
Plan Your Target and Learn Your Skills:
State-Only Imitation Learning via Decoupled Policy

Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

State-only imitation learning (SOIL) enables agents to learn from massive demon-1

strations without explicit action or reward information. However, previous methods2

attempt to learn the implicit state-to-action mapping policy directly from state-only3

data, which results in ambiguity and inefficiency. In this paper, we overcome this4

issue by introducing hyper-policy as sets of policies that share the same state tran-5

sition to characterize the optimality in SOIL. Accordingly, we propose Decoupled6

Policy Optimization (DPO) via explicitly decoupling the state-to-action mapping7

policy as a state transition predictor and an inverse dynamics model. Intuitively,8

we teach the agent to plan the target to go and then learn its own skills to reach.9

Experiments on standard benchmarks and a real-world driving dataset demonstrate10

the effectiveness of DPO and its potential of bridging the gap between reality and11

simulations of reinforcement learning.12

1 Introduction13

Imitation learning offers a way to train an intelligent agent from demonstrations by mimicking the14

expert’s behaviors without constructing hand-crafted reward functions [13, 17]. The corresponding15

methods normally require the expert demonstrations include information of both states and actions.16

Unfortunately, the action information is not always accessible from many real-world demonstration17

resources, e.g., online video recordings of car driving or sports. Thus a natural desire to take advantage18

of these massive and valuable resources motivates the study of state-only imitation learning (SOIL),19

also known as learning from observations (LfO) [24]. Analogy to human beings, SOIL is a more20

intuitive way to approach imitation by only matching the expert’s state sequences without having21

explicit knowledge of the exact actions.22

A wide range of algorithms have been proposed to solve SOIL by matching the state sequence of the23

expert [22, 23, 25]. However, the action agnostic setting in SOIL makes it challenging to determine24

the optimal action because of the partial observability of the expert demonstrations that multiple25

policies could be chosen to match the same expert state sequence. Thus learning a state-to-action26

policy is implicit, leading to a less efficient modeling of the explicit information from demonstrations,27

and in result could cause suboptimality.28

To this end, in this paper, we introduce the concept of hyper-policy denoting a family of policies that29

share the same state transition. Based on that, instead of recovering the expert policy, we characterize30

the optimality in SOIL by finding the expert hyper-policy. The proposed method is called decoupled31

policy optimization (DPO), which separates the policy into two modules: an expert state transition32

predictor that finds the optimal hyper-policy, followed by an inverse dynamics model that builds the33

executable policy to deliver actions. Intuitively, the expert state transition predictor predicts the target,34

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

while the inverse dynamics model enables the agent to learn its own skills to reach the target. DPO35

takes the advantage of such a decoupled structure by separately learning two kinds of data: (1) the36

expert state transition that is directly accessible in the demonstration; (2) the action to be performed37

which should be obtained by interacting with the environment.38

To ensure the benefit of DPO, these two modules should work coherently to provide accurate foresight39

for targets and corresponding skills. To achieve this, we regularize the state transition predictor to40

prevent the model from predicting non-neighboring states via multi-step and cycle training style.41

Further, to improve the learning efficiency by encouraging the agent to reach the expert states, we42

augment reward and apply policy gradient to DPO with additional generative adversarial objective.43

Experiments on standard benchmarking tasks show the advantage of the decoupled structure and44

the higher efficiency of DPO. We also evaluate DPO on a real-world driving dataset with state-only45

demonstrations, and the result shows that DPO can learn driving behaviors closer to human drivers46

when compared with baseline methods.47

2 Preliminaries48

Markov Decision Process. We consider a γ-discounted infinite horizon Markov decision process49

(MDP) as a tupleM = 〈S,A, T , ρ0, r, γ〉, where S is the set of states, A represents the action space,50

T : S ×A× S → [0, 1] is environment dynamics distribution, ρ0 : S → [0, 1] is the distribution of51

the initial state s0, and γ ∈ [0, 1] is the discount factor. The agent makes decisions through a policy52

π(a|s) : S ×A → [0, 1] and receives rewards r : S ×A → R.53

Occupancy Measure. The concept of occupancy measure (OM) [10] is proposed to characterize54

the statistical properties of a certain policy interacting with an MDP. Specifically, the state OM is55

defined as the time-discounted cumulative stationary density over the states under a given policy π:56

ρπ(s) =
∑∞
t=0 γ

tP (st = s|π). Following such a definition we can define different OM:57

a) State-action OM: ρπ(s, a) = π(a|s)ρπ(s)58

b) State transition OM: ρπ(s, s′) =
∫
A ρπ(s, a)T (s′|s, a) da59

c) Joint OM: ρπ(s, a, s′) = ρπ(s, a)T (s′|s, a)60

Imitation Learning from State-Only Demonstrations. Imitation learning (IL) [13] studies the61

task of learning from demonstrations (LfD), which aims to learn a policy from expert demonstrations62

without getting access to the reward signals. The expert demonstrations typically consist of expert63

state-action pairs. General IL objective minimizes the state-action OM discrepancy:64

π∗ = arg min
π

Es∼ρsπ [` (πE(·|s), π(·|s))]⇒ arg min
π

` (ρπE (s, a), ρπ(s, a)) , (1)

where ` denotes some distance metric. For example, GAIL [10] chooses to minimize the JS divergence65

DJS(ρπE (s, a)‖ρπ(s, a)), and AIRL [5] utilizes the KL divergence DKL(ρπE (s, a)‖ρπ(s, a)) instead,66

which corresponds to a maximum entropy solution with the recovered reward [17]. However, for the67

scenario studied in this paper, the action information is absent in state-only demonstrations, known as68

state-only imitation learning (SOIL) or learning from observations (LfO) problems, where the action69

spaces between the expert and the agent can even be different. Such challenges prevent applying70

typical IL solutions. An existing method for this problem is to instead optimize the discrepancy of71

the state transition OM with the state-to-action policy π(a|s) [23]:72

π∗ = arg min
π

[` (ρπE (s, s′), ρπ(s, s′))] . (2)

However, the solution to this problem is ambiguous since there is no one-to-one correspondence73

between ρ(s, s′) and π as we will show in the following section. As such, the optimality of SOIL74

should be reconsidered.75

3 Methodology76

3.1 Characterizing the Optimality in SOIL77

In standard IL tasks, when the expert actions are accessible in demonstrations, perfectly imitating the78

expert policy corresponds to matching the state-action OM due to the one-to-one correspondence79

2

between π and ρπ(s, a) [10, 21]. However, such correspondence is not applicable for the state80

transition OM matching in SOIL.81

Proposition 1. Suppose Π is the policy space and P = {ρ : ρ ≥ 0} is a feasible set of OM, then a82

policy π ∈ Π corresponds to one state transition OM ρπ ∈ P . However, a state transition OM ρ ∈ P83

can correspond to more than one policy in Π.84

The proof can be found in Appendix B. As a result, if we choose to optimize a state-to-action mapping85

policy, then the optimal solution to Eq. (2) is ambiguous. The ambiguity also comes from the fact86

that Eq. (2) does not correspond to a maximum policy entropy solution as in normal IL tasks (see87

Appendix C for details). Therefore, a state-to-action mapping function may be too implicit for88

matching the state sequence, which could cause training instability and lead to sub-optimal policies.89

In that case, we must find a one-to-one corresponding solution to solve SOIL explicitly and efficiently.90

Before continuing, we introduce the definition of hyper-policy.91

Definition 1. A hyper-policy Ω is a set of policies such that for any π1, π2 ∈ Ω, we have ρπ1
(s, s′) =92

ρπ2
(s, s′).93

Then by definition, there is a one-to-one correspondence between the hyper-policy Ω and the state94

transition OM ρΩ(s, s′). Similar to the normal state-to-action mapping policy, a hyper-policy Ω can95

be regarded as a state-to-state mapping function hΩ(s′|s) which predicts the state transition such that96

for any π ∈ Ω:97

hΩ(s′|s) =
ρΩ(s, s′)∫
s̃
ρΩ(s, s̃) ds̃

=

∫
a

π(a|s)T (s′|s, a) da . (3)
98

Proposition 2. Suppose the state transition predictor is defined as in Eq. (3) and Γ is its space,99

P = {ρ : ρ ≥ 0}, then a hyper-policy state transition predictor hΩ ∈ Γ corresponds to one state100

transition OM ρΩ ∈ P; and a state transition OM ρ ∈ P only corresponds to one hyper-policy state101

transition predictor such that hρ = ρ(s, s′)/
∫
s̃
ρ(s, s̃) ds̃.102

Therefore, we find a one-to-one correspondence between the optimization term ρ(s, s′) and a practical103

target hΩ(s′|s), which indicates that we do not have to infer the expert actions under state-only104

demonstrations but only need to recover the state transition predictor of the hyper-policy ΩE :105

arg min
Ω

[` (ρΩE (s, s′), ρΩ(s, s′))]⇒ arg min
hΩ

Es∼Ω[` (hΩE (s′|s), hΩ(s′|s))] . (4)

However, SOIL still requires to learn a policy to interact with the MDP environment to match the106

state transition OM of the expert. This is achievable since we do not have to recover the expert policy107

πE exactly but can learn any policy π ∈ ΩE according to Eq. (4).108

3.2 Policy Decoupling109

To construct an unambiguous objective for SOIL, we define hyper-policy and solve the problem by110

finding the state transition predictor of the expert hyper-policy. Intuitively, this tells the agent the111

target that the expert will reach without informing any feasible skill that require the agent to learn112

itself. Therefore, to recover a π ∈ ΩE , we can construct an inverse dynamics such that113

π = T −1
π︸︷︷︸

Inverse dynamics

(T (πE)︸ ︷︷ ︸
Expert state transition predictor

) . (5)

Formally, the expert policy can be decoupled as114

πE(a|s) =
∫
s′
T (s′|s, a)πE(a|s) ds′ =

∫
s′

ρπE (s, a, s
′)

ρπE (s)
ds′ =

∫
s′

ρπE (s, s
′)IπE (a|s, s

′)

ρπE (s)
ds′

=

∫
s′
hπE (s

′|s)IπE (a|s, s
′) ds′ .

(6)

115

Notice that both the state transition predictor h and the inverse dynamics model I is policy dependent.116

Nevertheless, recall that the optimality in SOIL only requires us to recover π ∈ ΩE , we do not have117

to learn about IπE but just one feasible skill I(a|s, s′). Then a policy can be recovered by118

π = Es′ ∼ hΩE (s′|s)︸ ︷︷ ︸
target

[
I(a|s, s′)︸ ︷︷ ︸

skill

]
.

(7)

3

Expert
State

Transition
Predictor

Inverse
Dynamics

Model

Expert Demonstrations

Inference Data Flow

Training Data Flow

Environment
Decoupled Policy

Figure 1: The architecture of Decoupled Policy Opti-
mization (DPO), which consists of an expert state tran-
sition predictor (to plan where to go) followed by an
inverse dynamics model (to decide how to reach).

Here the inverse dynamics model I offers an119

arbitrary skill to reach the expected target state120

provided by the state transition predictor h. In121

fact, it does not depend on the hyper-policy122

ΩE but a sampling policy πB to construct I =123

IπB . We only need a mild requirement for πB124

that it covers the support of ρΩE (s, s′) so that125

the learned I can provide a possible action to126

achieve the target state. In both experiments and127

theoretical analysis we show that this require-128

ment alleviates the dependence on the inverse129

dynamics. Furthermore, if the environment and130

the expert policy are both deterministic (which131

is usually the case in real-world scenarios such132

as robotics), the state transition is a single-point distribution (or known as the Dirac delta func-133

tion), and we can simply model h as a deterministic function. By decoupling the policy, which is134

a state-to-action mapping function, as a state-to-state mapping function (the transition predictor)135

and a state-pair-to-action mapping function (the inverse dynamics model), we can mimic the expert136

policy from state-only demonstrations by optimizing these two modules. The whole architecture is137

illustrated in Fig. 1.138

State Transition Predictor. In practice, we construct a parameterized expert state transition predic-139

tor hψ which predicts the subsequent state of the expert taking the input as a current state ŝ′ = hψ(s).140

The state transition predictor models the explicit information of the expert, and it can be learned from141

the demonstration data only. Thence, we implement Eq. (4) as a KL divergence minimization:142

min
ψ

E(s,s′)∼ΩE [DKL(hΩE (s′|s)‖hψ(s′|s))] , (8)

which can be optimized in a supervised manner. Specifically, we sample state transitions (s, s′) from143

the expert demonstrations D and optimize the L2 loss:144

Lhψ = E(s,s′)∼D
[
‖s′ − hψ(s)‖2

]
. (9)

Inverse Dynamics Model. Knowing where to go is not enough since the agent has to interact with145

the environment to reach the target. This can be achieved via an inverse dynamics model, which146

predicts the action given two consecutive states. Formally, let the φ-parameterized inverse dynamics147

model Iφ take input the state pair and predict the feasible action to achieve the state transition:148

â = Iφ(s, s′). Intuitively, we want the inverse dynamics to learn from possible transitions sampled149

by the agent. Recall that we only need the support of learned I(a|s, s′) of the sampling policy covers150

the support of the expert state transition OM, from which we can infer at least one possible action.151

Hence, we can optimize the KL divergence between the inverse dynamics of a sampling policy πB152

and Iφ:153

min
φ

E(s,s′)∼πB [DKL(IπB(a|s, s′)‖Iφ(a|s, s′))] , (10)

and we can choose to optimize L2 loss in a supervised manner by sampling from the replay buffer B:154

LIφ = E(s,a,s′)∼B
[
‖a− Iφ(s, s′)‖2

]
. (11)

In our implementation, both the state predictor and the inverse dynamics can be constructed as155

Gaussian distributions similar to a normal stochastic policy, thus encouraging exploration.156

3.3 Tackling Compounding Error Challenges157

In our formulation, we have decoupled the state-to-action mapping policy as a state-to-state mapping158

function and a state-pair-to-action mapping function. Unfortunately, the compounding error problem159

exists such that the agent cannot reach where it plans due to the fitting errors of these two parts.160

Theorem 1 (Error Bound of DPO). Consider a deterministic environment whose dynamics transition161

function T (s, a) is deterministic and L-Lipschitz. Assume the ground-truth state transition hΩE (s)162

is deterministic, and for each policy π ∈ Π, its inverse dynamics Iπ is also deterministic and163

4

C-Lipschitz. Then for any state s, the distance between the desired state s′E and reaching state s′164

sampled by the decoupled policy is bounded by165

‖s′ − s′E‖ ≤ LC‖hΩE (s)− hψ(s)‖+ L‖IπB(s, ŝ′)− Iφ(s, ŝ′)‖ , (12)

where πB is a sampling policy that covers the state transition support of the expert hyper-policy and166

ŝ′ = hψ(s) is the predicted next state.167

......

......

MSE Loss MSE Loss

Figure 2: Multi-step optimization. Given an ex-
pert state sE , hψ predicts the next possible state
ŝ′1, which is further fed to a target network hψ′
to predict the following sequence. The total loss
computes the MSE loss along the state sequence.

The proof can be found in Appendix B, where we also168

induce a similar error bound for rollout with a state-169

to-action policy as BCO [22] to show the advantage170

of the decoupled structure. From Theorem 1 we171

know that the compounding error can be enlarged172

due to each part’s fitting error, where the first term173

corresponds to the error of predicted states and the174

second term indicates whether the agent can reach175

where it plans to. To alleviate the error, we further propose regularization on these two modules.176

3.3.1 Regularization on Target Planning177

One major problem is that the state transition predictor may suggest non-neighboring states instead178

of predicting one-step reachable states. To overcome this, we draw inspiration from Asadi et al. [2]179

and Edwards et al. [3], and regularize state transition predictor to prevent the model from predicting180

non-neighboring states via multi-step and cycle training style.181

Multi-Step Optimization. We first explain the details of the multi-step optimization objective.182

This idea is motivated by Asadi et al. [2], which optimizes a multi-step outcome by executing a183

sequence of actions in the dynamics model. Here we optimize the state sequence instead. As shown184

in Fig. 2, given an expert state sE , hψ predicts the next possible state ŝ′ that the expert will reach; the185

predicted state is then fed into the predictor to output the predicted two-step state ŝ′′. As such, the186

multi-step training loss is the L2 loss computed along the k-step outcome sequence:187

Lh,ms
ψ = E

(s,{s′iE}ki=1)∼D

[
‖s′1E − hψ(s)‖2 +

k∑
i=2

‖s′iE − hψ′(s′i−1)‖2
]
. (13)

MSE Loss

Figure 3: Cycle training style. Given an ex-
pert state sE , Iφ(s, s′) takes input the pre-
dicted state ŝ′ and sE to get the execution
action a, then an additional forward dynam-
ics model Mω is used to simulated one step
rollout using (sE , a) and get a forward next
state s̃′. The total loss computes the MSE
loss between the two predicted states.

Intuitively, such a regularization makes the state prediction188

ŝ′ close to the expert state distribution in order to make189

accurate long step predictions. It is worth noting that the190

gradient of the cascading state transition predictors should191

be dropped since we already have an accurate input at each192

time step, and for each training step, we only update the193

first one. We use a target network hψ′ in practice.194

Cycle Training Style. Another way to regularize the195

transition predictor’s output to a neighboring state is to196

keep an additional function to ensure the cycle consistency,197

which is also an important technique in [3]. In particular,198

as illustrated in Fig. 3, given an expert state sE , we take199

the predicted state ŝ′ and sE into the inverse dynamics and200

get the action a, then we train an additional forward dynamics model Mω to simulate one step rollout201

that takes the input (sE , a) and gets a forward next state s̃′:202

LMω = E(s,a,s′)∼B
[
‖s′ −Mω(s, a)‖2

]
Lh,cycle
ψ = E(s,s′)∼D

[
‖s′ − hψ(s)‖2 + ‖h(s)−Mω(s, Iφ(s, s′))‖2

]
.

(14)

In other words, the cycle training scheme provides a regularization on hψ to make predictions203

consistent with the forward dynamics model.204

5

3.3.2 Efficient Skills Learning via Decoupled Policy Gradient205

In previous sections, we have mentioned that learning to reach a specific place requires the data-206

collecting policy to cover the support of the expert hyper-policy. This is easy to achieve on simple207

low-dimensional tasks, but may not be satisfied in high-dimensional continuous environments. To208

this end, we encourage the agent to approach those state transitions from the expert’s hyper-policy209

ΩE by minimizing the JS divergence of the state transition occupancy using a state-to-action mapping210

policy DJS (ρπE (s, s′), ρπ(s, s′)). This can be done by producing informative rewards via GAN-like211

methods [10, 23], and updating the decoupled policy with policy gradients (PG).212

In detail, we construct a parameterized discriminator Dω(s, s′) to compute the reward r(s, a) ,213

r(s, s′) as logDω(s, s′) and the decoupled policy served as the generator. In addition, since we214

decouple the policy as two parameterized modules, i.e., a state transition predictor and an inverse215

dynamics model, then by chain rule, the PG for the decoupled policy can be accomplished by216

∇Lπφ,ψ = Eπ [Q(s, a)∇φ,ψ log πφ,ψ(a|s)]

= Eπ
[
Q(s, a)

∫
s′

(
∇ψ log hψ(s′|s) +∇φ log Iφ(a|s, s′)

)
ds′
]
,

(15)

whereQ is the state-action value function; the first term is the gradient for updating the state transition217

predictor; and the second term is for the inverse dynamics model. Thus, the optimization for both218

the state transition predictor and the inverse dynamics model can augment the supervised learning219

objectives with any PG-based learning algorithms (e.g., TRPO, PPO, SAC). As the training proceeds,220

the agent will sample more transition data around ΩE , and thus the support of the sampling policy221

will progressively cover the support of ρΩE (s, s′).222

3.4 Overall Algorithm223

By combining the idea of generative adversarial training, we obtain our final algorithm, composed224

with three essential parts: the state transition predictor h used for predicting the possible future225

states sampled by the expert; the inverse dynamics model I used for inferring the possible actions226

conditioned on two adjacent states; and the discriminator D used for offering intermediate reward227

signals for training the decoupled policy π = I(h). The overall objective of DPO is228

Lπ,h,Iφ,ψ = λGLπφ,ψ + λhLhψ + λILIφ , (16)

where λG, λh and λI are hyperparameters for trading off the training among each loss. In practice,229

we try less than ten combinations for these parameters as shown in Appendix D.3, and we directly230

optimize Lπφ,ψ instead of iterative training. The detailed algorithm is summarized in Appendix A.231

Besides, it is worth noting that both the inverse dynamics model and the state transition predictor232

can be pre-trained, where we optimize Lhψ using the state-only demonstration and optimize LIφ using233

samples collected by a randomized agent.234

4 Related Work235

Table 1: Comparison between different methods.

Method Inverse State Decoupled TaskDynamics Predictor Policy

BCO [22] 3 7 7 SOIL
GAIfO [23] 7 7 7 SOIL
IDDM [25] 7 7 7 SOIL

OPOLO [27] 3 7 7 SOIL
PID-GAIL [11] 7 7 3 IL

QSS [3] 3 3 3 RL
SAIL [16] 3 3 7 IL

DPO (Ours) 3 3 3 SOIL

State-only imitation learning (SOIL) endows the236

agent with the ability to learn from expert states. Al-237

though lacking the expert decision information, most238

of the previous works still optimize a state-to-action239

mapping policy to match the expert state transition240

distribution. For example, Torabi et al. [22] used a model-based approach to apply behavioral241

cloning to state-only demonstrations, while Torabi et al. [23] employed a similar structure to GAIL242

to match the state transition distribution. Yang et al. [25] analyzed the optimization gap between243

SOIL and naive IL and introduced a mutual information term to narrow it. Huang et al. [11] applied244

SOIL on autonomous driving tasks by decoupling the policy into a neural decision module and a245

non-differentiable execution module in a hierarchical way.246

Our work decouples the state-to-action policy into two modules. However, both the inverse dynamics247

model and the state transition predictor have been widely used by many previous works on RL and IL248

tasks. For instance, Torabi et al. [22] and Guo et al. [6] trained an inverse dynamics model to label the249

6

Table 2: Eventual performance against different methods on 6 easy-to-hard continuous control benchmarks. The
means and the standard deviations are evaluated over more than 5 random seeds.

InvertedPendulum InvertedDoublePendulum Hopper Walker2d HalfCheetah Ant

Random 25.28 ± 5.53 78.28 ± 10.73 13.09 ± 0.10 7.07 ± 0.13 74.48 ± 12.39 713.59 ± 203.92
BCO 1000.00 ± 0.00 415.04 ± 148.46 1430.16 ± 398.81 261.36 ± 25.17 -13.66 ± 149.94 397.79 ± 239.16

GAIfO 1000.00 ± 0.00 7818.07 ± 1778.67 3068.10 ± 26.32 3865.20 ± 341.90 8953.35 ± 1079.41 5122.29 ± 807.19
GAIfO-DP 1000.00 ± 0.00 7305.01 ± 1591.23 3031.84 ± 152.13 4003.06 ± 241.34 8675.42 ± 807.29 5535.9 ± 62.74

DPO (w/o PG) 1000.00 ± 0.00 3545.70 ± 738.16 629.84 ± 344.07 334.23 ± 85.42 -472.00 ± 132.81 -196.96 ± 124.26
DPO (w PG) 1000.00 ± 0.00 7846.40 ± 1541.20 3165.72 ± 68.44 4407.53 ± 266.72 10501.96 ± 438.01 5338.48 ± 107.2
Expert (SAC) 1000.00 ± 0.00 9358.87 ± 0.10 3402.94 ± 446.48 5639.32 ± 29.97 13711.64 ± 111.47 5404.55 ± 1520.49

state-only demonstrations with inferred actions. Nair et al. [19] proposed a method for manipulating250

ropes to match a single human-specified image sequence, in which an inverse dynamics model is251

trained in a self-supervised manner and used to generate control signals. Kimura et al. [14] utilized a252

state transition predictor to fit the state transition probability in the expert data, which is further used253

to compute a predefined reward function. Liu et al. [16] constructed a policy prior using the inverse254

dynamics and the state transition predictor, but the policy prior was only used for regularizing the255

policy network. However, as shown in this paper, the policy can be exactly decoupled as these two256

parts, which can be uniformly optimized through policy gradient without keeping an extra policy.257

Edwards et al. [3] estimated Q(s, s′) for RL tasks which employs a similar policy form as Eq. (6) and258

updates the state transition predictor through a deterministic policy gradient similar to DDPG [15].259

To sort out the difference between these methods and ours, we summarize the key factors in Tab. 1.260

5 Experiments261

We conduct four sets of experiments to investigate the following research questions:262

RQ1 Is decoupled learning structure superior than state-to-action structure on SOIL tasks?263

RQ2 Does DPO achieve higher efficiency or better performance than baselines on SOIL tasks?264

RQ3 Can agent reach where it plans and does the proposed regularization help mitigate the265

compounding error?266

RQ4 How can DPO be applied on real-world data?267

Expert DPO

BCO GAIfO

(a) Rollout density.

0 5 10 15 20 25 30
Epoch

0

1

2

3

4

5
JS Divergence
Policy / SP Loss
ID Loss
DPO
BCO

(b) Loss curves.

Figure 4: Toy example.

To answer RQ1, we conduct toy experiments with a simple 2D grid world268

environment and compare both qualitative and quantitative results of DPO269

against BCO and GAIfO. Regarding RQ2, we empirically evaluate DPO270

on easy-to-hard continuous control benchmarking tasks. And for RQ3,271

we evaluate the difference between the predicted states that the agent272

plans to reach and the consecutive state that the agent actually reaches in273

the environment for the proposed regularization. Finally, we try to imitate274

real-world traffic surveillance recordings in a simulated environment to275

investigate RQ4, which shows the potential of using real-world data for276

human behavior simulation. Due to the space limit, we leave experiment277

details, additional results and ablation study in Appendix.278

5.1 Understanding the Decoupled Structure279

In this paper we design decoupled policy optimization (DPO) to perform280

SOIL tasks, and in previous sections we propose that the key technical281

contribution of DPO is the decoupled structure of policy that models the282

explicit state transition information and the latent action information from283

demonstrations, which solves the ambiguity and enhances the learning284

efficiency. Therefore, in this set of experiments, we aim to demonstrate285

how DPO is superior than state-to-action policy methods (RQ1). We first286

generate expert demonstrations in a 2D 6×6 grid world environment, in which the agent starts at287

the upper left corner and aims to reach the upper right corner. In each grid the agent has k × 4288

actions, which means that the agent has k possible actions to reach the neighboring block and in our289

experiment we choose k = 5 to enlarge the action space.290

The density of the expert trajectories and the trajectories sampled by different methods are shown in291

Fig. 4(a). We show that both BCO and GAIfO have troubles in directly learning the implicit action292

from state-only behaviors. Notably, GAIfO only imitates the major trajectory and omit the other293

choice and BCO also stucks in the middle right. By contrast, DPO recovers the expert demonstrations294

7

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6e6
steps

0

200

400

600

800

1000

Av
er

ag
ed

 re
tu

rn

InvertedPendulum-v2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.82.0e6
steps

0

2000

4000

6000

8000

Av
er

ag
ed

 re
tu

rn

InvertedDoublePendulum-v2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6e7
steps

0

1000

2000

3000

Av
er

ag
ed

 re
tu

rn

Hopper-v2

0 0.4 0.8 1.2 1.6 2.0 2.6e7
steps

0

1000

2000

3000

4000

Av
er

ag
ed

 re
tu

rn

Walker-v2

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.73.0e7
steps

0

2000

4000

6000

8000

10000

Av
er

ag
ed

 re
tu

rn

HalfCheetah-v2

DPO (w PG) DPO (w/o PG) GAIfO GAIfO-DP BCO

0 0.2 0.4 0.6 0.8 1,0 1.2 1.4 1.6e7
steps

0

1000

2000

3000

4000

5000

Av
er

ag
ed

 re
tu

rn

Ant-v2

Figure 5: Learning curves on 6 easy-to-hard continuous control benchmarks, where the solid line and the shade
represent the mean and the standard deviation of the averaged return over more than 5 random seeds. We
pre-train BCO and DPO for 50k steps and show it in figures.

much better, benefiting from the decoupled structure that first determining the target and then taking295

the action to achieve it. To further illustrate the learning efficiency advantage of DPO, we illustrate the296

JS divergence curves of DPO and BCO during training in Fig. 4(b). Besides, we show the policy loss297

for BCO, the state predictor (SP) loss for DPO, and the inverse dynamics (ID) loss for both methods.298

Except that the JS divergence of DPO decreases more quickly than BCO, it is also observable that299

DPO relies less on the inverse dynamics than BCO, since the inverse dynamics loss of DPO converges300

to a higher level. We further provide a theoretic analysis of the dependence on inverse dynamics with301

BCO and DPO in Appendix B.302

5.2 Comparative Evaluations303

We compare the qualitative results of DPO against other baseline methods on easy-to-hard continuous304

control benchmarking environments (RQ2), including InvertedPendulum, InvertedDoublePendulum,305

Hopper, Walker2d, HalfCheetah and Ant. In each environment, besides GAIfO and BCO, we also306

evaluate GAIfO with decoupled policy (denoted as GAIfO-DP). For DPO we compare the reward307

augmented version of DPO (denoted as DPO w PG)1 with the supervised learning version of DPO,308

i.e., λG = 0 (denoted as DPO w/o PG). For fairness, we re-implement all the algorithms based on a309

Pytorch code framework2 and adopt Soft Actor-Critic (SAC) [7] as the RL learning algorithm for310

GAIfO and DPO. For all environments, we first train an SAC agent to collect 4 state-only expert311

trajectories and then train agents with such data. All algorithms are evaluated by a deterministic312

policy. The eventual results are summarized in Tab. 2, and the learning curves are shown in Fig. 5.313

It is worth noting that for DPO, we choose the best performance among the experiments that use314

multi-step or cycle regularization, and we put the full experiment results in Appendix D.315

One can easily observe that on simple environments, BCO is able to achieve a good performance,316

and GAIfO also does well on harder tasks. Even so, DPO can still gain the best or comparable317

performance against its counterparts. Particularly, without augmented reward, DPO is able to reach318

the optimality with the highest sample efficiency on simple tasks like InvertedPendulum. By contrast,319

on higher-dimensional tasks such as Hopper, Walker2d, HalfCheetah and Ant, it is difficult to320

construct accurate inverse dynamics that covers the support of the expert hyper-policy from scratch.321

However, by combining generative adversarial policy gradients, the agent finally recovers a good322

policy from the expert hyper-policy. This is particularly evident on HalfCheetah where DPO behaves323

poorly at the beginning but improves fast as the training proceeds. Besides, as illustrated in Fig. 5,324

DPO benefits from better sample efficiency in most of the environments, but the improvements are325

limited on the hardest tasks. We think that this may be due to larger state spaces (111 dimensions326

for Ant) that makes it difficult to recover a good state predictor or an inverse dynamics model. In all327

1Without ambiguity we simply denote DPO for this version of algorithm in the following sections.
2https://github.com/KamyarGh/rl_swiss

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6e7
steps

0

10

20

30

40

50

60

Pr
ed

 R
ea

l M
SE

Hopper-v2

0 0.4 0.8 1.2 1.6 2.0 2.4 2.6e7
steps

0

20

40

60

80

100

120

140

160

Pr
ed

 R
ea

l M
SE

Walker-v2

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0e7
steps

0

200

400

600

800

1000

Pr
ed

 R
ea

l M
SE

Half-v2

GAIfO-DP DPO w/o Reg DPO w M.S-2 Reg DPO w M.S-3 Reg DPO w Cycle Reg DPO w Cycle-M.S-2 Reg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6e7
steps

0

20

40

60

80

100

120

140

Pr
ed

 R
ea

l M
SE

Ant-v2

Figure 6: Compounding error of the predicted consecutive states and the real states the agent reaches when
rollout in the environments.
experiments, GAIfO-DP achieves similar results as GAIfO, indicating that the network structure does328

not count much for the performance.329

5.3 Compounding Error Reduction330

In this section, we aim to study whether the agent can effectively reach the target as it plans (RQ3).331

Therefore, we analyze the distance of the reaching states and the predicted consecutive states, and332

draw the mean square error (MSE) along the training procedure in Fig. 6. We also compare our333

regularization including multi-step optimization (denoted as M.S.-k, where k is the number of rollout334

steps) and cycle training style (denoted as Cycle). Note that DPO needs at least 1-step rollout for335

training the state transition predictor. As shown in Fig. 6, the agent still has gaps to get to where it336

plans to, and the mismatch always deteriorates on harder tasks. Combining regularization can always337

achieve lower compounding error, and the cycle training is effective in most of the environments. In338

Appendix D.6, we further illustrate the correlation between the final performance and the distance.339

5.4 Learn to Drive from Real-World Traffic Data340

The rapid development of autonomous driving has brought a lot of demand for simulating and341

training an RL agent in the simulator, which requires realistic interactions with various social vehicles342

[26]. However, driver’s detailed actions are not easily to obtain yet we adopt SOIL from a traffic343

surveillance recording dataset (NGSIM I-80 [8]) that contains kinds of recorded human driving344

trajectories. We wish to further examine the potential of DPO for decreasing the gap between the345

real world and simulation (RQ4). We utilize the simulator provided by Henaff et al. [9] as our346

simulation platform and learn to imitate real-world driving behaviors. We compare DPO against347

GAIfO and BCO, and choose Success Rate, Mean Distance and KL Divergence as evaluation metrics.348

Specifically, Success Rate is the percentage of driving across the entire area without crashing into349

other vehicles or driving off the road, Mean Distance is the distance traveled before the episode ends,350

and KL Divergence measures the position distribution distance between the expert and the agent.351

Table 3: Performance on NGSIM I-80 driv-
ing task over 5 random seeds.

Method Success Mean KL
Rate (%) Distance (m) Divergence

BCO 27.4 ± 1.1 129.8 ± 2.0 24.4 ± 2.2
GAIfO 77.5 ± 0.8 188.3 ± 1.1 11.5 ± 3.9
DPO 80.3 ± 0.5 192.7 ± 0.6 9.5 ± 1.8

Expert 100 210.0 0

As shown in Tab. 3, DPO outperforms baseline methods in352

all three metrics while possessing higher stability. The de-353

coupled policy allows the state predictor to focus on match-354

ing the distribution of expert trajectories, thus achieving355

smaller deviations from the expert position distribution.356

Furthermore, since the policy gradient can be computed357

with non-differentiable inverse dynamics, we can generate358

stable action sequences [12, 11] by replacing the inverse359

dynamics model with classical controllers, which can be generalized to realistic applications.360

6 Conclusion361

In this paper, we characterize the optimality and investigate the ambiguity problem in state-only362

imitation learning, and accordingly propose Decoupled Policy Optimization (DPO), which splits363

the state-to-action mapping policy into a state-to-state mapping state transition predictor and a364

state-pair-to-action mapping inverse dynamics model. Furthermore, we employ regularization and365

generative adversarial methods to mitigate the compounding error caused by the decoupled modules.366

The flexibility of the decoupled architecture allows a wide range of interesting future works, such367

as replacing the inverse dynamics with a classic control module to produce stable control signals,368

learning specific skills with shared state transition and multi-task target learning with shared pre-369

trained skills.370

9

References371

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning.372

In Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004),373

2004.374

[2] Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L Littman. Combating the375

compounding-error problem with a multi-step model. arXiv preprint arXiv:1905.13320, 2019.376

[3] Ashley D. Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien377

Ecoffet, Thomas Miconi, Charles Isbell, and Jason Yosinski. Estimating q(s,s’) with deep378

deterministic dynamics gradients. In Proceedings of the 37th International Conference on379

Machine Learning, ICML 2020, 2020.380

[4] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal381

control via policy optimization. In International Conference on Machine Learning, pages 49–58,382

2016.383

[5] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse384

reinforcement learning. In 6th International Conference on Learning Representations, ICLR385

2018, 2018.386

[6] Xiaoxiao Guo, Shiyu Chang, Mo Yu, Gerald Tesauro, and Murray Campbell. Hybrid reinforce-387

ment learning with expert state sequences. In The Thirty-Third AAAI Conference on Artificial388

Intelligence, AAAI 2019, pages 3739–3746, 2019.389

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy390

maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the391

35th International Conference on Machine Learning, ICML 2018, pages 1856–1865, 2018.392

[8] John Halkias and James Colyar. Next generation simulation fact sheet. US Department of393

Transportation: Federal Highway Administration, 2006.394

[9] Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy learning with395

uncertainty regularization for driving in dense traffic. In 7th International Conference on396

Learning Representations, ICLR 2019, 2019.397

[10] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in398

Neural Information Processing Systems 29, pages 4565–4573, 2016.399

[11] Junning Huang, Sirui Xie, Jiankai Sun, Qiurui Ma, Chunxiao Liu, Dahua Lin, and Bolei Zhou.400

Learning a decision module by imitating driver’s control behaviors. In Proceedings of the401

Conference on Robot Learning (CoRL) 2020, 2020.402

[12] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial403

attacks on neural network policies. In 5th International Conference on Learning Representations,404

ICLR 2017, 2017.405

[13] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:406

A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.407

[14] Daiki Kimura, Subhajit Chaudhury, Ryuki Tachibana, and Sakyasingha Dasgupta. Internal408

model from observations for reward shaping. arXiv preprint arXiv:1806.01267, 2018.409

[15] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval410

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.411

In 4th International Conference on Learning Representations, ICLR 2016,, 2016.412

[16] Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.413

In 8th International Conference on Learning Representations, ICLR 2020, 2020.414

[17] Minghuan Liu, Tairan He, Minkai Xu, and Weinan Zhang. Energy-based imitation learning. In415

20th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2021,416

2021.417

10

[18] Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for418

dimension reduction. CoRR, abs/1802.03426, 2018.419

[19] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey420

Levine. Combining self-supervised learning and imitation for vision-based rope manipulation.421

In 2017 IEEE International Conference on Robotics and Automation, ICRA 2017, pages 2146–422

2153, 2017.423

[20] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The424

Annals of Mathematical Statistics, pages 832–837, 1956.425

[21] Umar Syed, Michael H. Bowling, and Robert E. Schapire. Apprenticeship learning using linear426

programming. In Machine Learning, Proceedings of the Twenty-Fifth International Conference427

(ICML 2008), pages 1032–1039, 2008.428

[22] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In429

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,430

IJCAI 2018, pages 4950–4957, 2018.431

[23] Faraz Torabi, Garrett Warnell, and Peter Stone. Adversarial imitation learning from state-only432

demonstrations. In Proceedings of the 18th International Conference on Autonomous Agents433

and MultiAgent Systems, AAMAS ’19, pages 2229–2231, 2019.434

[24] Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from435

observation. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial436

Intelligence, IJCAI 2019, pages 6325–6331, 2019.437

[25] Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and438

Chuang Gan. Imitation learning from observations by minimizing inverse dynamics disagree-439

ment. In Advances in Neural Information Processing Systems 32, pages 239–249, 2019.440

[26] Ming Zhou, Jun Luo, Julian Villela, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang,441

et al. Smarts: Scalable multi-agent reinforcement learning training school for autonomous442

driving. In Conference on Robot Learning, 2020.443

[27] Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from444

observations. In Advances in Neural Information Processing Systems 33, 2020.445

11

Checklist446

1. For all authors...447

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s448

contributions and scope? [Yes]449

(b) Did you describe the limitations of your work? [Yes] See Section 3.3.450

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See451

Section 6.452

(d) Have you read the ethics review guidelines and ensured that your paper conforms to453

them? [Yes]454

2. If you are including theoretical results...455

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Theorem 1.456

(b) Did you include complete proofs of all theoretical results? [Yes] See Section B.457

3. If you ran experiments...458

(a) Did you include the code, data, and instructions needed to reproduce the main experi-459

mental results (either in the supplemental material or as a URL)? [Yes]460

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they461

were chosen)? [Yes] See Appendix D.3.462

(c) Did you report error bars (e.g., with respect to the random seed after running experi-463

ments multiple times)? [Yes] We ran our results with more than 5 random seeds as said464

in Section 5.2.465

(d) Did you include the total amount of compute and the type of resources used (e.g., type466

of GPUs, internal cluster, or cloud provider)? [No]467

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...468

(a) If your work uses existing assets, did you cite the creators? [Yes] We re-implement all469

algorithms based on an existed code base, as said in Section 5.2.470

(b) Did you mention the license of the assets? [No]471

(c) Did you include any new assets either in the supplemental material or as a URL? [No]472

We will public our codes after publication.473

(d) Did you discuss whether and how consent was obtained from people whose data you’re474

using/curating? [N/A]475

(e) Did you discuss whether the data you are using/curating contains personally identifiable476

information or offensive content? [N/A]477

5. If you used crowdsourcing or conducted research with human subjects...478

(a) Did you include the full text of instructions given to participants and screenshots, if479

applicable? [N/A]480

(b) Did you describe any potential participant risks, with links to Institutional Review481

Board (IRB) approvals, if applicable? [N/A]482

(c) Did you include the estimated hourly wage paid to participants and the total amount483

spent on participant compensation? [N/A]484

12

	Introduction
	Preliminaries
	Methodology
	Characterizing the Optimality in SOIL
	Policy Decoupling
	Tackling Compounding Error Challenges
	Regularization on Target Planning
	Efficient Skills Learning via Decoupled Policy Gradient

	Overall Algorithm

	Related Work
	Experiments
	Understanding the Decoupled Structure
	Comparative Evaluations
	Compounding Error Reduction
	Learn to Drive from Real-World Traffic Data

	Conclusion

