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Abstract
Data contamination has garnered increased001
attention in the era of Large language mod-002
els (LLMs) due to the reliance on exten-003
sive internet-derived training corpora. The004
issue of training corpus overlap with evalua-005
tion benchmarks—referred to as contamina-006
tion—has been the focus of significant recent007
research. This body of work aims to identify008
contamination, understand its impacts, and ex-009
plore mitigation strategies from diverse per-010
spectives. However, comprehensive studies that011
provide a clear pathway from foundational con-012
cepts to advanced insights are lacking in this013
nascent field. Therefore, we present the first014
survey in the field of data contamination. We015
begin by examining the effects of data con-016
tamination across various stages and forms.017
We then provide a detailed analysis of cur-018
rent contamination detection methods, catego-019
rizing them to highlight their focus, assump-020
tions, strengths, and limitations. We also dis-021
cuss mitigation strategies, offering a clear guide022
for future research. This survey serves as a023
succinct overview of the most recent advance-024
ments in data contamination research, provid-025
ing a straightforward guide for the benefit of026
future research endeavors.027

1 Introduction028

Data contamination refers to the accidental or de-029

liberate inclusion of evaluation or benchmark data030

in the training phase of language models, resulting031

in artificially high benchmark scores (Schaeffer,032

2023). This issue, while longstanding—stemming033

from the foundational ML principle of separating034

training and test sets—has garnered increased at-035

tention with the advent of large language models036

(LLMs). These models are trained on vast corpora037

sourced from the web (OpenAI, 2023; Touvron038

et al., 2023a), heightening the risk that training039

data may inadvertently encompoass instances from040

evaluation benchmarks (Brown et al., 2020; Chowd-041

hery et al., 2022; Touvron et al., 2023a,b). Such042

contamination can obscure the true performance 043

of LLMs, as it might artificially inflate benchmark 044

scores by teaching models to “memorize” rather 045

than “reason”. Moreover, a fundamental objective 046

in machine learning is to develop models that gener- 047

alize well to unseen scenarios. Data contamination, 048

however, may lead to models that favor memoriza- 049

tion over generalization, rendering benchmarks less 050

effective in measuring true generalization abilities. 051

The earliest work on data contamination in 052

LLMs was published by the commercial company 053

for GPT-3 (Brown et al., 2020), and was subse- 054

quently followed by research on PaLM (Chowd- 055

hery et al., 2022) and LLaMA (Touvron et al., 056

2023a,b). These studies employed n-gram based 057

substring detection methods as the foundational ap- 058

proach for detecting data contamination. However, 059

such methods necessitate full access to the pre- 060

training corpora. As the proliferation of LLMs con- 061

tinues, many models—ranging from closed-source 062

platforms to open-source projects that only make 063

their weights available—lack such transparency. 064

This opacity presents a significant challenge to the 065

NLP community in terms of fairly evaluating and 066

comparing LLMs, especially when the extent of 067

data contamination and its impact on these models 068

remain undisclosed (Sainz et al., 2023). 069

To address this issue, several methods have been 070

proposed to detect data contamination without ac- 071

cessing training corpora (Golchin and Surdeanu, 072

2023a,b; Oren et al., 2023; Shi et al., 2023; Deng 073

et al., 2023; Bordt et al., 2023). These methods pro- 074

vide different perspectives, from canonical (Oren 075

et al., 2023) and behavioral observation (Golchin 076

and Surdeanu, 2023a,b) to masking (Deng et al., 077

2023; Bordt et al., 2023) and membership inference 078

attacks (Shi et al., 2023). However, these emerg- 079

ing methods resemble isolated stars on the plateau, 080

lacking a detailed and well-structured discussion of 081

their advantages and disadvantages in the literature. 082

In this paper, we present a comprehensive anal- 083
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Data Contamination

Task

Definition

Urgency

Domain

Pretrained
Language Models

Bert (Devlin et al., 2019), GPT (Brown et al., 2020)

Open-source
Large Language Models

Llama (Touvron et al., 2023a), Mistral (Jiang et al., 2023),
Qwen (Bai et al., 2023), Falcon (Mei et al., 2022), etc.

Black-box
Large Language Models

ChatGPT (OpenAI, 2022), GPT-4 (OpenAI, 2023),
Gemini (Google, 2023), Claude (Anthropic, 2023), etc.

Effect Magar and Schwartz (2022), Blevins and Zettlemoyer (2022),
Jiang et al. (2024), Zhu et al. (2024)

Detection

Retrieval

Model Developer-Side GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al., 2022),
Llama (Touvron et al., 2023a)

Pretraining Corpora-Side Dodge et al. (2021), Piktus et al. (2023a), Elazar et al. (2023)
Kandpal et al. (2023), Deng et al. (2023)

Time Cutoff
Pretrain-Level Shi et al. (2023)

Task-Level Li and Flanigan (2023), Roberts et al. (2023),
Aiyappa et al. (2023)

Masking-based
Book-Level Chang et al. (2023)

Benchmark-Level Deng et al. (2023), Bordt et al. (2023)

Perturbation-based Wei et al. (2023), Yang et al. (2023)

Canonical Order Oren et al. (2023)

Behavior Manipulation Golchin and Surdeanu (2023b), Golchin and Surdeanu (2023a)

Membership Inference
Attacks

Yeom et al. (2018), Carlini et al. (2021), Carlini et al. (2022)
, Mattern et al. (2023), Shi et al. (2023)

Mitigation
Evaluation Zhu et al. (2023a), Zhu et al. (2023b), Li et al. (2023)

Guideline Jacovi et al. (2023), Zhou et al. (2023), Sainz et al. (2023)

Figure 1: Taxonomy of research on Data Contamination in large language models that consists of the task, effect,
detection and mitigation.

ysis of the growing field of data contamination084

detection and mitigation1. Our objective is to delve085

into the downstream impacts of data contamination,086

investigate existing methods for detecting data con-087

tamination,and discuss a range of mitigation strate-088

gies. The paper is structured as outlined in Fig-089

ure 1. We start by establishing the background of090

data contamination (§2) and discussing the effect091

of contamination (§3). Following this, We provide092

a detailed analysis of current methods for detecting093

data contamination (§4). We categorize these meth-094

ods and critically examine the assumptions each095

relies on, highlighting their limitations and the pre-096

requisites for their application. Subsequently, we097

explore strategies for mitigating data contamina-098

tion (§5), tackling potential hurdles and proposing099

avenues for future investigations in this domain.100

The overarching aim of this paper is to furnish101

NLP researchers with an in-depth, systematic un-102

1The related open-source materials are available
at https://anonymous.4open.science/r/
data-contamination-survey-3089. We will
consistently maintain and update them upon publication.

derstanding of data contamination issues, thereby 103

making a significant contribution to enhancing the 104

integrity of evaluations in the field and offering a 105

valuable resource for the community. 106

2 Background 107

To provide a comprehensive understanding of data 108

contamination, this section delves into its defini- 109

tion, the urgency of addressing it, and its implica- 110

tions across different types of language models. 111

What is data contamination? Data contamina- 112

tion occurs when benchmark or test set data are in- 113

cluded in the training phase, leading to potentially 114

inflated benchmark scores. This issue is closely re- 115

lated to data memorization, where models may in- 116

advertently “learn” specific data points rather than 117

generalizing from them. Research in the field of- 118

ten explores the connection between data contam- 119

ination and its impact on downstream task perfor- 120

mance, drawing on memorization techniques to as- 121

sess this relationship (Magar and Schwartz, 2022). 122

Furthermore, several recent techniques for detect- 123
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ing data contamination often indirectly evaluate124

whether language models are memorizing bench-125

mark data (Chang et al., 2023; Deng et al., 2023).126

Why this task is urgent? Data contamination is127

a critical and pressing issue, particularly in the cur-128

rent landscape of LLMs that predominantly utilize129

extensive web corpora for pretraining (Chowdhery130

et al., 2022; Touvron et al., 2023b). The risk of data131

contamination increases when the benchmarks for132

evaluating these models are derived from the same133

web sources used for training. This creates a poten-134

tial overlap between training data and evaluation135

benchmarks, leading to concerns over the validity136

and fairness of model comparisons. Moreover, data137

contamination undermines the trustworthiness of138

benchmarks to accurately measure a model’s gen-139

eralization capabilities to unseen scenarios, as it140

blurs the line between genuine learned patterns and141

simple memorization of test data.142

Language model types in data contamination143

(1) Pretrained Language Models: In the realm144

of pre-trained language models and data contam-145

ination, the focus often centers on models like146

BERT (Devlin et al., 2019) and GPT-2 (Radford147

et al., 2019), examining the contamination effect148

(§3). This involves exploring the correlation be-149

tween the contaminated data and downstream task150

performance from the perspective of how well these151

models remember and are influenced by the con-152

taminated input.153

(2) Open-source Large Language Models: As pre-154

viously mentioned, open-source LLMs typically155

refer to large-scale models like LLaMA (Touvron156

et al., 2023a), Mistral (Jiang et al., 2023), and Fal-157

con (Mei et al., 2022), as well as newly emerg-158

ing models such as Qwen (Bai et al., 2023) and159

OLMo (Groeneveld et al., 2024). These models are160

characterized by their accessibility, allowing for ex-161

tensive research into their architectures and training162

datasets to develop and validate new methodologies163

within the field.164

(3) Black-box Large Language Models: Black-165

box LLMs often refer to proprietary models such166

as ChatGPT (OpenAI, 2022), Claude (Anthropic,167

2023), and Gemini (Google, 2023). The defining168

feature of these models is the inaccessibility of169

their training corpora to researchers, making it chal-170

lenging to investigate data contamination. Conse-171

quently, as detecting data contamination in black-172

box models poses a hard task, many recent studies173

have focused on developing methods to address this 174

issue (Golchin and Surdeanu, 2023b; Deng et al., 175

2023). 176

3 Effect 177

The contamination effect refers to the extent to 178

which a model, exposed to contaminated data dur- 179

ing its training phase, is influenced by this data in 180

its performance on downstream tasks. Research in 181

this area typically involves selecting a base model 182

and a fixed pretraining corpus, while varying mix- 183

ture of contaminated data. This approach allows 184

for observing how changes in the data mix affect 185

downstream task performance. 186

Task-Level Contamination Magar and 187

Schwartz (2022) pretrained the BERT-based model 188

(an encoder-only architecture) on a combined 189

corpus of Wikipedia and labeled data from 190

downstream tasks. The findings reveal that while 191

models can memorize data during pretraining, 192

they do not consistently utilize this memorized 193

information in an effective manner. Additionally, 194

the extent of exploitation is affected by several 195

factors, including the duplication of contaminated 196

data and the model size. Jiang et al. (2024) explore 197

the contamination effect of the decoder-only 198

architecture in GPT-2. Specifically, they pretrained 199

GPT-2 on a selected portion of The Pile (Gao 200

et al., 2020) corpora, intentionally introducing 201

contaminated data during the pretraining phase 202

to assess its impact. Their findings reveal that 203

traditional n-gram-based methods are limited 204

in detecting contamination, and increase the 205

repetition of contaminated data inversely affects 206

model performance, leading to a decline. Zhu 207

et al. (2024) also investigate the relation between 208

memorization and generation in the context of 209

critical data size with the configure of grokking. 210

The authors introduce the Data Efficiency Hypoth- 211

esis, which outlines three stages of data interaction 212

during model training: insufficiency, sufficiency, 213

and surplus. The study observes that as models 214

grow, they require larger datasets to reach a phase 215

transition smoothly. 216

Language-Level Contamination In addition to 217

task-level contamination, Blevins and Zettlemoyer 218

(2022) also explore language-level contamination, 219

a topic that has not been extensively examined. 220

Their research indicates that the corpora utilized 221

for pretraining these models include a significant 222
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amount of non-English text, albeit less than 1% of223

the total dataset. This seemingly small percentage224

equates to hundreds of millions of foreign language225

tokens in large datasets. The study further reveals226

that these minor proportions of non-English data227

considerably enhance the models’ capability for228

cross-language knowledge transfer. There is a di-229

rect correlation between the models’ performance230

in target languages and the volume of training data231

available in those languages.232

4 Detecting Data Contamination233

4.1 Retrieval234

Retrieval-based detection is the most straightfor-235

ward method for identifying data contamination236

issues in pretraining datasets. This research can237

be approached from two perspectives: the model238

developers’ side, and the pretraining corpora side.239

4.1.1 Model Developer-Side240

In the era of LLMs, OpenAI set a significant prece-241

dent with the release of GPT-3 (Brown et al., 2020).242

GPT-3 pioneered a detailed approach to detect-243

ing data contamination in LLMs from an inter-244

nal perspective. The methodology involved fil-245

tering the initial training set to eliminate any text246

from the benchmarks that appeared in the train-247

ing data. This was achieved by identifying over-248

laps through searching for 13-gram matches be-249

tween the test/development sets and the training250

data. Overlaps were analyzed using a variable word251

count, determined by the 5th percentile of example252

length in words, with a set minimum threshold of253

8 words for non-synthetic tasks and a maximum of254

13 words for all tasks.255

Following this work, Llama-2 (Touvron et al.,256

2023b) employs a similar technique to detect data257

contamination, combining retrieval methods with258

n-gram-based tokenization. Specifically, any to-259

ken n-gram match exceeding 10 tokens indicates260

contamination. This method facilitates a nuanced261

analysis of contamination levels, classifying sam-262

ples as clean (i.e., less than 20% contamination),263

not clean (i.e., 20-80% contamination), and dirty264

(i.e., more than 80% contamination). It uses skip-265

grams longer than 10 tokens and suffix arrays for266

efficient identification, employing parallel process-267

ing to improve speed and scalability.268

4.1.2 Pretraining Corpora-Side269

Other than technical reports from the model de-270

veloper, several other research studies focus on271

contamination in open-source pretraining corpora 272

commonly used for developing LLMs. 273

Searching Tool To explore different pretrained 274

corpora, various specialized tools have been de- 275

veloped. Piktus et al. (2023a) introduce the 276

ROOTS (Laurençon et al., 2023) Search Tool, 277

a search engine that spans the entirety of the 278

ROOTS corpus, featuring both fuzzy and exact 279

search capabilities. Furthermore, Piktus et al. 280

(2023b) present Gaia, a search engine designed 281

based on established principles, providing access 282

to four widely recognized large-scale text collec- 283

tions: C4 (Raffel et al., 2023), The Pile (Gao 284

et al., 2020), LAION (Schuhmann et al., 2022), 285

and ROOTS (Laurençon et al., 2023). Additionally, 286

Elazar et al. (2023) describe WIMBD, a platform 287

offering 16 analytical tools that enable users to un- 288

cover and contrast the contents of vast text corpora. 289

Indexing System The primary constraint of 290

search tools is their dependency on extensive com- 291

putational resources, combined with the absence of 292

APIs for scalable integration. For individuals en- 293

deavoring to develop a custom information retrieval 294

system, Lin et al. (2021b) introduce Pyserini, a user- 295

friendly Python-based toolkit designed for replica- 296

ble information retrieval (IR) research. Pyserini fa- 297

cilitates various retrieval methods, including sparse 298

retrieval using BM25 with bag-of-words represen- 299

tations, dense retrieval via nearest-neighbor search 300

in transformer-encoded spaces, and a hybrid ap- 301

proach that combines both methods. 302

Benchmarks Overlap Analysis In their pioneer- 303

ing work, Dodge et al. (2021) conducted the first 304

comprehensive analysis of data contamination be- 305

tween the C4 corpus (Raffel et al., 2023) and down- 306

stream tasks. This study uncovered a significant 307

volume of text from unexpected sources, including 308

patents and US military websites. Further scrutiny 309

revealed the presence of machine-generated con- 310

tent, such as text from machine translation sys- 311

tems, and evaluation examples from various bench- 312

mark NLP datasets. Building on this, Elazar et al. 313

(2023) presented an analysis that explores the over- 314

lap between pretraining corpora and the Super- 315

GLUE (Sarlin et al., 2020) benchmark. Addition- 316

ally, Deng et al. (2023) employed Pyserini (Lin 317

et al., 2021a) to develop an IR system aimed at 318

investigating data contamination issues across pre- 319

training corpora and modern benchmarks. 320
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Method Level Access to Training
Corpora Required?

Logits Prob.
Required? Retrieval? Prompt-

based?

GPT-3 (Brown et al., 2020) Instance ✓ ✗ ✓ ✗
PaLM (Chowdhery et al., 2022) Instance ✓ ✗ ✓ ✗
LLaMA (Touvron et al., 2023a) Instance ✓ ✗ ✓ ✗
Yeom et al. (2018) Instance ✗ ✓ ✗ ✗
Carlini et al. (2021) Instance ✗ ✓ ✗ ✗
Dodge et al. (2021) Instance ✓ ✗ ✓ ✗
Carlini et al. (2022) Instance ✗ ✓ ✗ ✗
Elazar et al. (2023) Instance ✓ ✗ ✓ ✗
Li (2023) Dataset ✗ ✓ ✗ ✗
Shi et al. (2023) Dataset ✗ ✓ ✗ ✗
Aiyappa et al. (2023) Instance ✗ ✗ ✗ ✗
Roberts et al. (2023) Instance ✗ ✗ ✗ ✗
Golchin and Surdeanu (2023a) Dataset ✗ ✗ ✗ ✓
Golchin and Surdeanu (2023b) Both ✗ ✗ ✗ ✓
Oren et al. (2023) Dataset ✗ ✓ ✗ ✗
Deng et al. (2023) Instance ✗ ✗ ✗ ✓
Bordt et al. (2023) Instance ✗ ✗ ✗ ✓
Wei et al. (2023) Instance ✗ ✗ ✗ ✗
Mattern et al. (2023) Instance ✗ ✓ ✗ ✗

Table 1: Comparison of current data contamination detection method.

4.2 Time-Cutoff321

The concept of time-cutoff implies a significant322

distinction between models developed or the use323

of training data up to a certain time point. For324

instance, GPT-3 was trained using data available325

only up to September 2021 (OpenAI, 2022). This326

approach assumes that substantial changes in the327

dataset’s distributions or variances, stemming from328

a specific time cut-off, are critically important.329

Roberts et al. (2023) conducted the first compre-330

hensive longitudinal analysis of data contamination331

in LLMs. Specifically, they leveraged the natural332

experiment provided by the training cutoffs in GPT333

models to examine benchmarks released over time.334

They analyzed two code/mathematical problem-335

solving datasets. Their findings reveal statistically336

significant trends between LLM pass rates, GitHub337

popularity, and release dates, which strongly indi-338

cate contamination. Aiyappa et al. (2023) also con-339

ducted similar experiments to assess performance340

difference in models before and after their release.341

Besides, Shi et al. (2023) created a benchmark342

termed WIKIMIA utilizing data compiled both be-343

fore and after model training to facilitate accurate344

detection. Similarly, Li et al. (2023) employ the345

most recent data to develop a benchmark that is less346

prone to contamination, enabling a fair evaluation.347

The time-cutoff technique requires verification348

that data before and after a specific time-cutoff349

exhibit distinct distributions with minimal overlap.350

Additionally, new events or messages extracted351

from the Internet may also overlap with previous352

ones. For employing a time-cutoff strategy, it is 353

essential to account for and evaluate these potential 354

overlaps in experimental setups. 355

4.3 Masking-based 356

Another approach to detecting data contamination 357

involves masking-based methods, which mask a 358

word or sentence and provide the LLMs with con- 359

text from a benchmark to guide them in filling 360

in the missing portions. The advantage of this 361

masking-based method is its simplicity and effec- 362

tiveness. However, it requires a rigorous filtering 363

process to distinct the task from semantic reasoning 364

ones (Deng et al., 2023). 365

Book-Level Chang et al. (2023) introduce a 366

name cloze task, wherein names within a book 367

are masked, prompting LLMs to predict the omit- 368

ted names. This task was specifically designed to 369

evaluate the extent to which models like ChatGPT 370

and GPT-4 have internalized copyrighted content, 371

linking memorization levels to the prevalence of 372

book excerpts online. The findings reveal a no- 373

table performance disparity between GPT-4 and 374

ChatGPT in executing the name cloze task, sug- 375

gesting variations in their capacity to recall and 376

utilize memorized information. 377

Benchmark-level Deng et al. (2023) introduce 378

TS-Guessing, a masking-based method designed 379

for benchmark formats to detect data contamina- 380

tion. This technique involves masking an incorrect 381

answer in a multiple-choice question and prompt- 382
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ing the model to complete the missing informa-383

tion. It also entails hiding an unlikely word in384

an evaluation example and requesting the model385

to generate it. Their findings reveal that several386

proprietary LLMs can precisely recall the masked387

incorrect choice in the benchmarks, highlighting388

a significant potential for contamination in these389

benchmarks that warrants attention. Furthermore,390

they note that their method depends on the profi-391

cient instruction-following capabilities of LLMs.392

However, in less capable LLMs, there is a tendency393

to replicate other choices or produce the correct394

answer without adhering to the given instructions.395

4.4 Perturbation-based396

Perturbation-based methods involve using various397

techniques to artificially modify or alter test set398

samples. This is done to assess if LLMs are overfit-399

ting to particular benchmark formats or examples.400

The objective of this task is to examine whether401

there is a significant drop or change in performance402

after applying specific perturbations.403

Rephrasing Test Set Yang et al. (2023) demon-404

strate that applying minor alterations to test data,405

such as rephrasing or translating, can bypass pre-406

vious n-gram-based detection methods (§4.1.1).407

They reveal that if test data variability isn’t elim-408

inated, a 13B model can mimic the performance409

of state-of-the-art models like GPT-4 by overfitting410

to benchmarks, as evidenced by their experiments411

with notable datasets including MMLU (Hendrycks412

et al., 2021), GSK8k (Cobbe et al., 2021), and Hu-413

manEval (Chen et al., 2021). To address this grow-414

ing issue, they propose a new LLM-based detection415

approach, which uncovers significant previously416

unnoticed overlaps in test sets across widely used417

pretraining and fine-tuning corpora.418

Creating Reference Set In addition to directly419

rephrase test set examples, Wei et al. (2023) use420

GPT-4 to create a reference set resembling the test421

set. They then calculate the difference between ref-422

erence set and test set to assess the contamination423

issues, potentially caused by intentional data con-424

tamination. Higher differences indicate a greater425

potential for data leakage.426

4.5 Canonical order427

The canonical assumption posits that if a model has428

been exposed to data from a dataset, it will exhibit429

a preference for the canonical order provided by430

the dataset from public repositories, as opposed to 431

datasets that have been randomly shuffled. 432

Oren et al. (2023) develop a sensitivity test to 433

detect biases in the canonical order of benchmark 434

datasets used for LLMs. Based on the principle 435

that, in the absence of data contamination, any per- 436

mutation of an exchangeable benchmark dataset 437

should be equally likely, they create a methodol- 438

ogy capable of identifying contamination through 439

the model’s preference for specific data orderings. 440

Remarkably, this approach is sophisticated enough 441

to detect contamination in models with as few as 442

1.4 billion parameters, utilizing test sets of merely 443

1,000 examples. It proves effective even in datasets 444

with minimal representation in the training corpus. 445

The limitation of this assumption is that if the 446

model preprocesses the pretraining dataset or inten- 447

tionally shuffles the benchmark data, it becomes 448

challenging to identify potential contamination 449

from the perspective of canonical order. 450

4.6 Behavior Observation 451

We terms behavior observation as a new perspective 452

that leverages different perspectives of controlling 453

experiment related to the test set. This is done 454

to observe whether the behavior (i.e., output and 455

selection choice) are different. 456

Golchin and Surdeanu (2023b) propose a dual- 457

layered approach for identifying contamination in 458

LLMs at both the instance and partition levels. The 459

initial phase employs guided instruction, a tech- 460

nique that utilizes a specific prompt incorporat- 461

ing the dataset name, partition type, and an initial 462

segment of a reference instance. This prompt en- 463

courages the LLM to generate a completion. An 464

instance is considered contaminated if the LLMs’ 465

output closely resembles or exactly matches the 466

subsequent segment of the reference. Building on 467

this concept, Golchin and Surdeanu (2023a) in- 468

troduce a novel methodology by devising a data 469

contamination quiz. This quiz presents a set of 470

choices, including one from the test set and others 471

that are variations of the original instance. The 472

model is then tasked with selecting an option, and 473

its decision is used to assess contamination based 474

on its choice. This approach not only follows the 475

general pattern of contamination detection but also 476

offers a unique perspective by varying the format 477

of the choices provided to the model. 478

To employ methods based on this assumption, 479

researchers must verify that behavior differences 480
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are solely attributable to data contamination, partic-481

ularly in contrast to variations arising from random482

prompt perturbation.483

4.7 Membership Inference Attacks484

Membership Inference Attacks (MIA) aim to de-485

termine whether a specific data point was used in486

the training data of a target model. While MIA is487

a well-established concept in traditional machine488

learning, their application in the context of LLMs489

has been relatively understudied. This subsection490

explores the application of MIA to LLMs, demon-491

strating their utility in detecting contamination.492

Background Yeom et al. (2018) measures the493

perplexity of a sample to measure the memorization494

of training data. Carlini et al. (2021) attempts to495

improve on the Yeom et al. (2018)’s precision and496

reduce the false negative rate by accounting for the497

intrinsic complexity of the target point. Further498

more, Carlini et al. (2022) calibrates the sample’s499

loss under the target model using the sample’s zlib500

compression size.501

Applying MIA to LLMs Mattern et al. (2023)502

introduce and assess neighbourhood attacks as a503

novel method to evaluate model vulnerabilities504

without requiring access to the training data dis-505

tribution. They use an estimate of the curvature of506

the loss function at a given sample, which is com-507

puted by perturbing the target sequence to create n508

neighboring points, and comparing the loss of the509

target x, with its neighbors. By comparing model510

scores of a given sample with those of synthetically511

generated neighbour texts, this approach seeks to512

understand if model fragility can enhance security.513

Recently, Shi et al. (2023) introduced MIN-K%,514

a method that utilizes the k% of tokens with the515

lowest likelihoods to compute a score, rather than516

averaging over all token probabilities as in tradi-517

tional loss calculations. This approach is based on518

the hypothesis that an unseen example is likely to519

contain a few outlier words with low probabilities520

under LLMs, whereas a seen example is less likely521

to feature words with such low probabilities.522

MIA in the context of LLMs are typically based523

on perplexity or variations derived from language524

model perplexity. This implies reliance on the out-525

put logits probability from the language models.526

However, its statistical simplicity also offers sig-527

nificant advantages compared to other detection528

methods need careful validation of assumption.529

5 Mitigating Data Contamination 530

Benchmark Construct Selection Li et al. (2023) 531

proposes to construct evaluation benchmarks from 532

the most recent texts, thus minimizing the risk of 533

overlap with pre-training corpora. 534

Benchmark Dynamic Refresh Zhu et al. 535

(2023a) introduces a dynamic evaluation protocol 536

that utilizes directed acyclic graphs to generate eval- 537

uation samples of varying complexities, aiming to 538

address the static and potentially contaminated na- 539

ture of existing benchmarks. Besides, Zhu et al. 540

(2023b) provide Clean-Eval, which utilizes LLMs 541

to paraphrase and backtranslate contaminated data, 542

creating a set of expressions that convey the same 543

meaning in varied forms. This process generates a 544

candidate set from which low-quality samples are 545

filtered out using a semantic detector. The final se- 546

lection of the best candidate from this refined set is 547

based on the BLEURT (Sellam et al., 2020) score, 548

ensuring the chosen expression is semantically sim- 549

ilar to the original data but articulated differently. 550

Besides, Zhou et al. (2023) also suggests that pro- 551

viding a diverse set of prompts for testing, which 552

provide a dynamic evaluation to mitigate data con- 553

tamination. 554

Benchmark Data Encryption Jacovi et al. 555

(2023) suggests that test data released to the public 556

should be safeguarded through encryption using 557

a public key, and the distribution of derivatives 558

should be strictly prohibited under the licensing 559

agreement. To implement this, the recommended 560

approach involves encrypting the test data before 561

uploading it. This can be efficiently done by com- 562

pressing the data into an archive that is secured 563

with a password. 564

Benchmark Label Protection Jacovi et al. 565

(2023) and Zhou et al. (2023) emphasize the critical 566

need to safeguard the labels of test datasets. These 567

labels can inadvertently be exploited during the 568

training phase, or even intentionally after rephras- 569

ing. Providing both the question and its context 570

is an effective strategy to prevent such deliberate 571

contamination. 572

6 Discussion and Future Discussions 573

Challenges for Detecting Black-Box Model 574

The primary challenge in evaluating different meth- 575

ods for detecting data contamination in large lan- 576

guage models is the absence of a ground truth label, 577
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i.e., a benchmark dataset comprising entirely con-578

taminated data. This absence creates difficulties in579

comparing the effectiveness of various detection580

techniques designed for black-box models. One581

alternative approach involves finetuning the model582

using test set labels to create artificially contami-583

nated data. However, the question remains whether584

the scenarios of contamination during the pretrain-585

ing phase and the finetuning phase are consistent.586

Additionally, due to limited access to the complete587

training corpus, we can only generate fully contam-588

inated data, making it challenging to obtain fully589

uncontaminated data. This situation complicates ef-590

forts to accurately assess and compare the efficacy591

of contamination detection methods.592

Dodging Detection of Data Contamination is593

Easy Dekoninck et al. (2024) highlights the ease594

with which Membership Inference Attack (MIA)595

detection methods can be evaded. These methods,596

some of which are also employed for identifying597

data contamination, have been criticized in prior598

research. Notably, the efficacy of n-gram based599

substring detection is questioned due to its numer-600

ous vulnerabilities and susceptibility to manipula-601

tion (Zhou et al., 2023; Deng et al., 2023; Jiang602

et al., 2024). Beyond the traditional n-gram and603

MIA approaches, recent studies have demonstrated604

that several contemporary techniques can be com-605

promised through targeted attacks. For instance, by606

integrating a dataset with a significantly large pre-607

trained dataset, one can disrupt the canonical order608

assumption, thereby undermining its integrity.609

From Memorization to Exploitation Drawing610

a definitive conclusion about the correlation be-611

tween memorization and exploitation (i.e., perfor-612

mance on downstream tasks) remains challeng-613

ing. Various factors can impact the outcomes614

observed in our study, including differences in615

model architecture, the repetition of contaminated616

data, the strategies employed during pretraining617

or finetuning phases, and the training principles618

used like RLHF+PPO (Zheng et al., 2023) and619

DPO (Rafailov et al., 2023). These elements can620

significantly influence the models’ downstream621

task performance.622

Detecting or Mitigating? Currently, there is an623

increasing focus on developing novel methods for624

detecting data contamination, which is crucial for625

investigating and understanding data contamina-626

tion scenarios. Effective detection tools can also627

help prevent intentional data contamination to a 628

certain extent. However, there remains a signifi- 629

cant need for research focused on mitigating data 630

contamination. The question arises: how can we 631

create a dynamic evaluation method that uses poten- 632

tially contaminated benchmarks to provide clean 633

evaluations? In recent developments, many have 634

started leveraging language models as agents to per- 635

form various tasks. An intriguing future direction 636

could be to utilize language models as ’Benchmark 637

Agents’ to offer various forms of evaluation that 638

convey the same meaning. 639

How to Create Benchmarks without Data Con- 640

tamination To address the challenge of creating 641

a benchmark free from data contamination, it is 642

essential to consider innovative approaches. Firstly, 643

an effective strategy involves constructing a dataset 644

significantly larger than the target size. This excess 645

allows for the application of rigorous data contami- 646

nation checks to refine the dataset down to actual 647

size. Additionally, the implementation of a uni- 648

fied, reliable, and dynamic evaluation framework 649

is crucial. Such a framework offers the flexibil- 650

ity to adaptively assess benchmarks across various 651

formats, enhancing the robustness of the evalua- 652

tion process. Beyond these broader strategies, a 653

practical yet profound method involves generating 654

content that is rare or virtually nonexistent on the 655

Internet or other public domains. 656

7 Conclusion 657

In this paper, we present an extensive and meticu- 658

lously organized survey on the topic of data con- 659

tamination in large language models. We start 660

by laying the groundwork with a discussion on 661

the effect of contamination, setting the stage for a 662

deeper examination of various data contamination 663

detection methods. We critically analyze the as- 664

sumptions underlying these methods, highlighting 665

their limitations and the prerequisites for their ap- 666

plication. Subsequently, we explore strategies for 667

mitigating data contamination, addressing poten- 668

tial challenges and suggesting directions for future 669

research in this area. Our goal is to provide a com- 670

prehensive guide for NLP researchers seeking a 671

systematic understanding of data contamination. 672

We also aim to underscore the critical importance 673

of this field, advocating for increased attention due 674

to its pressing relevance. 675
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8 Limitations676

It is challenging to provide a quantitative compari-677

son between different data contamination detection678

methods due to their varying assumptions and re-679

quirements. Ideally, we would conduct a quanti-680

tative analysis to assess the effectiveness of these681

methods, assigning rankings or benchmarks to dis-682

cuss their advantages and disadvantages. Another683

limitation of the survey paper is the difficulty in684

categorizing each method into a single, definitive685

class. For instance, Shi et al. (2023) not only of-686

fers benchmarks and analyses but also proposes687

a detection method. Similarly, Zhou et al. (2023)688

discusses both the detection of contamination and689

strategies for its mitigation. Our approach primarily690

classifies each work into its most evident category,691

aiming for clarity and precision, though this may692

sometimes compromise rigor.693

9 Ethics Statement694

In our survey paper, which examines the impact of695

data contamination, alongside methods for its de-696

tection and mitigation, we assert that our work not697

only adheres to ethical standards and avoids poten-698

tial misuse issues, but also offers a comprehensive699

summary that contributes to the fair and transparent700

evaluation of large language models. This positions701

it as a valuable resource for promoting fairness and702

transparency within the community.703
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