
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

STNet: Spectral Transformation Network for
Solving Operator Eigenvalue Problem

Anonymous Authors1

Abstract
Operator eigenvalue problems play a critical role
in various scientific fields and engineering appli-
cations, yet numerical methods are hindered by
the curse of dimensionality. Recent deep learning
methods provide an efficient approach to address
this challenge by iterative updating neural net-
works. These methods’ performance relies heav-
ily on the spectral distribution of the given opera-
tor: larger gaps between the operator’s eigenval-
ues will improve precision, thus tailored spectral
transformations that leverage the spectral distri-
bution can enhance their performance. Based
on this observation, we propose the Spectral
Transformation Network (STNet). During each
iteration, STNet uses approximate eigenvalues
and eigenfunctions to perform spectral transfor-
mations on the original operator, turning it into
an equivalent but easier problem. Specifically,
we employ deflation projection to exclude the
subspace corresponding to already solved eigen-
functions, thereby reducing the search space and
avoiding converging to existing eigenfunctions.
Additionally, our filter transform magnifies eigen-
values in the desired region and suppresses those
outside, further improving performance. Exten-
sive experiments demonstrate that STNet consis-
tently outperforms existing learning-based meth-
ods, achieving state-of-the-art performance in ac-
curacy.

1. Introduction
The operator eigenvalue problem is a prominent focus in
many scientific fields (Elhareef & Wu, 2023; Buchan et al.,
2013; Cuzzocrea et al., 2020; Pfau et al., 2023) and engi-
neering applications (Diao et al., 2023; Chen & Chan, 2000).
However, traditional numerical methods are constrained by
the curse of dimensionality, as the computational complex-
ity increases quadratically or even cubically with the mesh
size (Watkins, 2007).

A promising alternative is using neural networks to approxi-

Dim=1 Dim=2 Dim=5

10 5

10 4

10 3

10 2

10 1

100

101

Ab
so

lu
te

 E
rro

r

STNet
NeuralEF
NeuralSVD
PMNN

Figure 1: Absolute error results of eigenvalues for the
Fokker-Planck operator computed using various algorithms,
the x axis represents the operator dimension.

mate eigenfunctions (Pfau et al., 2018). These approaches
reduce the number of parameters by replacing the matrix
representation with a parametric nonlinear representation
via neural networks. By designing appropriate loss func-
tions, it updates parameters to approximate the desired oper-
ator eigenfunctions. These methods only require sampling
specific regions without designing discretization mesh, sig-
nificantly reducing the algorithm design cost and unnec-
essary approximation errors (He et al., 2022). Moreover,
neural networks generally exhibit stronger expressiveness
than linear matrix representations, requiring far fewer sam-
pling points for the same problem compared to traditional
methods (Nguyen et al., 2020).

Despite these advantages, the performance of such meth-
ods strongly depends on the operator’s spectral distribution:
if the target eigenvalues differs greatly to each other, the
algorithm converges much more faster; otherwise, it may
suffer from inefficient iterations. To improve convergence,
spectral transformations can be designed based on the spec-
tral distribution, reformulating the original problem into
an equivalent but more tractable one. However, since the

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Ground Truth

STNet

Figure 2: Comparison of the eigenfunctions of the 2D Har-
monic operator computed by STNet and the Ground Truth.

real spectrum of the operator is initially unknown, existing
approaches do not optimize spectral properties through such
transformations.

To address this limitation, we propose the Spectral Trans-
formation Network (STNet). By exploiting approximate
eigenvalues and eigenvectors learned during the iterative
process, STNet applies spectral transformations to the origi-
nal operator, modifying its spectral distribution and thereby
converting it into an equivalent problem that converges
more easily. Concretely, we employ deflation projection
to remove the subspace corresponding to already computed
eigenfunctions. This not only narrows the search space but
also prevents subsequent eigenfunctions from collapsing
into the same subspace. Meanwhile, our filter transform am-
plifies eigenvalues within the target region and suppresses
those outside it, promoting rapid convergence to the de-
sired eigenvalues. Extensive experiments demonstrate that
STNet significantly surpasses existing methods based on
deep learning, achieving state-of-the-art performance in ac-
curacy. Figure 2 presents the results obtained by STNeton
the 2D Harmonic operator eigenvalue problem, alongside
the ground truth, demonstrating our method’s capability to
accurately solve eigenvalue problems.

2. Related work
Recent advancements in applying neural networks to eigen-
value problems have shown promising results. Innovations
such as spectral inference networks (SpIN) (Pfau et al.,
2018), which model eigenvalue problems as kernel problem
optimizations solved via neural networks. Neural eigenfunc-
tions (NeuralEF) (Deng et al., 2022), which significantly
reduces computational costs by optimizing the costly or-
thogonalization steps, are noteworthy. Neural singular value
decomposition (NeuralSVD) employs truncated singular
value decomposition for low-rank approximation to enhance
the orthogonality required in learning functions (Ryu et al.,
2024).

Another class of algorithms originates from optimizing the
Rayleigh quotient. The deep Ritz method (DRM) utilizes the
Rayleigh quotient for computing the smallest eigenvalues,
demonstrating significant potential (Yu et al., 2018). Several
studies have employed the Rayleigh quotient to construct
variation-free functions, achieved through physics-informed
neural networks (PINNs) (Ben-Shaul et al., 2023; 2020).
Extensions of this approach include enhanced loss functions
with regularization terms to improve the learning accuracy
of the smallest eigenvalues (Jin et al., 2022). Additionally,
Han et al. (2020) reformulate the eigenvalue problem as a
fixed-point problem of the semigroup flow induced by the
operator, solving it using the diffusion Monte Carlo method.
The power method neural network (PMNN) integrates the
power method with PINNs, using an iterative process to ap-
proximate the exact eigenvalues (Yang et al., 2023) closely.
While PMNN has proven effective in solving for a single
eigenvalue (Yang et al., 2023), it has yet to be developed for
computing multiple distinct eigenvalues simultaneously.

Furthermore, in the field of computational chemistry, re-
search on specialized model architectures for specific op-
erators, such as the Hamiltonian, focuses on developing
novel neural network ansatzes (Carleo & Troyer, 2017;
Schütt et al., 2017; Choo et al., 2020; Pfau et al., 2020;
Hermann et al., 2020; Gerard et al., 2022; Hermann et al.,
2023). These architectures are designed to embed physical
inductive biases better, enhancing expressivity. Additionally,
there are studies employing neural networks for Quantum
Monte Carlo (QMC) methods to tackle related problems in
quantum chemistry (Cuzzocrea et al., 2020; Entwistle et al.,
2023; Pfau et al., 2023).

3. Preliminaries
3.1. Operator Eigenvalue Problem

We primarily focus on the eigenvalue problems of differen-
tial operators, such as ∂

∂x + ∂
∂y ,∆, etc. Mathematically, an

operator L : H1 → H2 is a mapping between two Hilbert
spaces. Considering a self-adjoint operator L defined on a
domain Ω ⊂ RD, the operator eigenvalue problem can be
expressed in the following form (Evans, 2022):

Lv = λv in Ω, (1)

where Ω ⊆ RD serves as the domain; v is the eigenfunction
and λ is the eigenvalue. Typically, it is often necessary to
solve for multiple eigenvalues, λi, i = 1, . . . , L.

3.2. Power Method

The power method is a classical algorithm designed to ap-
proximate the eigenvalue of an operator L in the vicinity of
a given shift σ. By applying the shift σ (often chosen as an

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

approximation to the target eigenvalue), the original eigen-
value problem is effectively transformed into an equivalent
problem for the new operator (L− σI)−1. In each iteration,
the current approximate solution is multiplied by this new
operator, thereby amplifying the component associated with
the eigenvalue closest to σ. This iterative procedure con-
verges to the desired eigenvalue. The pseudocode is shown
below (Golub & Van Loan, 2013):

Algorithm 1 Power Method for the Operator L
1: Input: Operator L, shift σ, initial guess v0, maximum

iterations kmax, and convergence threshold ϵ.
2: Output: Eigenvalue λ near σ.
3: v0 = v0/∥v0∥ .
4: for k = 1 to kmax do
5: vk = pk/∥pk∥ and solve (L − σI) pk = vk−1.
6: if ∥vk − vk−1∥ < ϵ then
7: λ = ⟨vk,Lvk⟩

⟨vk,vk⟩ and break.
8: end if
9: end for

In each iteration, solving the linear system (L − σI) pk =
vk−1 is equivalent to applying the operator (L − σI)−1 to
vk−1. Afterward normalizing vk helps maintain numerical
stability. Convergence is typically assessed by evaluating
the error ∥vk−vk−1∥, ensuring that the final solution meets
the desired accuracy. The fundamental reason for the conver-
gence of the power method lies in the repeated application of
(L− σI)−1, which progressively magnifies the component
of vk in the direction of the eigenfunction with eigenvalue
closest to σ. For a more detailed introduction to the power
method, please refer to the Appendix A.1.

3.3. Deflation Projection

The deflation technique plays a critical role in solving eigen-
value problems, particularly when multiple distinct eigenval-
ues need to be computed. Deflation projection is an effective
deflation strategy that utilizes known eigenvalues and cor-
responding eigenfunctions to modify the structure of the
operator, thereby simplifying the computation of remaining
eigenvalues (Saad, 2011).

The core idea of deflation projection is to construct an op-
erator P , often defined as P(u) = ⟨u, v1⟩v1 where v1 is a
known eigenfunction. This operator is then used to modify
the original operator L into a new operator:

B = L − λ1P. (2)

In B, the eigenvalue λ1 associated with v1 is effectively
removed from the spectrum of L. Additional details on
deflation projection can be found in Appendix A.2.

3.4. Filter Transform

The filter transform is widely used in numerical linear al-
gebra to enhance the accuracy of eigenvalue computations
(Saad, 2011). By constructing a suitable filter function
F (L), the operator L undergoes a spectral transformation
that amplifies the target eigenvalues and suppresses the irrel-
evant ones. The filter transform can effectively highlight the
desired spectral region without altering the corresponding
eigenfunctions (Watkins, 2007). Further details on the filter
transform can be found in Appendix A.3.

4. Method
4.1. Problem Formulation

We consider the operator eigenvalue problem for a differen-
tial operator L defined on a domain Ω ⊂ RD. Our goal is to
approximate the L eigenvalues λi near a given shift σ and
their corresponding eigenfunctions vi, satisfying

L vi = λi vi, i = 1, 2, . . . , L. (3)

To achieve this, we employL neural networks parameterized
by θi. Each neural network NNL(·; θi) maps the domain Ω
into R, providing an approximation of the eigenfunction vi:

NNL(·; θi) : Ω → R, i = 1, 2, . . . , L. (4)

In order to represent both the functions and the operators nu-
merically, we discretize Ω by uniformly randomly sampling
N points:

S ≡ {xj = (x1j , . . . , x
D
j) | xj ∈ Ω, j = 1, 2, . . . , N},

(5)

Correspondingly, each neural network NNL(·; θi) output
a vector Yi ∈ RN , which approximate the values of the
eigenfunction ṽi(·) = NNL(·; θi) at these sampled points:

ṽi(xj) ≡ Yi(j), i = 1, 2, . . . , L, j = 1, 2, . . . , N.
(6)

The approximate eigenvalues λ̃i are then obtained by apply-
ing L to the computed eigenfunctions ṽi:

λ̃i ≡
⟨ṽi,Lṽi⟩
⟨ṽi, ṽi⟩

, i = 1, 2, . . . , L. (7)

Here, the differential operator L acts on the functions via
automatic differentiation. We iteratively update the neural
network parameters θi using gradient descent, aiming to

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

minimize the overall residual. Specifically, we formulate
the following optimization problem:

min
θi∈Θ

1

N

L∑
i=1

N∑
j=1

[ṽi(xj)− vi(xj)]
2, (8)

, where Θ denotes the parameter space of the neural net-
works. This approach does not require any training data, as
it relies solely on satisfying the differential operator eigen-
value equations over the domain Ω. Finally, this proce-
dure provides approximations λ̃i of the true eigenvalues λi,
i = 1, . . . , L.

4.2. Spectral Transformation Network

Inspired by the power method and the power method neural
network (Yang et al., 2023), we propose STNet to solve
eigenvalue problems, as shown in Figure 3. In STNet, we
replace the function vk from the k-th iteration of the power
method with ṽki (x) ≡ NNL(x; θ

k
i), where each neural net-

work is implemented via a multilayer perceptron. Since
neural networks cannot directly implement the inverse oper-
ator (L−σI)−1, we enforce (L−σI)ṽk ≈ ṽk−1 through a
suitable loss function. The updated parameters θki → θk+1

i

then yield ṽk+1 = NNL(x; θ
k+1
i). Algorithm 2 shows the

detailed procedure of STNet.

Classical power method convergence is closely related to
the spectral distribution of the operator, which is unknown
initially and thus difficult to optimize against directly. How-
ever, as the iterative process starts, we can get additional
information—such as already computed eigenvalues and
eigenfunctions. Using these results for the spectral transfor-
mation of the original operator can greatly improve subse-
quent power-method iterations. In our pseudocode 2, we
introduce two modules to enhance performance:

• Deflation Projection uses already computed eigenval-
ues and eigenfunctions to construct a projection that
excludes the previously resolved subspace, preventing
convergence to known eigenfunctions and reducing the
search space.

• Filter Transform employs approximate eigenvalues to
construct a spectral transformation (filter function) that
enlarges the target eigenvalue region and suppresses
others, boosting the efficiency of STNet.

4.2.1. DEFLATION PROJECTION

Suppose we have already approximated the eigenvalues
λ̃1, λ̃2, . . . , λ̃i−1 and their corresponding eigenfunctions
ṽ1, ṽ2, . . . , ṽi−1. To compute the i-th eigenfunction, we
focus on the residual subspace orthogonal to the subspace
spanned by these previously computed eigenfunctions.

Algorithm 2 Spectral Transformation Network

1: Input: Operator L over domain Ω ⊂ RD, shift σ,
number of sampling points N , number of eigenvalues
L, learning rate η, convergence threshold ϵ, maximum
iterations kmax.

2: Output: Eigenvalues λ̃i, i = 1, . . . , L.
3: Uniformly randomly sample N points {xj} in Ω to

form dataset S.
4: Randomly initialize the network parameters θ0i , as well

as the normalized ṽi, and set λ̃i = σ, i = 1, . . . , L.
5: for k = 1 to kmax do
6: ṽki (xj) = NNL(xj ; θ

k
i),xj ∈ S.

7: L′
i = Di(L), i = 1, . . . , L // Deflation Projec-

tion
8: L′′

i = Fi(L′), i = 1, . . . , L // Filter Transform
9: ũki (xj) =

L′′
i ṽ

k
i (xj)

∥L′′
i ṽ

k
i (xj)∥ , i = 1, . . . , L.

10: Losski = 1
N

∑N
j=1[ṽ

k−1
i (xj) − ũki (xj)]

2, i =
1, . . . , L.

11: θk+1
i = θki − η∇θi Losski , i = 1, . . . , L // Pa-

rameter Update
12: for i = 1 to L do
13: if Losski < ϵi then
14: ϵi = Losski , λ̃i =

⟨ṽk
i ,Lṽk

i ⟩
⟨ṽk

i ,ṽ
k
i ⟩
, ṽi = ṽki .

15: end if
16: end for
17: if ϵi < ϵ for all i then
18: Convergence achieved; break.
19: else
20: Update deflation projection and filter function:

Di, Fi, i = 1, . . . , L.
21: end if
22: end for

The deflated projection is then defined as

Di(L) ≡ L − Qi−1 Σi−1 Q∗
i−1. (9)

Here Qi−1 maps each vector (α1, . . . , αi−1) ∈ Ri−1 to the
function

∑i−1
k=1 αk ṽk, thus reconstructing functions from

the span of {ṽ1, . . . , ṽi−1}. Q∗
i−1 is the adjoint of Qi−1.

And Σi−1 is a diagonal operator that scales each ṽk by its
corresponding eigenvalue λ̃k.

By employing the deflation projection, the gradient descent
search space of the neural network is constrained to be
orthogonal to the subspace spanned by {ṽ1, ṽ2, . . . , ṽi−1}.
This projection prevents the neural network outputNNL(θi)
from converging to the invariant subspace formed by
known eigenfunctions, thereby enhancing the orthogo-
nality among the outputs of different neural networks
NNL(θ1), . . . , NNL(θi−1). On one hand, this reduction

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

update

STNet

eigenvalues

differential operator

sampling points

filter transform

Spectral
Transformation

Network

deflation projection
(a) (b)

Filter Deflation

update

update

achieved
accuracy

output

no

Figure 3: Overview of the STNet. (a) Introduction to the inputs and outputs. (b) STNet comprises multiple neural networks,
each tasked with predicting distinct eigenvalues. If the accuracy of the solution reaches the expectation, then STNet will
output the result.

in the search space accelerates the convergence toward the
eigenfunctions vi; On the other hand, it improves the orthog-
onality among the neural network outputs, which reduces
the error in predicting the eigenfunction ṽi.

In practice, we use the approximate eigenvalues and eigen-
functions with the smallest error in iterations to construct
the deflation projection. This allows us to update adaptively,
ensuring that the method remains effective when calculating
more eigenfunctions.

4.2.2. FILTER TRANSFORM

During the iterative process, we can obtain approximate
eigenvalues λ̃i, and assume the corresponding true eigenval-
ues lie within [λ̃i−ξ, λ̃i+ξ], where ξ is a tunable parameter,
typically ξ = 0.1 or 1. We employ a rational function-based
filter transform on the original operator to simultaneously
amplify the eigenvalues in these intervals and thus improve
convergence performance. Specifically, we transform

L −→
i−1∏
i0=0

[
(L−(λ̃i0−ξ)I) (L−(λ̃i0+ξ)I)

]−1
. (10)

By contrast, the basic power method shift-invert strategy,
L → (L − σI)−1, can be viewed as a special case of this
more general construction. In STNet, we simulate the in-
verse operator via a suitably designed loss function. There-
fore, the corresponding pseudocode filter function F re-
moves the inverse, namely:

Fi(L) =

i−1∏
i0=0

[
(L− (λ̃i0 − ξ)I) (L− (λ̃i0 + ξ)I)

]
. (11)

When λi lies within [λ̃i − ξ, λ̃i + ξ], the poles λ̃i ± ξ make
∥Fi(vi)∥ sufficiently large for the corresponding eigenvec-
tor vi. This repeated amplification causes that direction to
dominate in the subsequent iterations, while eigenvalues out-
side those intervals are gradually suppressed. Consequently,
the method converges more efficiently to the desired eigen-
values.

5. Experiments
We conducted comprehensive experiments to evaluate
STNet, focusing on:

• Solving multiple eigenvalues in the Harmonic eigen-
value problem.

• Solving the principal eigenvalue in the Schrödinger
oscillator equation.

• Solving zero eigenvalues in the Fokker-Planck equa-
tion.

• Comparative experiment with traditional algorithms.

• The ablation experiments.

Baselines: For these experiments, we selected three
learning-based methods for computing operator eigenvalues
as our baselines: 1. PMNN (Yang et al., 2023); 2. Neu-
ralEF (Deng et al., 2022); 3. NeuralSVD (Ryu et al., 2024).
In the comparative experiments with traditional algorithms,
we chose the finite difference method (FDM) (LeVeque,
2007).

Experiment Settings: To ensure consistency, all experi-
ments were conducted under the same computational condi-
tions. For further details on the experimental environment

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

and algorithm parameters, please refer to Appendices B.1
and B.2.

5.1. Harmonic Eigenvalue Problem

Harmonic eigenvalue problems are common in fields such
as structural dynamics and acoustics, and can be mathemat-
ically expressed as follows (Yang et al., 2023; Morgan &
Zeng, 1998):

{
−∆v = λv, in Ω,

v = 0, on ∂Ω.
(12)

Here ∆ denotes the Laplacian operator. We consider the
domain Ω = [0, 1]D where D represents the dimension of
the operator, and the boundary conditions are Dirichlet. In
this setting, the eigenvalue problem has analytical solutions,
with eigenvalues and corresponding eigenfunctions given
by:

λn1,...,nD
= π2

D∑
k=1

n2k, nk ∈ N+

un1,...,nD
(x1, . . . , xk) =

D∏
k=1

sin(nkπxk).

(13)

These experiments aim to calculate the smallest four eigen-
values of the Harmonic operator in 1, 2 and 5 dimensions.
Since the PMNN model only computes the principal eigen-
value and cannot compute multiple eigenvalues simultane-
ously, it is not considered for comparison. NeuralEF, due to
cumulative errors in its iterative orthogonalization process,
experiences numerical instability in 2 and 5 dimensions,
thus no data is available for these dimensions.

Firstly, as demonstrated in Table 1, the accuracy of STNet on
all tasks is significantly better than that of existing methods.
This enhancement primarily stems from the deflation pro-
jection. It effectively excludes solved invariant subspaces
during the multi-eigenvalue solution process, thereby pre-
serving the accuracy of multiple eigenvalues. This strongly
validates the efficacy of our algorithm.

Secondly, in 5-dimension, STNet consistently maintains a
precision improvement of at least three orders of magni-
tude. As shown in Table 2, this is largely due to the STNet
computed eigenpairs having smaller residuals (defined as
||Lv − λv||2, see Appendix B.3 for details), indicating that
STNet can effectively solve for accurate eigenvalues and
eigenfunctions simultaneously.

Table 2: Residual comparison for eigenpairs of STNet and
NeuralSVD for solving 5-dimensional Harmonic eigenvalue
problems. The first row indicates the eigenpair index.

Index (v1, λ1) (v2, λ2) (v3, λ3) (v4, λ4)

NeuralSVD 5.924e+0 5.920e+0 5.921e+0 5.920e+0

STNet 4.864e-4 3.060e-3 5.980e-3 4.447e-3

Additionally, Table 1 reveals that in the process of solving
multiple eigenvalues, the errors for subsequent eigenval-
ues tend to be significantly higher than those for earlier
ones. NeuralEF and NeuralSVD exhibit relatively stable
error change, and But STNet shows fluctuations (for in-
stance, errors for λ2 and λ3 at dimension five are smaller
than those for λ1). This variability primarily arises because
NeuralEF and NeuralSVD employ a uniform grid to acquire
data points, whereas STNet uses uniform random sampling.
While uniform random sampling inherently introduces some
degree of randomness, it offers a significant advantage in
high-dimensional settings. Specifically, a uniform grid ne-
cessitates an exponentially growing number of sampling
points, numD, where num represents the number of grid
points per dimension and D denotes the operator dimension.
In contrast, uniform random sampling is not subject to this
constraint, making it more scalable for high-dimensional
problems.

5.2. Schrödinger Oscillator Equation

The Schrödinger oscillator equation is a common problem
in quantum mechanics, and its time-independent form is
expressed as follows:

−1

2
∆ψ + V ψ = Eψ, in Ω = [0, 1]D, (14)

where ψ is the wave function, ∆ represents the Laplacian
operator indicating the kinetic energy term, V is the po-
tential energy within Ω, and E denotes the energy eigen-
value (Ryu et al., 2024; Griffiths & Schroeter, 2018). This
equation is formulated in natural units, simplifying the con-
stants involved. Typically, the potential V (x1, . . . , xD) =
1
2

∑D
k=1 x

2
k characterizes a multidimensional quadratic po-

tential. The principal eigenvalue E0 and corresponding
eigenfunction ψ0 are given by:

E0 =
D

2
, ψ0(x1, . . . , xD) =

D∏
k=1

(
1

π

) 1
4

e−
x2
k
2 . (15)

This experiment focuses on calculating the ground states of

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Table 1: Absolute error comparison for eigenvalues of Harmonic operators. The first row lists the methods, the second row
lists eigenvalue indexs, and the first column lists the operator dimensions. The most accurate method is in bold.

Method
NeuralEF NeuralSVD STNet

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

Dim = 1 1.4e-1 2.9e+1 7.9e+1 1.4e+2 1.0e-1 4.1e+1 1.0e+0 1.4e+2 6.3e-10 1.7e-1 6.3e-1 1.6e+1
Dim = 2 - - - - 5.5e-2 2.1e-1 1.5e-1 2.6e+1 1.0e-5 3.0e-2 6.8e-2 1.0e-1
Dim = 5 - - - - 2.5e-1 2.9e+1 2.9e+1 2.9e+1 2.3e-4 9.5e-5 6.2e-5 1.3e-3

Table 3: Absolute error comparison for the principal eigen-
values of oscillator operators. The first row lists the methods,
and the first column lists the operator dimensions. The most
accurate method is in bold.

Method PMNN NeuralEF NeuralSVD STNet

Dim = 1 1.17e-6 2.57e-2 2.53e-2 3.62e-7
Dim = 2 9.07e-5 7.55e-2 4.01e-1 2.35e-6
Dim = 5 3.92e-1 3.97e-1 4.37e+0 3.23e-1

the Schrödinger equation in one, two, and five dimensions,
i.e. the smallest principal eigenvalues.

Firstly, as shown in Table 3, the STNet achieves significantly
higher precision than existing algorithms in computing the
principal eigenvalues of the oscillator operator.

Furthermore, the accuracy of STNet surpasses that of
PMNN. Both are designed based on the concept of the
power method. When solving for the principal eigenvalue,
the deflation projection loss may be considered inactive.
This outcome suggests that the filter transform significantly
enhances the accuracy.

5.3. Fokker-Planck Equation

The Fokker-Planck equation is central to statistical mechan-
ics and is extensively applied across diverse fields such as
thermodynamics, particle physics, and financial mathemat-
ics (Yang et al., 2023; Jordan et al., 1998; Frank, 2005). It
can be mathematically formulated as follows:

−∆v−V · ∇v −∆V v = λv, in Ω = [0, 2π]D,

V (x) = sin

(
D∑
i=1

ci cos(xi)

)
.

(16)

Here V (x) is a potential function with each coefficient ci
varying within [0.1, 1], λ the eigenvalue, and v the eigen-

function. When the boundary conditions are periodic, there
are multiple zero eigenvalues.

The eigenvalue at zero significantly impacts the numerical
stability of the algorithm during iterative processes. This
experiment investigates the computation of two zero eigen-
values for the Fokker-Planck equations with different pa-
rameters in 1, 2, and 5 dimensions. Due to the inherent
limitation of the PMNN method, which can only compute
a single eigenvalue, we restrict our analysis to calculating
one eigenvalue when employing this approach.

As indicated in Table 4, the STNet algorithm significantly
outperforms existing methods in computing the zero eigen-
values of the Fokker-Planck operator, effectively solving
cases where the eigenvalue is zero. It is mainly due to the
filter function, which performs a spectral transformation
on the operator, converting the zero eigenvalue into other
eigenvalues that are easier to calculate without changing the
eigenvector.

5.4. Comparative Experiment with Traditional
Algorithms

This experiment compares the accuracy of STNet and the
traditional finite difference method (FDM) with a central
difference scheme under identical point distributions (6×
104 points) (LeVeque, 2007). Both methods compute the
four smallest eigenvalues of the 5D harmonic operator.

As shown in Table 5, STNet significantly outperforms FDM
in accuracy. While FDM’s precision depends on grid den-
sity, requiring exponentially more grid points and parame-
ters with increasing dimensionality, STNet employs uniform
random sampling instead of fixed grids. Leveraging neural
networks’ expressive power, STNet achieves higher accu-
racy with fewer parameters by effectively approximating
eigenfunctions.

Traditional algorithms and neural network-based algorithms
each have their own applicable domains. In low-dimensional
scenarios, traditional algorithms significantly outperform
neural network-based algorithms in terms of computational
speed, and their accuracy can be improved by increasing

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Table 4: Absolute error comparison for the principal eigenvalues of Fokker-Planck operators across algorithms. The first
row lists the methods, the second row lists eigenvalue index, the first column lists the Fokker-Planck parameter and the
second column lists the operator dimensions. The most accurate method is in bold.

Method PMNN NeuralEF NeuralSVD STNet

ci Dim λ1 λ1 λ2 λ1 λ2 λ1 λ2

0.5

1 1.16e+0 4.98e-2 1.05e+0 7.19e-1 1.02e+0 1.17e-3 8.75e-3

2 1.11e+0 6.71e-2 1.57e+0 3.33e-1 1.03e+0 5.26e-6 5.14e-2

5 1.17e+0 2.11e+0 9.17e+0 2.11e+0 4.82e+0 3.90e-3 1.29e-1

1.0

1 8.60e-1 5.21e-1 5.95e-1 2.73e-1 3.19e-1 3.86e-2 2.33e-1

2 8.30e-1 6.58e-1 8.45e-1 2.75e-1 3.94e-1 1.99e-2 3.91e-2

5 7.58e-1 7.71e-1 1.02e+0 2.01e-1 3.08e-1 5.64e-2 2.67e-2

Table 5: Absolute error comparison for eigenvalues of 5D
Harmonic operators. The first column lists the methods, and
the second column lists eigenvalue indexes

Method λ1 λ2 λ3 λ4

FDM 4.05e-1 1.61e+0 1.61e+0 1.61e+0

STNet 2.31e-4 9.54e-5 6.21e-5 1.39e-3

the number of grid points. However, in high-dimensional
problems, the number of required grid points grows expo-
nentially with the dimensionality. For instance, while a
2D problem requires a 1002 grid, its 5D counterpart would
need 1005 grid points. In such cases, enhancing accuracy by
increasing the number of grid points becomes impractical.
Neural network-based algorithms, on the other hand, offer
an effective solution to these high-dimensional challenges.

5.5. Ablation Experiments

We conducted ablation experiments to validate the effective-
ness of the deflation projection and filter transform modules.
As shown in Table 6, the results for ”w/o F” indicate that
removing the filter transform significantly reduces solution
accuracy. In the cases of ”w/o D” and ”w/o F and D,” while
the residuals remain small, the absolute errors for λ2 and λ3
are notably larger compared to λ1. This suggests that with-
out the deflation projection module, the network converges
exclusively to the first eigenfunction v1 corresponding to λ1,
failing to capture subsequent eigenfunctions. These findings
underscore the critical roles of both modules: the filter trans-
form enhances accuracy through spectral transformation.
The deflation projection removes the subspace of already
solved eigenfunctions from the search space, enabling the
computation of multiple eigenvalues.

Additionally, experiments detailing the performance of
STNet as a function of model depth, model width, and

Table 6: A comparison of different settings of STNet for
the 2-dimensional Harmonic eigenvalue problem. ”w/o”
denotes the absence of a specific module, ”F” represents
the filter transform module, and ”D” indicates the deflation
projection module.

Index λ Absolute Error Residual

STNet
(v1, λ1) 1.02e-5 4.12e-3
(v2, λ2) 3.04e-2 1.24e+1
(v3, λ3) 6.76e-1 1.43e+1

w/o F
(v1, λ1) 6.73e-5 1.35e-2
(v2, λ2) 5.10e-2 4.72e+1
(v3, λ3) 1.06e-1 1.70e+2

w/o D
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e+1 7.09e-3
(v3, λ3) 2.97e+1 1.09e-2

w/o F and D
(v1, λ1) 6.73e-5 1.35e-2
(v2, λ2) 2.96e+1 1.45e-2
(v3, λ3) 2.97e+1 1.37e-2

the number of sampling points are provided in Appendix C.

6. Conclusions
In this paper, we present STNet, a novel learning-based ap-
proach for solving operator eigenvalue problems. By lever-
aging approximate eigenvalues and eigenvectors obtained
during iteration, STNet employs spectral transformations
to reformulate the original operator, altering its spectral
distribution to create an equivalent problem with improved
convergence properties. Experimental results show that
STNet outperforms existing algorithms in accuracy across a
wide range of operator eigenvalue problems.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Banerjee, A. S., Lin, L., Hu, W., Yang, C., and Pask, J. E.

Chebyshev polynomial filtered subspace iteration in the
discontinuous galerkin method for large-scale electronic
structure calculations. The Journal of chemical physics,
145(15), 2016.

Ben-Shaul, I., Bar, L., and Sochen, N. Solving the functional
eigen-problem using neural networks. arXiv preprint
arXiv:2007.10205, 2020.

Ben-Shaul, I., Bar, L., Fishelov, D., and Sochen, N. Deep
learning solution of the eigenvalue problem for differen-
tial operators. Neural Computation, 35(6):1100–1134,
2023.

Buchan, A., Pain, C., Fang, F., and Navon, I. A pod reduced-
order model for eigenvalue problems with application
to reactor physics. International Journal for Numerical
Methods in Engineering, 95(12):1011–1032, 2013.

Carleo, G. and Troyer, M. Solving the quantum many-body
problem with artificial neural networks. Science, 355
(6325):602–606, 2017.

Chen, Q. and Chan, Y. Integral finite element method for dy-
namical analysis of elastic–viscoelastic composite struc-
tures. Computers & Structures, 74(1):51–64, 2000.

Choo, K., Mezzacapo, A., and Carleo, G. Fermionic neural-
network states for ab-initio electronic structure. Nature
communications, 11(1):2368, 2020.

Cuzzocrea, A., Scemama, A., Briels, W. J., Moroni, S., and
Filippi, C. Variational principles in quantum monte carlo:
The troubled story of variance minimization. Journal
of chemical theory and computation, 16(7):4203–4212,
2020.

Deng, Z., Shi, J., and Zhu, J. Neuralef: Deconstructing
kernels by deep neural networks. In International Con-
ference on Machine Learning, pp. 4976–4992. PMLR,
2022.

Diao, H., Li, H., Liu, H., and Tang, J. Spectral properties
of an acoustic-elastic transmission eigenvalue problem
with applications. Journal of Differential Equations, 371:
629–659, 2023.

Elhareef, M. H. and Wu, Z. Physics-informed neural net-
work method and application to nuclear reactor calcula-
tions: A pilot study. Nuclear Science and Engineering,
197(4):601–622, 2023.

Entwistle, M. T., Schätzle, Z., Erdman, P. A., Hermann, J.,
and Noé, F. Electronic excited states in deep variational
monte carlo. Nature Communications, 14(1):274, 2023.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Society, 2022.

Frank, T. D. Nonlinear Fokker-Planck equations: funda-
mentals and applications. Springer Science & Business
Media, 2005.

Gerard, L., Scherbela, M., Marquetand, P., and Grohs, P.
Gold-standard solutions to the schrödinger equation using
deep learning: How much physics do we need? Advances
in Neural Information Processing Systems, 35:10282–
10294, 2022.

Golub, G. H. and Van Loan, C. F. Matrix computations.
JHU press, 2013.

Griffiths, D. J. and Schroeter, D. F. Introduction to quantum
mechanics. Cambridge university press, 2018.

Han, J., Lu, J., and Zhou, M. Solving high-dimensional
eigenvalue problems using deep neural networks: A diffu-
sion monte carlo like approach. Journal of Computational
Physics, 423:109792, 2020.

He, C., Hu, X., and Mu, L. A mesh-free method using piece-
wise deep neural network for elliptic interface problems.
Journal of Computational and Applied Mathematics, 412:
114358, 2022.

Hermann, J., Schätzle, Z., and Noé, F. Deep-neural-network
solution of the electronic schrödinger equation. Nature
Chemistry, 12(10):891–897, 2020.

Hermann, J., Spencer, J., Choo, K., Mezzacapo, A., Foulkes,
W. M. C., Pfau, D., Carleo, G., and Noé, F. Ab initio
quantum chemistry with neural-network wavefunctions.
Nature Reviews Chemistry, 7(10):692–709, 2023.

Jin, H., Mattheakis, M., and Protopapas, P. Physics-
informed neural networks for quantum eigenvalue prob-
lems. In 2022 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2022.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational
formulation of the fokker–planck equation. SIAM journal
on mathematical analysis, 29(1):1–17, 1998.

Kohn, W. Nobel lecture: Electronic structure of mat-
ter—wave functions and density functionals. Reviews
of Modern Physics, 71(5):1253, 1999.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

LeVeque, R. J. Finite difference methods for ordinary
and partial differential equations: steady-state and time-
dependent problems. SIAM, 2007.

Miao, C.-Q. and Wu, W.-T. On relaxed filtered krylov
subspace method for non-symmetric eigenvalue problems.
Journal of Computational and Applied Mathematics, 398:
113698, 2021.

Morgan, R. B. and Zeng, M. Harmonic projection methods
for large non-symmetric eigenvalue problems. Numerical
linear algebra with applications, 5(1):33–55, 1998.

Nguyen, T., Raghu, M., and Kornblith, S. Do wide and deep
networks learn the same things? uncovering how neural
network representations vary with width and depth. arXiv
preprint arXiv:2010.15327, 2020.

Pfau, D., Petersen, S., Agarwal, A., Barrett, D. G.,
and Stachenfeld, K. L. Spectral inference networks:
Unifying deep and spectral learning. arXiv preprint
arXiv:1806.02215, 2018.

Pfau, D., Spencer, J. S., Matthews, A. G., and Foulkes, W.
M. C. Ab initio solution of the many-electron schrödinger
equation with deep neural networks. Physical review
research, 2(3):033429, 2020.

Pfau, D., Axelrod, S., Sutterud, H., von Glehn, I., and
Spencer, J. S. Natural quantum monte carlo computa-
tion of excited states. arXiv preprint arXiv:2308.16848,
2023.

Ryu, J. J., Xu, X., Erol, H., Bu, Y., Zheng, L., and Wornell,
G. W. Operator svd with neural networks via nested low-
rank approximation. arXiv preprint arXiv:2402.03655,
2024.

Saad, Y. Numerical methods for large eigenvalue problems:
revised edition. SIAM, 2011.

Salas, P., Giraud, L., Saad, Y., and Moreau, S. Spectral
recycling strategies for the solution of nonlinear eigen-
problems in thermoacoustics. Numerical Linear Algebra
with Applications, 22(6):1039–1058, 2015.

Schütt, K., Kindermans, P.-J., Sauceda Felix, H. E., Chmiela,
S., Tkatchenko, A., and Müller, K.-R. Schnet: A
continuous-filter convolutional neural network for model-
ing quantum interactions. Advances in neural information
processing systems, 30, 2017.

Van Beeumen, R. Rational krylov methods for nonlinear
eigenvalue problems, 2015.

Watkins, D. S. The matrix eigenvalue problem: GR and
Krylov subspace methods. SIAM, 2007.

Winkelmann, J., Springer, P., and Napoli, E. D. Chase:
Chebyshev accelerated subspace iteration eigensolver for
sequences of hermitian eigenvalue problems. ACM Trans-
actions on Mathematical Software (TOMS), 45(2):1–34,
2019.

Yang, Q., Deng, Y., Yang, Y., He, Q., and Zhang, S. Neu-
ral networks based on power method and inverse power
method for solving linear eigenvalue problems. Comput-
ers & Mathematics with Applications, 147:14–24, 2023.

Yu, B. et al. The deep ritz method: a deep learning-based nu-
merical algorithm for solving variational problems. Com-
munications in Mathematics and Statistics, 6(1):1–12,
2018.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A. Background Knowledge and Relevant Analysis
A.1. Convergence Analysis of the Power Method

Suppose A ∈ Rn×n and V −1AV = diag(λ1, . . . , λn) with V =
[
v1 · · · vn

]
. Assume that |λ1| > |λ2| ≥ · · · ≥ |λn|.

The pseudocode for the power method is shown below (Golub & Van Loan, 2013):

Algorithm 1: Power method for finding the largest principal eigenvalue of the matrix A

1 Given A ∈ Rn×n an n× n matrix, an arbitrary unit vector x(0) ∈ Rn, the maximum number of iterations kmax, and the
stopping criterion ϵ.

2 for k = 1, 2, . . . , kmax do
3 Compute y(k) = Ax(k−1).

4 Normalize x(k) = y(k)

∥y(k)∥ .

5 Compute the difference δ = ∥x(k) − x(k−1)∥.
6 if δ < ϵ then
7 Record the largest principal eigenvalue using the Rayleigh quotient,

λ(k) =
⟨x(k),Ax(k)⟩
⟨x(k),x(k)⟩

.

The stopping criterion is met, the iteration can be stopped.

Let us examine the convergence properties of the power iteration. If

x(0) = a1v1 + a2v2 + · · ·+ anvn

and v1 ̸= 0, then

Akx(0) = a1λ
k
1

v1 +

n∑
j=2

aj
a1

(
λj
λ1

)k

vj

 .

Since x(k) ∈ span{Akx(0)}, we conclude that

dist
(

span{x(k)}, span{v1}
)
= O

((
λ2
λ1

)k
)
.

It is also easy to verify that

|λ1 − λ(k)| = O

((
λ2
λ1

)k
)
.

Since λ1 is larger than all the other eigenvalues in modulus, it is referred to as the largest principal eigenvalue. Thus, the
power method converges if λ1 is the largest principal and if x(0) has a component in the direction of the corresponding
dominant eigenvector x1.

In practice, the effectiveness of the power method largely depends on the ratio |λ2|/|λ1|, as this ratio determines the
convergence rate. Therefore, applying specific spectral transformations to the matrix to increase this ratio can significantly
accelerate the convergence of the power method.

A.2. Deflation Projection Details

Consider the scenario where we have determined the largest modulus eigenvalue, λ1, and its corresponding eigenvector,
v1, utilizing an algorithm such as the power method. These algorithms consistently identify the eigenvalue of the largest
modulus from the given matrix along with an associated eigenvector. We ensure that the vector v1 is normalized such that

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

∥v1∥2 = 1. The task then becomes computing the subsequent eigenvalue, λ2, of the matrix A. A traditional approach to
address this is through what is commonly known as a deflation procedure. This technique involves a rank-one modification
to the original matrix, aimed at shifting the eigenvalue λ1 while preserving all other eigenvalues intact. The modification is
designed in such a way that λ2 emerges as the eigenvalue with the largest modulus in the adjusted matrix. Consequently, the
power method can be reapplied to this updated matrix to extract the eigenvalue-eigenvector pair λ2,v2.

When the invariant subspace requiring deflation is one-dimensional, consider the following Proposition A.1. The propositions
and proofs below are derived from Saad (2011) P90.

Proposition A.1. Let v1 be an eigenvector of A of norm 1, associated with the eigenvalue λ1 and let A1 ≡ A− σv1v
H
1 .

Then the eigenvalues of A1 are λ̃1 = λ1 − σ and λ̃j = λj , j = 2, 3, . . . , n. Moreover, the Schur vectors associated with
λ̃j , j = 1, 2, 3, . . . , n are identical with those of A.

Proof. Let AV = V R be the Schur factorization of A, where R is upper triangular and V is orthonormal. Then we have

A1V =
[
A− σv1v

⊤
1

]
V = V R− σv1e

⊤
1 = V [R− σe1e

⊤
1].

Here, e1 is the first standard basis vector. The result follows immediately.

According to Proposition A.1, once the eigenvalue λ1 and eigenvector v1 are known, we can define the deflation projection
matrix P1 = I − λ1v1v

⊤
1 to compute the remaining eigenvalues and eigenvectors.

When deflating with multiple vectors, let q1, q2, . . . , qj be a set of Schur vectors associated with the eigenvalues
λ1, λ2, . . . , λj . We denote by Qj the matrix of column vectors q1, q2, . . . , qj . Thus, Qj ≡ [q1, q2, . . . , qj] is an or-
thonormal matrix whose columns form a basis of the eigenspace associated with the eigenvalues λ1, λ2, . . . , λj . An
immediate generalization of Proposition A.1 is the following (Saad, 2011) P94.

Proposition A.2. Let Σj be the j × j diagonal matrix Σj = diag(σ1, σ2, . . . , σj), and Qj an n× j orthogonal matrix
consisting of the Schur vectors of A associated with λ1, . . . , λj . Then the eigenvalues of the matrix

Aj ≡ A−QjΣjQ
⊤
j ,

are λ̃i = λi − σi for i ≤ j and λ̃i = λi for i > j. Moreover, its associated Schur vectors are identical with those of A.

Proof. Let AU = UR be the Schur factorization of A. We have

AjU =
[
A−QjΣjQ

⊤
j

]
U = UR−QjΣjE

⊤
j ,

where Ej = [e1, e2, . . . , ej]. Hence
AjU = U

[
R−EjΣjE

⊤
j

]
and the result follows.

According to Proposition A.2, if A is a normal matrix and the eigenvalues λ1, . . . , λj along with their corresponding
eigenvectors v1, . . . ,vj are known, we can construct the deflation projection matrix Pj = I − VjΣjV

⊤
j to compute the

remaining eigenvalues and eigenvectors. Here, Σj = diag(σ1, σ2, . . . , σj) and Vj = [v1,v2, . . . ,vj].

A.3. Filtering Technique

The primary objective of filtering techniques is to manipulate the eigenvalue distribution of a matrix through spectral
transformations (Saad, 2011). This enhances specific eigenvalues of interest, facilitating their recognition and computation
by iterative solvers. Filter transformation functions, F (x), typically fall into two categories:

1. Polynomial Filters, expressed as P (x), such as the Chebyshev filter (Miao & Wu, 2021; Banerjee et al., 2016).

2. Rational Function Filters, often denoted as P (x)/Q(x), such as the shift-invert method (Van Beeumen, 2015; Watkins,
2007). Below we describe this strategy in detail.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Shift-Invert Strategy The shift-invert strategy applies the transformation (A− σI)−1 to the matrix A, where σ is a scalar
approximating a target eigenvalue, termed as shift. This operation transforms each eigenvalue λ of A into 1

λ−σ , amplifying
those eigenvalues close to σ in the transformed matrix, making them larger and more distinguishable (Watkins, 2007).

For instance, consider the power method, where the convergence rate is primarily governed by the ratio of the matrix’s
largest modulus eigenvalue to its second largest. Suppose matrix A has three principal eigenvalues: λ1 = 10, λ2 = 3, and
λ3 = 2. Our objective is to compute λ1, the largest eigenvalue. In the original matrix A, the convergence rate of the power
method hinges on the spectral gap ratio, defined as:

Spectral Gap Ratio =
λ1
λ2

≈ 3.33

Applying the shift-invert transformation with σ = 9.5 strategically selected close to λ1, the new eigenvalues µ are
recalculated as:

µi =
1

λi − σ

This results in transformed eigenvalues:

µ1 = 2, µ2 ≈ −0.133, µ3 ≈ −0.125

Under this transformation, µ1 = 2 emerges as the dominant eigenvalue in the new matrix, with the other eigenvalues
significantly smaller. Consequently, the new spectral gap ratio escalates to:

New Spectral Gap Ratio =
2

0.133
≈ 15.04

This enhanced spectral gap notably accelerates the convergence of the power method in the new matrix configuration.

Filtering techniques are often synergized with techniques like the implicit restarts of Krylov algorithms (Watkins, 2007;
Golub & Van Loan, 2013), employing matrix operation optimizations to minimize the computational demands of evaluating
matrix functions. These methods enable more precise localization and computation of multiple eigenvalues spread across
the spectral range, particularly vital in physical (Salas et al., 2015; Banerjee et al., 2016) and materials science (Kohn, 1999)
simulations where these eigenvalues frequently correlate with the system’s fundamental properties (Winkelmann et al.,
2019).

B. Details of Experimental Setup
B.1. Experimental Environment

To ensure consistency in our evaluations, all comparative experiments were conducted under uniform computing environ-
ments. Specifically, the environments used are detailed as follows:

• CPU: 72 vCPU AMD EPYC 9754 128-Core Processor

• GPU: NVIDIA GeForce RTX 4090D (24GB)

B.2. Experimental Parameters

• NeuralSVD and NeuralEF: (Using the original paper settings)

– Optimizer: RMSProp with a learning rate scheduler.
– Learning rate: 1e-4, batch size: 128
– Neural Network Architecture: layers = [128,128,128]
– Laplacian regularization set to 0.01, with evaluation frequency every 10000 iterations.
– Fourier feature mapping enabled with a size of 1024 and scale of 0.1.
– Neural network structure: hidden layers of 128,128,128 using softplus as the activation function.
– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 iterations. For the 2-dimensional

problem, the number of points is 40, 000 = 200 × 200, also with 400, 000 iterations. For the 5-dimensional
problem, the number of points is 59, 049 = 95, with 500, 000 iterations.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

• STNet

– Optimizer: Adam
– Learning rate: 1e-4
– Neural Network Architecture: Assuming d is the dimension of the problem. For d = 1 or 2, layers = [d, 20, 20, 20,

20, 1] (For Harmonic operator d=2, layers = [d, 20, 20, 20, 1]). For d=5, layers = [d, 40, 40, 40, 40, 1]. For else
case, layers = [d, 40, 40, 40, 40, 1].

– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 iterations. For the 2-dimensional
problem, the number of points is 40, 000 = 200 × 200, also with 400, 000 iterations. For the 5-dimensional
problem, the number of points is 59, 049 = 95, with 500, 000 iterations.

B.3. Error Metrics

• Absolute Error:
We employ absolute error to estimate the bias of the output eigenvalues of the model:

Absolute Error = |λ̃− λ|. (17)

Here λ̃ represents the eigenvalue predicted by the model, while λ denotes the true eigenvalue.

• Residual Error:
To further analyze the error in eigenpair (ṽ, λ̃) predictions, we use the following metric:

Residual Error = ||Lṽ − λ̃ṽ||2. (18)

Here, ṽ represents the eigenfunction predicted by the model. When λ̃ is the true eigenvalue and ṽ is the true
eigenfunction, the Residual Error equals 0.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

C. Analysis of Hyperparameters
Model Depth:

Table 7: Consider the 2-dimensional Harmonic problem, with the fixed layer width of 20, and compare the performance of
STNet at different model layers. Other experimental details are the same as Appendix B.2.

Layer Index λ Absolute Error Residual

(v1, λ1) 1.02e-5 4.56e-3
(v2, λ2) 3.04e-2 2.56e+1
(v3, λ3) 6.76e-2 6.99e+13

(v4, λ4) 1.00e-1 2.12e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+14

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 4.36e-6 4.12e-3
(v2, λ2) 8.63e-1 3.12e+1
(v3, λ3) 1.98e+0 1.58e+35

(v4, λ4) 8.94e+1 2.09e+3

(v1, λ1) 1.06e-5 9.56e-3
(v2, λ2) 8.21e-1 2.00e+1
(v3, λ3) 1.17e+0 9.90e+36

(v4, λ4) 3.81e+1 7.53e+4

Model Width:

Table 8: Consider the 2-dimensional Harmonic problem, with the fixed layer depth of 3, and compare the performance of
STNet at different model widths. Other experimental details are the same as Appendix B.2.

Width Index λ Absolute Error Residual

(v1, λ1) 1.68e-6 1.26e-3
(v2, λ2) 3.82e-1 2.36e+0
(v3, λ3) 7.54e-1 1.20e+210

(v4, λ4) 1.71e-1 2.49e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+120

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 3.26e-5 2.25e-2
(v2, λ2) 1.50e+0 2.10e+1
(v3, λ3) 1.59e+0 8.21e+330

(v4, λ4) 3.52e+2 2.77e+5

(v1, λ1) 1.57e-5 2.06e-2
(v2, λ2) 2.67e+0 5.03e+1
(v3, λ3) 7.93e+1 5.76e+340

(v4, λ4) 1.50e+2 1.47e+4

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

The Number of Points:

Table 9: Consider the 2-dimensional Harmonic problem and compare the performance of STNet at different numbers of
points. Other experimental details are the same Appendix B.2.

Number Index λ Absolute Error Residual

20000
(v1, λ1) 1.11e-5 3.19e-3
(v2, λ2) 1.25e+0 3.22e+0
(v3, λ3) 1.61e+0 1.27e+2

30000
(v1, λ1) 4.40e-5 7.09e-3
(v2, λ2) 3.58e-1 2.71e+0
(v3, λ3) 1.70e-1 5.62e+1

40000
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+1

50000
(v1, λ1) 4.94e-6 6.63e-3
(v2, λ2) 2.53e-1 2.46e+1
(v3, λ3) 3.73e-1 1.50e+3

The influence of model depth, model width, and the number of points on STNet is illustrated in Tables 7, 8, and 9,
respectively. Experimental results indicate that STNet is relatively unaffected by changes in model depth and model width.
However, it is significantly influenced by the number of points, with performance improving as more points are used.

16

