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ABSTRACT

As multi-agent systems proliferate in machine learning research, games have at-
tracted much attention as a framework to understand optimization of multiple in-
teracting objectives. However, a key challenge in game optimization is that, in
general, there is no guarantee for usual gradient-based methods to converge to a
local solution of the game. The latest work by Chavdarova et al.|(2020) report that
Lookahead optimizer (Zhang et al., |2019) significantly improves the performance
of Generative Adversarial Networks (GANSs) and reduces the rotational force of
bilinear games. While promising, their observations were purely empirical, and
Lookahead optimization of smooth games still lacks theoretical understanding. In
this paper, we fill this gap by theoretically characterizing Lookahead dynamics of
smooth games. We provide an intuitive geometric explanation on how and when
Lookahead can improve game dynamics in terms of stability and convergence.
Furthermore, we present sufficient conditions under which Lookahead optimiza-
tion of bilinear games provably stabilizes or accelerates convergence to a Nash
equilibrium of the game. Finally, we show that Lookahead optimizer preserves
locally asymptotically stable equilibria of base dynamics, and can either stabilize
or accelerate the local convergence to a given equilibrium with proper assump-
tions. We verify our theoretical predictions by conducting numerical experiments
on two-player zero-sum (non-linear) games.

1 INTRODUCTION

Recently, a plethora of learning problems have been formulated as games between multiple inter-
acting agents, including Generative Adversarial Networks (GANs) (Goodfellow et al.,|2014; Brock
et al 2019; Karras et al.,|2019), adversarial training (Goodfellow et al., |2015; Madry et al.||2018),
self-play (Silver et al., 2018; Bansal et al.l 2018), inverse reinforcement learning (RL) (Fu et al.,
2018) and multi-agent RL (Lanctot et al.| |2017; [Vinyals et al., [2019). However, the optimization
of interdependent objectives is a non-trivial problem, in terms of both computational complexity
(Daskalakis et al., [2006; |Chen et al., 2009) and convergence to an equilibrium (Goodfellow, 2017}
Mertikopoulos et al., 2018; | Mescheder et al.,|2018; |[Hsieh et al., 2020). In particular, gradient-based
optimization methods often fail to converge and oscillate around a (local) Nash equilibrium of the
game even in a very simple setting (Mescheder et al., 2018; |Daskalakis et al., 2018; Mertikopoulos
et al., 2019; |Gidel et al., [2019bza). To tackle such non-convergent game dynamics, a huge effort
has been devoted to developing efficient optimization methods with nice convergence guarantees in
smooth games (Mescheder et al., 2017; 2018}, [Daskalakis et al., 2018; Balduzzi et al., 2018; |Gidel
et al., |2019bza; Schafer & Anandkumar, 2019; Yazici et al., 20195 [Loizou et al., |2020).

Meanwhile, (Chavdarova et al.| (2020) have recently reported that the Lookahead optimizer (Zhang
et al., [2019) significantly improves the empirical performance of GANs and reduces the rotational
force of a bilinear game dynamics. Specifically, they demonstrate that class-unconditional GANs
trained by a Lookahead optimizer can outperform class-conditional BigGAN (Brock et al.| [2019)
trained by Adam (Kingma & Bal [2015) even with a model of 1/30 parameters and negligible com-
putation overheads. They also show that Lookahead optimization of a stochastic bilinear game tends
to be more robust against large gradient variances than other popular first-order methods, and con-
verges to a Nash equilibrium of the game where other methods fail.
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Despite its great promise, the study of |(Chavdarova et al.| (2020) relied on purely empirical obser-
vations, and the dynamics of Lookahead game optimization still lacks theoretical understanding.
Specifically, many open questions, such as the convergence properties of Lookahead dynamics and
the impact of its hyperparameters on the convergence, remain unexplained. In this work, we fill this
gap by theoretically characterizing the Lookahead dynamics of smooth games. Our contributions
are summarized as follows:

e We provide an intuitive geometric explanation on how and when Lookahead can improve
the game dynamics in terms of stability and convergence to an equilibrium.

e We analyze the convergence of Lookahead dynamics in bilinear games and present suffi-
cient conditions under which the base dynamics can be either stabilized or accelerated.

e We characterize the limit points of Lookahead dynamics in terms of their stability and local
convergence rates. Specifically, we show that Lookahead (i) preserves locally asymptoti-
cally stable equilibria of base dynamics and (ii) can either stabilize or accelerate the local
convergence to a given equilibrium by carefully choosing its hyperparameters.

e Each of our theoretical predictions is verified with numerical experiments on two-player
zero-sum (non-linear) smooth games.

2 PRELIMINARIES

We briefly review the objective of smooth game optimization, first-order game dynamics, and
Lookahead optimizer. Finally, we discuss previous work on game optimization. We summarize
the notations throughout this paper in Table [A.T]

2.1 SMOOTH GAMES

Following Balduzzi et al.| (2018)), a smooth game between players ¢ = 1,...,n can be defined as a
set of smooth scalar functions { f;}7_; with f; : R? — Rsuchthatd = Y, d;. Each f; represents
the cost of player i’s strategy x; € R% with respect to other players’ strategies x_;. The goal of
this game optimization is finding a (local) Nash equilibrium of the game (Nash, [1951)), which is a
strategy profile where no player has an unilateral incentive to change its own strategy.

n

Definition 1 (Nash equilibrium). Let {f;}"; be a smooth game with strategy spaces {R% }™_, such
that d = Z?:l d;. Then x* € R% is a local Nash equilibrium of the game if, for eachi = 1,...,n,
there is a neighborhood U; of x; such that f;(x;,x* ;) > fi;(x*) holds for any x; € U;. Such x* is
said to be a global Nash equilibrium of the game when U; = R% for eachi =1,...,n.

A straightforward computational approach to find a (local) Nash equilibrium of a smooth game is to
carefully design a gradient-based strategy update rule for each player. Such update rules that define
iterative plays between players are referred to as a dynamics of the game.

Definition 2 (Dynamics of a game). A dynamics of a smooth game { f;}?_, indicates a differentiable
operator F : R — R? that describes players’ iterative strategy updates as x(**1) = F(x(t)).

One might expect that a simple myopic game dynamics, such as gradient descent, would suffice
to find a (local) Nash equilibrium of a game as in traditional minimization problems. However, in
general, gradient descent optimization of smooth games often fail to converge and oscillate around
an equilibrium of the game (Daskalakis et al.,[2018};|Gidel et al.,[2019bza; |Letcher et al.,2019). Such
non-convergent behavior of game dynamics is mainly due to (non-cooperative) interaction between
multiple cost functions, and is considered as a key challenge in the game optimization (Mescheder
et al.,[2017;2018; Mazumdar et al.,[2019; [Hsieh et al., [2020).

2.2 FIRST-ORDER METHODS FOR SMOOTH GAME OPTIMIZATION

We introduce well-known first-order methods for smooth game optimization. To ease the notation,
we use Vf(+) to denote the concatenated partial derivatives (Vy, f1(-), ..., Vx, fn(+)) of a smooth
game { f;}1_,, where Vy, f;(-) is a partial derivative of a player i’s cost function with respective to
its own strategy.
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Gradient Descent (GD) minimizes the cost function of each player using the gradient descent. Its
simultaneous dynamics Fgp,, of a smooth game { f;}?_; with a learning rate > 0 is given by

xtHD = Fop (xP) Lrx® — nVf(x®). (1)
On the other hand, its alternating dynamics F'gp,, is described by

X = Fop  xXN € F 0. 0 F,(x"), where )
def

FZ(X) = (...,mi,l,xi—nvxifi(x),xprh...). (3)

Proximal Point (PP) (Martinet, |1970) computes an update by solving a proximal problem at each
iteration. Its simultaneous dynamics F'pp,, of a smooth game { f; }_; with a learning rate > 0 is

(D) — FPPSim(X(t)) def L) _ nvxf(x(t+1))_ “4)

Note that this update rule is implicit in a sense that x(**1) appears on both sides of the equation;
hence it requires solving the proximal subproblem for x(**1) per iteration.

Extra Gradient (EG) (Korpelevich, [1976) computes an update by using an extrapolated gradient.
Its simultaneous dynamics F'ggg,, of a smooth game { f; }7_; with a learning rate » > 0 is

XD = Fpg (x0) € x® — v g(x(132)), where (5)
x(2) € x0 _ v, g(x®). (6)

2.3 LOOKAHEAD OPTIMIZER

Lookahead (Zhang et al.,|2019) is a recently proposed optimizer that wraps around a base optimizer
and takes a backward synchronization step for each k forward steps. Given a dynamics F4 induced
by a base optimization method A, the Lookahead dynamics Gy a.4 with a synchronization period
k € Nand arate o € (0,1) is

XD = Graa(x®) € (1 - a)x® + aFk(x®). @)

2.4 RELATED WORK

The convergence analysis of first-order smooth game dynamics dates several decades back and have
been established in the context of saddle-point problems (Rockafellar, |1976; Korpelevich, |1976;
Tseng), |1995)), which is a special case of zero-sum games. For example, Rockafellar| (1976)) showed
the linear convergence of PP in the bilinear and strongly-convex-strongly-concave (SCSC) saddle-
point problems. Tseng|(1995) and |[Facchinei & Pang| (2003)) proved the linear convergence of EG in
the same problem, and Nemirovski (2004) did in the convex-concave problem over compact sets.

As many learning problems are formulated as games in recent years (Goodfellow et al., 2014 Madry
et al., 2018 |Silver et al.,2018; [Fu et al., |2018}; |Vinyals et al., 2019), game optimization has regained
considerable attentions from the research community. Optimistic gradient descent (OGD) (Popov,
1980), which can be seen as an efficient approximation of EG, was recently rediscovered in the
context of GAN training (Daskalakis et al.,|2018)). Recent work of [Liang & Stokes|(2019) and|Gidel
et al.| (2019a) proved linear convergence of OGD in bilinear and SCSC games. [Mokhtari et al.|(2020)
established an unifying theoretical framework for analyzing PP, EG and OGD dynamics. [Zhang &
Yu| (2020) presented exact and optimal conditions for PP, EG and OGD dynamics to converge in
bilinear games. While there has been a growing interest for incorporating second-order information
into game dynamics (Mescheder et al., 2017; Balduzzi et al., 2018} [Mazumdar et al.,[2019} |Schafer,
& Anandkumar; 2019; [Loizou et al. |2020) to remedy non-convergent behaviors, the first-order
optimization still dominates in practice (Brock et al 2019} [Donahue & Simonyanl 2019) due to
computational and memory cost of second-order methods.

Lately, Chavdarova et al.|(2020) reported that recently developed Lookahead optimizer (Zhang et al.,
2019) significantly improves the empirical performance of GANs and reduces the rotational force of
bilinear game dynamics. However, this study relied on purely empirical observation and lacked the-
oretical understanding for Lookahead optimization of smooth games. Although |Wang et al.| (2020)
proved that Lookahead optimizer globally converges to a stationary point in minimization problems,
its convergence in smooth games still remain as an open question.
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Figure 1: The spectral contraction effect of Lookahead dynamics in Equation 8| Ay are the eigen-
values of each base dynamics, and 1 — o + oz/\’j[ are the eigenvalues of the associated Lookahead
dynamics. k forward steps of a Lookahead procedure first rotate the eigenvalues A+ of the dynam-
ics’ Jacobian matrix. Then, a synchronization backward step pulls them into a circle with a radius
smaller than their maximal modulus. This results in a reduced spectral radius of the Jacobian matrix,
which improves stability and convergence to an equilibrium.

3 SPECTRAL CONTRACTION EFFECT OF LOOKAHEAD IN BILINEAR GAMES

In this section, we show that Lookahead can either stabilize or accelerate the convergence of its
base dynamics by reducing the spectral radius of its underlying Jacobian matrix. We highlight such
spectral contraction effect by analyzing the convergence of Lookahead dynamics in a simple bilinear
game (Section [3.1)), and extend the results to general bilinear games (Section [3.2).

3.1 LOOKAHEAD DYNAMICS OF A SIMPLE BILINEAR GAME

We begin with a simple exemplar bilinear game that has a unique Nash equilibrium (0, 0):

min max I - Ts. ®)
r1ER z2€R
This game has been extensively studied as a representative toy example of game optimization by
Gidel et al.| (2019a) due to its oscillating dynamics. The following proposition demonstrates stabi-
lization effect of Lookahead on Equation [§]

Proposition 1. Simultaneous GD dynamics Fgpg, with a learning rate 1 > 0 diverges from the
Nash equilibrium of Equation@ However, its Lookahead dynamics Ga.-Gp,, With a synchronization
period k € N and a rate o € (0, 1) globally converges to the Nash equilibrium if R((1 + in)*) < 1
and o is small enough.

Proposition|[T|shows that Lookahead optimizer can stabilize divergent dynamics of Equation([8] How-
ever, such stabilization effect of Lookahead raises a natural question: would there be any advantage
for using Lookahead when its base dynamics is already stable? Proposition [2] analyzes well-known
convergent PP dynamics of Equation [§] and presents an affirmative answer. Specifically, it shows
that Lookahead dynamics (i) preserves the convergence of its base dynamics, and (ii) can further
accelerate the convergence with proper hyperparameter choices.

Proposition 2. Simultaneous PP Lookahead dynamics Gpa ppg,, with a learning rate n) € (0,1), a
synchronization period k € N and a rate o € (0, 1) globally converges to the Nash equilibrium
of Equation |§| Furthermore, the rate of convergence is improved upon its base dynamics Fppg,, if
R((1+in)k) < (1 +n?)* and « is large enough.

We provide geometric interpretation of the Lookahead procedure in Figure[T] Intuitively, Lookahead
optimizer either stabilizes or accelerates its base dynamics by pulling the eigenvalues of the dynam-
ics’ Jacobian matrix into a circle with a small radius. Specifically, k forward steps of a Lookahead
procedure first rotate the eigenvalues, and a synchronization backward step pulls them into a circle
with a radius smaller than their maximal modulus. This results in a reduction of the spectral radius
of the dynamics’ Jacobian matrix, which is known to be crucial for stability (Slotine & Li, [1991).
Such spectral contraction effect of Lookahead dynamics is captured by the following lemma.
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Lemma 3 (Spectral contraction effect of Lookahead). Let k € N, o € (0,1) and define a function
def def

[ Rmxm o R™X™ by £(X) = (1 — o)l + aX®. Define 6(\) = Arg(\F — 1) and ¢p(\) =
sin(6(\))

arcsin -
p(X)*F

. Then, the following statements hold:

o Forp(X) =1, p(f(X)) < 1 if \¥ £ 1, VX € Mux(X).

o For p(X) > 1, p(f(X)) < 1 if RO") <1, 0 < 225000 v € sy (X).

o For p(X) < 1, p(f(X)) < pX)* if ROVF) < p(X)*, o > 1 — 2200 conroO),
YA € Anar(X), VA € A(X).

In short, Lemma [3|suggests that Lookahead can reduce the spectral radius of a matrix by choosing a
proper « and a k such that the entire radius-supporting eigenvalues (e.g., A>1(X), Amax (X)) are ro-
tated to left enough. However, such k may not exist, for example, especially when such eigenvalues
are not tightly clustered together. To help understanding when Lookahead can actually reduce the
spectral radius, we present Lemma 4] as a sufficient condition for a set of eigenvalues to admit the
existence of k that rotates them to the left half-plane.

Lemma 4 (Left-rotatable eigenvalues). Let X,J € R™*"™ be such that X = I — nJ for some n > 0
and let S C \(X). Assume that each element of S has its conjugate pair in S. Then we have

RF) < 0 for each N € S ifk € (ﬁ(s), ﬁ:(s)) and every element of S has non-zero

imaginary part. Existence of such k € N is guaranteed for a small enough n when gL"ég <3.
nun

Note that the Jacobian matrix of most well-known gradient-based dynamics can be written in the
form of I — nJ, where n > 0 is a learning rate and J is the underlying Jacobian matrix of the game.
Intuitively, Lemma [4] suggests that for a small enough learning rate, any subset of the eigenvalues
of a dynamics with imaginary conditioning less than 3 admits the existence of k that rotates them
left enough. For such k, Lookahead can reduce the spectral radius of the dynamics by choosing a
proper «, as stated in Lemma[3] This joint usage of Lemma [3}f4] plays a central role for the proofs of
our main results in Section and Sectiond] To summarize, Lemma [3}f4] together highlight when
Lookahead can actually improve the game dynamics and show that the imaginary conditioning of
the radius-supporting eigenvalues is crucial for determining whether the dynamics is improvable.

3.2 LOOKAHEAD DYNAMICS OF GENERAL BILINEAR GAMES

In this section, we extend the analysis of Lookahead dynamics to a general bilinear game

: T T T
min max xj Axo —b;x; —byx 9
Jain max X AXp — by X; —b; X, €))
for some A € R™*™ and b; € R™,by € R"™ such that there exists x; € R™ x5 € R” with
ATxt = b, and Ax} = b. The existence of x¥, x} allows us to rewrite the game as

[ZT 0

min max (x; —x})7U 0 0] VT(x2 —X3), (10)

x1 ER™ xo €R™

where U, 3,., V is the SVD of A with » £ rank(A). Therefore, we can analyze the dynamics of
Equation [0]by inspecting a rather simpler problem

: T
by 11
o max X X, (1T)
as they are equivalent up to some rotations and translations. This reduction is a well-known tech-
nique and has been used by |Gidel et al.| (2019bza) and [Zhang & Yu| (2020) for simplifying the
analysis of Equation[9]

Now we present sufficient conditions for Lookahead hyperparameters under which convergence
of each first-order base dynamics, namely GDay, GDsim, PPsim and EGgip, is either stabilized or
accelerated. The following first two theorems show that Lookahead can provably stabilize non-
convergent GD dynamics of general bilinear games.
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Theorem 5 (Convergence of GLa-gp,, ). Lookahead dynamics Gpa.gp,, with a learning rate n €

(O, ﬁ) a synchronization period k € N and a rate o € (0, 1) converges to a Nash equilibrium

2 _2
0quuation|§|ifk‘ arccos(1 — %) mod 27 # 0 for any o; € o(A).
Theorem 6 (Convergence of G a.gpy,, ). Lookahead dynamics Gra-gps, with a learning rate ) > 0,
a synchronization period k € N and a rate o € (0, 1) converges to a Nash equilibrium of Equation@

ifk € ( X s ) and « is small enough.

2 arctan no,,;,’ 2 arctan nomax

Roughly, Theorem [5|suggests that almost any configurations of Lookahead can make GD 4y, conver-
gent to a Nash equilibrium of the bilinear games. On the other hand, the existence of k that satisfies
the condition of Theorem|§|is guaranteed for a small enough 7 if 2™ < 3 holds. This highlights a

limitation of the convergence guarantee for GDg;y, that it holds only for well-conditioned games.

The next two theorems show that Lookahead preserves the convergence of PPg;,, and EGg;y, in the
bilinear games, and can further accelerate their convergence under proper hyperparameter choices.

Theorem 7 (Acceleration of Gya-ppg,, ). Lookahead dynamics Gpa.ppg, with a learning rate n >
0, a synchronization period k € N and a rate o € (0,1) converges to a Nash equilibrium of
Equation |9, Furthermore, the rate of convergence is accelerated upon its base dynamics F'pp,, if

ke ( T s ) and « is large enough.

2arctanno,,;, > 2arctanno,;,
Theorem 8 (Acceleration of Gra kg, ). Lookahead dynamics Gra-gc,, with a learning rate n €
(0, %) a synchronization period k € N and a rate o € (0, 1) converges to a Nash equilibrium

of Equation |2| Furthermore, the rate of convergence is accelerated upon its base dynamics Fggy,, if

1 iy 3 .
ne (07 20max)’ ke <2arctan 71ﬁ2’;li”_ " 2arctan 71j(;'5”in. and o is large enough.

min nmin
Note that the existence of k that satisfies the acceleration conditions of Theorem [7}fg] is always
guaranteed for a small enough 7. This contrasts Theorem [7}f§] with Theorem [f] which only applies
to well-conditioned games, and suggests that they can be applied for a wide range of bilinear games,

including the ill-conditioned ones.

4 THE LIMIT POINTS OF LOOKAHEAD DYNAMICS

In this section, we characterize the limit points of Lookahead dynamics and reveal the connections
between their stability and the hyperparameters of Lookahead. We start by defining a few stability
concepts which are standard in the dynamical system theory (Slotine & Li,|1991).

Definition 3 (Lyapunov stability). Let F' be a smooth vector field on R". Then x € R™ is Lyapunov
stable in F if for any € > 0, there exists 6 > 0 such that for anyy € R", ||x —y| < § implies
|Ft(x) — F'(y)|| < eforallt € N.

Definition 4 (Asymptotic stability). A Lyapunov stable equilibrium x* € R" of a smooth vector
field F is said to be asymptotically stable if there exists § > 0 such that ||x — x*|| < ¢ implies
tlim | F*(x) — x*|| = 0. Such x* is said to be locally asymptotically stable if § < co.

— 00

We show that any Lyapunov stable equilibrium (SE) of a dynamics is a locally asymptotically stable
equilibrium (LASE) of a Lookahead dynamics. Furthermore, we show that Lookahead can either
stabilize or accelerate the local convergence to an equilibrium when the radius-supporting eigenval-
ues of the equilibrium satisfy certain assumptions on their imaginary parts.

Theorem 9 (SE 4 C LASE;a-4). Let x* € R™ be a Lyapunov stable equilibrium of a dynamics F'.
Then, x* is a LASE of its Lookahead dynamics G with a synchronization period k € N and a rate

a € (0,1) if \F # 1 for each \; € \(VF(x*)).

Theorem 10 (One-point local stabilization). Let x* € R"™ be an equilibrium of a dynamics F with

p(VF(x*)) > 1. Assume that every element of A>1(VyF(x*)) has non-zero imaginary part. Then,

x* is a LASE of its Lookahead dynamics G with a synchronization period k € N and a rate o € (0, 1)

' ™ 3T .
i1 € (st o) oo ey ) @nd o s small enough.
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Theorem 11 (One-point local acceleration). Let x* € R"™ be an equilibrium of a dynamics F with
p(ViF(x*)) < 1. Assume that every element of Ay (Ve F(x*)) has non-zero imaginary part. Then,
the local convergence rate to x* in a Lookahead dynamics G with a synchronization period k € N

and a rate o« € (0, 1) is accelerated upon F if k € (29 - ()\maxﬂ(VxF(X*)))7 29max(>\ma3x7zvxF(X*)))> and

« is large enough.

Intuitively, Theorem 9] shows that Lookahead preserves stability of its base dynamics, and Theorem
suggest that Lookahead can either stabilize or accelerate the local convergence to an equi-
librium. Note that the stabilization and acceleration can be guaranteed when A>1(VyF(x*)) and
Amax (VxF(x*)) contain no real eigenvalues and have imaginary conditioning less than 3; otherwise,
k that satisfies the conditions of Theorem[IOf11] may not exist (see Appendix [E.IOHE.TT).

An additional, but important consequence of Theorem [10]is that the inclusion relationship implied
by Theorem [J] is strict in general. In the context of Nash equilibrium (NE) computation, such
stabilization effect of Lookahead can be helpful when unstable NE are stabilized (e.g., bilinear
games). However, the stabilization effect also carries a possibility for introducing non-Nash LASE,
which is bad for the NE computation (Mazumdar et al.,[2019). Hence, the overall impact of Theorem
on the computation of NE depends on the global structure of the game and base dynamics.

Note that Theorem require radius-supporting eigenvalues to have non-zero imaginary parts
and therefore does not apply to fully-cooperative (FC) games (i.e., minimization problems), which
exhibit real eigenvalues only. To give an understanding of Lookahead dynamics in FC games, we
present Proposition together which imply that the iterates of Lookahead dynamics almost
surely avoids unstable equilibria of its base dynamics in FC games (e.g., avoids local maxima).

Proposition 12 (Avoids unstable points). Let F' be a L-Lipschitz smooth dynamics for some L >
0 and let G be its Lookahead dynamics with a synchronization period k € N and a rate o €

(0, s
p(ViG(x*)) > 1if po(VG(x0)) # 1 holds for any equilibrium xq of G.

). Then the random-initialized iterates of G almost surely avoids its equilibrium x* with

Proposition 13 (Preserves unstable points in FC games). Let x* € R" be an equilibrium of a
dynamics F with p(VyF(x*)) > 1, and assume that NV F(x*) is a symmetric matrix with positive
eigenvalues. Then, p(V,G(x*)) > 1 holds for a Lookahead dynamics G with a synchronization
period k € N and a rate o € (0,1).

5 EXPERIMENTS
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(a) Convergence to the NE of the bilinear game. (b) Convergence to (0, 0) in the nonlinear game.

Figure 2: Optimization progress of multiple first-order methods with hyperparameters chosen by
(+) and against our theorems (—) in the bilinear and nonlinear games.

Bilinear game. We test our theoretical predictions in Section[3.2](Theorem [SH8)) on a bilinear game

min max X7 Axy (12)
x1 ER™ x5 €R™

with A & I, + ¢ - E,,, where each element of E,, € M, ,, is sampled from A(0, 1). We report our

results using n = 10 and € = 0.05, which gives a sample of A with o,x = 1.195 and o, = 0.852,

hence 7™ = 1.401 < 3. For a fixed n = 0.1, we use Theorem to derive a range of k
min
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Figure 3: Visualized trajectories of each dynamics an equilibrium (0, 0) of the nonlinear game.

and an approximate scale of « that guarantee stabilization and acceleration of convergence to a
Nash equilibrium (NE) of Equation [I2] We provide the derivations of theoretically recommended
values and actual configurations used for the experiment in AppendixE}LFigureQ (a) shows that the
hyperparameters predicted by our theorems, denoted by LA-GDajysim™ and LA-EGg;j, T, actually
stabilize and accelerates the convergence to a NE. We also test the hyperparameters that are chosen
against our theorems and denote as LA-GDajysim ~ and LA-EGgip, ~. Specifically, we choose a &
smaller than the lower bound predicted by our theorems and use large « for unstable base dynamics
and small « for stable base dynamics. The result in Figure 2] (a) suggests that Lookahead can fail to
stabilize, or even worse, slow down the convergence when hyperparameters are configured badly.

Nonlinear game. We verify our theoretical predictions in Section [ (Theorem [I0] and [TT) on the
non-linear game proposed by |Hsieh et al.[(2020):

s S -

where ¢(z) £ 12? — 12" with € > 0. This game has an unstable critical point (0,0) surrounded
by an attractive internally chain-transitive (ICT) set, which may contain arbitrarily long trajectories.
Hsieh et al.|(2020) demonstrate that most first-order methods fail to converge in this game due to the
instability of the equilibrium and the existence of the ICT set. For a fixed e = 0.01 and , = 0.05, we
use Theorem[T0]and[TT]to derive a range of k and an approximate scale of « that guarantee local sta-
bilization and acceleration to the equilibrium of Equation[I3] We provide the detailed derivations of
the theoretically recommended values and the configurations in Appendix [D] Figure 2] (b) and Fig-
ure (a) shows that the hyperparameters predicted by our theorems, denoted by LA-GD a1ysim ™ and
LA-EGg;n, ™", actually stabilize and accelerates the convergence to the equilibrium. In contrast, hy-
perparameters chosen against our theorems, denoted by LA-GDajysim~ and LA-EGg;y, ~ in Figure
(b) and Figure |§| (b), neither success to stabilize nor accelerate the convergence to the equilibrium.

6 CONCLUSION

In this work, we derived the theoretic results for convergence guarantee and acceleration of Looka-
head dynamics in smooth games for the first time. Specifically, we derived sufficient conditions for
hyperparameters of Lookahead optimizer under which the convergence of bilinear games is either
stabilized or accelerated. Furthermore, we proved that the Lookahead optimizer preserves locally
asymptotically stable equilibria of smooth games. Finally, we showed that Lookahead can either
stabilize or accelerate the local convergence to a given equilibrium under proper assumptions.

Our results point to several future research directions. Lemma [ suggests that the imaginary con-
ditioning of the radius-supporting eigenvalues is crucial for the performance gain in Lookahead.
Therefore, developing an optimizer that exhibits a small imaginary conditioning could improve the
convergence of its Lookahead dynamics. Another interesting application of our theoretic results
would be designing an adaptive mechanism for the Lookahead hyperparameters by applying our
theorems on local bilinear approximation (Schifer & Anandkumar, 2019) of the game for each step.
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A NOTATION

Table A.1: List of mathematical notations used in the paper.

Symbol Definition

I L?nom

X i-th element of a vector x = (1, ...,2,)

X; i-th vector of a concatenated vectors X = (X, ...,Xy)
X (X1, X1, X4 150+, Xpy)

V. f(x') Derivative of a function f evaluated at =’

Sy The zero-centered circle of radius r > 0in C

R(2) Real part of z € C

S(z) Imaginary part of z € C

Arg(z) The angle between z € C and real axis of the complex plane
a(A) The set of singular values of A € R"*"

p(A) The spectral radius of A € R™*™

A(A) The set of eigenvalues of A € R™*™

A>q(A)  The set of eigenvalues of A with modulus larger than or equal to a € R
Amax(A)  The set of eigenvalues of A with the largest modulus
R(S) {R(c)|c € S} for S C C

Ruin(S)  min R(S)

Rmax (S)  max R(S)

I(S) {S(¢)|c € S} for S CC

S20(8) {3 €3(9)[3, > 0}

%min(s) min %20(5)

Smax(S)  max F>0(5)

0(S) {Arg(c)lc € S)}for S CC

920(5) {91|91 S 9(5), 0; > O}

Gmm(S) min 920(5)

amax(S) max@ZO(S)

B USEFUL FACTS

B.1 STANDARD RESULTS ON CONVERGENCE

Lemma 14 (Bertsekas|(1999)). Let F' : R™ — R™ be continuously differentiable, and let x* € R™
be such that F'(x*) = x*. Assume that p(V,F(x*)) < 1. Then, there is an open neighborhood Uy~
of x* such that for any x € Uy, |F'(x) —x*||, € O(p(VF (x*))!) for t — oco.

Lemma 15 (Gidel et al.| (2019b)). Let M € R™*™ and u® be a sequence of iterates such that,
u) = Mu then we have three cases of interest for the spectral radius p(M):

o Ifp(M) < 1and M is diagonalizableﬂ then |u®||, € O(p(M)" |[u'®|,).

o If p(M) > 1, then there exists u'®) such that |[u")]|, € Q(p(M)" ||u(?]],).

o If|\i| = 1,Y\; € A(M), and M is diagonalizable, then Hu(t)H2 € @(||u(O)H2).
B.2 CHARACTERISTIC EQUATIONS OF FIRST-ORDER DYNAMICS IN BILINEAR GAMES
Latest work of Zhang & Yu|(2020) provides the exact and optimal conditions for popular first-order
methods to converge in zero-sum bilinear games, if possible. Besides from the exact conditions

and the choice of optimal hyperparameters, they also derive the characteristic equation of each first-
order dynamics in the zero-sum bilinear games. Since our proofs of theorems in Section [3.2]heavily

lActually, M does not have to be diagonalizable; see Theorem 5.4 and Theorem 5.D4 in Chen|(1995).

12



Under review as a conference paper at ICLR 2021

rely on these characteristic equations, we restate somewhat simplified version of the equations for
Equation [9]using our notations.

GDay : (N — 1)* +n20?); = 0. (14)
GDsim : (A — 1)2 + 77201-2 =0. (15)
PPsin @ (1/\; — 1)? +n%c? = 0. (16)
EGa: (N = 1)” + (n* +2n)af (X — 1) + (P07 +n’a}) = 0. (17)
EGsim : (A — 12 +2n02(\i — 1) + %02 + n?ct = 0. (18)

We denote the singular values of matrix A in Equation[0]by o;. The eigenvalues of each dynamics’
Jacobian matrix are denoted by A;. Note that/Zhang & Yu|(2020) also derive characteristic equations
of memory-augmented first-order methods, such as OGD (Popov, 1980) and the momentum method,
which we do not cover in this paper.

C OMITTED RESULTS

Proposition 16. Alternating GD dynamics Fgp,, with a learning rate 1 € (0, 2) fails to converge
and oscillates around the Nash equilibrium of the game in Equation|S| However, its Lookahead
dynamics Gra.gp,, with a synchronization period k € N and a rate o € (0, 1) globally converges to

the Nash equilibrium if (1 — % + ZV4277> # 1.

Proof. One can easily check from Equation [2 that the dynamics F'gp,, can be written as

1 —n x(t)
Fap, (21", 2{") = [ 2} [ ol (19)
Al n 1— n $é)
Defining M o Ll? 1 :7372} , the Lookahead dynamics G1a.gp,, can be written as
) by |2
Graaoy(217,57) = (1 —a)l+aMb) | i) | - (20)
2

It follows that the eigenvalues of VxG1a-gp,, can be written as 1 — o + a)\’jt with A¢ L % +

ii”t_nz € A(M) for any 7 € (0,2). However, 1 — a + Ak is an interpolation between two distinct

points on Sy since |A+| = 1 and \¥ # 1, implying |1 — @ + a)\%| < 1. Therefore, we conclude
from Lemmathat the iterates of GLa_gp,, converge to the Nash equilibrium (0, 0) of the game
with convergence rate O(|1 — a + aA%|*/*), assuming the amortization of its computation over &
forward steps. The proof for oscillation of Fgp,, follows from Lemma[I5]and can be found in|Gidel
et al.|(2019a). O

Proposition 17. Simultaneous EG Lookahead dynamics Ga-ga,, With a learning rate n € (0, 1),
a synchronization period k € N and a rate o € (0, 1) globally converges to the Nash equilibrium
of Equation @ Furthermore, the rate of convergence is improved upon its base dynamics Fggg,, if
R(L—n*+in)*) < (1 —n? +n*)* and o is large enough.

Proof. Using simple algebra on Equation[5] the dynamics Fggg,, can be written as

I W oy _[1=n* - ]|}
EGsim (L1, T3 ) = [ n 1— 772} xét)] . 2D
Defining M def ﬁ 1 _77 7]2 . :7372} its Lookahead dynamics Gpa-ggg, With a synchronization
period k € N and arate o € (0, 1) can be written as
Grazce, (217, 28)) = (1 — )l + aM¥) [;%ii] : (22)
2
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It follows that the eigenvalues of V4G a gGg,, are 1 — o + ok with Ay - n* £in € A(M).
However, 1 — a + a\X is an interpolation between two distinct points on/inside S since [A+|* < 1
for any n € (0, 1). It follows that |1 — o+ a\% | < 1, from which we conclude from Lemmathat
the iterates of GiLa-EG;, converge to the Nash equilibrium (0, 0) of the game with convergence rate
O(]1 — a + aMi|*/*), assuming the amortization of its computation over k forward steps.

Now we show that the convergence is accelerated upon its base dynamics Fgg,, if R((1 — n* +
in)*) < (1 —n*+n*)?* and « is large enough. Figure|l](c) intuitively shows that the line segment

between (1,0) and A\ contains a line segment inside S, |~ when k is such that R(\%) < [AZF].

Therefore, for a large enough «, the interpolation 1 — o + a)\’j[ lies inside S PVALE This implies that
the convergence rate O(|1 — a + a i |t/*

) of GLa EGs,, 18 accelerated upon the rate O(|A+|") of its
base dynamics. O

Proposition 18 (Equilibrium of Lookahead dynamics). Let F' be a dynamics and G be its associ-
ated Lookahead dynamics with a synchronization period k € N. Then any equilibrium of F is an
equilibrium of G and any equilibrium of G is a periodic point of F.

Proof. Let k € N and o € (0,1) be the synchronization period and synchronization rate of G,
respectively. It is trivial to see that G(x*) = ((1 — a)id + aF*)(x*) = (1 — a)x* + ax* = x* if

F(x*) = x*. Conversely, one can easily check that G(x*) = (1 — a)x* + aF*(x*) = x* implies
Fk(x*) = x*.

D EXPERIMENTAL DETAILS

We report the actual hyperparameters used for the experiments of Section [5] in TablgD.2] and
Furthermore, we also provide the detailed derivations of the theoretically recommended range of
synchronization period k € N.

Table D.2: Hyperparameters used for the experiment on the bilinear game

Configuration Kk (Theorem|5i8) k o (Theorem|58) o

LA-GDy™ N 25 (0,1) 0.1
LA-GDy~ N 5 (0,1) 0.9
LA-GDgjm (18.47,39.62) 25 small enough 0.1
LA-GDgim ™~ (18.47,39.62) 5  small enough 0.9
LA-EGsim ™ (16.9,34.93) 25 large enough 0.9
LA-EGgi~ (16.9, 34.93) 5  large enough 0.1

Table D.3: Hyperparameters used for the experiment on the nonlinear game

Configuration k (Theorem k o (Theorem 10”11) o

LA-GDy,t (31.16,93.49) 35  small enough 0.1
LA-GDay~ (31.16,93.49) 5 small enough 0.9
LA-GDgj,, ™ (31.6,94.81) 35 small enough 0.1
LA-GDgsjp ™ (31.6,94.81) 5 small enough 0.9
LA-EGgjn™ (121.76, 365.30) 175 large enough 0.9
LA-EGgim ™~ (121.76, 365.30) 5 large enough 0.1

D.1 DERIVATION OF THEORETICALLY RECOMMENDED RANGE OF £ IN EQUATION

We plug in o(A) = {1.195,1.163,1.094,1.083,1.018,0.999,0.969, 0.888, 0.879, 0.852} with
Omax = 1.195 and o i, = 0.852 to Theorem [5H8] Then we have
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e LA-GDyy: {k € N : karccos(1 — 0'1;‘7’?) mod 7 # 0,Vo;},

. s 3T _
b LA_GDSim' (2&rctan0.087 2arctan0.12) - (18477 3962)’
b LA—EGSim: (Qarctgn 0.09° 2arct3a7:1 0.13) = (16973493)7

which give ranges for k as in TablgD.2]

D.2 DERIVATION OF THEORETICALLY RECOMMENDED RANGE OF k IN EQUATION@

LA-GD,; From Equation@, the Jacobian of dynamics F'La.gp,, Of Equation can be derived as

_ |1 i 1
VxF6py (21,22) = [77 1— 12 +ne(1 — 3z§)] [xg] , (23)
and it is trivial to see that it has an equilibrium at (0, 0). By plugging in ¢ = 0.01 and ) = 0.05, we
obtain

1 —0.05} 24)

VXFGDAIK(O’ O) = |:OO5 0.998

with eigenvalues Ay = 0.99 + 0.05i. Note that |A£] = 1.0003 > 1 and VyFgp,,(0,0) has the
imaginary conditioning of 1, which implies that the origin is an unstable equilibrium of GDaxy,
that can be locally stabilized by a Lookahead dynamics. By plugging in the eigenvalues and
Omin(VxF 6Dy, (0,0)) = Omax (Vi Fp,, (0,0)) = arctan g:35 = 0.0504 to Theorem |10l we obtain
the theoretically recommended range of k as (31.16, 93.49).

LA-GDgj, From Equation 1} the Jacobian of dynamics F'La.gpg, of Equation|13|can be derived
as

|1 -n T

vxFGDs;m(xlaxZ) - |:,',] 1 + 7’]6(1 _ ng):| |:$2:| ) (25)
and it is trivial to see that it has an equilibrium at (0, 0). By plugging in e = 0.01 and n = 0.05, we
obtain

1 —0.05] 26)

Vx-FGDsim(O’O) = |:005 1.005

with eigenvalues A. & 1.0025 + 0.0499i. Note that [A.| = 1.0037 > 1 and VxFapy, (0,0)
has the imaginary conditioning of 1, which implies that the origin is an unstable equilibrium of
GDyy that can be locally stabilized by a Lookahead dynamics. By plugging in the eigenvalues
and Opin(Vx F65, (0,0)) = Omax(VxFapy,, (0,0)) = arctan $:3492 = 0.0497 to Theorem [10] we
obtain the theoretically recommended range of k as (31.6,94.81).

LA-EGgi, From Equation EI, the dynamics F'pa-gGg,, Of Equation@ can be derived as

| , B T — T2

|::E/2:| - FEGSim (llaxz) - |:x2 + n(i‘l + E(i‘Q _ i.g)):| 9 Where (27)
Z1| _ Ty — 1T ‘

{iJ - La—%n@q4—dxz—aéh}' 8

By computing the derivatives with z; = 0,29 = 0 and € = 0.01, = 0.05, we obtain

0.9975 —0.05

with eigenvalues Ay = 0.949 + 0.0122¢. Note that |[A\y| = 0.949 < 1 and V¢ Fgqq,, (0,0) has the
imaginary conditioning of 1, which implies that the origin is an stable equilibrium of EGg;;,, whose
local convergence can be accelerated by a Lookahead dynamics. By plugging in the eigenvalues and
Omin (VxFEGsin (0,0)) = Omax (VxFEGg,, (0,0)) = arctan %9122 = 0.0129 to Theorem |11} we obtain
the theoretically recommended range of k as (121.76, 365.30?.

(29)
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E PROOFS

E.1 PROOF OF PROPOSITION[I]

Proof. One can easily check from Equation |1| that the dynamics F'gpy,, can be written as

(t)
1 - T
FGDSim (mgt)vx; )) - |:77 177:| [ ét)‘| : (30)

Defining M = o Ll? _17] ] , its Lookahead dynamics Gpa-gpg,, can be written as

(t)

Gracog, (@1, 27) = (1 - a)I+ aM¥) t%a GD
2

It follows that the eigenvalues of VG a.gps,, can be written as 1 — « + 04)\’; with A4 ©+ RS
A(M). Assuming R((1+in)¥) < 1, the line segment between (1,0) and A% contains a line segment
inside S; as in Figure I (b). Therefore, for a small enough «, the interpolation] — o + a\X. lies

inside Sy, implying |1 — a + a)M%| < 1. We thus conclude from Lemma |15|that the iterates of
GLA-GD,, converge to the Nash equ111br1um (0, 0) of the game. The proof for divergence of Fgpy,,
follows from Lemma[I3]and can be found in|Gidel et al.| (2019a)).

E.2 PROOF OF PROPOSITION[2]
Proof. Using simple algebra on Equation 4] the dynamics F'ppg,, can be written as
1 1 _ x(t)
Fop.. () .(¢) n 1 . 32
PPy, (T1 5Ty ) = Trgln 1 xét) (32)

1

n
k € Nand arate a € (0, 1) can be written as

Defining M & e Jm [ _177}, its Lookahead dynamics Gpa-ppg, With a synchronization period

(0 40 i
Grareg, (21, 257) = (1 — )l + aM*) (t) (33)

. def
It follows that the eigenvalues of VxGpa ppg,, are 1 —a + ak with Ay = £ }f;" € A(M). We know
that 1 — « + a\k is an interpolation between two distinct points on/inside S since [A+|* < 1 for

any n € (0,1). It follows that |1 — a + aA% | < 1, from which we conclude from Lemma that
the iterates of GiLa-pp,, converge to the Nash equilibrium (0, 0) of the game with convergence rate

O(|1 — a+ ark \t/ k), assuming the amortization of its computation over k forward steps.

Now we show that the convergence is accelerated upon the base dynamics Fppg, if R((1 +in)*) <
(1+ 7 2)k and « is large enough. Flgure (c) intuitively shows that the line segment between (1,0)
and \§ contains a line segment inside S|y, |« when k is such that R(A\%) < [A3¥|. Therefore, the

interpolation 1 — o + Ak lies inside S|a, |+ for a large enough .. This implies that the convergence
rate O(|1—a4aMi|t/*) of GpLapps,, is accelerated upon the rate O(|A+|?) of its base dynamics. []

E.3 PROOF OF LEMMA[3]

Proof. We prove each of the cases in their order.

Case p(X) = 1. Assume that Aye® # 1 for any Apax € Amax(X). Then we can immediately
conclude p(f(X)) < 1since 1 —a+aXf € A(f(X)) is an interpolation between two distinct points
(1,0) and \¥ on/inside S; for any \; € A\(X).
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@) p(X) > 1 (®) p(X) < 1

Figure 4: Visualized eigenvalues of (1 — a)I 4+ aX".

Case p(X) > 1. Assume that R(\*) < 1 for any A € A>1(X). Then for each A € A>1, A¥ can be
visualized as point B in Figure (a), where the existence of point D is guaranteed by R(\) < 1. It
is easy to see from the figure that

[ AC|| = alX* — 1] < 2cos(r — 0(N)) = || AD|| (34)

is sufficient to place 1 — o + aA¥ inside S;. Furthermore, for any A € A(X) such that [A| < 1,
1 —a+aF lies inside S; since 1 —a+a\* is an interpolation between two distinct points on/inside
Sy. Therefore we conclude p(f (X)) < 1.

Case p(X) < 1. Assume that R(A\F) < p(X)?* for any A € Apax(X). Then for any \; € \(X),
A% can be visualized as point B in Figure E| (b) since the existence of point D is guaranteed by
RAF) < p(X)?* and sin(p(\;)) = sin(0(\:))/p(X)* follows from the law of sines. Therefore we
can intuitively see from the figure that

|BC|| = (1 — a)|AF — 1] < 2p(X)" cos(m — d(\;)) = |[BD|| (35)

is sufficient to place 1 — a + a\¥ inside S, (x)*» concluding the proof. [

E.4 PROOF OF LEMMA[4]

Proof. Let us denote 0, & Omin(S), Omax o Omax (S) for brevity and let & € N be such that

3 370mi 3 6 3
ke (3. ). Then we have kfn € (5, Sin) C (5, %) and kb € (3522, %) C

(%, 2%), which implies R(A\F) < 0 for any A; € S such that S(A;) > 0. Since every element of S
has its conjugate pair in S by the assumption, we conclude R(\¥) < 0 for any \; € S.

Now we show that the existence of & € N such that k € <L S ) is guaranteed for a small

20min’ 20max

enough n > 0 when < 3. Using simple algebra, we can see that 0,,x < f(Omin) for

%min(‘s)
[+ R — R defined by f(z) = 25 is equivalent to o 55— > 1, implying nonempty
NN (ﬁ, Jﬁ) Therefore it suffices to show that @yax < f(Omin) holds for a small enough
Smax (S)
n > 0 when S (S) < 3.

Let us define a function // : R — R given by

def 20max 14+ nRmax (S) 1+ 2secOpin™
Hn) = (1 + T ) (1 + NRnin (S) 1+ 2secOpmax™ +h) (36)
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| — def 1Smin (5) 4 def 1S max (S) def (142 sec Oypip ~) tan” Gmax "
where Qmm = arctan Wmax(s)’ Gmax = arctan Wmm(s) and b = 520 .
We show that the inequality
Snax () 3

37
Swn(S) = H0) 7

implies Omax < f(Omin) and conclude the proof by showing that there exists a small enough n > 0
such that satisfies Equation |37|when Smax(%) 3,

Smin(s)

Note that the inequalities Onin~ < Omin and Opax < Omax ™ directly follow from the definitions of

Omin~ and Ope ™. Furthermore, using the Shafer-type double inequalities (Mortici & Srivastaval,
2014) for arctan(-), we obtain
B 3tan Omin~ 30 min
Omin~ > = , 38
T +2¢/1 + tan? O pin— (1 + nRmax) (1 + 2 5€C Ormin ™) 8
t omaxjL 1
L o tan® O (39)
1+2v/1+tan? O+ 180
_ 377%max + n(\\smaxtan‘lemax-i_ , (40)
(1 + nRmin ) (1 + 28€C Opax ™) 180(1 4+ nRmin)
from which follows that
Omax < Hmax+ _ %max(s> 1+ n%max(s) 14 2secOmin~ +b). 41)
0 min Omin— C:Smm(S) 1+ n%min(S) 1+ 2secHhBmaxt
However, assuming inequality |37] we can derive
(‘max 1 max 1 2 0min B amax *
;s (S)( + i (S)>< + 2sec +b>< 3 _ S ) 42)
\ymin(s) 1+ néRmin(S) 1+ 2secOmax™ T+ 2emel)(—"_ emax+

. a2 . . . .
Furthermore, since f'(z) = (ﬂi#)z, we know that f is both concave and monotonically increasing.
Hence it follows that

f(emax+) f(emin)

0T < 0 (43)
max min
from which we obtain Oi,x < f(Omin) by combining Equation
Finally, we prove that Equation [37| holds for a small enough > 0 when gm'f"‘((g)) < 3. Assume
min
ng((g)) < 3andlete & 3— % > 0. By the continuity of % at 7 = 0 and the fact that
H(0) = 1, there exists d > 0 such that |3 — 725| < ¢ holds for any ) € (0, §). Therefore we have
g[“x‘l‘I‘T"((g)) =3—-€< % for any n € (0, 0), concluding the proof. O
E.5 PROOF OF THEOREM[3]
Proof. From Equation[2] the dynamics Fgp,, of Equation[IT|can be derived as
w oy _[L -z ] (s
Fap,, (x17,%3") = NS L P52 (] (44)

Defining M £ nIZT I _775;"22] , its Lookahead dynamics Gra-gp,, With a synchronization pe-

riod k € Nand arate @ € (0, 1) can be written as

(t)
Graopy (317, x8)) = (1 - a)I + aMF) t@] ' (45)
2
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Together with Equation we can see that eigenvalues of VyGLa.Gp,, can be written as 1 —a—f—a)\’j[i

. def n%c? . n2o? 2 .
with Ay; = 1 — 5+ £ino\ /1 — 5+ € AM) for any 1 € (0 —) In the meanwhile,

? omax

simple calculation gives us |Ax;| = 1, which implies p(M) = 1. Now assume k£ € N is such that

k arccos(1 — "22—‘”2) mod 27 # 0 for any o;. Then it follows that A%, # 1 for any Ay; € A\(M),
from which we obtain p(VxGrLacp,,) < 1 from Lemma [3| It follows from Lemma [15| that the
iterates converge to the origin, and we conclude the proof by observing that the transformations
x1 — U[x1;0,,_,] +x5 and xo — V [X2;0,,_,] +x35 of (0,0) € R" x R" gives (x7,x5) € R™ xR",
which is a Nash equilibrium of Equation 9] O

E.6 PROOF OF THEOREM [6]

Proof. From Equation|[T} the dynamics Fgp,, of Equation|TT]can be derived as

t) (¢ L. —X, x(
Fapy, (Xg )’Xé ) = |:772r TI7T ] lxét) ’ (46)
det | 0, X, def . . .
Let us define J = | _+, 0. and M = I — nJ. Then its Lookahead dynamics Gpa-gpg, With a

synchronization period & € N and a rate o € (0, 1) can be written as
IR0 N
Gacmu, (xx) = (1= )l + aM") |, | )
2

Together with Equation @ we can see that the eigenvalues of ViGpa-cpg,, can be written as 1 —a+
Xk, with Ay, ®1t ino; € A(M). In the meanwhile, one can easily see that |Ay;| > 1, implying
p(M) > 1. Now assume that k € ( T i ) Then since tan Oyin(A(M)) =

2 arctan no i, ’ 2 arctan nomax

20 min (AM)) ? 20max (A(M))
Lemma that R(\%,;) < 0 for any A; € A(M), and the existence of k is guaranteed for a small
Smax(MM))_ omax 3 Then it follows from Lemmathat p(VsGraapg,) < 1

Smin(AM)) T omin
holds for a small enough a. Therefore, by Lemma [T5] the iterates converge to the origin, and
we conclude the proof by observing that the transformations x; +— U [x1;0,,_,] + X} and X2 —
V [x2;0,,—.] + x5 of (0,0) € R" x R” gives (x],x5) € R™ x R", which is a Nash equilibrium of
Equation 9] O

NOmin and tan O, (A(M)) = 9omax, we have k € ( x 3 ) It follows from

enough 17 when

E.7 PROOF OF THEOREM[7]

Proof. From Equation[d] the dynamics Fpp,,, of Equation|[TT|can be derived as

=1 ()

I, > X

I PPsim (th)vxét)) |: n}] T]I :| [ %t)] . (48)
A X5

Let us define J & [_Oé %T} and M £ (1+ 7J)~!. Then its Lookahead dynamics Gy a-Gp,,, with

a synchronization period & € N and arate o € (0, 1) can be written as

()
Grapra, (%1, %57) = (1= )T+ aM) [ﬁ%ﬂ] : (49)
2

Together with Equation @], we can see that the eigenvalues of VG kg, can be written as 1 —

a + a)k,; with Ay, def 11:7727212 € AM). In the meanwhile, we can easily see that |Ay;| < 1

holds for any 7 > 0. Therefore, 1 — a + oAk, is an interpolation between two distinct points
(1,0) and A%, on/inside Sy, implying p(VxGprappg,) < 1. Hence it follows from Lemma 15| that
the iterates converges to the origin. However, the transformations x; — U [x1;0,,_,] + X} and
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X — V[x2;0,_.] +x5 of (0,0) € R" x R gives (x},x5) € R™ x R™, which is a Nash equilibrium
of Equation 9}

Now we show that G a-pp,, can accelerate the convergence upon its base dynamics F'ppg,,. Assume
ke ( z , ST ) Note that M~ ! shares the same eigenvalues with the Jacobian of

2arctan noyi, ’ 2arctan no i

Fp,,- Therefore we have tan Gmin()\max(M_l)) = tan Omax (Amax (M_l)) = 7)0min , Which implies
ke (29 : (/\:1 = T (/\iﬂ (M*l)))' Then it follows from Lemmathat %(A;f) < 0 for
min (Amax ax ax

any /\E € Amax(M™1), and the existence of & € N is guaranteed for a small enough 7. Then
we have R(\X,) < 0 for any A1; € A(M) since the reciprocal of a complex number preserves the
sign of the real part. Hence it follows from Lemma [3|that p(VxGpappg,) < p(M)* holds for a

large enough ar. We conclude the proof by noting that the convergence rate O(p(VxGpa-pps, )+ ) of
GLA-ppg,, provided by Lemma |15]is faster than the rate O(p(M)?) of Fppy,,, assuming amortization
of computations over k forward steps. O

E.8 PROOF OF THEOREM S

Proof. From Equation 5} the dynamics F'ggy, of Equation[IT|can be derived as

t) (¢ L —nx2 -, (t)
Frgg, (%, x47) = { S _’77723} l 0 (50)
def [ X2 %, def
Let us define J = 72? 522 and M = I — nJ. Then its Lookahead dynamics G a-ggs,, With a

synchronization period & € N and a rate o € (0, 1) can be written as

(t) k x{”
Grarcs, (X1, x5) = (1 — )l + aM¥) NOIR (51)
2

Together with Equation@ we can see that the eigenvalues of Vi G1.a-gqg,, can be written as 1 — o+
ark, with Ay, € o tino; € A(M). In the meanwhile, we can easily see that |Ay;| < 1 for any
n e (07 0max> implying p(M) < 1. Therefore, l—a—l—a)\’fm is an interpolation between two distinct

points (1,0) and A%, on/inside Sy, implying p(VxGraEGs,,) < 1. Hence it follows from Lemma
that the iterates converges to the origin. However, the transformations x; +— U [x1;0,,,—,-] + X} an
X3 — V[x2;0,_.]+x5 on (0,0) € R" xR" gives (x],x3) € R™ x R™, which is a Nash equilibrium
of Equation

Now we show that G a-ggg;, can accelerate the convergence upon its base dynamics F'ggg,,. Assume

3 1 1
ke <2mmn’r T ”n i > and 7 € (O, S ) Note that |\;|2 = 2n%(0; — 27])24—5
“min

2 arctan
“min

holds for each Ay; € A(M). This implies Apux (M) = {1 — 10 min £ 90 min } for any n € (0, m) ,

hence k € (29min (D) 29max(§:rnax(M)) ) It follows from Lemmachat R(AE,;) < 0 holds for

any Ay; € A\(M), and the existence of k is guaranteed for a small enough 7. Then by Lemma
we have p(VyGrakcg,) < p(M)* for a large enough a.. We conclude the proof by noting that the

convergence rate O(p(VxGraEGs,)* ) of GLaEGs, provided by Lemma |15is faster than the rate
O(p(M)?) of FEgy,,, assuming amortization of computations over k forward steps. O

E.9 PROOF OF THEOREM[9

Proof. From Equation[7] the Jacobian of G evaluated at x* can written as

ViG(x*) = Vx ((1 — a)id + aF*) (x*) = (1 — )T + aVF* (x*) (52)
k
=(1-al+a][VeF(FH(x)) = (1 - a)l + a(ViF(x*)F, (53)
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where the chain rule is used in third equality with a slight abuse of notation F° ®'id. We use the
fact that x* is an equilibrium of dynamics F for the last equality. It is easy to see from Equation [53]
that eigenvalues of V4G/(x*) can be written as 1 — o + a\F for each \; € A\(ViF (x*)).

However, \¥ is either on/inside S; since |\;| < 1 for each i due to the Lyapunov stability of x* in F.
Therefore, 1 — a + a\¥ is an interpolation between two points (1,0) € S; and A either on/inside
S1; hence |1 — a + aAF| < 1. By assumption that \¥ # (1,0) for each \; € A\(VyxF(x*)), the
inequality is strict, i.e. |1 — a + a\¥| < 1, implying the local asymptotic stability of x* in G by
Proposition[T4] O

E.10 PROOF OF THEOREM/[I(]

Proof. From Equation[7] the Jacobian of G evaluated at x* can written as

ViG(x*) = Vy (1 — a)id + aF*) (x*) = (1 — &)l + aVyF*(x") (54)
k
=(1-a)l+a[VeFF ' (x") = (1 - o)+ a(VsF(x"))", (55)

where the chain rule is used in third equality with a slight abuse of notation F° %'id. We use the
fact that x* is an equilibrium of dynamics F for the last equality. It is easy to see from Equation [53]
that the eigenvalues of V4G (x*) can be written as 1 — o + a\¥ for each \; € A(VF(x*)).
Now assume that every element of A>q(VyF(x*)) has non-zero imaginary part, and let k& €
s 3 nxmn *) —
(s Toere T ey ) - Letn > 0,3 € B be such that V3 F(x) = 1= 7.
Then by Lemma@ R(AF) < 0 holds for any \; € A\>1(VxF(x*)), and the existence of such k € N
is guaranteed for a small enough 1 when gmax((iig"?((:* )) )) )) < 3. Then it follows from the second

case of Theorem[3|that p(VxG(x*)) < 1 holds for a small enough c.. By Proposition[14] this implies
local asymptotic stability of x* in G, concluding the proof. O

E.11 PROOF OF THEOREM L]

Proof. From Equation[7] the Jacobian of G evaluated at x* can written as

VG (x*) = Vi ((1 — a)id + aF*) (x*) = (1 — )T + aV F¥(x*) (56)
k
=(1-a)l+a[VeFF ™ (x") = (1 — o)+ a(VeF(x"))", (57)

where the chain rule is used in third equality with a slight abuse of notation F° %'id. We use the
fact that x* is an equilibrium of dynamics F' for the last equality. It is easy to see from Equation [57]
that the eigenvalues of V4G (x*) can be written as 1 — o + a\¥ for each \; € A(VF(x*)).

Now assume that every element of Ay (VxF'(x*)) has non-zero imaginary part, and let k €
s 3 nxn *\
(29min(>\max(VxF(X*)))’ 29max(/\max(VxF(X*))))' Letn > 0,J € R™*" be such that Vi F'(x*) = I—n].
Then by LemmaEI, R(AF) < 0 holds for any \; € Amax(VxF(x*)), and the existence of such k € N
is guaranteed for a small enough 7 when SmaxQmax (V<P (7)) 3 Then it follows from the third

Sin (Amax (V< F(x*)))
case of Theoremthat p(VxG(x*)) < p(VxF(x*))* holds for a small enough .. We conclude the

proof by noting that this implies the upper bound O(p(V,G(x*)*) on the rate of local convergence
provided by Proposition s faster than O (V4 F(x*)?). O

E.12 PROOF OF PROPOSITION[I2]

Proof. We directly follow the proofs of Lemma 2.1 and Lemma 3.1 in |Daskalakis & Panageas
(2018) and show that @ € (0, ﬁ) guarantees locally diffeomorphic Lookahead dynamics, i.e., it
is locally invertible at any given points.
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Note from Equation [7] that the Jacobian of G evaluated at X can written as

ViG(x) = Vy ((1 — @)id + aF¥) (x) = (1 — a)I + aViF*(x) (58)
k
=1 -a)l+a][VsF(F(x), (59)

i=1

where we have used the chain rule in the last equality with a slight abuse of notation F° % id.

Now assume that o € (O, ﬁ) and consider the following inequalities

HVFFl HVFFl

where the ﬁrst and second 1nequa11t1es hold for any operator norms and the last inequality is due to
L-Lipschitzness of F'. Then it follows from the assumption that

k
H [VxF(FH (x)|| < LF,  (60)

11—«

k
p(J VeF (F7H(x))) < LF < (61)
Therefore, we conclude that G locally diffeomorphic, since p(]_[f:1 ViF(F'1(x"))) < =% im-
plies 0 ¢ A\(VxG(x)).

Now let us define the set of unstable equilibria of G as U £ {x* : G(x*) = x*, p(V,G(x*)) > 1}.

Then it directly follows from the locally diffeomorphic G and the arguments of (2019);

Daskalakis & Panageas| (2018) that the set {z(%) : 75lim Gt (z9)) € U} is of measure zero, which
— 00

concludes the proof. We refer the readers to Appendix A of [Daskalakis et al.[(2018) for the detailed
derivation of measure-zero arguments. O

E.13 PROOF OF PROPOSITION [13]

Proof. From Equation[7] the Jacobian of G evaluated at X* can written as

ViG(x*) = Vx ((1 — a)id + aF*) (x*) = (1 — )T + aVF* (x*) (62)
k
:ﬂ—@LHdIWI@“%fD:O—aﬂ+MVJhﬂf, (63)

where the chain rule is used in third equality with a slight abuse of notation FO 2'id. We use the fact
that x* is an equilibrium of dynamics F' for the last equahty It is easy to see from Equatlon@that
the eigenvalues of V4G (x*) can be written as 1 — a+ a\¥ foreach \; € A(VF(x*)). However, by
the assumption, there exists a A € A(VxF'(x*)) such that |)\| > 1. Since A is a positive real number,
we have |1 — a + a\¥| > 1, concluding the proof. O

F ADDITIONAL EXPERIMENTS

F.1 EIGENVALUES OF GAN DYNAMICS

Theorem|[I0HTT|assumes the radius-supporting eigenvalues, namely A1 (VxF) and Apax (Vi F)), to
have non-zero imaginary parts and imaginary conditioning less than 3; otherwise, the existence of
k that satisfies the sufficient conditions of Theorem [IOIT] may not exist. We verify whether such
assumptions are realistic in practical settings. Specifically, we train GANs on MNIST dataset with
two different loss functions, non-saturating (Goodfellow et al [2014) and WGAN-GP (Gulrajani
let al, 2017), and visualize the top 20 eigenvalues of Vy Fgpy,, for each loss function in Figure 5

Figure [5] suggests most of the radius-supporting eigenvalues of VyFgpy,, at well- performmg point
(Inceptlon Score (IS) (Salimans et al.} 2016) & 9) are distributed along the imaginary axis, and have
non-zero imaginary part with imaginary conditioning less than 3. This suggests that our assumptions
on the eigenvalues is not unrealistic and Theorem [[O{1 I| can be applied for a practical non-linear
game like GANGs.
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Figure 5: Visualized top 20 eigenvalues of VFgp,,, before (blue) and after (orange) training GANs
with two different loss functions on MNIST.

F.2 ILL-CONDITIONED BILINEAR GAMES AND MOMENTUM METHODS

* GDar

* GDait,nm
w — A.GD* 3
= LA-GDy % = LA-GDait,nm
E 100 EGsim S h EGsim,nm
g LA-EGSim g LA-EGsim, nm
- 1)
= LA-EG3p, S += EGsim,pm
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D 107 D 102
0 2000 4000 i 6000 8000 10000 [ 2000 4000 6000 8000 10000
Iterations Iterations
(a) Lookahead dynamics without momentum. (b) Lookahead dynamics with momentum.

Figure 6: Optimization progress of first-order methods in an ill-conditioned bilinear game. (a)
Comparison between convergence of Lookahead dynamics chosen by (4) and (—) against Theorem
(] and (b) Comparison between convergence of Lookahead dynamics with positive (PM) and
negative (NM) momentums.

We test the convergence and acceleration of Lookahead dynamics in an ill-conditioned bilinear
game, and see if Lookahead can accelerate momentum-based dynamics in such game. Specifically,
we test convergence of each dynamics in the game given by Equation [I2] with n = 20 and € = 1,
which gives a sample of A with o ,x = 8.81 and o, = 0.11. Note that this game has a significantly
larger conditioning number % = 76.4 than the bilinear game of a conditioning 1.401 we used in

Section

We fix n = 0.05 throughout the experiments, and use Theorem [§] to derive theoretically recom-
mended (+) hyperparameters k£ = 300, « = 0.9 for LA-EGg;y,, dynamics. We use £ = 50, = 0.1
to represent hyperparameters of LA-EGg;,, chosen against (—) the theorem. For LA-GD,y, we use
k = 300, = 0.1. We use the momentum factor 5 = —0.1 for negative (NM) and # = 0.1 for
positive (PM) momentum methods.

Figure[6](a) shows that Theorem|[5]and 8]indeed hold even for an ill conditioned game. Furthermore,
Figure |6] (b) suggests that Lookahead can significantly accelerate the convergence of momentum
methods that provably perform well on bilinear games, including the gradient descent with negative

momentum (Gidel et al} 2019b) and extragradient with momentum (Azizian et al.|[2020).
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