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Abstract
Operator eigenvalue problems play a critical role
in various scientific fields and engineering appli-
cations, yet numerical methods are hindered by
the curse of dimensionality. Recent deep learning
methods provide an efficient approach to address
this challenge by iterative updating neural net-
works. These methods’ performance relies heav-
ily on the spectral distribution of the given opera-
tor: larger gaps between the operator’s eigenval-
ues will improve precision, thus tailored spectral
transformations that leverage the spectral distri-
bution can enhance their performance. Based
on this observation, we propose the Spectral
Transformation Network (STNet). During each
iteration, STNet uses approximate eigenvalues
and eigenfunctions to perform spectral transfor-
mations on the original operator, turning it into
an equivalent but easier problem. Specifically,
we employ deflation projection to exclude the
subspace corresponding to already solved eigen-
functions, thereby reducing the search space and
avoiding converging to existing eigenfunctions.
Additionally, our filter transform magnifies eigen-
values in the desired region and suppresses those
outside, further improving performance. Exten-
sive experiments demonstrate that STNet consis-
tently outperforms existing learning-based meth-
ods, achieving state-of-the-art performance in ac-
curacy.

1. Introduction
The operator eigenvalue problem is a prominent focus in
many scientific fields (Elhareef & Wu, 2023; Buchan et al.,
2013; Cuzzocrea et al., 2020; Pfau et al., 2023) and engi-
neering applications (Diao et al., 2023; Chen & Chan, 2000).
However, traditional numerical methods are constrained by
the curse of dimensionality, as the computational complex-
ity increases quadratically or even cubically with the mesh
size (Watkins, 2007).

A promising alternative is using neural networks to approxi-
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Figure 1: Absolute error results of eigenvalues for the
Fokker-Planck operator computed using various algorithms,
the x axis represents the operator dimension.

mate eigenfunctions (Pfau et al., 2018). These approaches
reduce the number of parameters by replacing the matrix
representation with a parametric nonlinear representation
via neural networks. By designing appropriate loss func-
tions, it updates parameters to approximate the desired oper-
ator eigenfunctions. These methods only require sampling
specific regions without designing discretization mesh, sig-
nificantly reducing the algorithm design cost and unnec-
essary approximation errors (He et al., 2022). Moreover,
neural networks generally exhibit stronger expressiveness
than linear matrix representations, requiring far fewer sam-
pling points for the same problem compared to traditional
methods (Nguyen et al., 2020).

Despite these advantages, the performance of such meth-
ods strongly depends on the operator’s spectral distribution:
if the target eigenvalues differs greatly to each other, the
algorithm converges much more faster; otherwise, it may
suffer from inefficient iterations. To improve convergence,
spectral transformations can be designed based on the spec-
tral distribution, reformulating the original problem into
an equivalent but more tractable one. However, since the
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Figure 2: Comparison of the eigenfunctions of the 2D Har-
monic operator computed by STNet and the Ground Truth.

real spectrum of the operator is initially unknown, existing
approaches do not optimize spectral properties through such
transformations.

To address this limitation, we propose the Spectral Trans-
formation Network (STNet). By exploiting approximate
eigenvalues and eigenvectors learned during the iterative
process, STNet applies spectral transformations to the origi-
nal operator, modifying its spectral distribution and thereby
converting it into an equivalent problem that converges
more easily. Concretely, we employ deflation projection
to remove the subspace corresponding to already computed
eigenfunctions. This not only narrows the search space but
also prevents subsequent eigenfunctions from collapsing
into the same subspace. Meanwhile, our filter transform am-
plifies eigenvalues within the target region and suppresses
those outside it, promoting rapid convergence to the de-
sired eigenvalues. Extensive experiments demonstrate that
STNet significantly surpasses existing methods based on
deep learning, achieving state-of-the-art performance in ac-
curacy. Figure 2 presents the results obtained by STNeton
the 2D Harmonic operator eigenvalue problem, alongside
the ground truth, demonstrating our method’s capability to
accurately solve eigenvalue problems.

2. Related work
Recent advancements in applying neural networks to eigen-
value problems have shown promising results. Innovations
such as spectral inference networks (SpIN) (Pfau et al.,
2018), which model eigenvalue problems as kernel problem
optimizations solved via neural networks. Neural eigenfunc-
tions (NeuralEF) (Deng et al., 2022), which significantly
reduces computational costs by optimizing the costly or-
thogonalization steps, are noteworthy. Neural singular value
decomposition (NeuralSVD) employs truncated singular
value decomposition for low-rank approximation to enhance
the orthogonality required in learning functions (Ryu et al.,
2024).

Another class of algorithms originates from optimizing the
Rayleigh quotient. The deep Ritz method (DRM) utilizes the
Rayleigh quotient for computing the smallest eigenvalues,
demonstrating significant potential (Yu et al., 2018). Several
studies have employed the Rayleigh quotient to construct
variation-free functions, achieved through physics-informed
neural networks (PINNs) (Ben-Shaul et al., 2023; 2020).
Extensions of this approach include enhanced loss functions
with regularization terms to improve the learning accuracy
of the smallest eigenvalues (Jin et al., 2022). Additionally,
Han et al. (2020) reformulate the eigenvalue problem as a
fixed-point problem of the semigroup flow induced by the
operator, solving it using the diffusion Monte Carlo method.
The power method neural network (PMNN) integrates the
power method with PINNs, using an iterative process to ap-
proximate the exact eigenvalues (Yang et al., 2023) closely.
While PMNN has proven effective in solving for a single
eigenvalue (Yang et al., 2023), it has yet to be developed for
computing multiple distinct eigenvalues simultaneously.

Furthermore, in the field of computational chemistry, re-
search on specialized model architectures for specific op-
erators, such as the Hamiltonian, focuses on developing
novel neural network ansatzes (Carleo & Troyer, 2017;
Schütt et al., 2017; Choo et al., 2020; Pfau et al., 2020;
Hermann et al., 2020; Gerard et al., 2022; Hermann et al.,
2023). These architectures are designed to embed physical
inductive biases better, enhancing expressivity. Additionally,
there are studies employing neural networks for Quantum
Monte Carlo (QMC) methods to tackle related problems in
quantum chemistry (Cuzzocrea et al., 2020; Entwistle et al.,
2023; Pfau et al., 2023).

3. Preliminaries
3.1. Operator Eigenvalue Problem

We primarily focus on the eigenvalue problems of differen-
tial operators, such as ∂

∂x + ∂
∂y ,∆, etc. Mathematically, an

operator L : H1 → H2 is a mapping between two Hilbert
spaces. Considering a self-adjoint operator L defined on a
domain Ω ⊂ RD, the operator eigenvalue problem can be
expressed in the following form (Evans, 2022):

Lv = λv in Ω, (1)

where Ω ⊆ RD serves as the domain; v is the eigenfunction
and λ is the eigenvalue. Typically, it is often necessary to
solve for multiple eigenvalues, λi, i = 1, . . . , L.

3.2. Power Method

The power method is a classical algorithm designed to ap-
proximate the eigenvalue of an operator L in the vicinity of
a given shift σ. By applying the shift σ (often chosen as an
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approximation to the target eigenvalue), the original eigen-
value problem is effectively transformed into an equivalent
problem for the new operator (L− σI)−1. In each iteration,
the current approximate solution is multiplied by this new
operator, thereby amplifying the component associated with
the eigenvalue closest to σ. This iterative procedure con-
verges to the desired eigenvalue. The pseudocode is shown
below (Golub & Van Loan, 2013):

Algorithm 1 Power Method for the Operator L
1: Input: Operator L, shift σ, initial guess v0, maximum

iterations kmax, and convergence threshold ϵ.
2: Output: Eigenvalue λ near σ.
3: v0 = v0/∥v0∥ .
4: for k = 1 to kmax do
5: vk = pk/∥pk∥ and solve (L − σI) pk = vk−1.
6: if ∥vk − vk−1∥ < ϵ then
7: λ = ⟨vk,Lvk⟩

⟨vk,vk⟩ and break.
8: end if
9: end for

In each iteration, solving the linear system (L − σI) pk =
vk−1 is equivalent to applying the operator (L − σI)−1 to
vk−1. Afterward normalizing vk helps maintain numerical
stability. Convergence is typically assessed by evaluating
the error ∥vk−vk−1∥, ensuring that the final solution meets
the desired accuracy. The fundamental reason for the conver-
gence of the power method lies in the repeated application of
(L− σI)−1, which progressively magnifies the component
of vk in the direction of the eigenfunction with eigenvalue
closest to σ. For a more detailed introduction to the power
method, please refer to the Appendix A.1.

3.3. Deflation Projection

The deflation technique plays a critical role in solving eigen-
value problems, particularly when multiple distinct eigenval-
ues need to be computed. Deflation projection is an effective
deflation strategy that utilizes known eigenvalues and cor-
responding eigenfunctions to modify the structure of the
operator, thereby simplifying the computation of remaining
eigenvalues (Saad, 2011).

The core idea of deflation projection is to construct an op-
erator P , often defined as P(u) = ⟨u, v1⟩v1 where v1 is a
known eigenfunction. This operator is then used to modify
the original operator L into a new operator:

B = L − λ1P. (2)

In B, the eigenvalue λ1 associated with v1 is effectively
removed from the spectrum of L. Additional details on
deflation projection can be found in Appendix A.2.

3.4. Filter Transform

The filter transform is widely used in numerical linear al-
gebra to enhance the accuracy of eigenvalue computations
(Saad, 2011). By constructing a suitable filter function
F (L), the operator L undergoes a spectral transformation
that amplifies the target eigenvalues and suppresses the irrel-
evant ones. The filter transform can effectively highlight the
desired spectral region without altering the corresponding
eigenfunctions (Watkins, 2007). Further details on the filter
transform can be found in Appendix A.3.

4. Method
4.1. Problem Formulation

We consider the operator eigenvalue problem for a differen-
tial operator L defined on a domain Ω ⊂ RD. Our goal is to
approximate the L eigenvalues λi near a given shift σ and
their corresponding eigenfunctions vi, satisfying

L vi = λi vi, i = 1, 2, . . . , L. (3)

To achieve this, we employL neural networks parameterized
by θi. Each neural network NNL(·; θi) maps the domain Ω
into R, providing an approximation of the eigenfunction vi:

NNL(·; θi) : Ω → R, i = 1, 2, . . . , L. (4)

In order to represent both the functions and the operators nu-
merically, we discretize Ω by uniformly randomly sampling
N points:

S ≡ {xj = (x1j , . . . , x
D
j ) | xj ∈ Ω, j = 1, 2, . . . , N},

(5)

Correspondingly, each neural network NNL(·; θi) output
a vector Yi ∈ RN , which approximate the values of the
eigenfunction ṽi(·) = NNL(·; θi) at these sampled points:

ṽi(xj) ≡ Yi(j), i = 1, 2, . . . , L, j = 1, 2, . . . , N.
(6)

The approximate eigenvalues λ̃i are then obtained by apply-
ing L to the computed eigenfunctions ṽi:

λ̃i ≡
⟨ṽi,Lṽi⟩
⟨ṽi, ṽi⟩

, i = 1, 2, . . . , L. (7)

Here, the differential operator L acts on the functions via
automatic differentiation. We iteratively update the neural
network parameters θi using gradient descent, aiming to
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minimize the overall residual. Specifically, we formulate
the following optimization problem:

min
θi∈Θ

1

N

L∑
i=1

N∑
j=1

[ṽi(xj)− vi(xj)]
2, (8)

, where Θ denotes the parameter space of the neural net-
works. This approach does not require any training data, as
it relies solely on satisfying the differential operator eigen-
value equations over the domain Ω. Finally, this proce-
dure provides approximations λ̃i of the true eigenvalues λi,
i = 1, . . . , L.

4.2. Spectral Transformation Network

Inspired by the power method and the power method neural
network (Yang et al., 2023), we propose STNet to solve
eigenvalue problems, as shown in Figure 3. In STNet, we
replace the function vk from the k-th iteration of the power
method with ṽki (x) ≡ NNL(x; θ

k
i ), where each neural net-

work is implemented via a multilayer perceptron. Since
neural networks cannot directly implement the inverse oper-
ator (L−σI)−1, we enforce (L−σI)ṽk ≈ ṽk−1 through a
suitable loss function. The updated parameters θki → θk+1

i

then yield ṽk+1 = NNL(x; θ
k+1
i ). Algorithm 2 shows the

detailed procedure of STNet.

Classical power method convergence is closely related to
the spectral distribution of the operator, which is unknown
initially and thus difficult to optimize against directly. How-
ever, as the iterative process starts, we can get additional
information—such as already computed eigenvalues and
eigenfunctions. Using these results for the spectral transfor-
mation of the original operator can greatly improve subse-
quent power-method iterations. In our pseudocode 2, we
introduce two modules to enhance performance:

• Deflation Projection uses already computed eigenval-
ues and eigenfunctions to construct a projection that
excludes the previously resolved subspace, preventing
convergence to known eigenfunctions and reducing the
search space.

• Filter Transform employs approximate eigenvalues to
construct a spectral transformation (filter function) that
enlarges the target eigenvalue region and suppresses
others, boosting the efficiency of STNet.

4.2.1. DEFLATION PROJECTION

Suppose we have already approximated the eigenvalues
λ̃1, λ̃2, . . . , λ̃i−1 and their corresponding eigenfunctions
ṽ1, ṽ2, . . . , ṽi−1. To compute the i-th eigenfunction, we
focus on the residual subspace orthogonal to the subspace
spanned by these previously computed eigenfunctions.

Algorithm 2 Spectral Transformation Network

1: Input: Operator L over domain Ω ⊂ RD, shift σ,
number of sampling points N , number of eigenvalues
L, learning rate η, convergence threshold ϵ, maximum
iterations kmax.

2: Output: Eigenvalues λ̃i, i = 1, . . . , L.
3: Uniformly randomly sample N points {xj} in Ω to

form dataset S.
4: Randomly initialize the network parameters θ0i , as well

as the normalized ṽi, and set λ̃i = σ, i = 1, . . . , L.
5: for k = 1 to kmax do
6: ṽki (xj) = NNL(xj ; θ

k
i ),xj ∈ S.

7: L′
i = Di(L), i = 1, . . . , L // Deflation Projec-

tion
8: L′′

i = Fi(L′), i = 1, . . . , L // Filter Transform
9: ũki (xj) =

L′′
i ṽ

k
i (xj)

∥L′′
i ṽ

k
i (xj)∥ , i = 1, . . . , L.

10: Losski = 1
N

∑N
j=1[ṽ

k−1
i (xj) − ũki (xj)]

2, i =
1, . . . , L.

11: θk+1
i = θki − η∇θi Losski , i = 1, . . . , L // Pa-

rameter Update
12: for i = 1 to L do
13: if Losski < ϵi then
14: ϵi = Losski , λ̃i =

⟨ṽk
i ,Lṽk

i ⟩
⟨ṽk

i ,ṽ
k
i ⟩
, ṽi = ṽki .

15: end if
16: end for
17: if ϵi < ϵ for all i then
18: Convergence achieved; break.
19: else
20: Update deflation projection and filter function:

Di, Fi, i = 1, . . . , L.
21: end if
22: end for

The deflated projection is then defined as

Di(L) ≡ L − Qi−1 Σi−1 Q∗
i−1. (9)

Here Qi−1 maps each vector (α1, . . . , αi−1) ∈ Ri−1 to the
function

∑i−1
k=1 αk ṽk, thus reconstructing functions from

the span of {ṽ1, . . . , ṽi−1}. Q∗
i−1 is the adjoint of Qi−1.

And Σi−1 is a diagonal operator that scales each ṽk by its
corresponding eigenvalue λ̃k.

By employing the deflation projection, the gradient descent
search space of the neural network is constrained to be
orthogonal to the subspace spanned by {ṽ1, ṽ2, . . . , ṽi−1}.
This projection prevents the neural network outputNNL(θi)
from converging to the invariant subspace formed by
known eigenfunctions, thereby enhancing the orthogo-
nality among the outputs of different neural networks
NNL(θ1), . . . , NNL(θi−1). On one hand, this reduction
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Figure 3: Overview of the STNet. (a) Introduction to the inputs and outputs. (b) STNet comprises multiple neural networks,
each tasked with predicting distinct eigenvalues. If the accuracy of the solution reaches the expectation, then STNet will
output the result.

in the search space accelerates the convergence toward the
eigenfunctions vi; On the other hand, it improves the orthog-
onality among the neural network outputs, which reduces
the error in predicting the eigenfunction ṽi.

In practice, we use the approximate eigenvalues and eigen-
functions with the smallest error in iterations to construct
the deflation projection. This allows us to update adaptively,
ensuring that the method remains effective when calculating
more eigenfunctions.

4.2.2. FILTER TRANSFORM

During the iterative process, we can obtain approximate
eigenvalues λ̃i, and assume the corresponding true eigenval-
ues lie within [λ̃i−ξ, λ̃i+ξ], where ξ is a tunable parameter,
typically ξ = 0.1 or 1. We employ a rational function-based
filter transform on the original operator to simultaneously
amplify the eigenvalues in these intervals and thus improve
convergence performance. Specifically, we transform

L −→
i−1∏
i0=0

[
(L−(λ̃i0−ξ)I) (L−(λ̃i0+ξ)I)

]−1
. (10)

By contrast, the basic power method shift-invert strategy,
L → (L − σI)−1, can be viewed as a special case of this
more general construction. In STNet, we simulate the in-
verse operator via a suitably designed loss function. There-
fore, the corresponding pseudocode filter function F re-
moves the inverse, namely:

Fi(L) =

i−1∏
i0=0

[
(L− (λ̃i0 − ξ)I) (L− (λ̃i0 + ξ)I)

]
. (11)

When λi lies within [λ̃i − ξ, λ̃i + ξ], the poles λ̃i ± ξ make
∥Fi(vi)∥ sufficiently large for the corresponding eigenvec-
tor vi. This repeated amplification causes that direction to
dominate in the subsequent iterations, while eigenvalues out-
side those intervals are gradually suppressed. Consequently,
the method converges more efficiently to the desired eigen-
values.

5. Experiments
We conducted comprehensive experiments to evaluate
STNet, focusing on:

• Solving multiple eigenvalues in the Harmonic eigen-
value problem.

• Solving the principal eigenvalue in the Schrödinger
oscillator equation.

• Solving zero eigenvalues in the Fokker-Planck equa-
tion.

• Comparative experiment with traditional algorithms.

• The ablation experiments.

Baselines: For these experiments, we selected three
learning-based methods for computing operator eigenvalues
as our baselines: 1. PMNN (Yang et al., 2023); 2. Neu-
ralEF (Deng et al., 2022); 3. NeuralSVD (Ryu et al., 2024).
In the comparative experiments with traditional algorithms,
we chose the finite difference method (FDM) (LeVeque,
2007).

Experiment Settings: To ensure consistency, all experi-
ments were conducted under the same computational condi-
tions. For further details on the experimental environment

5
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and algorithm parameters, please refer to Appendices B.1
and B.2.

5.1. Harmonic Eigenvalue Problem

Harmonic eigenvalue problems are common in fields such
as structural dynamics and acoustics, and can be mathemat-
ically expressed as follows (Yang et al., 2023; Morgan &
Zeng, 1998):

{
−∆v = λv, in Ω,

v = 0, on ∂Ω.
(12)

Here ∆ denotes the Laplacian operator. We consider the
domain Ω = [0, 1]D where D represents the dimension of
the operator, and the boundary conditions are Dirichlet. In
this setting, the eigenvalue problem has analytical solutions,
with eigenvalues and corresponding eigenfunctions given
by:

λn1,...,nD
= π2

D∑
k=1

n2k, nk ∈ N+

un1,...,nD
(x1, . . . , xk) =

D∏
k=1

sin(nkπxk).

(13)

These experiments aim to calculate the smallest four eigen-
values of the Harmonic operator in 1, 2 and 5 dimensions.
Since the PMNN model only computes the principal eigen-
value and cannot compute multiple eigenvalues simultane-
ously, it is not considered for comparison. NeuralEF, due to
cumulative errors in its iterative orthogonalization process,
experiences numerical instability in 2 and 5 dimensions,
thus no data is available for these dimensions.

Firstly, as demonstrated in Table 1, the accuracy of STNet on
all tasks is significantly better than that of existing methods.
This enhancement primarily stems from the deflation pro-
jection. It effectively excludes solved invariant subspaces
during the multi-eigenvalue solution process, thereby pre-
serving the accuracy of multiple eigenvalues. This strongly
validates the efficacy of our algorithm.

Secondly, in 5-dimension, STNet consistently maintains a
precision improvement of at least three orders of magni-
tude. As shown in Table 2, this is largely due to the STNet
computed eigenpairs having smaller residuals (defined as
||Lv − λv||2, see Appendix B.3 for details), indicating that
STNet can effectively solve for accurate eigenvalues and
eigenfunctions simultaneously.

Table 2: Residual comparison for eigenpairs of STNet and
NeuralSVD for solving 5-dimensional Harmonic eigenvalue
problems. The first row indicates the eigenpair index.

Index (v1, λ1) (v2, λ2) (v3, λ3) (v4, λ4)

NeuralSVD 5.924e+0 5.920e+0 5.921e+0 5.920e+0

STNet 4.864e-4 3.060e-3 5.980e-3 4.447e-3

Additionally, Table 1 reveals that in the process of solving
multiple eigenvalues, the errors for subsequent eigenval-
ues tend to be significantly higher than those for earlier
ones. NeuralEF and NeuralSVD exhibit relatively stable
error change, and But STNet shows fluctuations (for in-
stance, errors for λ2 and λ3 at dimension five are smaller
than those for λ1). This variability primarily arises because
NeuralEF and NeuralSVD employ a uniform grid to acquire
data points, whereas STNet uses uniform random sampling.
While uniform random sampling inherently introduces some
degree of randomness, it offers a significant advantage in
high-dimensional settings. Specifically, a uniform grid ne-
cessitates an exponentially growing number of sampling
points, numD, where num represents the number of grid
points per dimension and D denotes the operator dimension.
In contrast, uniform random sampling is not subject to this
constraint, making it more scalable for high-dimensional
problems.

5.2. Schrödinger Oscillator Equation

The Schrödinger oscillator equation is a common problem
in quantum mechanics, and its time-independent form is
expressed as follows:

−1

2
∆ψ + V ψ = Eψ, in Ω = [0, 1]D, (14)

where ψ is the wave function, ∆ represents the Laplacian
operator indicating the kinetic energy term, V is the po-
tential energy within Ω, and E denotes the energy eigen-
value (Ryu et al., 2024; Griffiths & Schroeter, 2018). This
equation is formulated in natural units, simplifying the con-
stants involved. Typically, the potential V (x1, . . . , xD) =
1
2

∑D
k=1 x

2
k characterizes a multidimensional quadratic po-

tential. The principal eigenvalue E0 and corresponding
eigenfunction ψ0 are given by:

E0 =
D

2
, ψ0(x1, . . . , xD) =

D∏
k=1

(
1

π

) 1
4

e−
x2
k
2 . (15)

This experiment focuses on calculating the ground states of

6
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Table 1: Absolute error comparison for eigenvalues of Harmonic operators. The first row lists the methods, the second row
lists eigenvalue indexs, and the first column lists the operator dimensions. The most accurate method is in bold.

Method
NeuralEF NeuralSVD STNet

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

Dim = 1 1.4e-1 2.9e+1 7.9e+1 1.4e+2 1.0e-1 4.1e+1 1.0e+0 1.4e+2 6.3e-10 1.7e-1 6.3e-1 1.6e+1
Dim = 2 - - - - 5.5e-2 2.1e-1 1.5e-1 2.6e+1 1.0e-5 3.0e-2 6.8e-2 1.0e-1
Dim = 5 - - - - 2.5e-1 2.9e+1 2.9e+1 2.9e+1 2.3e-4 9.5e-5 6.2e-5 1.3e-3

Table 3: Absolute error comparison for the principal eigen-
values of oscillator operators. The first row lists the methods,
and the first column lists the operator dimensions. The most
accurate method is in bold.

Method PMNN NeuralEF NeuralSVD STNet

Dim = 1 1.17e-6 2.57e-2 2.53e-2 3.62e-7
Dim = 2 9.07e-5 7.55e-2 4.01e-1 2.35e-6
Dim = 5 3.92e-1 3.97e-1 4.37e+0 3.23e-1

the Schrödinger equation in one, two, and five dimensions,
i.e. the smallest principal eigenvalues.

Firstly, as shown in Table 3, the STNet achieves significantly
higher precision than existing algorithms in computing the
principal eigenvalues of the oscillator operator.

Furthermore, the accuracy of STNet surpasses that of
PMNN. Both are designed based on the concept of the
power method. When solving for the principal eigenvalue,
the deflation projection loss may be considered inactive.
This outcome suggests that the filter transform significantly
enhances the accuracy.

5.3. Fokker-Planck Equation

The Fokker-Planck equation is central to statistical mechan-
ics and is extensively applied across diverse fields such as
thermodynamics, particle physics, and financial mathemat-
ics (Yang et al., 2023; Jordan et al., 1998; Frank, 2005). It
can be mathematically formulated as follows:

−∆v−V · ∇v −∆V v = λv, in Ω = [0, 2π]D,

V (x) = sin

(
D∑
i=1

ci cos(xi)

)
.

(16)

Here V (x) is a potential function with each coefficient ci
varying within [0.1, 1], λ the eigenvalue, and v the eigen-

function. When the boundary conditions are periodic, there
are multiple zero eigenvalues.

The eigenvalue at zero significantly impacts the numerical
stability of the algorithm during iterative processes. This
experiment investigates the computation of two zero eigen-
values for the Fokker-Planck equations with different pa-
rameters in 1, 2, and 5 dimensions. Due to the inherent
limitation of the PMNN method, which can only compute
a single eigenvalue, we restrict our analysis to calculating
one eigenvalue when employing this approach.

As indicated in Table 4, the STNet algorithm significantly
outperforms existing methods in computing the zero eigen-
values of the Fokker-Planck operator, effectively solving
cases where the eigenvalue is zero. It is mainly due to the
filter function, which performs a spectral transformation
on the operator, converting the zero eigenvalue into other
eigenvalues that are easier to calculate without changing the
eigenvector.

5.4. Comparative Experiment with Traditional
Algorithms

This experiment compares the accuracy of STNet and the
traditional finite difference method (FDM) with a central
difference scheme under identical point distributions (6×
104 points) (LeVeque, 2007). Both methods compute the
four smallest eigenvalues of the 5D harmonic operator.

As shown in Table 5, STNet significantly outperforms FDM
in accuracy. While FDM’s precision depends on grid den-
sity, requiring exponentially more grid points and parame-
ters with increasing dimensionality, STNet employs uniform
random sampling instead of fixed grids. Leveraging neural
networks’ expressive power, STNet achieves higher accu-
racy with fewer parameters by effectively approximating
eigenfunctions.

Traditional algorithms and neural network-based algorithms
each have their own applicable domains. In low-dimensional
scenarios, traditional algorithms significantly outperform
neural network-based algorithms in terms of computational
speed, and their accuracy can be improved by increasing
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Table 4: Absolute error comparison for the principal eigenvalues of Fokker-Planck operators across algorithms. The first
row lists the methods, the second row lists eigenvalue index, the first column lists the Fokker-Planck parameter and the
second column lists the operator dimensions. The most accurate method is in bold.

Method PMNN NeuralEF NeuralSVD STNet

ci Dim λ1 λ1 λ2 λ1 λ2 λ1 λ2

0.5

1 1.16e+0 4.98e-2 1.05e+0 7.19e-1 1.02e+0 1.17e-3 8.75e-3

2 1.11e+0 6.71e-2 1.57e+0 3.33e-1 1.03e+0 5.26e-6 5.14e-2

5 1.17e+0 2.11e+0 9.17e+0 2.11e+0 4.82e+0 3.90e-3 1.29e-1

1.0

1 8.60e-1 5.21e-1 5.95e-1 2.73e-1 3.19e-1 3.86e-2 2.33e-1

2 8.30e-1 6.58e-1 8.45e-1 2.75e-1 3.94e-1 1.99e-2 3.91e-2

5 7.58e-1 7.71e-1 1.02e+0 2.01e-1 3.08e-1 5.64e-2 2.67e-2

Table 5: Absolute error comparison for eigenvalues of 5D
Harmonic operators. The first column lists the methods, and
the second column lists eigenvalue indexes

Method λ1 λ2 λ3 λ4

FDM 4.05e-1 1.61e+0 1.61e+0 1.61e+0

STNet 2.31e-4 9.54e-5 6.21e-5 1.39e-3

the number of grid points. However, in high-dimensional
problems, the number of required grid points grows expo-
nentially with the dimensionality. For instance, while a
2D problem requires a 1002 grid, its 5D counterpart would
need 1005 grid points. In such cases, enhancing accuracy by
increasing the number of grid points becomes impractical.
Neural network-based algorithms, on the other hand, offer
an effective solution to these high-dimensional challenges.

5.5. Ablation Experiments

We conducted ablation experiments to validate the effective-
ness of the deflation projection and filter transform modules.
As shown in Table 6, the results for ”w/o F” indicate that
removing the filter transform significantly reduces solution
accuracy. In the cases of ”w/o D” and ”w/o F and D,” while
the residuals remain small, the absolute errors for λ2 and λ3
are notably larger compared to λ1. This suggests that with-
out the deflation projection module, the network converges
exclusively to the first eigenfunction v1 corresponding to λ1,
failing to capture subsequent eigenfunctions. These findings
underscore the critical roles of both modules: the filter trans-
form enhances accuracy through spectral transformation.
The deflation projection removes the subspace of already
solved eigenfunctions from the search space, enabling the
computation of multiple eigenvalues.

Additionally, experiments detailing the performance of
STNet as a function of model depth, model width, and

Table 6: A comparison of different settings of STNet for
the 2-dimensional Harmonic eigenvalue problem. ”w/o”
denotes the absence of a specific module, ”F” represents
the filter transform module, and ”D” indicates the deflation
projection module.

Index λ Absolute Error Residual

STNet
(v1, λ1) 1.02e-5 4.12e-3
(v2, λ2) 3.04e-2 1.24e+1
(v3, λ3) 6.76e-1 1.43e+1

w/o F
(v1, λ1) 6.73e-5 1.35e-2
(v2, λ2) 5.10e-2 4.72e+1
(v3, λ3) 1.06e-1 1.70e+2

w/o D
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e+1 7.09e-3
(v3, λ3) 2.97e+1 1.09e-2

w/o F and D
(v1, λ1) 6.73e-5 1.35e-2
(v2, λ2) 2.96e+1 1.45e-2
(v3, λ3) 2.97e+1 1.37e-2

the number of sampling points are provided in Appendix C.

6. Conclusions
In this paper, we present STNet, a novel learning-based ap-
proach for solving operator eigenvalue problems. By lever-
aging approximate eigenvalues and eigenvectors obtained
during iteration, STNet employs spectral transformations
to reformulate the original operator, altering its spectral
distribution to create an equivalent problem with improved
convergence properties. Experimental results show that
STNet outperforms existing algorithms in accuracy across a
wide range of operator eigenvalue problems.
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A. Background Knowledge and Relevant Analysis
A.1. Convergence Analysis of the Power Method

Suppose A ∈ Rn×n and V −1AV = diag(λ1, . . . , λn) with V =
[
v1 · · · vn

]
. Assume that |λ1| > |λ2| ≥ · · · ≥ |λn|.

The pseudocode for the power method is shown below (Golub & Van Loan, 2013):

Algorithm 1: Power method for finding the largest principal eigenvalue of the matrix A

1 Given A ∈ Rn×n an n× n matrix, an arbitrary unit vector x(0) ∈ Rn, the maximum number of iterations kmax, and the
stopping criterion ϵ.

2 for k = 1, 2, . . . , kmax do
3 Compute y(k) = Ax(k−1).

4 Normalize x(k) = y(k)

∥y(k)∥ .

5 Compute the difference δ = ∥x(k) − x(k−1)∥.
6 if δ < ϵ then
7 Record the largest principal eigenvalue using the Rayleigh quotient,

λ(k) =
⟨x(k),Ax(k)⟩
⟨x(k),x(k)⟩

.

The stopping criterion is met, the iteration can be stopped.

Let us examine the convergence properties of the power iteration. If

x(0) = a1v1 + a2v2 + · · ·+ anvn

and v1 ̸= 0, then

Akx(0) = a1λ
k
1

v1 +

n∑
j=2

aj
a1

(
λj
λ1

)k

vj

 .

Since x(k) ∈ span{Akx(0)}, we conclude that

dist
(

span{x(k)}, span{v1}
)
= O

((
λ2
λ1

)k
)
.

It is also easy to verify that

|λ1 − λ(k)| = O

((
λ2
λ1

)k
)
.

Since λ1 is larger than all the other eigenvalues in modulus, it is referred to as the largest principal eigenvalue. Thus, the
power method converges if λ1 is the largest principal and if x(0) has a component in the direction of the corresponding
dominant eigenvector x1.

In practice, the effectiveness of the power method largely depends on the ratio |λ2|/|λ1|, as this ratio determines the
convergence rate. Therefore, applying specific spectral transformations to the matrix to increase this ratio can significantly
accelerate the convergence of the power method.

A.2. Deflation Projection Details

Consider the scenario where we have determined the largest modulus eigenvalue, λ1, and its corresponding eigenvector,
v1, utilizing an algorithm such as the power method. These algorithms consistently identify the eigenvalue of the largest
modulus from the given matrix along with an associated eigenvector. We ensure that the vector v1 is normalized such that
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∥v1∥2 = 1. The task then becomes computing the subsequent eigenvalue, λ2, of the matrix A. A traditional approach to
address this is through what is commonly known as a deflation procedure. This technique involves a rank-one modification
to the original matrix, aimed at shifting the eigenvalue λ1 while preserving all other eigenvalues intact. The modification is
designed in such a way that λ2 emerges as the eigenvalue with the largest modulus in the adjusted matrix. Consequently, the
power method can be reapplied to this updated matrix to extract the eigenvalue-eigenvector pair λ2,v2.

When the invariant subspace requiring deflation is one-dimensional, consider the following Proposition A.1. The propositions
and proofs below are derived from Saad (2011) P90.

Proposition A.1. Let v1 be an eigenvector of A of norm 1, associated with the eigenvalue λ1 and let A1 ≡ A− σv1v
H
1 .

Then the eigenvalues of A1 are λ̃1 = λ1 − σ and λ̃j = λj , j = 2, 3, . . . , n. Moreover, the Schur vectors associated with
λ̃j , j = 1, 2, 3, . . . , n are identical with those of A.

Proof. Let AV = V R be the Schur factorization of A, where R is upper triangular and V is orthonormal. Then we have

A1V =
[
A− σv1v

⊤
1

]
V = V R− σv1e

⊤
1 = V [R− σe1e

⊤
1 ].

Here, e1 is the first standard basis vector. The result follows immediately.

According to Proposition A.1, once the eigenvalue λ1 and eigenvector v1 are known, we can define the deflation projection
matrix P1 = I − λ1v1v

⊤
1 to compute the remaining eigenvalues and eigenvectors.

When deflating with multiple vectors, let q1, q2, . . . , qj be a set of Schur vectors associated with the eigenvalues
λ1, λ2, . . . , λj . We denote by Qj the matrix of column vectors q1, q2, . . . , qj . Thus, Qj ≡ [q1, q2, . . . , qj ] is an or-
thonormal matrix whose columns form a basis of the eigenspace associated with the eigenvalues λ1, λ2, . . . , λj . An
immediate generalization of Proposition A.1 is the following (Saad, 2011) P94.

Proposition A.2. Let Σj be the j × j diagonal matrix Σj = diag(σ1, σ2, . . . , σj), and Qj an n× j orthogonal matrix
consisting of the Schur vectors of A associated with λ1, . . . , λj . Then the eigenvalues of the matrix

Aj ≡ A−QjΣjQ
⊤
j ,

are λ̃i = λi − σi for i ≤ j and λ̃i = λi for i > j. Moreover, its associated Schur vectors are identical with those of A.

Proof. Let AU = UR be the Schur factorization of A. We have

AjU =
[
A−QjΣjQ

⊤
j

]
U = UR−QjΣjE

⊤
j ,

where Ej = [e1, e2, . . . , ej ]. Hence
AjU = U

[
R−EjΣjE

⊤
j

]
and the result follows.

According to Proposition A.2, if A is a normal matrix and the eigenvalues λ1, . . . , λj along with their corresponding
eigenvectors v1, . . . ,vj are known, we can construct the deflation projection matrix Pj = I − VjΣjV

⊤
j to compute the

remaining eigenvalues and eigenvectors. Here, Σj = diag(σ1, σ2, . . . , σj) and Vj = [v1,v2, . . . ,vj ].

A.3. Filtering Technique

The primary objective of filtering techniques is to manipulate the eigenvalue distribution of a matrix through spectral
transformations (Saad, 2011). This enhances specific eigenvalues of interest, facilitating their recognition and computation
by iterative solvers. Filter transformation functions, F (x), typically fall into two categories:

1. Polynomial Filters, expressed as P (x), such as the Chebyshev filter (Miao & Wu, 2021; Banerjee et al., 2016).

2. Rational Function Filters, often denoted as P (x)/Q(x), such as the shift-invert method (Van Beeumen, 2015; Watkins,
2007). Below we describe this strategy in detail.
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Shift-Invert Strategy The shift-invert strategy applies the transformation (A− σI)−1 to the matrix A, where σ is a scalar
approximating a target eigenvalue, termed as shift. This operation transforms each eigenvalue λ of A into 1

λ−σ , amplifying
those eigenvalues close to σ in the transformed matrix, making them larger and more distinguishable (Watkins, 2007).

For instance, consider the power method, where the convergence rate is primarily governed by the ratio of the matrix’s
largest modulus eigenvalue to its second largest. Suppose matrix A has three principal eigenvalues: λ1 = 10, λ2 = 3, and
λ3 = 2. Our objective is to compute λ1, the largest eigenvalue. In the original matrix A, the convergence rate of the power
method hinges on the spectral gap ratio, defined as:

Spectral Gap Ratio =
λ1
λ2

≈ 3.33

Applying the shift-invert transformation with σ = 9.5 strategically selected close to λ1, the new eigenvalues µ are
recalculated as:

µi =
1

λi − σ

This results in transformed eigenvalues:

µ1 = 2, µ2 ≈ −0.133, µ3 ≈ −0.125

Under this transformation, µ1 = 2 emerges as the dominant eigenvalue in the new matrix, with the other eigenvalues
significantly smaller. Consequently, the new spectral gap ratio escalates to:

New Spectral Gap Ratio =
2

0.133
≈ 15.04

This enhanced spectral gap notably accelerates the convergence of the power method in the new matrix configuration.

Filtering techniques are often synergized with techniques like the implicit restarts of Krylov algorithms (Watkins, 2007;
Golub & Van Loan, 2013), employing matrix operation optimizations to minimize the computational demands of evaluating
matrix functions. These methods enable more precise localization and computation of multiple eigenvalues spread across
the spectral range, particularly vital in physical (Salas et al., 2015; Banerjee et al., 2016) and materials science (Kohn, 1999)
simulations where these eigenvalues frequently correlate with the system’s fundamental properties (Winkelmann et al.,
2019).

B. Details of Experimental Setup
B.1. Experimental Environment

To ensure consistency in our evaluations, all comparative experiments were conducted under uniform computing environ-
ments. Specifically, the environments used are detailed as follows:

• CPU: 72 vCPU AMD EPYC 9754 128-Core Processor

• GPU: NVIDIA GeForce RTX 4090D (24GB)

B.2. Experimental Parameters

• NeuralSVD and NeuralEF: (Using the original paper settings)

– Optimizer: RMSProp with a learning rate scheduler.
– Learning rate: 1e-4, batch size: 128
– Neural Network Architecture: layers = [128,128,128]
– Laplacian regularization set to 0.01, with evaluation frequency every 10000 iterations.
– Fourier feature mapping enabled with a size of 1024 and scale of 0.1.
– Neural network structure: hidden layers of 128,128,128 using softplus as the activation function.
– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 iterations. For the 2-dimensional

problem, the number of points is 40, 000 = 200 × 200, also with 400, 000 iterations. For the 5-dimensional
problem, the number of points is 59, 049 = 95, with 500, 000 iterations.
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• STNet

– Optimizer: Adam
– Learning rate: 1e-4
– Neural Network Architecture: Assuming d is the dimension of the problem. For d = 1 or 2, layers = [d, 20, 20, 20,

20, 1] (For Harmonic operator d=2, layers = [d, 20, 20, 20, 1]). For d=5, layers = [d, 40, 40, 40, 40, 1]. For else
case, layers = [d, 40, 40, 40, 40, 1].

– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 iterations. For the 2-dimensional
problem, the number of points is 40, 000 = 200 × 200, also with 400, 000 iterations. For the 5-dimensional
problem, the number of points is 59, 049 = 95, with 500, 000 iterations.

B.3. Error Metrics

• Absolute Error:
We employ absolute error to estimate the bias of the output eigenvalues of the model:

Absolute Error = |λ̃− λ|. (17)

Here λ̃ represents the eigenvalue predicted by the model, while λ denotes the true eigenvalue.

• Residual Error:
To further analyze the error in eigenpair (ṽ, λ̃) predictions, we use the following metric:

Residual Error = ||Lṽ − λ̃ṽ||2. (18)

Here, ṽ represents the eigenfunction predicted by the model. When λ̃ is the true eigenvalue and ṽ is the true
eigenfunction, the Residual Error equals 0.
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C. Analysis of Hyperparameters
Model Depth:

Table 7: Consider the 2-dimensional Harmonic problem, with the fixed layer width of 20, and compare the performance of
STNet at different model layers. Other experimental details are the same as Appendix B.2.

Layer Index λ Absolute Error Residual

(v1, λ1) 1.02e-5 4.56e-3
(v2, λ2) 3.04e-2 2.56e+1
(v3, λ3) 6.76e-2 6.99e+13

(v4, λ4) 1.00e-1 2.12e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+14

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 4.36e-6 4.12e-3
(v2, λ2) 8.63e-1 3.12e+1
(v3, λ3) 1.98e+0 1.58e+35

(v4, λ4) 8.94e+1 2.09e+3

(v1, λ1) 1.06e-5 9.56e-3
(v2, λ2) 8.21e-1 2.00e+1
(v3, λ3) 1.17e+0 9.90e+36

(v4, λ4) 3.81e+1 7.53e+4

Model Width:

Table 8: Consider the 2-dimensional Harmonic problem, with the fixed layer depth of 3, and compare the performance of
STNet at different model widths. Other experimental details are the same as Appendix B.2.

Width Index λ Absolute Error Residual

(v1, λ1) 1.68e-6 1.26e-3
(v2, λ2) 3.82e-1 2.36e+0
(v3, λ3) 7.54e-1 1.20e+210

(v4, λ4) 1.71e-1 2.49e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+120

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 3.26e-5 2.25e-2
(v2, λ2) 1.50e+0 2.10e+1
(v3, λ3) 1.59e+0 8.21e+330

(v4, λ4) 3.52e+2 2.77e+5

(v1, λ1) 1.57e-5 2.06e-2
(v2, λ2) 2.67e+0 5.03e+1
(v3, λ3) 7.93e+1 5.76e+340

(v4, λ4) 1.50e+2 1.47e+4
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The Number of Points:

Table 9: Consider the 2-dimensional Harmonic problem and compare the performance of STNet at different numbers of
points. Other experimental details are the same Appendix B.2.

Number Index λ Absolute Error Residual

20000
(v1, λ1) 1.11e-5 3.19e-3
(v2, λ2) 1.25e+0 3.22e+0
(v3, λ3) 1.61e+0 1.27e+2

30000
(v1, λ1) 4.40e-5 7.09e-3
(v2, λ2) 3.58e-1 2.71e+0
(v3, λ3) 1.70e-1 5.62e+1

40000
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+1

50000
(v1, λ1) 4.94e-6 6.63e-3
(v2, λ2) 2.53e-1 2.46e+1
(v3, λ3) 3.73e-1 1.50e+3

The influence of model depth, model width, and the number of points on STNet is illustrated in Tables 7, 8, and 9,
respectively. Experimental results indicate that STNet is relatively unaffected by changes in model depth and model width.
However, it is significantly influenced by the number of points, with performance improving as more points are used.
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