4, we compare the performance of this classifier trained different data mixtures. We see that
purely synthetic data achieves quite strong performance, though it lags behind training on the full
real training set. However, by adding small amounts of real data to the synthetic dataset, we are able
to quickly match and even exceed the performance of a real-data-only classifier.

When training with similarly small amounts of only real data, we see that the downstream classifier
always lags behind a model trained on the mix of synthetic and real data, highlighting the perfor-
mance boost that comes from using synthetic data from Bi-Gen. This result highlights the strength
of Bi-Gen, as it enables us to cheaply augment and extend small, real datasets with larger amounts
of synthetic data that can lead to performance gains over using a smaller, entirely real dataset.

4.3 MULTI-MODAL GENERATION

Here, we present a qualitative demonstration of Bi-Gen as a trajectory generator and when deployed
to a full, end-to-end data generation setting. In this full end-to-end setting, we first test the model’s
ability to handle new phrasings of questions that it has seen before, and then we ask the model to
generate a different completion to a given input trajectory. Note that this task is never encountered
during training, and this combination of tasks in a single interaction is also never encountered during
training. While the model is trained on both tasks in the same batch, there are no training examples
of two tasks in one conversation.

First, we present qualitative examples of trajectory completions from our model when applied to
new, unseen input data (i.e., unseen opponent and ego trajectories). We present the model with a
complete trajectory from each agent, and then task the model with generating a new completion to
the ego trajectory, conditioned on a language prompt (e.g., “This driver overtakes the opponent:”).
Examples of this process are shown in Fig. 5, where we show our model generating novel comple-
tions as either a spinout, a stay-behind, or an overtake. Note that the latter two examples require
reasoning about both the ego and opponent trajectories, forcing the model to generate data that ac-
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curately satisfies the requested relationship between the two agents (i.e., stay behind the opponent
or overtake the opponent).

Finally, we demonstrate Bi-Gen’s ability to handle multi-turn question-answering and trajectory gen-
eration in Fig. 6. This example shows that Bi-Gen can comprehend the input trajectories and track
to accurately answer user questions regarding the ego-agent’s trajectory (e.g., overtakes, spinouts,
collisions, etc.). Even without exactly matching phrasings that the model has been trained on, the
model is able to generate completions that accurately reflect the given trajectory data. Finally, the
model can further generate a new ego trajectory to convert the given “no-spinout” trajectory into a
“spinout” trajectory based on the user’s query, satisfying the user’s request. An additional example
is provided in Appendix E.

5 CONCLUSION

In this work, we presented Bi-Gen, a bi-directional large multi-modal model designed to bridge
the gap between trajectory description and generation. By leveraging the strength of LLMs, we
demonstrated that Bi-Gen can serve as an automated annotator or synthetic data generator, providing
rich augmentations to existing data that prove particularly valuable in low data regimes, such as
multi-car racing.

The bi-directionality of Bi-Gen marks a significant advancement over prior works, which focus on a
single aspect of the trajectory modeling problem. By leveraging the joint structure and complemen-
tary data for trajectory description and generation, Bi-Gen is able to learn a richer understanding of
trajectory data, leading to an enhanced ability to bolster existing datasets.

Looking forward, Bi-Gen is a step towards further advancements in multi-modal modeling in em-
bodied domains. As a framework for integrating multiple modalities for real-time data synthesis
and understanding, Bi-Gen could be applied to driving, robotics, or other digital interaction do-
mains. Future work may seek to further extend Bi-Gen with additional modalities, such as video or
other real-time sensors, expanding the capabilities of Bi-Gen to more complex data synthesis and
modeling problems.
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A HUMAN DRIVING DATA COLLECTION IN MULTI-CAR RACING DOMAIN

While the data collection and dataset are not contributions of this work, we briefly discuss them
here for completeness and clarity in the submission. The dataset was captured during a user study,
which was designed to gather human driving behavior data in the racing domain we use in the paper.
The purpose of the study was to gather qualitative and statistical data on individuals’ behavior and
objectives in a racing context, and to use that to inform what criteria are important for building
models of human objectives. We recruited 48 participants to drive a simulator with the hairpin and
straightaway segments of the two-mile racing track, the same domains for the computational results
in this paper. The scenarios were chosen so as to present overtake opportunities in portions of the
track of varying levels of difficulty, while keeping the overall task short enough to ensure there
is a rich interaction between the ego and opponent. Participants completed a series of warm-up
trials in each domain, with three trials devoted to the straightaway segment and eight trials in the
hairpin segment, each featuring different opponents of varying difficulty (fixed trajectories) to race
against. Again, these were the same trajectories used in our domains. At the conclusion of each trial,
participants answered the question: “Did you attempt to pass the other vehicle?” on an iPad. We
also gathered, from trajectory data, whether or not the participant actually completed an overtake
without collisions or spin-outs. 877 trajectories are collected. We then further manually label the
data to address nine specific questions, as outlined in the Table 1 to construct our question-answering
set.

Table 1: Questions for Labelling

Questions
Does the driver attempt to overtake?
Does the driver cheat across the track?
Does the driver collide with the leader?
Is this an overtaking event or a stay-behind event?
Is there any spinout?
Is the driver going faster in the first half or second half of the trajectory?
Is the driver closer to the opponent in the first half or second half?
Are there any drastic changes in the driver’s speed?
Does the driver cover a greater distance over the course of the trajectory?

O 00NN B W =2
[=]

We present two empirical examples from the collected human racing data, supported by human-
labeled ground truth multi-turn QAs in Table 1: Fig. 7 illustrates the ego vehicle staying behind the
opponent, while Fig. 8 depicts an overtaking maneuver.

B TRAINING DETAILS
The model’s training hyperparameters are listed in Table 2.

Table 2: Training Hyper-parameters

Hyper-parameter Values
Learning rate 5e=°
Trajectory Encoder Hidden Dim 128
Map Encoder Hidden Dim 128
Trajectory Decoder Hidden Dim 128
Batch Size 16
Training Epochs 20
LoRA Layers Q, K, V, O, up-projection, down-projection
LoRA Rank 16
LoRA Alpha 16
LoRA Dropout 0.1
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Figure 7: Here, we show an example of training data used for Bi-Gen. Trajectories are collected
from a small in-person user study, in which participants are instructed to attempt to overtake an auto-
mated racing opponent. After collecting hundreds of small trajectory clips (approximately 800 total
clips), a human annotator reviewed each clip to label specific events such as overtakes, spinouts, col-
lisions, etc., while automated heuristics created labels for data about the trajectory statistics (speeds,
distances, etc.).
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Figure 8: Here, we show another example of training data used for Bi-Gen, this time for an overtake
that leads into a spinout. This example shows the complexity of the data, as a model or annotator
must watch the data unfold in realtime to catch overtakes. Simply viewing the end product might
show something completely different (such as this driver, who spun out after briefly overtaking the
opponent).

The descriptive prompts for trajectory generation are summarized as Table 3.

C F1 SCcORE CALCULATION USING GPT AS A JUDGE

The detailed pipeline for using GPT as a judge to evaluate Bi-Gen’s descriptive capabilities is il-
lustrated in Fig. 9. The process for obtaining predicted and ground truth label classes for F1 score
calculations involves two steps:
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Table 3: Descriptive Prompts for Trajectory Generation

Z
e

e el e el e e e
OO\IO\LIIAL,JNHO\OOO\]O\QJI#UJNH.

Descriptions
The ego car was faster in the second half.
There is no spinout.
The driver cheats.
The driver was closer in the second half.
The driver was faster in the beginning.
The driver doesn’t collide with the leader.
It is a stay-behind event.
The ego car covers a greater distance.
The driver was closer in the first half.
The driver collides with the leader.
The driver’s speed does not change drastically.
The opponent covers a greater distance.
The driver doesn’t cheat.
The driver’s speed changes drastically.
It is an overtake event.
The driver attempts to overtake.
The driver doesn’t attempt to overtake.
There is a spinout.

Step 1: Constructing a Topic Pool: Ground truth answers are manually labeled and categorized
into several key topics, with each topic assigned a corresponding class number. For example, a
ground truth answer such as “It is an overtake event” is classified under the topic “overtake,” and its
label is marked as “1.”

Step 2: Topic Selection using GPT: The predicted answers are fed into GPT, and it is prompted to
select the most appropriate topic from the constructed topic pool. Then topic labels are assigned to
the predicted answers.

Truth
Ground Tru: E> Ground Truth |:> Topic Pools

Answers Topics
Predicted > [ GPT Selected \ > Topic Label
Labels Topic Assigned

Figure 9: We use GPT-40 as an automated labeler to assign class labels to arbitrarily generated text
from our model, and from GPT-40 as a baseline method. Unconstrained generations are passed to
GPT-40 along with a list of possible class labels (topic pools), and GPT-40 must return an appropriate
topic, if one can be found.

Based on the ground truth labels assigned to the human driving data, as detailed in Appendix A, the
constructed topic pool of 18 topics along with the percentage distribution is illustrated in Fig. 10.

D GPT 40 FOR MULTI-TURN QA

We prompt GTP-40 to conduct the multi-turn QA task performed by Bi-Gen. Leveraging GPT-40
enables us to compare the performance of Bi-Gen with a large-scale, multimodal language model.

We begin by downsampling the original trajectory, selecting one out of every 25 points. This down-
sampled trajectory is then converted to a JSON formatted dictionary and given GPT-4o to facilitate
multi-turn QA about the given trajectory. The full prompt utilized is provided in Fig. 11. Unlike
Bi-Gen, GPT-40 was provided the list of topics to chose from while answering each question. We
optionally included an image plotting the trajectory on a 2D graph, and zero-shot chain-of-thought
(CoT) reasoning in the prompt, however, we found that the best performing version of GPT-40 did
not utilize images or CoT.
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Closer first half q
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Attempt to overtake -
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Figure 10: Here we show a breakdown of the percent of each label or topic in the dataset. While
some classes are extremely imbalanced (such as collisions or cheats), others are nearly 50-50 (such
as overtakes or speed differences).

Prompt for answering question based on a trajectory.

Your job is to answer a given set of questions about a trajectory of two race-cars on the track.

The trajectory will be provided to you in a json format. The json dictionary is indexed by
timesteps in the trajectory. At each timestep you will be provided the position of the ego”
car and the “ado” car which is the adversary. You will be given the positions and velocities
with regards to the x,y,z axes for both cars. You are required to answer questions from the
perspective of the “ego” car.

Your answer to any question must be selected from the topic pool in Appendix C:

Please utilize the json trajectory, and the image plotting the trajectory, to answer the
following questions.:
**[nsert Questions**

Your answer should be in the following format:
###

** Answerl **: ...

** Answer2**: ...

#H#H#

Figure 11: Full prompts utilized in GPT40 for multi-ture QA

E MULTI-MODAL GENERATION

Fig. 12 presents an additional example demonstrating Bi-Gen’s multi-turn inference capability in
trajectory description and generation. This figure shows that Bi-Gen can comprehend the input
trajectories and track to accurately answer user questions regarding the ego-agent’s trajectory (e.g.,
spinouts, speed features, etc.). The model can then generate a new ego trajectory to convert the
given stay-behind trajectory into an overtake trajectory based on the user’s query, satisfying the
user’s request. Note that the phrasing of the questions in the multi-turn conversation is different
from the questions in the dataset (Table 1), though the model is able to effectively generalize its
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System Prompt: You are a Racing Commentator and your job is to answer
questions from the user about a clip of two cars racing on a track. The track is:
grey shade in figure right. The trajectory of the opponent is: pink triangles. The
ego trajectory is: blue circles.

User: Does the ego spin out?

Assistant: no spinout

User: Does the ego cheat across the track?

Assistant: no cheat

User: Is the ego faster in the first or second half?

Assistant: Faster second

User: Is the ego closer to the opponent in the beginning or end?

Assistant: Closer beginning

User: Generate a trajectory according to the following description: This driver
overtakes the opponent:

Assistant: as shown in blue stars in figure right.

Y-axis (Position)

500

520

540

580

-600

Trajectory Comparison: Ego vs Opponent

©  Ego (before)

% Ego (after)

A Opponent

~740 -720 700 680 660 640 -620
X-axis (Position)

-600

Figure 12: This end-to-end pipeline example shows that Bi-Gen can comprehend the input trajecto-
ries and track to accurately answer user questions regarding the ego-agent’s trajectory (e.g., spinouts,
speed features, etc.). The model can then generate a new ego trajectory to convert the given stay-
behind trajectory into an overtake trajectory based on the user’s query, satisfying the user’s request.

learned racing-knowledge with the help of the inherent commonsense reasoning of the pre-trained

TinyLlama LLM.

When generating the multi-turn conversations for Fig. 6 & 12, we manually enter text queries to
the model, and allow the model to generate for a fixed number of tokens. After 5 turns, we inject a
small prompt to the model to more closely reflect the language prompting in the training data, and
then we manually enter a description of the desired trajectory generation.
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