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Abstract

A fundamental task in AI is providing performance guarantees for predictions made
in unseen domains. In practice, there can be substantial uncertainty about the dis-
tribution of new data, and corresponding variability in the performance of existing
predictors. Building on the theory of partial identification and transportability, this
paper introduces new results for bounding the value of a functional of the target
distribution, such as the generalization error of a classifier, given data from source
domains and assumptions about the data generating mechanisms, encoded in causal
diagrams. Our contribution is to provide the first general estimation technique for
transportability problems, adapting existing parameterization schemes such Neural
Causal Models to encode the structural constraints necessary for cross-population
inference. We demonstrate the expressiveness and consistency of this procedure
and further propose a gradient-based optimization scheme for making scalable
inferences in practice. Our results are corroborated with experiments.

1 Introduction

In the empirical sciences, the value of scientific theories arguably depends on their ability to make
predictions in a domain different from where the theory was initially learned. Understanding when
and how a conclusion in one domain, such as a statistical association, can be generalized to a novel,
unseen domain has taken a fundamental role in the philosophy of biological and social sciences in
the early 21st century. As Campbell and Stanley [8, p. 17] observed in an early discussion on the
interpretation of statistical inferences, “Generalization always turns out to involve generalization into
a realm not represented in one’s sample” where, in particular, statistical associations and distributions
might differ, presenting a fundamental challenge.

As society transitions to become more AI centric, many of the every-day tasks based on predictions
are increasingly delegated to automated systems. Such developments make various parts of society
more efficient, but also require a notion of performance guarantee that is critical for the safety of AI,
in which the problem of generalization appears under different forms. For instance, one critical task
in the field is domain generalization, where one tries to learn a model (e.g. classifier, regressor) on
data sampled from a distribution that differs in several aspects from that expected when deploying the
model in practice. In this context, generalization guarantees must build on knowledge or assumptions
on the “relatedness” of different training and testing domains; for instance, if training and testing
domains are arbitrarily different, no generalization guarantees can be expected from any predictor
[12, 40]. The question becomes how to link the domains of data that are used to train a model (a.k.a.,
the source domains) to the domain where this model is deployed in practice (a.k.a., the target domain).
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Figure 1: Illustration of the task of evaluating the generalization error of a model h. The mechanisms for C and
W vary across domains.

To begin to answer this question, a popular type of assumption that relates source and target domains
is statistical in nature: invariances in the marginal or conditional distribution of some variables
across the source and target distributions. Examples include assumptions of covariate shift and label
shift (among others) [35, 34]. Notably, generalization is justified by the stability and invariance
of the causal mechanisms shared across the domains [14, 21], since the distributional/statistical
invariances across the domains are consequences of mechanistic/structural invariances governing
the underlying data generating process. Although the induced statistical invariances, once exploited
correctly, can be used as bases for generalizability. Broadly, invariance-based approaches to domain
generalization [27, 29, 2, 40, 24, 20, 7, 6, 13] search for predictors that not only achieves small error
on the source data but also maintain certain notions of distributional invariance across the source
domains. Since these statistical invariances can be viewed as proxies to structural invariances, in
certain instances generalization guarantees can be provided through causal reasoning [17, 31, 39].
This idea can be illustrated in Fig. 1. The value of variables tC, Y,W,Zu are determined as a
stochastic function of variables pointing to it, while these functions may differ across domains. The
challenge is to evaluate the generalization risk of a model, e.g. RP˚phq :“ EP˚rpY ´ hq2s for
h :“ hpC,W,Zq “ EP 1rY | C,W,Zs, without observations from the target P˚. General instances
of this challenge have been studied under the rubric of the theory of causal transportability, where
qualitative assumptions regarding the underlying structural causal models are encoded in a graphical
object, and algorithms are designed to leverage these assumptions and compute certain statistical
queries in the target domain in terms of the existing source data [26, 4, 5, 19, 11, 17].

Despite these advances, in practice, the combination of source data and graphical assumptions is
not always sufficient to identify (uniquely evaluate) the desired statistical query, e.g., the average
loss of a given predictor in the target domain. In this case, the query is said to be non-transportable3.
For example, given Fig. 1, RP˚phq is non-transportable for the classifier h :“ hpC,W,Zq. In this
paper, we study the fundamental task of computing tight upper-bounds for statistical queries in a new
unseen domain. This allows us to assess worst-case performance of prediction models for the domain
generalization task. Our contributions are as follows:

• Sections 2 & 3. We develop the first general estimation technique for bounding the value of
queries across multiple domains (e.g., the generalization risk) in non-transportable settings (Def. 4).
Specifically, we extend the formulation of canonical models [3, 42] to encode the constraints
necessary for solving the transportability task, and demonstrate their expressiveness for generating
distributions entailed by the underlying Structural Causal Models (SCMs) (Thm. 1).

• Section 4. We adapt Neural Causal Models (NCMs) [41] for the transportability task via a parameter
sharing scheme (Thm. 2), similarly demonstrating their expressiveness and consistency for solving
the partial transportability task. We then leverage the theoretical findings in sections 2 & 3 to
implement a gradient-based optimization algorithm for making scalable inferences (Alg. 1), as
well as a Bayesian inference procedure. Finally, we introduce Causal Robust Optimization (CRO)
(Alg. 2), an iterative method to find a predictor with the best worst-case risk.

Preliminaries. We use capital letters to denote variables (X), small letters for their values (x),
bold letters for sets of variables (X) and their values (x), and use supp to denote their domains
of definition (x P suppX ). A conditional independence statement in distribution P is written as
pX |ù Y | ZqP . A d-separation statement in some graph G is written as pX |ù dY | Zq. To denote
P pY “ y |X “ xq, we use the shorthand P py | xq. The basic semantic framework of our analysis
relies on Structural Causal Models (SCMs) [25, Definition 7.1.1], which are defined below.

3The notion of non-transportability formalizes a type of aleatoric uncertainty [16] arising from the inherent
variability within compatible data generating systems for the target domain. In particular, it cannot be explained
away with increasing sample size from the source domains.
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Definition 1. An SCM M is a tuple M “ xV ,U ,F , P y where each observed variable V P V is
a deterministic function of a subset of variables PaV Ă V and latent variables UV Ă U , i.e.,
v :“ fV ppaV ,uV q, fV P F . Each latent variable U P U is distributed according to a probability
measure P puq. We assume the model to be recursive, i.e. that there are no cyclic dependencies among
the variables. ˝

SCM M entails a probability distribution PMpvq over the set of observed variables V such that

PMpvq “

ż

suppU

ź

V PV

PMpv | paV ,uV q ¨ P puq ¨ du, (1)

where the term P pv | paV ,uV q corresponds to the function fV P F in the underlying structural
causal model M . It also induces a causal diagram GM in which each V P V is associated with a
vertex, and we draw a directed edge between two variables Vi Ñ Vj if Vi appears as an argument
of fVj in the SCM, and a bi-directed edge Vi Ø Vj if UVi XUVj ‰ H, that is Vi and Vj share an
unobserved confounder. Throughout this paper, we assume the observational distributions entailed by
the SCMs satisfy the positivity assumption, that is, PM pvq ą 0, for every v. We will also operate
non-parametrically, i.e., making no assumption about the particular functional form or the distribution
of the unobserved variables.

2 Risk Evaluation through Partial Transportability
In this section, we focus on challenges of the domain generalization problem through a causal
lens, in particular regarding assessment of average loss of a given classifier in the target domain.
We study a system of variables V where Y P V is a categorical outcome variable and consider
a classifier h : suppX Ñ suppY mapping a set of covariates X Ă V to the domain of the
outcome. The setting of domain generalization is characterized by multiple domains, defined by
SCMs M : tM1, . . . ,MK ,M˚u that entail distributions P “ tPM1

, . . . , PMK

u and PM˚

over
V . We are given a classifier h : suppX Ñ suppY , and the objective is to evaluate its risk in the
domain M˚ which is defined as,

RP˚phq :“ EP˚rLpY, hpXqqs, (2)
where L : suppY ˆ suppY Ñ R` is a loss function. The following example illustrates these notions.
Example 1 (Covariate shift). A common instance of the domain generalization problem considers
source and target domains M : tM1,M˚u over V “ tX, Y u and U “ tUX , UY u defined by

M1 :

$

&

%

F1 :

"

X Ð f1XpUXq

Y Ð fY pX, UY q

P 1pUq “ P 1pUXq ¨ P pUY q

M˚ :

$

&

%

F˚ :

"

X Ð f˚
XpUXq

Y Ð fY pX, UY q

P˚pUq “ P˚pUXq ¨ P pUY q

Here, because P 1pUXq ‰ P 1pUXq, this implies via Eq. 1 that the covariate distributions are
different, i.e., P 1pXq ‰ P˚pXq. Still, the label distribution conditional on covariates is invariant,
i.e., P 1pY |Xq “ P˚pY |Xq, also known as the covariate shift setting. Accordingly, the risk of a
classifier h :“ hpxq can be written as,

RP˚phq “

ż

suppY ˆsuppX

Lpy, hpxqqP˚py,xq ¨ dydx “

ż

suppY ˆsuppX

Lpy, hpxqqP 1py | xqP˚pxq ¨ dydx. (3)

We will consider the problem of quantifying the variation in RP˚phq subject to variation in P˚pxq
that would be consistent with partial observations from these domains, e.g. samples from P 1pX, Y q,
and assumptions about the commonalities and discrepancies across the domains. ˝

To describe more general discrepancies in the mechanisms between the SCMs, we adapt the notion
of domain discrepancy and selection diagram introduced in [19].
Definition 2 (Domain discrepancy). For SCMs Mi,Mj (i, j P t˚, 1, 2, . . . ,Ku) defined over V ,
the domain discrepancy set ∆ij Ď V is defined such that for every V P ∆ij there might exist a
discrepancy fM

i

V ‰ fM
j

V , or PMi

puV q ‰ PMj

puV q. For abbreviation, we denote ∆i˚ as ∆i. ˝

In words, if an endogenous variable V is not in ∆ij , this means that the mechanism for V (i.e., the
function fV and the distribution of exogenous variables P puV q) are structurally invariant across
Mi,Mj . What follows integrates the domain discrepancy sets into a generalization of causal
diagrams to express qualitative assumptions about multiple SCMs [26, 11].
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Definition 3 (Selection diagram). The selection diagram G∆i is constructed from Gi (i P
t1, 2, . . . , T u) by adding the selection node Si to the vertex set, and adding the edge Si Ñ V
for every V P ∆i. The collection G∆ “ tG˚u

Ť

tG∆iuiPt1,2,...,T u encodes the graphical assumptions.
Whenever the causal diagram is shared across the domains, a single diagram can depict G∆. ˝

Selection diagrams extend causal diagrams and provide a parsimonious graphical representation of
the commonalities and disparities across a collection of SCMs. The following example illustrates
these notions and highlights various subtleties in the generalization error of different predictors.
Example 2 (Generalization performance of classifiers). Consider the SCMs Mi (i P t1, 2, ˚u) over
the binary variables X “ tC1, C2, . . . , C10u

Ť

tW,Zu and Y , defined as follows:

P ipUq :

$

’

’

&

’

’

%

@1 ď j ď 10 : UCj
„ Bernp0.1q if i “ 1 Bernp0.5q if i “ 2 Bernp0.7q if i “ ˚

UYW „ Bernp0.2q

UW „ Bernp0.01q if i “ 1 Bernp0.02q if i “ 2 Bernp0.5q if i “ ˚
UZ „ Bernp0.9q

F i : C Ð UC , Y Ð UYW ‘
à

CPC

C, W Ð UYW ‘ UW , Z Ð Y ¨ UZ `W ¨ p1´ UZq

À

denotes the xor operator, i.e., A
À

B evaluates to 1 if A ‰ B and evaluates to 0 if A “ B. Notice
that the distribution of exogenous noise associated with C1:10 and tW u differs across the domains.
Consider three baseline classifiers h1pc, wq :“ w ‘

À

cPc c, h2pcq :“
À

cPc c, h3pzq :“ z evaluated
on data from P 1, P 2, P˚ with the symmetric loss function LpY, hpXqq “ 1tY ‰ hpXqu. Their
errors are given in Table 1. Notice that h1 has almost perfect accuracy on both source distributions,
but does not generalize to M1 as it uses the unstable feature W , incurring 50% loss. This observation
indicates that mere minimization of the empirical risk might yield arbitrarily large risk in the unseen
target domain. h2 uses the features C that are the direct causes of Y , also known as the causal
predictor [27, 2], and yields a stable loss of 20% across all domains. On the other hand, h3 uses only
Z that is a descendant of Y , yet achieves a small loss across all domains as the mechanism of Z is
assumed to be invariant. This observation is surprising, because h3 is neither a causal predictor nor
the minimizer of the empirical risk, yet it performs nearly optimally on all domains. ˝

Classifier RPM1 RPM2 RPM˚

h1pc, wq 1% 4% 49%
h2pcq 20% 20% 20%
h3pzq 3% 5% 4%

Table 1: Classifiers in Example 2.

Example 2 illustrates potential challenges of the do-
main generalization problem, particularly regarding
the variation of the risk of classifiers across the source
and target domains. The following definition intro-
duces the problem of “partial transportability” which
is the main conceptual contribution of our paper. The
objective is bounding a statistic of the target distribu-
tion using the data and assumptions available about
related domains.
Definition 4 (Partial Transportability). Consider a system of SCMs M : tM1,M2, . . . ,MK ,M˚u

that induces the selection diagram G∆ over the variables V and entails the distributions P :
tP 1pvq, P 2pvq, . . . , PKpvqu and P˚pvq. A functional ψ : ΩV Ñ R is partially transportable
from P given G∆ if,

E
PM˚

0
rψpV qs ď qmax,@ SCMs M0 that entail P and induce G∆, (4)

where qmax P R is a constant that can be obtained from P given G∆. ˝

For instance, finding the worst-case performance of a classifier based on the source distributions
given the selection diagram is a special case of partial transportability with ψpx, yq :“ Lpy, hpxqq. In
principle, this task is challenging as the exogenous distribution P˚pUV q and structural assignments
f˚
V of variables V P V that do not match with any of the source domains could be arbitrary. In the

following section, we will define tractable parameterization of tP pUq,Fu to derive a systematic
approach to solving partial transportability tasks.

3 Canonical Models for Partial Transportability
We begin with an example to illustrate how one might approach parameterizing a query such as
EPM˚ rψpV qs, e.g., the generalization error, to consistently solve the partial transportability task.
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Example 3 (The bow model). Let X :“ tXu be a single binary variable, and Y be a binary label.
Consider two source domains defined by the following SCMs:

M1 :

$

’

’

’

’

’

&

’

’

’

’

’

%

P 1pUq :

$

&

%

UX „ Bernp0.2q

UY „ Bernp0.05q

UXY „ Bernp0.95q

F1 :

"

X Ð UX ‘ UXY

Y Ð pX ‘ UXY q ‘ UY

M2 :

$

’

’

’

’

’

&

’

’

’

’

’

%

P 2pUq :

$

&

%

UX „ Bernp0.9q

UY „ Bernp0.05q

UXY „ Bernp0.95q

F2 :

"

X Ð UX ‘ UXY

Y Ð pX ‘ UXY q _ UY

The task is to evaluate the generalization error of the classifier hpxq “ ␣x. h can be shown optimal in
both source domains: achieving RP 1phq « 0.11 and RP 2phq « 0.06. However, it is unclear whether
it generalizes well to a target domain M˚, given the domain discrepancy sets ∆1 “ tXu,∆2 “ tY u.
˝

(a) G∆ (b) GN

Figure 2: Selection diagram & Canonical param.

Balke and Pearl [3] derived a canonical parameteri-
zation of SCMs such as tM1,M2,M˚u in Exam-
ple 3. They showed that it is sufficient to parame-
terize P pUq with correlated discrete latent variables
RX , RY , where RX determines the value of X , and
RY determines the functional that decides Y based
on X . The causal diagrams are shown in Figure
2. Canonical SCMs entails the same set of distributions as the true underlying SCMs, i.e. are
equally expressive. In particular, Zhang and Bareinboim [42] showed that for every SCM M,
there exists an SCM of the described form specified with only a distribution P prX , rY q, where,
suppRX

“ t0, 1u, suppRY
“ ty “ 0, y “ 1, y “ x, y “ ␣xu. The joint distribution P prX , rY q

can be parameterized by a vector in 8-dimensional simplex, and entails all observational, interven-
tional and counterfactual variables generated by the original SCM.

The following definition by Zhang et al. [42] provides a general formulation of canonical models.
Definition 5 (Canonical SCM). A canonical SCM is an SCM N “ xU ,V ,F , P pUqy defined as
follows. The set of endogenous variables V is discrete. The set of exogenous variables U “ tRV :
V P V u, where suppRV

“ t1, . . . ,mV u and mV “ |thV : supppaV
Ñ suppV u|. For each V P V ,

fV P F is defined as fV ppaV , rV q “ h
prV q

V ppaV q.
Example 3 (continued). Consider extending the canonical parameterization to to solve the partial
transportability task by optimization. Each SCM M1,M2,M˚ is associated with a canonical SCM
N 1,N 2,N ˚. with exogenous variables tRX , RY u as above. The domain discrepancy sets ∆ indicate
that certain causal mechanisms need to match across pairs of the SCMs. For example, ∆1 “ tXu,
which does not contain Y , and this means that (1) the function fY is the same across M1,M˚, and
(2) the distribution of unobserved variables that are arguments of fY , namely, UXY , UY remains the
same across M1,M˚. Imposing these equalities on the canonical parameterization is straightforward
as (1) the function fY is the same across all canonical SCMs by construction, and (2) the only
unobserved variable pointing to variable V is RV (for V P tX,Y u). Following the selection
diagram shown in Fig. 2a, M1,M˚ agree on the mechanism of Y , which translates to the constraint
PN 1

prY q “ PN˚

prY q. Similarly, M2,M˚ agree on the mechanism of X that translates to the
constraint PN 2

prXq “ PN˚

prXq. Putting these together, the optimization problem below finds the
upper-bound for the risk RP˚phq for the classifier hpxq “ ␣x:

max
N 1,N 2,N˚

PN˚

pY ‰ ␣Xq (5)

s.t. PN 1

prY q “ PN˚

prY q, PN 2

prXq “ PN˚

prXq (Y R ∆1, and X R ∆2)

PN 1

px, yq “ P 1px, yq, PN 2

px, yq “ P 2px, yq (matching source dists)

Notably, the above optimization has a linear objective with linear equality constraints. ˝

This example illustrates a more general strategy, in which probabilities induced by an SCM over
discrete endogenous variables V may be generated by a canonical model. What follows is the main
result of this section, and provides a systematic approach to partial transportability using the canonical
models.
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Theorem 1 (Partial-TR with canonical models). Consider the tuple of SCMs M that induces the
selection diagram G∆ over the variables V , and entails the source distributions P, and the target
distribution P˚. Let ψ : ΩV Ñ R be a functional of interest. Consider the following optimization
scheme:

max
N 1,N 2,...,N˚

EPN˚ rψpV qs s.t. PN i

pvq “ P ipvq @i P t1, 2, . . . ,K, ˚u (6)

PN i

prV q “ PN j

prV q, @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

where each N i is a canonical model characterized by a joint distribution over tRV uV PV . The value
of the above optimization is a tight upper-bound for the quantity EP˚rψpV qs among all tuples of
SCMs that induce G∆ and entail P. ˝

In words, this Theorem states that one may tightly bound the value of a target quantity EP˚rψpV qs
by optimizing over the space of canonical models subject to the proposed constraints, without any
loss of information. An implementation of Thm. 1 approximating the worst-case error, by making
inference on the posterior distribution of the target quantity, is provided in Appendix A.

4 Neural Causal Models for Partial Transportability

Figure 3: Selection diagram for Example 4.

In this section we consider inferences in more general
settings by using neural networks as a generative model,
acting as a proxy for the underlying SCMs M with the
potential to scale to real-world, high-dimensional settings
while preserving the validity and tightness of bounds. For
this purpose, we consider Neural Causal Models [41] and
adapt them for the partial transportability task. What
follows is an instantiation of [41, Definition 7].
Definition 6 (Neural Causal Model). A Neural Causal
Model (NCM) corresponding to the causal diagram G
over the discrete variables V is is an SCM defined by the
exogenous variables:

U “ tUW „ unifp0, 1q : W Ď V s.t. AØ B P G, @A,B PW u, (7)
and the functional assignments V Ð fθV pPaV ,UV q, where UV “ tUW P U : V P W u. The
function fθV is a feed-forward neural network parameterized with θV that outputs in suppV . The
distribution entailed by an NCM is denoted by P pv; θq, where θ “ tθV uV PV .

To illustrate how one might leverage this parameterization to define an instance of partial transporta-
bility task consider the following example.
Example 4. Let SCMs M1,M2,M˚ induce G∆ shown in Fig. 3 over the binary variables X, Y ,
where X “ tC1, C2, Z1, Z2,W1, . . . ,W5u. Let θ1, θ2, θ˚ be the parameters of NCMs constructed
based on the causal diagram in Fig. 3 (without the s-nodes). The objective is to constrain these
parameters to simulate a compatible tuple of NCMs Mθ1 ,Mθ2 ,Mθ˚ that equivalently entail
P 1px, yq, P 2px, yq and induce G∆.

For instance, the fact that S2 is not pointing to Y suggests the invariance f˚
Y “ f2Y and P˚puY q “

P 2puY q for the true underlying SCMs. That same invariance may be enforced in the corresponding
NCMs by relating the parameterization of Mθ2 ,Mθ˚ , i.e., imposing that θ˚

Y “ θ2Y for the NN
generating Y . Similarly, the observed data D1, D2 from the source distributions P 1px, yq, P 2px, yq,
respectively, impose constraints on the parameterization of NCMs as plausible models must satisfy
P px, y; θ1q “ P 1px, yq and P px, y; θ2q “ P 2px, yq. This may be enforced, for instance, by maxi-
mizing the likelihood of data w.r.t. the NCM parameters: θi P argmaxθ

ř

x,yPDi logP px, y; θiq, for
i P t1, 2u. By extending this intuition for all constraints imposed by the selection diagram and data,
we narrow the set of NCMs Mθ1 ,Mθ2 ,Mθ˚ to a set that is compatible with our assumptions and
data. Maximizing the risk of some prediction function RP˚phq in this class of constrained NCMs
might then achieve an informative upper-bound. ˝

Motivated by the observation in Example 4, we now show a more formal result (analogous to Thm. 1)
that guarantees that the solution to the partial transportability task in the space of constrained NCMs
achieves a tight bound on a given target quantity EP˚rψpV qs.
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Theorem 2 (Partial-TR with NCMs). Consider a tuple of SCMs M that induces G∆,P and P˚ over
the variables V . Let Di „ P ipx, yq denote the samples drawn from the i-th source domain. Let θi
denote the parameters of NCM corresponding to Mi P M. Let EP˚rψpV qs be the target quantity.
The solution to the optimization problem,

Θ̂ P argmax
Θ:xθ1,θ2,...,θK ,θ˚y

ÿ

w

ψpwq ¨
ÿ

vzw

P pv; θ˚q (8)

s.t. θiV “ θjV , @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

θi P argmax
θ

ÿ

vPDi

logP pv; θq, @i P t1, 2, . . . ,Ku.

is a tuple of NCMs that induce G∆, entails P. In the large sample limit, the solution yields a tight
upper-bound for EP˚rψpV qs. ˝

Theorem 2 establishes the expressive power of NCMs for solving partial transportability tasks. This
formulation is powerful because it enables the use of gradient-based optimization of neural networks
for learning and, in principle, might scale to large number of variables.

4.1 Neural-TR: An Efficient Implementation

We could further explore the efficient optimization of parameters by exploiting the separation
between variables in the selection diagram. Rahman et al. [28], for instance, show that the NCM
parameterization is modular w.r.t. the c-components of the causal diagram. We can similarly elaborate
on this property, and leverage it for more efficient partial transportability.

In the following, we build towards an efficient algorithm for partial transportability using NCMs by
first showing an example that describes how a given target quantity EP˚rψpV qsmight be decomposed
for learning more efficiently.
Example 4 (continued). P px, y; θ˚q in the objective in Eq. (8) may be decomposed as follows:

P px, y; θ˚q “ P˚pc1, c2, w1, w2
loooooomoooooon

a1

; θ˚
A1
q ¨ P p y, w3

loomoon

a2

| c2, w2
loomoon

b2

; θ˚
A2
q ¨ P pz1, z2, w4, w5

loooooomoooooon

a3

| y, w3
loomoon

b3

; θ˚
A3
q,

where the subsets A1,A2,A3 are the c-components of G˚. Notice, S2 is not pointing to any of the
variables A2, which means that their mechanism is shared across M2,M˚, and therefore,

P pa2 | b2; θ
˚
A2
q “ P pa2 | b2; θ

2
A2
q « P 2pa2 | b2q. (9)

This property is the basis of transportability algorithms [4, 10], and is known as the s-admissibility
criterion [26], which allows us to deduce distributional invariances from structural invariances. By
Eq. (9), we can replace the term P pa2 | b2; θ

˚
A2
q in the objective with the probabilistic model

P pa2 | b2; η
2q that is trained with D2 to approximate P 2pa2 | b2q and plug it into the objective

Eq. (8) as a constant.

As a consequence, we do not need to optimize over the parameters θ1A2
, θ2A2

, θ˚
A2

from the partial
transportability optimization problem. Similarly, since S1 does not point to A1, we can substitute
P pa1; θ

˚q with P pa1; η
1q, and pre-train it with data D1. In the context of Example 4 and the evalua-

tion of RP˚phq, the objective in Eq. (8) may be simplified to the substantially lighter optimization
task:

max
θ1
A3

,θ2
A3

,θ˚A3

EA1„P pa1;η1q

“

EA2„P pa2|b2;η2qr
ÿ

a3

P pa3 | b3; θ
˚
A3
q ¨ 1thpa1,a2,a3ztyuq ‰ yus

‰

s.t. θiA3
P argmax

θA3

ÿ

a3,b3PDi

logP pa3 | b3; θA3
q, for i P t1, 2u. (10)

In general, the parameter space of NCMs can be cleverly decoupled and the computational cost
of the optimization problem can be significantly improved since only a subset of the conditional
distributions need to be parameterized and optimized. This observation motivates Alg. 1 designed to
exploit these insights. It proceeds by first, decomposing the query, second, computing the identifiable
components, and third, parameterizing the components that are not point identifiable and running the
NCM optimization routine. The following proposition demonstrates the correctness of this procedure.
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Algorithm 1 Neural-TR

Require: Source data D1, D2, . . . , DK ; selection diagram G∆; functional ψ : ΩW Ñ r0, 1s.
Ensure: Upper-bound for EP˚rψpW qs

1: tAju
m
j“1 Ð c-components of A :“ AnG˚pW q in causal diagram G˚.

2: Θ,Cexpert ÐH, Ldata Ð 0
3: P˚pwq :“

ř

azw

śm
j“1 P

˚paj | doppaAj
qq

4: for j “ 1 to m do
5: if Di P t1, 2, . . . ,Ku such that Aj X∆˚i “ H then
6: ηiAj

Ð argmaxηAj

ř

aj ,paAj
PDi logP paj | doppaAj

q; ηAj
q

7: In P˚pwq, replace P˚paj | doppaAj
qq with P paj | doppaAj

q; ηiAj
q.

8: else
9: ΘÐ Θ

Ť

tθiAj
uiPt1,2,...,K,˚u

10: In P˚pwq, replace P˚paj | doppaAj
qq with P pajdoppaAj

q; θ˚
Aj
q.

11: Cexpert Ð Cexpert
Ť

ttθiV “ θ˚
V uV PAjz∆˚i

uKi“1

12: Llikelihood Ð Llikelihood `
ř

aj ,paAj
PDi logP paj , doppaAj

q; θiAj
q.

13: end if
14: end for
15: Return Θ̂Ð argmaxΘ

ř

w P
˚pw; Θq ¨ ψpwq ` Λ ¨ LlikelihoodpΘq subject to Cexpert

Proposition 1. Neural-TR (Algorithm 1) computes a tuple of NCMs compatible with the source data
and graphical assumptions that yields the upper-bound for EP˚rψpW qs in the large sample limit. ˝

This result may be understood as an enhancement of Thm. 2 in which the factors that are readily
transportable from source data are taken care of in a pre-processing step. The hybrid approach is
especially useful in case researchers have pre-trained probabilistic models with arbitrary architecture
that they can use off-the-shelf and avoid unnecessary computation.

4.2 Neural-TR for the Optimization of Classifiers

The Neural-TR algorithm can be viewed as an adversarial domain generator that takes a classifier
hpzq as the input, and then parameterizes a collection of SCMs to find a plausible target domain that
yields the worst-case risk for the given classifier, namely, θ̂˚. By flipping hpzq for some z P Ω we
can reduce the risk of h under θ̂˚.

Algorithm 2 CRO (Causal Robust Optimization)

Require: D : xD1, D2, . . . , DKy; G∆; δ ą 0
Ensure: hpXq with the best worst-case risk.

1: Initialize h randomly and D˚ ÐH

2: Θ̂Ð Neural-TRpD,G∆, ψ : Lphpxq, yqq
3: whileRP px,y;θ̂˚q

phq´maxDPD˚ RDphq ą δ do
4: D˚ Ð D˚

Ť

tD˚ „ P px, y; θ̂˚qu

5: hÐ argminh maxDPD˚ RDphq

6: Θ̂Ð Neural-TRpD,G∆, ψ : Lphpxq, yqq
7: end while
8: Return h

Interestingly, we can exploit Neural-TR to
generate adversarial data for a given clas-
sifier and introduce an iterative procedure
to progressively train classifiers with with
minimum risk upper-bound. Algorithm 2
describes this approach. At each iteration,
CRO uses Neural-TR as a subroutine to ob-
tain an adversarially designed NCM θ̂˚ that
yields the worst-case risk for the classifier
at hand. Next, it collects data D˚ from this
NCM and adds it to a collection of datasets
D˚. Finally, it updates the classifier to be
robust to the collection D˚ by minimizing
the maximum of the empirical risk RDphq :“

ř

x,yPD Lpy, hpxqq across all D P D˚. We repeat this
process until convergence of the upper-bound for risk. The following result justifies optimality of
CRO for domain generalization; more discussion is provided in Appendix C.2.
Theorem 3 (Domain generalization with CRO). Algorithm 2 returns a worst-case optimal solution;

CROpD,G∆q P argmin
h:ΩXÑΩY

max
tuple of SCMs M0 that entails P & induces G∆

R
PM˚

0
phq. (11)

In words, Thm. 3 states that the classifier returned by CRO, in the large sample limit, minimizes
worst-case risk in the target domain subject to the constraints entailed by the available data and
induced by the structural assumptions.

8



(a) Example 2 (b) Example 3 (c) CMNIST (d) Example 2 (e) Example 3

Figure 4: (a-c): worst-case risk evaluation results as a function of Neural-TR (Alg. 1) training iterations. (d,e):
worst-case risk evaluation of CRO.

5 Experiments

This section illustrates Algs. 1 and 2 for the evaluation and optimization of the generalization error
on several tasks, ranging from simulated examples to semi-synthetic image datasets. The details of
the experimental set-up and examples not fully described below, along with additional experiments,
can be found in the Appendix.

5.1 Simulations

Worst-case risk evaluation Our first experiment revisits Examples 2 and 3 for the evaluation of
the worst-case risk RP˚ of various classifiers with Neural-TR (Alg. 1).

In Example 2 we had made (anecdotal) performance observations for the classifiers h1pc, wq :“
w ‘

À

cPc c, h2pcq :“
À

cPc c, h3pzq :“ z in a selected target domain M˚. We now consider
providing a worst-case risk guarantee with Neural-TR for any (compatible) target domain. The main
panel in Fig. 4a shows the convergence of the worst-case risk evaluator over successive training
iterations (line 15, Alg. 1), repeated 10 times with different model seeds and solid lines denoting the
mean worst-case risk. The source performances RP1

, RP2
are given in the two right-most panels

for reference. We observe that the good source performance of h2pcq and h3pzq generalizes to all
possible target domains consistent with our assumptions, while the classifier h1pc, wq diverges, with
an error of 90% in the worst target domain. In Example 3, we consider the evaluation of binary
classifiers h P th1pxq :“ x, h2pxq :“ ␣x, h3pxq :“ 0, h4pxq :“ 1u. h2pxq “ ␣x. Our results are
given in Fig. 4b, highlighting the extent to which source performance need not be indicative of target
performance. With these results, we are now in a position to confirm the desirable performance
profile of h2, even in the worst-case, as hypothesized in Example 3.

Worst-case risk optimization For each one of the examples above, we implement CRO (Alg. 2) to
uncover the theoretically optimal classifier in the worst-case. The worst-case risks of the classifiers
learned by CRO, denoted hCRO, are given by 0.05 for Example 2 and 0.18 for Example 3. The
worst-case risk evaluation results (with Neural-TR, as above) are given in Figs. 4d and 4e. It is
interesting to note that these errors coincide with the best performing classifiers considered in the
previous experiment, i.e. h3pzq :“ z for Example 2 and h2pxq “ ␣x for Example 3. In fact, by
comparing the outputs of CRO hCRO with these classifiers, we can verify that the classifiers learned
by CRO in these examples are precisely the mappings hCROpzq :“ z and hCROpxq “ ␣x which is
remarkable. By Thm. 3, h3pzq :“ z and h2pxq “ ␣x are the theoretically best worst-case classifiers
among all possible functions given the data and assumptions.

5.2 Colored MNIST

Our second experiment considers the colored MNIST (CMNIST) dataset that is used in the literature
to highlight the robustness of classifiers to spurious correlations, e.g. see [2]. The goal of the classifier
is to predict a binary label Y P t0, 1u assigned to an image Z P R28ˆ28ˆ3 based on whether the digit
in the image is greater or equal to five. MNIST images W P R28ˆ28 are grayscale (and latent), and
color C P tred, greenu correlates with the class label Y .

Figure 5: G∆
CMNIST

Following standard implementations, we construct datasets from three do-
mains with varying correlation strength between the color and image label:
set to 90% agreement between the color C “red and label Y “ 1 in source
domain M1, and 80% in source domain M2. We consider performance
evaluation and optimization in a target domain M˚ with potential discrep-
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 6: Illustration of the CRO training process (Alg. 2) on the colored MNIST task.

ancies in the mechanism for C, rendering the correlation between color and
label unstable. The selection diagram is given in Figure 5.

Worst-case risk evaluation Consider a setting in which we are given a classifier h : ΩZ Ñ ΩY ,
and the task is to assess its generalizability with a symmetric 0-1 loss function. We use data drawn
from P 1,2pz, yq to train predictors using Empirical Risk Minimization (ERM) [38], Invariant Risk
Minimization (IRM) [2], and group Distributionally Robust Optimization (group DRO) [32], namely
hERMpzq, hIRMpzq, and hDROpzq respectively; more detailed discussion about the role of invariance
and robustness in domain generalization is available in appendix D. Using Neural-TR, we observe in
Fig. 4c that the worst-case risk of hERM in a target domain with a discrepancy in the color assignment
is approximately 0.95, hDRO achieves 0.90 worst-case risk, and hIRM achieves 0.65 worst-case risk.
Either method perform worse than the baseline, that is random classification with risk 0.5. On this
task, a classifier trained on gray-scale images W achieves a worst-case error of 0.25.

Worst-case risk optimization We now ask whether we could learn a theoretically optimal classifier
in the worst-case with CRO (Alg. 2). Fig. 6 illustrates the training process over several iterations.
Specifically, given a randomly initialized h, we infer the NCM θ̂˚ that entails worst-case performance
of h (in this case, chance performance RP˚phq “ 0.5) and generate data D˚ from θ̂˚, shown in
Fig. 6a. In a second iteration, a new candidate h is trained to minimize worst-case risk on D “ D˚.
Note that in D˚, we observe an almost perfect association between the color C “green and label
Y “ 1: h therefore is encouraged to exploit color for prediction. Its worst-case error (inferred with
Neural-TR) is accordingly close to 1, and the corresponding worst-case NCM θ̂˚ entails a distribution
of data in which the correlation between color and label is flipped: with a strong association between
the color C “red and label Y “ 1, as shown in Fig. 6b. In a third iteration, a new candidate h is
trained to minimize worst-case risk on the updated D˚ with data samples from the previous two
iterations (exhibiting opposite color-label correlations). By construction, this classifier is trained to
ignore the spurious association between color and label, classifying images based on the inferred
digit which leads to better behavior in the worst-case: achieving a final error of approximately 0.25,
as shown in Fig. 6c, which is theoretically optimal. Note, however, that the poor performance of the
baseline algorithms is not directly comparable to that of CRO, since CRO has access to background
information (selection diagrams) that can not be communicated with the baseline algorithms. CRO
may thus be interpreted as a meta-algorithm that operates with a broader range of assumptions
encoded in a certain format (i.e., the selection diagram) that enable it to find the theoretically optimal
classifier for domain generalization, in contrast to the baseline algorithms.

6 Conclusion

Guaranteeing the performance of ML algorithms implemented in the wild is a critical ingredient
for improving the safety of AI. In practice, evaluating the performance of a given algorithm is
non-trivial. Often the performance may vary as a consequence of our uncertainty about the possible
target domain, also called a non-transportable setting. In this paper, we provide the first general
estimation technique for bounding an arbitrary statistic such as the classification risk across multiple
domains. More specifically, we extend the formulation of canonical models and neural causal models
for the transportability task, demonstrating that tight bounds may be estimated with both approaches.
Building on these theoretical findings, we introduce a Bayesian inference procedure as well as a
gradient-based optimization algorithm for scalable inferences in practice. Moreover, we introduce
Causal Robust Optimization (CRO), an iterative learning scheme that uses partial transportability as a
subroutine to find a predictor with the best worst-case risk given the data and graphical assumptions.
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A Partial Transportability as a Bayesian Inference Task

Consider a system of multiple SCMs M1,M2, . . . ,MK ,M˚ that induces the selection diagram
G∆, and entails the source distributions P 1, P 2, . . . , PK , and the target distribution P˚ over the
variables V . Let ψ : ΩX Ñ R be a functional of interest. Consider the following optimization
scheme:

q̂max “ max
N 1,N 2,...,N˚

EPN˚ rψpXqs (12)

s.t. PN i

prV q “ PN j

prV q, @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

PN i

pvq “ P ipvq @i P t1, 2, . . . ,K, ˚u,

where each N i is a canonical model characterized by a joint distribution over tRV uV PV .

This section describes an Markov Chain Monte Carlo (MCMC) algorithm to approximate the optimal
scalar q̂max upper bounding the query ϕN˚ :“ EPN˚ rψpXqs above from finite samples drawn from
input distributions P 1, P 2, . . . , PK . Formally, we aim to infer the value,

q̂max : P pϕN˚ ă q̂max | v̄q “ 1 (13)

where v̄ :“ pv̄P 1 , . . . , v̄Pkq, v̄P i “ tv
pjq

P i : j “ 1, . . . , niu denote ni independent sampled drawn
from P i.

We consider a setting in which we are provided with prior distributions (possibly uninformative) over
parameters of the family of compatible CMs N 1,N 2, . . . ,N ˚. In particular, we assume that for each
CM, probabilities of P pUq, U P U are drawn from uninformative Dirichlet priors; and F are drawn
uniformly from the finite class of possible structural functions. That is, for every U P U and every
V P V ,

P pUq „ Dirichletpα1, . . . , αdU
q, fV „ UniformpΩPAV

ˆ ΩUV
ÞÑ ΩV q (14)

where dU “
ś

V PPapCU q |ΩV | and α1 “ . . . “ αdU
“ 1.

The total collection of parameters is given by the set tpθN 1

, ξN
1

q, . . . , pθN˚

, ξN
˚

qu. Among
them θ “ tθU P r0, 1s

dU : U P Uu define the parameterization of exogenous probabilities while
ξ “ tξ

ppaV ,uV q

V P suppV : PAV Ă V ,UV Ă Uu define the structural functions, one set of each
CM separately.

We design a Gibbs sampler to evaluate posterior distributions over these parameters. For simplicity,
we describe each step of the gibbs sampler for a single domain and input dataset, and consider the
implementation of constraints below.

A.1 Gibbs Sampling

The Gibbs sampler iterates over the following steps, each parameter conditioned on the current values
of the remaining terms in the parameter vector.

1. Sample u. Let u P ΩU , U P U . For each observed data example across all domains vpnq P v̄,
n “ 1, . . . ,

ř

i ni, we sample corresponding exogeneous variables U P U from the conditional
distribution,

P pupnq | vpnq, ξ,θq 9 P pupnq,vpnq | ξ,θq “
ź

V PV

1tξ
ppa

pnq

V ,u
pnq

V q

V “ vpnqu
ź

UPU

θu. (15)

2. Sample ξ. Parameters ξ define deterministic causal mechanisms. For a given parameter
ξ

ppaV ,uV q

V P ξ its conditional distribution is given by P pξppaV ,uV q

V “ v | v̄, ūq “ 1 if there
exists a sample pvpnq, pa

pnq

V ,upnqq for some n, where n iterates over the samples of u from step 1
and v associated with the subset of domains in which exogeneous probabilities match the target

domain, such that ξppa
pnq

V ,u
pnq

V q

V “ vpnq. Otherwise, P pξppaV ,uV q

V “ v | v̄, ūq is given by a uniform
discrete distribution over its support suppV .
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3. Sample θ. Let θU “ pθ1, . . . , θdU
q P θ be the parameters that define the probability vector of

possible values of variables U P UC . Its conditional distribution is given by,

θU | v̄, ū „ Dirichlet pα1 ` β1, . . . , αdU
` βdU

q ,

where βi :“
ř

n 1tu
pnq “ uiu. Similarly, n iterates over the samples of u from step 1 associated

with the subset of domains in which exogeneous probabilities match the target domain.

A.2 Implementing Constraints

Iterating this procedure forms a Markov chain with the invariant distribution P pu, ξ,θ | v̄q. This
naturally enforces the soft constraint PN i

pvq “ P ipvq, i P t1, 2, . . . ,K, ˚u for the CMs defined by
the sampled parameters. The posterior distributions of the subset of pθN˚

, ξN
˚

q for which invariances
across domains are assumed are then matched with the posterior distribution inferred from source
data. The constraint PN i

prV q “ PN˚

prV q, i P t1, 2, . . . ,K, ˚u, V R ∆i,˚ is enforced by generating
θN˚

U from the prior such that PN˚

prV q :“
ř

uPΩ θ
N˚

u “
ř

uPΩ θ
N i

u :“ PN i

prV q, V R ∆i,˚ where
Ω denotes the partition of suppU that is expressed by RV .

The query is then approximated by plugging the T MCMC samples into the query ϕN˚ to obtain
ϕ

p1q

N˚ , . . . , ϕ
pT q

N˚ and

q̂max :“ suptx :
ÿ

t

1tϕ
ptq
N˚ ď xu “ αu. (16)

for a chosen value of confidence value α.
Example 5 (Example 3 continued). Consider again the evaluation of the risk RP˚phq :“ PN˚

pY ‰
hpXqq given the classifier hpxq “ ␣x. We are data sampled from P 1px, yq, P 2px, yq. For every
SCM M, there exists an SCM of the described format specified with only a distribution P prX , rY q,
where,

suppRX
“ t0, 1u, suppRY

“ ty “ 0, y “ 1, y “ x, y “ ␣xu. (17)

Thus, the joint distribution P puXY q “ P prX , rY q can be parameterized by a vector in 8-dimensional
simplex. The canonical SCMs associated with each of the SCMs M1,M2,M˚, are denoted
N 1,N 2,N ˚, for which V “ tX,Y u,U “ tUXY u and suppUXY

“ t1, . . . , 8u. The partial task
can be translated into an optimization problem aiming to to find the upper-bound for the risk RP˚phq
for the classifier hpxq “ ␣x:

max
N 1,N 2,N˚

PN˚

pY ‰ ␣Xq (18)

s.t. PN 1

prY q “ PN˚

prY q, PN 2

prXq “ PN˚

prXq (Y R ∆1, and X R ∆2)

PN 1

px, yq “ P 1px, yq, PN 2

px, yq “ P 2px, yq (matching source dists)

With the Gibbs sampler outlined above, we obtain samples from the posterior distribution
P pθN

1

, θN
2

, ξN
1

, ξN
2

| v̄q. θN
1

, θN
2

encode the probabilities PN 1

pUXY “ uq, PN 2

pUXY “ uq

and are instantiated as two-dimensional arrays of shape p2, 4q such that, e.g., PN 1

prY q “
ř

dim. 1 θ
N 1

,
with rY P t1, 2, 3, 4u and similarly PN 1

prXq “
ř

dim. 0 θ
N 1

, with rX P t1, 2u.

To enforce the constraints PN 1

prY q “ PN˚

prY q, PN 2

prXq “ PN˚

prXq it thus suffices to
sample θN

˚

from the prior Dirichlet distribution (as it has not been updated with data) and re-scale
the outcomes such that the partial row and column sums satisfy the corresponding partial row and
column sums computed from the MCMC samples of P pθN

1

, θN
2

| v̄q. The resulting MCMC
parameters pθN˚

, ξN
˚

q are then valid samples from the posterior distribution P pθN
˚

, ξN
˚

| v̄q
subject to assumed constraints, and the risk could be computed by plugging those samples into
RP˚phq :“ PN˚

pY ‰ hpXqq to obtain RP˚phqp1q, . . . , RP˚phqpT q and evaluating

q̂max :“ suptx :
ÿ

t

1tRP˚phqptq ď xu “ αu. (19)

for a chosen value of confidence value α. ˝
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Figure 7: Violin plots that describe MCMC samples of RP˚phq for Example 2. The upper end-point is an
estimate of maxRP˚phq. n stands for the number of source domain samples used as a conditioning set in the
posterior evaluation.

The following Theorem shows that q̂max converges to the true (tight) bounds qmax for the unknown
query RP˚phq.

Theorem 4. q̂max defined in Eq. (19) is a valid upper bound on qmax for any sample size, and
coincides with qmax as the sample size increases to infinity.

Proof. Let Θ denote the collection of parameters ξ,θ of discrete SCMs that generate the observed
data from P 1, P 2, . . . . We assume that the prior distribution on ξ,θ has positive support over the
domain of Θ. That is, the probability density function ρpξq ą 0 and ρpθq ą 0 for every possible
realization of ξ,θ. By the definition of Θ, for every pair of parameter pξ,θq P Θ, it must be
compatible with the dataset v̄, i.e., P pv̄ | ξ,θq ą 0. Similarly, given that the prior has positive
support in Θ, P pξ,θ | v̄q ą 0.

Note that parameters pξ,θq P Θ fully determine the optimal upper bound qmax for RP˚phq. And so
this implies that P pRP˚phq ă qmax | v̄q ą 0, which by definition of a 100% credible interval means
that RP˚phq ă q̂max.

Next we show convergence of the posterior by way of convergence of the likelihood of the data given
one SCM M. For increasing sample size the posterior will, with increasing probability, be low for
any parameter configuration, i.e. for any pξ,θq R Θ. By the definition of the optimal upper bound
qmax given by the solution to the partial identification task,

P pv̄ | RP˚phq ă qmaxq Ñp 1. (20)

Therefore if the prior on parameters pξ,θq defining SCMs is non-zero for any M compatible with
the data and assumptions, also the posterior converges,

P pRP˚phq ă qmax | v̄q Ñp 1, (21)

which is the definition of the credible value q̂max as the 100th quantile of the posterior distribution,
which coincides with qmax asymptotically.

B Additional Experiments and Details

This section includes experimental details not covered in the main body of this paper as well as
additional examples to illustrate our methods, including the Bayesian inference approach.

For the approximation of credible intervals and expectations required for the Bayesian inference
approach, we draw 10,000 samples from posterior distributions P p¨ | v̄q after discarding 2, 000
samples as burn-in. The results will be given a violin plots that encode the full posterior distribution
of the query of interest, here the target error RP˚phq of a classifier h. The worst-case target error can
then be read as the upper end-point of the posterior distribution.

For completeness, we provide MCMC results for Examples 2 and 3, analyzed in the main body of
this paper, in Figs. 7 and 8, respectively. One could check that the upper bounds match with the
analysis in the main body of this paper.

B.1 Additional Examples

This section adds additional synthetic examples to illustrate our methods.
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Figure 8: Violin plots that describe MCMC samples of RP˚phq for Example 3. The upper end-point is an
estimate of maxRP˚phq. n stands for the number of source domain samples used as a conditioning set in the
posterior evaluation. Recall that h1pxq :“ x, h2pxq :“ ␣x, h3pxq :“ 0, h4pxq :“ 1.

(a) Example 6 (b) Example 7

Figure 9: NCM experimental results on Examples 6 and 7.

Example 6. This experiment is inspired by the debate around the relationship between smoking and
lung cancer in the 1950’s [37], and the corresponding selection diagram is shown in Figure 12a. We
consider M : tM1,M˚u that describe the effect of an individual’s smoking status S on lung cancer
C, including related measured variables such presence of tar in the lungs T , and demographic factors
W . The data generating mechanism is given by

Mi “

$

’
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V “ tW , S, T, Cu

U “ tUW , US , UT , USCu

F “

$
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fW puW q “ uW , for W PW , UW P UW

fSpw, uS , uSCq “

$

&

%

1, if
ř

i
wi

d ` uSC ` 1.5 ˚ us ´ 1 ą 0 and i “ 1

1, if
ř

i
wi

d ` uSC ` uS ´ 2 ą 0 and i “ ˚
0, otherwise

fT ps, uT q “

"

1, if s´ 0.5uT ´ 1 ą 0

0, otherwise

fCpw, uC , uSCq “

"

1, if t´
ř

i
wi

d ` uSC ´ 1 ą 0

0, otherwise
P pUq defined such that US , UT , USC „ Bernp0.5q, UW „ Np0, 1q,W PW ,

Note that ∆ “ tSu as the mechanism for S differs across domains while the mechanisms for all
other variables are assumed invariant. The quantity to upper-bound is the target mean squared
error: RP˚phq :“ EP˚rpC ´ hq2s of cancer prediction algorithms h P th1pw, s, tq “ EP 1rC |

w, s, ts, h2pw, tq “ EP 1rC | w, ts, h3pwq “ EP 1rC | wsu given data from P 1 and G∆.

The results for the NCM approach are given in Fig. 9a. We observe that despite the discrepancy in S,
all methods maintain an error of close to 0.4.

The results for the Gibbs sampling approach are given in Fig. 10. The violin plots encode the full
posterior distribution of the query of interest, here the target error RP˚phq of a classifier h. The
worst-case target error can then be read as the upper end-point of the posterior distribution. We
observe that the upper-bounds from the NCM and MCMC approach approximately match. ˝
Example 7. This experiment considers the design of prediction rules for the development of
Alzheimer’s disease in a target hospital M˚ in which no data could be recorded, and the cor-
responding selection diagram is shown in Figure 12b. The observed variables are given by
V “ tX1, X2,W, Y, Zu. Among those, X1 and X2 are treatments for hypertension and clini-
cal depression, respectively, both known to influence Alzheimer’s disease Y , and blood pressure W .
Z is a symptom of Alzheimer’s. Their biological mechanisms are somewhat understood, e.g. the
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Figure 10: Violin plots that describe MCMC samples of RP˚phq for Example 6. The upper end-point is an
estimate of maxRP˚phq. n stands for the number of source domain samples used as a conditioning set in the
posterior evaluation.

Figure 11: Violin plots with MCMC samples for Example 7. n stands for the number of source domain samples
used as a conditioning set in the posterior evaluation.

effect of hypertension is mediated by blood pressure W , although several unobserved factors, such as
physical activity levels and diet patterns, are expected to simultaneously affect both conditions. We
assume that hypertension and clinical depression are not known to affect each other, although it’s
common for patients with clinical depression to simultaneously be at risk of hypertension (expressed
through the presence of an unobserved common cause). More specifically, investigators have access
to data from a related study conducted in domain M1. SCMs M : tM1,M˚u are given as follows,

Mi “
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V “ tX1, X2,W, Y, Zu

U “ tUWY , UX2
, UW , UX1X2

, UZu

F “

$
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%

fX1
pUX1X2

q “

"

1, if UX1X2
ą 0

0, otherwise

fX2pUX1X2 , UX2q “

"

1, if UX1X2 ` UX2 ą 0

0, otherwise

fW pX1, UWY , UW q “

$

&

%

1, if X1 ` UWY ` 1.5UW ´ 1 ą 0 and i “ ˚
1, if X1 ` UWY ´ UW ` 1 ą 0 and i “ 1

0, otherwise

fY pW,X1, UWY q “

"

1, if W ´ UWY ` 0.1X1 ´ 1 ą 0

0, otherwise

fZpY, UZq “

"

1, if Y ` UZ ą 0.5

0, otherwise
P pUq defined such that UWY , UX2

, UW , UX1X2
, UZ „ N p0, 1q,

Note that ∆ “ tW u as the mechanism for W differs across domains while the mechanisms for all
other variables are assumed invariant. In this example, we aim at upper-bounding the target mean
squared error: RP˚phq :“ EP˚rpC ´ hq2s of cancer prediction algorithms h P th1px1, x2, wq “
EP 1rY | x1, x2, ws, h2pwq “ EP 1rY | ws, h3pz, tq “ EP 1rY | zsu given data from P 1 and G∆˚1 .

The results for the NCM approach are given in Fig. 9b. We observe that the discrepancy in W leads
to poor performance for all methods (chance level) except for h3 that outperforms.

The results for the Gibbs sampling approach are given in Fig. 11. The violin plots encode the full
posterior distribution of the query of interest, here the target error RP˚phq of a classifier h. The
worst-case target error can then be read as the upper end-point of the posterior distribution. We
observe that the upper-bounds from the NCM and MCMC approach approximately match. ˝
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(a) Example 6 (b) Example 7

Figure 12: Selection diagrams for additional experiments

B.2 More on Colored MNIST

Consider handwritten grayscale digits W P r0, 1s28ˆ28 that are annotated with Y P t0, 1, . . . , 9u
and colored with C P tred, greenu, resulting in colored images Z P r0, 1s28ˆ28ˆ3. What follows
describes the underlying SCM for domain i P t1, 2, ˚u:

Mi :

$

’

’

&

’

’

%

W , UY ,UC ,UZ „ P pwq ¨ P puY q ¨ P puCq ¨ P puZq

F i :

$

&

%

Y Ð fY pW , UY q (The annotation mechanism)
C Ð f iCpY,UCq (The choice of color based on digit)
Z ÐW ¨ CJ `UZ (Coloring image W with color C)

In words, the grayscale image of handwritten digits W is generated according to a distribution P pwq
shared across all domains. The label Y is the annotation of the image with the corresponding digit
through mechanism fY shared across all domains; the variable UY accounts for the possible error in
annotation. Next, the color is chosen based on the digit Y following some stochastic policy f iCp¨, UCq

that changes across the source and target domains. Finally, the colored image Z is produced by
product of the grayscale image W and the color C; exogenous variable UZ accounts for possible
noise in coloring.

We have a classifier h : ΩZ Ñ ΩY at hand, and the task is to assess its generalizability. Consider the
following derivation:

P˚pz, yq “
ÿ

c

P˚py, c, zq (22)

“
ÿ

c

P˚pyq ¨ P˚pc | yq ¨ P˚pz | c, yq (23)

“ P˚pyq
ÿ

c

P˚pc | yq ¨ P 1,2pz | c, yq S1, S2 |ù dZ | C, Y (24)

“ P 1,2pyq
ÿ

c

P˚pc | yq ¨ P 1,2pz | c, yq S1, S2 |ù dY (25)

Motivated by the above derivation, we use the source data drawn from P 1, P 2 and train the generative
models P py; ηY q, P pz | y, c; ηZq to approximate sampling from the distributions P 1,2pyq, P 1,2pz |
y, cq, respectively. The former generates a random digit Y according to the distribution of label in
the source domain, and the latter generates a colored picture Z by taking color C and digit Y as the
input. Also, we use an NCM with parameter θ˚

C to model the c-factor P˚pc | dopyqq “ P˚pc | yq.
We can now rewrite the risk as follows:

RP˚phq “
ÿ

z,y

|y ´ hpzq| ¨ P 1,2pyq
ÿ

c

P˚pc | yq ¨ P 1,2pz | c, yq (26)

“ EY „P py;ηY q

“

ÿ

c

P pc | y; θ˚
Cq ¨ EZ„P pz|c,y;ηZqr|Y ´ hpZq|s

‰

. (27)

By maximizing the above w.r.t. the free parameter θ˚
C , we achieve the worst-case risk of the classifier.

B.3 Reproducibility

For the synthetic experiments, we used feed-forward neural networks with 7 layers and 128ˆ 128
neurons in each layer. The activation for all layers is ReLu, but for the last layer which is a sigmoid
since fθV outputs the probability of V “ 1. For evaluation, at each epoch, we used 1000 samples from
the joint distribution. The data generative process for all experiments is provided in the corresponding
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Figure 13: Selection diagram of Example 8

example. We used Adam optimizer for training the Neural networks. In CMNIST example, we used
a standard implementation of a conditional GAN [23] trained over 200 epochs with a batch-size of
64. The learning rate of Adam was set to 0.0002. The architecture of the generator is given by a 5
layer feed-forward neural network with Batch normalization and Leaky-ReLu activations.

C Extended Discussion on Algorithms

In this section, we elaborate more on the algorithms presented in the paper.

C.1 Examples of Neural-TR (Algorithm 1)

In the next examples, we follow Algorithm 1 to compute the worst-case risk of a classifier.
Example 8 (Simplify). Consider a system of SCMs M1,M2M˚ over X “ tC,Z,W u and Y that
induces the selection diagram shown in Figure 13. Suppose we would like to assess the risk of a
classifier hpzq. Following Theorem 2, the naive approach requires us to parameterize three NCMs
θ1, θ2, θ˚ over the variables X, Y , and then proceed with the maximization of the target quantity
RPN˚ phq “ EP˚r1tY “ hpZqus. Notably, the latter depends only on P˚py, zq. We can rewrite the
risk of h as follows:

EY,Z„P˚py,zqr1tY ‰ hpZqus “
ÿ

z,y

1ty ‰ hpzqu ¨ P˚py, zq (28)

“
ÿ

z,y

1ty ‰ hpzqu ¨ P˚pyq ¨ P˚pz | yq (factorization) (29)

“
ÿ

z,y

1ty ‰ hpzqu ¨ P˚pyq ¨ P 2pz | yq pY | Z |ù dS2q (30)

“
ÿ

z,y

1ty ‰ hpzqu ¨ P 2pz | yq ¨
ÿ

c

P˚py, cq (31)

This new expression for the objective function depends only on the unknown P˚py, cq, a so-called
ancestral c-factor, that can generally be expressed as P˚pa | doppaAqq,A “ tC, Y u. In the
following, we argue that to partially transport the risk we only need to parameterize the SCMs over
ancestral c-factors that are not transportable. Specifically, the partial transportation problem can be
restated as follows:

max
θ1,θ2,θ˚

EUCY
r

ÿ

y,c,z

P py, c | UCY ; θ
˚q ¨ P pz | y; η2q ¨ 1ty ‰ hpzqus (32)

` Λ ¨
`

ÿ

y,cPD1

EUCY
rlogP py, c | UCY ; θ

1qs `
ÿ

y,cPD2

EUCY
rlogP py, c | UCY ; θ

2qs
˘

s.t. θ˚rCs “ θ2rCs, θ˚rY s “ θ1rY s.

In the above, Di „ P ipc, y, z, wq denotes the source data, and P pz | y; η2q is a probabilistic model
of P 2pz | yq learned using the data D2. ˝
Example 9 (Partial-TR illustrated). Consider a system of SCMs M1,M2,M˚ over the binary
variables X “ tX1, X2, . . . , X9u and Y that induces the selection diagram shown in Figure 14.
Consider the classifier hpx1, x4q “ x1 _ x4. The objective is partial transportation of the risk of h,
expressed as follows:

RP˚phq “ P˚pY ‰ hpX1, X4qq (33)
“ EX1,X4,Y „P˚r1tY ‰ X1 _X4us. (34)
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Figure 14: Selection diagram of Example 9

The latter indicates that ψpX1, X4, Y q :“ 1tY ‰ X1 _X4u must be passed to the algorithm. The
objective function is then expressed as:

RP˚phq “ EP˚rψpX1, X4, Y qs “
ÿ

x1,x4,y

1tY ‰ X1 _X4u ¨ P
˚px1, x4, yq. (35)

Next, we focus on transporting P˚px1, x4, yq. First, we compute the ancestral set using the selection
diagram;

A “ AnpX1, X4, Y q “ tX1, X2, X4, Y,X5, X6, X7, X8, X9u. (36)

and we decompose this set into c-components:

A1 “ tX1, X2u, A2 “ tX4, Y,X5u, A3 “ tX6, X7, X8, X9u. (37)

Next, we form the expression below:

P˚px1, x4, yq :“
ÿ

x2,x5,...,x9

P˚px1, x2 | dopyqq ¨ P
˚py, x4, x5 | dopx6qq ¨ P

˚px6, . . . , x9q. (38)

Notice,

P˚pa2 | dopx6qq
rule 2 do-calc.

“ P˚pa2 | x6q
S1 |ù dY,X4,X5|X6

“ P 1pa2 | x6q, (39)

P˚pa3q
S2 |ù dA3|X6

“ P 2pa3q. (40)

Thus, we use the source data D1, D2 to learn the generative model P pa2 | x6; η
1
A2
q, P pa3; η

2
A3
q to

approximate sampling from P 1pa2 | x6q, P
2pa3q respectively. We plug these models as constants

into Eq. 35.

Since S˚1, S˚2 are pointing to the variables X2, X1, respectively, the first term P˚px1, x2q | dopyqq
in Eq. 38 can not be directly transported from neither of the source domains. Thus, we need to
parameterize this c-factor using NCMs across all domains. We require the following properties:

1. Parameter sharing: Since X4, Y,X5, X7, X8, X9 are not pointed by S1, we share their mecha-
nisms across all domains. Also, since X2, X6 are not pointed by S2, we set θ˚

tX2,X6u
“ θ2

tX2,X6u
.

These constraints are stored in Cexpert in the Algorithm.

2. Source data: To enforce θ1, θ2 to be compatible with the source data D1, D2, we compute the
likelihood of the data w.r.t. the parameters, as follows:

Llikelihood :“
2

ÿ

i“1

`

ÿ

xx1,x2,yyPDi

EUX1,X2
rlogP px1, x2 | y,UX1,X2

; θiX2
qs (41)

We plug P px1, x2 | dopyq; θ˚
A1
q into Eq. 38. Finally, we use stochastic gradient ascent to maximize

the objective function in Eq. 35 regularized by an additive term Λ ¨ Llikelihood that encourages the
likelihood of the data w.r.t. the parameters of the source NCMs. ˝
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C.2 Illustration of CRO (Algorithm 2)

First, we initialize with a random classifier. One may also warm start with a reasonable guess such as
empirical risk minimizer defined as,

hERM P argmin
h:ΩXÑΩY

K
ÿ

i“1

ÿ

x,yPDi

Lpy, hpxqq. (42)

Throughout the runtime of the algorithm we accumulate instances of distributions that we obtain via
Neural-TR (Alg. 1). At each step, these distribution are aimed to maximize the risk of the classifier at
hand. In this sense, Neural-TR can be viewed as an adversary, and the CRO can be viewed as a game
between two players:

1. Neural-TR. Searches over the spaces of plausible target domains that are characterized
by the source data and the domain relatedness encoded in the selection diagram, to find a
distribution that is hard to generalize to using the classifier at hand.

2. group DRO [32] Updates the classifier at hand by minimizing the maximum risk over the
distributions produced by Neural-TR so far, that is,

min
h:ΩXÑΩY

max
DPD˚

1

|D|
¨

ÿ

x,yPD

Lpy, hpxqq. (43)

For more information about group DRO, see Appendix D.2.

The equilibrium of the above happens if the worst-case risk obtained by Neural-TR almost coincides
with the risk obtained by group DRO, i.e.,

RP px,y;θ̂q
phq ´ max

DPD˚

1

|D|
¨

ÿ

x,yPD

Lpy, hpxqq ă δ. (44)

Once this is achieved, we stop the search and return the classifier at hand. When the game is not
at equilibrium, we would have a difference larger than δ, meaning that the new target domain θ̂˚

has enough novelty to forces the classifier at hand to perform at least δ worse than what it achieves
over the existing distributions in D˚. Therefore, we draw samples D˚ „ P px, y; θ̂q and add them to
our collection D˚. As shown in Theorem 3 this game reaches the equilibrium in finitely many steps,
and the classifier that we return has the best worst-case risk w.r.t. the selection diagram G∆ and the
source distributions P. The conceptual Figure 15 shows the process of convergence of CRO.

It is important to note that although we employ group DRO as a subroutine in our CRO algorithm,
we do not use the source distributions directly. Instead, we use group DRO on the distributions
obtained from Neural-TR. Note that under the assumptions encoded in the selection diagram, the
target distribution distribution may be geometrically unrelated to the source distributions; the reason
is that mechanistic relatedness of the target domain to the source domains (as indicated by the graph)
do not translate directly to closeness of the entailed distributions under known distributional distance
measures.

D Extended Related Work

In this section, we discuss some learning schemes based on invariant and robust learning that
are proposed for domain generalization, including IRM and group DRO that are discussed in the
experiments.

D.1 Invariant Learning for Domain Generalization

Several common invariance criteria are extensively studied in the literature and proposed for the
domain generalization task. A prominent idea is label conditional distribution invariance that seeks a
representation ϕ such that P ipY | ϕpXqq is equal across the source domains [29, 1, 13, 22]. These
notions do not explicitly rely on an underlying structural causal model (SCM), although invariances
are often justified by an underlying causal model [27, 2, 39, 31, 33]. Jalaldoust & Bareinboim
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Equilibrium

Figure 15: Conceptual illustration of CRO. The rectangle represents the space of all distributions overX, Y ,
and the circle inside it represents the subset of that are plausible target distributions, as characterized by the
source distributions and selection diagram. Iteration 1: At first we start with some classifier that may or may not
perform well for all distributions in the plausible subset; the darker spots indicate distributions that yield higher
risk for the classifier at hand. Neural-TR uses gradient ascend steps to find an SCM that entails a distribution
which yields the highest risk for the classifier at hand, i.e., the darkest spot within the plausible subset (likely at
the boundary of it), shown by the star blue in Fig. (a). We register this distribution by taking samples from it
and adding them to the collection D˚. Iteration 2: We update the classifier at hand to have group robustness
to the collection of distributions D˚; in this case, only risk minimizer, since there is only one distribution in
the collection. Now the distributions that are close to the registered distribution would entail small risk, thus,
the region around the first star is now brighter. Once again, using Neural-TR we find a distribution that yields
high risk for the classifier at hand. Iteration 3: We update the classifier, this time to minimize the risk on both
registered distributions indicated with yellow starts using group DRO. Now the risk is smaller in most parts of
the plausible set, though Neural-TR still finds another distribution at the boundary with high risk. Equilibrium:
We update the classifier using group DRO over the three registered distributions. This time, the registered
distributions correctly represent the plausible set, meaning that the maximum risk inside the plausible set is not
significantly larger than what is achieved at the registered points through group DRO.

[17] studied the implicit assumptions that license generalizability of representations that satisfy
the probabilistic relation P ipY | ϕpXqq. Although searching for such representation is practically
challenging and in cases theoretically intractable. Thus, one may resort to achieving an approximate
notion that serve as a proxy to invariance of P ipY | ϕpXqq; A well-known instance of such effort is
invariant risk minimization [2], discussed below.

The paper [2] studies a constrained optimization problem called invariant risk minimization (IRM) in
the context of domain generalization. In the notation of our paper, the IRM problem can be written as
follows:

min
ϕ,h

K
ÿ

i“1

EP irY ‰ h ˝ ϕpXqs

s.t. h P argmin
h̃:ΩRÑt0,1u

EP irY ‰ h̃ ˝ ϕpXqs @i, (45)

Where ϕ : ΩX Ñ ΩR is a representation, and h : ΩR Ñ t0, 1u is a classifier defined based on it. In
words, a pair h, ϕ satisfies the invariant risk minimization property if h ˝ ϕ attains the minimum risk
across all classifiers defined based on ϕ, across all source domains. The search procedure suggests
choosing the classifier that satisfies the mentioned constraint, and achieves minimum risk on the
pooled source data. The constrained optimization program above is highly non-convex and hard to
solve in practice. To approximate the solution, the paper considers the Langrangian form below:

hIRM P min
hθ:ΩXÑt0,1u

K
ÿ

i“1

EP irY ‰ hθpXqs ` λ ¨ }∇θEP irY ‰ hθpXqs}
2. (46)

In this program, θ parametrizes the classifier h, and the penalty term λ accounts for how restrictive
one wants to enforce the IRM constraint. In the extreme λ “ 0 the objective equates to the vanilla
ERM with all data pooled; on the other extreme, for λÑ8 ascertains that the solution is guaranteed
to satisfy the IRM constraint.

Consider a representation that satisfies the original IRM constraint in Eq. 45. The optimal classifier
defined over this representation is the bayes classifier, that uses 1

2 level set of P ipY “ 1 | ϕpXqq
as the decision boundary. This means that satisfying the IRM constraint implies a match between
1
2 level-sets of P ipY “ 1 | ϕpXqq across all source domains. On the other hand, invariance of
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P ipY | ϕpXqq requires coincidence of every level-set across the source domains, and in this sense,
the IRM constraint can be viewed as a proxy to the invariance property of P ipY | ϕpXqq. One
can speculate that since IRM yields a proxy to invariance of P ipY | ϕpXqq, it might still exhibit
generalization, though slightly weaker than what is derived from invariance of P ipY | ϕpXqq.
However, IRM is shown to have poor domain generalizability, both theoretically (e.g., [30]) and
empirically (e.g., [15]). Still, due to popularity of this method in the literature, we find it insightful
to use the Neural-TR algorithm to find out what would be the worst-case risk of IRM. As shown in
Fig. 4c, the worst-case performance of IRM is much worse than what is reported by [2] and [15]; the
reason is that Neural-TR does not commit to one held-out domain, and instead it constructs an SCMs
that is tailored to yield the poorest performance subject to the graph and source distributions.

D.2 Group Robustness for Domain Generalization

Group Distributionally robust optimization (group DRO) [32] has been employed in the broad context
of learning under uncertainty. In group DRO one seeks a single classifier that minimizes the risk on
multiple distributions simultaneously. More specifically, the objective is minimizing the maximum
risk among the source distributions, i.e.,

hDRO P argmin max
iPt1,2,...,Ku

RP iphq (47)

This approach ensures that the learned classifier is optimal w.r.t. an unknown target domain that
lies in the convex hull of the source distributions. In this sense, group DRO objective interpolates
the perturbations that are represented in the source data to define an uncertainty set for the target
distribution. On the other hand, in invariant learning the objective is to extrapolate the perturbations
that are observed among the source domain by learning a representation that shields the label from
these changes. In particular, [18, 31, 33] highlight the invariant-robust spectrum, and propose methods
that have a free parameter which allows interpolating the two. In our experiments, we considered
group DRO as a representative of methods in this category, and evaluated its worst-case performance
in the Colored MNIST task, as shown in Figure 4c. Once again, we emphasize that this worst-case
risk is much larger than what is shown in the benchmarks, e.g., by [15]. The reason is that the
worst-case performance is obtained by Neural-TR that operates as an adversary, seeking a plausible
target domain that is hardest to generalize to, subject to the assumptions encoded in the graph and the
source data.

E Proofs

Proof of Theorem 1

Our results rely on the expressiveness of discrete SCMs, i.e. defined over variables tV ,Uu with
finite cardinalities. Discrete SCMs, introduced first in [3] and then in [42] have been shown to be
“canonical” in the sense that they could represent all counterfactual distributions entailed by any SCM
with the same induced causal diagram defined over finite V . The following example illustrates this
observation.
Example 10 (The double bow). Let tX,Y, Zu be binary variables. Consider two source domains
defined based on the following SCMs:

M1 :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

P 1pUq :

$

&

%

UX „ Normalp0, 1q

UXY „ Normalp0, 1q

UZY „ Normalp0, 1q

F1 :

$

&

%

X Ð 1tUX ` UXY ą 0u

Y Ð 1tX ´ UXY ą 0u

Z Ð 1tY ¨ UZY ą 0u

M˚ :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

P˚pUq :

$

&

%

UX „ Normalp0, 1q

UXY „ Normalp0, 1q

UZY „ Normalp0, 1q

F˚ :

$

&

%

X Ð 1tUX ` UXY ą 0u

Y Ð 1t´UXY ` 0.5 ą 0u

Z Ð 1tY ¨ UZY ą 0u

The SCM M1 induces a counterfactual probabilities, e.g. PM1

px, yx, zyq for outcomes x, yx, zy P
t0, 1u. [3] observed that such probabilities, defined over a finite set of events, may be generated with
an equivalent model with a potentially large but finite set of discrete exogenous variables. [3] derived
a canonical parameterization for the SCMs that induces the same graph but instead involves possibly
correlated discrete latent variables RX , RY , RZ , where RX determines the functional that decides
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X , RY determines the functional that decides Y based on X , and RZ determines the functional that
decides Z based on Y . [3] showed that for every SCM M with the same induced graph as M1 there
exists an SCM of the described format specified with only a distribution P prX , rY , rZq, where,

suppRX
“ t0, 1u,

suppRY
“ ty “ 0, y “ 1, y “ x, y “ ␣xu,

suppRZ
“ tz “ 0, z “ 1, z “ y, z “ ␣yu.

Thus, the joint distribution P prX , rY , rZq can be parameterized by an 32-dimensional vector. ˝

This example illustrates a more general procedure, in which probabilities induced by an SCM over
discrete endogenous variables V may be generated by a canonical model. This is formalized in the
following lemma.
Definition 7 (Canonical SCM). A canonical SCM is an SCM N “ xU ,V ,F , P pUqy defined as
follows. The set of endogenous variables V is discrete. The set of exogenous variables U “ tRV :
V P V u, where suppRV

“ t1, . . . ,mV u (where mV “ |thV : supppaV
Ñ suppV u|) for each

V P V . For each V P V , fV P F is defined as fV ppaV , rV q “ h
prV q

V ppaV q.

The following lemma establishes the expressiveness of canonical SCMs.
Lemma 1 (Thm. 2.4 [42]). For an arbitrary SCM M “ xU ,V ,F , P pUqy, there exists a canonical
SCM N such that 1. M and N are associated with the same causal diagram, i.e., GM “ GN . 2. For
any set of counterfactual variables Yx, . . . ,Zw, PM pYx, . . . ,Zwq “ PN pYx, . . . ,Zwq.

In words, finite exogenous domains in canonical SCMs are sufficient for capturing all the uncertainties
and randomness introduced by the (potentially) continuous latent variables in SCMs. Our goal will
be to adapt the canonical parameterization of SCMs such that they entail the equality constraints
specified by G∆. The next example illustrates the implication of the constraints induced by G∆ on
the construction of canonical SCMs.
Example 11 (Example 10 continued.). Consider M1 and M˚ given in Example 10. The domain
discrepancy set ∆ indicates that certain causal mechanisms need to match across pairs of the SCMs.
For example, ∆1˚ “ tY u, which does not contain tX,Zu, and this implies that the functions fX , fZ
are invariant across M1,M˚, and that the distribution of unobserved variables that are arguments of
fY , fZ , namely, tUX , UXY , UY Zu are invariant across M1,M˚. The canonical parameterization of
M1 is given by

N 1 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

V “ tX,Y u

U “ tRX , RY , RZu

F1 “

$

&

%

f1X : suppRX
Ñ suppX

f1Y : suppRY
ˆ suppX Ñ suppY

f1Z : suppRZ
ˆ suppY Ñ suppZ

P 1pUq “ P 1pRX , RY , RZq

Analogously, the canonical parameterization of M˚ is given by

N 1 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

V “ tX,Y u

U “ tRX , RY , RZu

F˚ “

$

&

%

f˚
X : suppRX

Ñ suppX
f˚
Y : suppRY

ˆ suppX Ñ suppY
f˚
Z : suppRZ

ˆ suppY Ñ suppZ
P˚pUq “ P˚pRX , RY , RZq

With these definitions, the restrictions in ∆1˚ impose straightforward constraints on the parameteri-
zation of the canonical models given directly from the definition of discrepancy set:

f1XprXq “ f˚
XprXq, P

1prXq “ P˚prXq, X R∆1˚

f1Zpy, rZq “ f˚
Zpy, rZq, P

1prZq “ P˚prZq, Z R∆1˚

for any input x, y, rY , rX , rZ . ˝
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The next lemma formalizes the observation made in the example above, showing that if a pair SCMs
and a pair of associated canonical models induce the same distributions and causal diagram, their
discrepancies must also agree.

Lemma 2. For a pair of SCMs M i,M j (i, j P t˚, 1, 2, . . . , T u) defined over V with discrepancy set
∆ij Ď V , let N i,N j be associated canonical SCMs that induce the same causal graphs and entail
the same distributions over V . Then the discrepancy sets of the pairs of SCMs and canonical SCMs
must agree, i.e. V P ∆ij if and only if either fN

i

V ‰ fN
j

V , or PNi

puV q ‰ PNj

puV q.

Proof. Let V P ∆ij , and fix M i,M j such that PMi

pv | doppaV qq ‰ PMj

pv | doppaV qq. This
is possible since the interventional probabilities are parameterized by the mechanism of V which
could vary across M i,M j . Assume for a contradiction that fN

i

V “ fN
j

V and PNi

puV q “ PNj

puV q
for two canonical models N i, N j constructed to match all L3 statements induced by M i,M j . This
implies in particular that PN i

pv | doppaV qq “ PN j

pv | doppaV qq and therefore N i,N j do not
induce the same probabilities as M i,M j . This contradicts the assumption that the pair of canonical
SCMs matches the pair of SCMs in all L3 statements.

For the converse, we proceed similarly. For fixed M i,M j , assume for a contradiction that fN
i

V ‰

fN
j

V , or PNi

puV q ‰ PNj

puV q such that PN i

pv | doppaV qq ‰ PN j

pv | doppaV qq for two canonical
modelsN i, N j constructed to match all L3 statements induced byM i,M j , but nevertheless V R ∆ij .
The discrepancy set ensures that PMi

pv | doppaV qq “ PMi

pv | doppaV qq but the same relation
is not true for N i, N j as PN i

pv | doppaV qq ‰ PN j

pv | doppaV qq by assumption and therefore
N i,N j do not induce the same probabilities as M i,M j . This contradicts the assumption that the
pair of canonical SCMs matches the pair of SCMs in all L3 statements.

Lemma 3. Consider a system of multiple SCMs M : tM1,M2, . . . ,MK ,M˚u that induces a
selection diagram and entails the source distributions P : tP 1, P 2, . . . , PK , P˚u over the variables
V . Then there exists a system of canonical SCM N : tN 1,N 2, . . . ,NK ,N ˚u such that

1. M and N are associated with the same set of causal diagrams and selection diagrams.

2. For any set of counterfactual variables Yx, . . . ,Zw, PM˚

pYx, . . . ,Zwq “

PN˚

pYx, . . . ,Zwq.

Proof. For (1), Thm. 2.4 [42] gives that SCMs M : tM1,M2, . . . ,MK ,M˚u and canonical
SCMs N : tN 1,N 2, . . . ,NK ,N ˚u induce the same causal diagrams. Lem. 2 gives that for every
pair of SCMs M i,M j (i, j P t˚, 1, 2, . . . , T u), their discrepancy set is the same as that of N i,N j

(i, j P t˚, 1, 2, . . . , T u). As selection diagrams are constructed deterministically from causal diagrams
and discrepancy sets, M and N must share the same set of selection diagrams.

(2) is given by Thm. 2.4 [42].

Theorem 1 (restated). Consider a system of multiple SCMs M1,M2, . . . ,MK ,M˚ that induces the
selection diagram G∆ and entails the source distributions P 1, P 2, . . . , PK and the target distribution
P˚ over the variables V . Let ψpP˚q P r0, 1s be the target quantity. Consider the following
optimization scheme:

q̂max “ max
N 1,N 2,...,N˚

ψpPN˚

q (48)

s.t. PN i

prV q “ PN j

prV q, @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

PN i

pvq “ P ipvq @i P t1, 2, . . . ,K, ˚u,

where each N i is a canonical model characterized by a joint distribution over tRV uV PV . The value
of the above optimization, namely q̂max, is a tight upper-bound for the quantity ψpP˚q among all
tuples of SCMs that induce the selection diagram and entail the source distributions at hand. ˝
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Proof. Note that,

q̂max “ max
M1,M2,...,M˚

ψpPM˚

q (49)

s.t. PMi

puV q “ PMj

puV q, f
Mi

V “ fM
j

V , @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

PMi

pvq “ P ipvq @i P t1, 2, . . . ,K, ˚u,

is a tight upper bound to the target ψpPM˚

q among all tuples of SCMs that induce the selection
diagram and entail the source distributions at hand, by construction. It follows from Lem. 3 that
for any tuple of SCMs tM1,M2, . . . ,MK ,M˚u, that induce the selection diagram and entail
the source distributions, there exists a tuple of canonical SCMs N 1,N 2, . . . ,N ˚, that induce the
selection diagram and entail the source distributions such that,

PM˚

pYx, . . . ,Zwq “ PN˚

pYx, . . . ,Zwq.

The reverse direction of the above equations also holds since a a family of canonical SCMs is an
instance of a family of SCMs. This means that solutions for optimization problems in Eq. (48) and
Eq. (49) must coincide.

E.1 Proof of Theorem 2

To prove this result, we need to show the following:

1. Necessity. Every tuple of NCMs Θ that are constraint by conditions in Eq. 8 represents a
tuple of SCMs that entails P and induces G∆.

2. Sufficiency. For every tuple of SCMs M that entails P and induces G∆, there exists a tuple
of NCMs Θ that admits the constraints in Eq. 8, and for every i P t˚, 1, 2, . . . ,Ku, we have
P pyx, zw; θiq “ PMi

pyx, zwq, where yx, zw.

Necessity. Consider a tuple of NCMs Θ that are constraint by the conditions in Eq. 8.

• G∆-consistency. Since these NCMs are constructed based on the common causal diagram
G, they all induce G (Theorem 2 by Xia et al. [41]). Moreover, the parameter sharing
constraint states that V R ∆ij if and only if θiV “ θjV . This implies that the NCMs
parameterized by Θ induce the same domain discrepancy sets as G∆. Thus, the selection
diagram induced by the NCMs parameterized by Θ is exactly G∆.

• P-expressivity. The data likelihood condition for source distribution P ipvq states the
following:

θi P argmax
G´constrained θ

ÿ

vPDi

logP pv; θq. (50)

For large enough samples size |Di| „ P ipvq, and enough model complexity in θ, Theorem 1
by Xia et al. [41] shows that there exists a G-constrained NCM θ that induces the distribution
entailed by the true SCM Mi. Thus, by imposing Eq. (50) we assure that P pv; θiq “ P ipvq.
By imposing all data likelihood conditions, in the limit of sample size and model complexity,
we ensure that the source NCMs induce the source distributions.

In conclusion, the tuple of NCMs are necessarily representing a plausible target domain since (1)
they induce G∆ and (2) they entail P.

Sufficiency. Consider a tuple of SCMs M “ xM1,M2, . . . ,MK ,M˚y that induce G∆ and entail P.
Theorem 1 by Xia et al. [41] shows that for every SCM M that induces G, there exists a G-constraint
NCM parameterized by θ such that PMpvq “ P pv; θq (as a consequence of L3-consistency). The
proof is constructive, and for every V P V the construction of the neural network θV depends on (1)
the function fV and (2) the distribution PMpuV q.

Consider two SCMs Mi,Mj (i, j P t˚, 1, 2, . . . ,Ku) that induce domain discrepancy set ∆ij .
Follow the construction by Xia et al. [41] to obtain the corresponding NCMs parameterized by θi, θj .
For every V R ∆i,j , we have, θiV “ θjV since the construction depends on f iV “ f jV and PMi

puV q “

PMj

puV q. Thus, the domain discrepancy set induced by θi, θj matches with ∆i,j induced by the
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SCMs Mi,Mj . Therefore, By constructing the NCM θi from Mi (i P t˚, 1, 2, . . . ,Ku), we are
guaranteed to have a tuple of NCMs N that (1) induce G∆ and (2) entails P.

Partial-TR via NCMs. Due to necessity and sufficiency above, we conclude that a tuples of
NCMs satisfies the parameter sharing and data likelihood conditions stated in Eq. 8, if and only if
there exists a tuple of SCMs M that induce G∆ and entail P such that P pv; θiq “ PMi

pvq for all
i P t˚, 1, 2, . . . ,Ku. Therefore, by solving the following optimization problem,

Θ̂ P argmax
Θ:xθ1,θ2,...,θK ,θ˚y

ÿ

w

ψpwq ¨
ÿ

vzw

P pv; θ˚q (51)

s.t. θiV “ θjV , @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

θi P argmax
θ

ÿ

vPDi

logP pv; θq, @i P t1, 2, . . . ,Ku.

we achieve a tight upper-bound for the query EP˚rψpW qs w.r.t. G∆,P. ˝

E.2 Proof of Proposition 1

Consider the objective of Theorem 2;

Θ̂ P argmax
Θ:xθ1,θ2,...,θK ,θ˚y

ÿ

w

ψpwq ¨
ÿ

vzw

P pv; θ˚q (52)

s.t. θiV “ θjV , @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

θi P argmax
θ

ÿ

vPDi

logP pv; θq, @i P t1, 2, . . . ,Ku.

No need to parameterize non-ancestors of W . Let T “ V zAnG˚pW q. By applying Rule 3 of
σ-calculus [9] we realize that,

P pw; θ˚
V zT , θ

˚
T q “ P pw; θ˚

V zT , θ̃T q. (53)

The latter indicates that the parameters tθ˚
T uTPT are irrelevant to the joint distribution P pwq, and

therefore, can be dropped from the NCMs used for partial transportability of EP˚rψpW qs “
ř

w P
˚pwq ¨ ψpwq.

Let A “ AnG˚pW q. We drop the non-ancestors, and rewrite the objective as follows:

Θ̂A P argmax
ΘA:xθ1

A,θ2
A,...,θK

A ,θ˚
Ay

ÿ

w

ψpwq ¨
ÿ

azw

P pa; θ˚q (54)

s.t. θiV “ θjV , @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

θiA P argmax
θ

ÿ

aPDi

logP pa; θAq, @i P t1, 2, . . . ,Ku.

Next, we add the likelihood terms to the main objective regularized by a coefficient Λ to achieve a
single-objective optimization.

Θ̂A P argmax
ΘA:xθ1

A,θ2,...,θK ,θ˚y

ÿ

w

ψpwq ¨
ÿ

azw

P pa; θ˚q ` Λ ¨
K
ÿ

i“1

ÿ

aPDi

logP pa; θiAq (55)

s.t. θiV “ θjV , @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j
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For Λ Ñ 8, the new optimization problem matches with that of Thm. 2. Now, we focus on the
likelihood expression, and rewrite it following a causal order of G˚, namely, A1 ă A2 ă ¨ ¨ ¨ ă AN .

logP pa; θiAq “
N
ÿ

l“1

logP pal | al´1, . . . , a1; θ
i
Aq (factorization) (56)

“

N
ÿ

l“1

logEUA
rP pal | vl´1, . . . , v1,U ; θiAqs (conditioning on U ) (57)

“

N
ÿ

l“1

logEUAl
rP pal | paAl

,UAl
; θiqs (Rule 1 of do-calc) (58)

“

N
ÿ

l“1

logEUAl
rP pal | paAl

,UAl
; θiAqs (Rule 3 of do-calc) (59)

Let tAju
m
j“1 be the c-components of G˚

rAs
, which is the graph induced by nodes A. We rewrite the

above objective in terms of the c-factors:

logP pa; θiAq “
m
ÿ

j“1

ÿ

APAj

logEUA
rP pa | paA,UA; θ

i
Aqs (c-factor decomp.) (60)

“

m
ÿ

j“1

log
ź

APAj

EUA
rP pa | paA,UA; θ

i
Aqs (sum-of-log to log-of-prod) (61)

“

m
ÿ

j“1

logEUAj
r

ź

APAj

P pa | paA,UA; θ
i
Aqs (mutually indep. UA) (62)

“

m
ÿ

j“1

logP paj | doppaAj
q; θiAj

q (trunc. fact. prod.) (63)

From the last expression, we can observe that the NCM parameterization is modular w.r.t. the
c-components, as Rahman et al. [28] also discusses. We rewrite the full optimization program again:

Θ̂A P argmax
ΘA:xθ1

A,θ2,...,θK ,θ˚y

ÿ

a

expt
m
ÿ

j“1

logP paj | doppaAj
q; θ˚

Aj
qu ¨ ψpaq (64)

` Λ ¨
K
ÿ

i“1

m
ÿ

j“1

ÿ

ajPDi

logP paj | doppaAj
q; θiAj

q (65)

s.t. θiV “ θjV , @i, j P t1, 2, . . . ,K, ˚u @V R ∆i,j

Let Aj be a c-component that Si is not pointing to it in G∆, i.e., Aj X∆i “ H. The latter means
that the parameter sharing θ˚

V “ θiV is enforced for all V P Aj ; we call these parameters θi,˚Aj
. We

notice that θi,˚Aj
only appears through the term logP paj | doppaAj

q; θAj
q in the score function; once

in the main objective as θ˚
Aj

and once in the regularizer as θiAj
. For ΛÑ8, the regularizer enforces

θi,˚Aj
to satisfy the following criterion:

θi,˚Aj
P argmax

θAj

ÿ

ajPDi

logP paj | doppaAj
q; θAj

q (66)

This criterion is in fact an interventional (L2) constraint [41] enforced on θi,˚Aj
that requires θi,˚Aj

to
approximate P ipaj | doppaAj

qq using the observational data Di. Since P ipaj | doppaAj
qq is a

complete c-factor, it is identifiable from P ipaj , paAj
q [36]. Therefore, by increasing the sample

size |Di| Ñ 8 and the model complexity of θi,˚Aj
, satisfying the criterion in Eq. 66 guarantees

arbitrarily accurate approximation of the interventional quantities P ipaj | doppaAj
qq [41]. This

implies that we can replace the terms involving the parameters θi,˚Aj
with any consistent approximation
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of P ipaj | doppaAj
qq as constants. To get the approximation, we are free to use any probabilistic

model and architecture depending on the context; this includes the option to train the NCM parameters
θi,˚Aj

in the pre-training.

This adjustment gets us to the exact procedure pursued in Algorithm 1, thus proves consistency of it
with what we would achieve via Theorem 2. ˝

E.3 Proof of Theorem 3

For this proof, it is useful to define the worst-case risk w.r.t. the selection diagram and the source
distributions.
Definition 8 (Worst-case risk). For selection diagram G∆ and source distributions P, the worst-case
risk of classifer h : ΩX Ñ ΩY is denoted by RG∆,Pphq and defined as the solution of partial
transportation task for the query EP˚rLpY, hpXqqs, where Lpy, ŷq is a loss function. Formally,

RG∆,Pphq :“ max
tuple of SCMs M0 that entails P & induces G∆

R
PM˚

0
phq. (67)

˝

Theorem 3 (restated). For discrete X, Y CRO terminates. Furthermore, for large enough data
across all source domain, the worst-case risk of CRO is at most ϵ away from the worst-case optimal
classifier w.r.t. selection diagram G∆ and source data P. Formally,

lim
nÑ8

P pRG∆,Pph
CRO
n q ´ min

h:ΩXÑΩY

RG∆,Pphq ą ϵq Ñ 0 (68)

where hCRO
n :“ CROpDn,G∆q, and Dn “ xD

1, D2, . . . , DKy is a collection of datasets that each
contain at least n datapoints. ˝

Proof. Soundness of CRO relies on consistency of Neural-TR (Alg. 1 as a subroutine; we pick the
data size large enough to satisfy this condition according to Theorem 2.

Termination. Let θ̂˚
1 , θ̂

˚
2 , . . . be the sequence of target NCMs produced during the runtime of CRO,

and let h1, h2, . . . be the sequence of classifiers obtained after each iteration. Let Π denote the
space of all distributions over X, Y . For discrete X, Y , the space Π is a compact subspace of some
Euclidean space. Thus, every sequence in Π has a convergent subsequence, especially the sequence
tP px, y; θ̂˚

mqum Ă Π; let tPlul be this convergent subsequence. Every convergent subsequence is
Cauchy, which means,

@τ ą 0 Dn ą 0 @l, l1 ą n : dpPl ´ Pl1q ă τ, (69)

where d is an appropriate metric over the probability space. Choose τ small enough w.r.t. the
convergence tolerance δ ą 0 to ensure,

@P, P 1 where dpP, P 1q ă τ ùñ @h : ΩX Ñ ΩY |RP phq ´RP 1phq| ď δ. (70)

The above is possible, since the mapping RP phq is a bounded and continuous mapping on the space
Π. Now, we are guaranteed to find an index l such that,

|RP px,y;θ̂˚
l`1q
phlq ´RP px,y;θ̂˚

l q
phlq| ă δ. (71)

Notice that by definition, θ̂˚
l`1 is obtained by Neural-TR (Alg. 1) to attain the worst-case risk of hl,

i.e.,
RP px,y;θ̂˚

l`1q
phlq “ RG∆,Pphlq. (72)

Moreover,
RP px,y;θ̂˚

l q
phlq ď max

iPt1,2,...,lu
RD˚

i
phlq. (73)

Putting the last three equations together we have,

RG∆,Pphlq ď max
iPt1,2,...,lu

RD˚
i
phlq ` δ, (74)

which invokes the termination.
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Worst-case optimality. Suppose hCRO is returned by CRO, and let h˚ be the true worst-case optimal
classifier defined as,

h˚ P min
h:ΩXÑΩY

RG∆,Pphq. (75)

Let D denote the collection of datasets collected by the algorithm before termination. We know that
hCRO is robust to D˚, i.e.,

hCRO P argmin
h:ΩXÑΩY

max
DPD˚

RDphq ùñ max
DPD˚

RDph
CROq

opt. hCRO

ď max
DPD˚

RDph
˚q (76)

Moreover, every distribution in D˚ is entailed by an NCM that represents a possible target domain.
Therefore, the worst-case risk is at least as large as the worst-case empirical risk on the set of
distribution D, i.e.,

max
DPD˚

RDph
˚q ď RG∆,Pph

˚q (77)

Since that algorithm has terminated we have,

RG∆,Pph
CROq ă max

DPD˚
RDph

CROq ` δ. (78)

where δ ą 0 is the tolerance for the convergence condition in the algorithm. Putting all inequalities
together, we have,

RG∆,Pph
CROq ´ δ ď max

DPD˚
RDph

CROq (79)

ď max
DPD˚

RDph
˚q (80)

ď RG∆,Pph
˚q, (81)

which indicates that the worst-case risk of hCRO is at most δ larger than the optimal worst-case
risk.

F Broader Impact and Limitations

Our work investigates the design of algorithms and conditions under which knowledge acquired in
one domain (e.g., particular setting, experimental condition, scenario) can be generalized to a different
one that may be related, but is unlikely to be the same. As alluded to in this paper, under-identifiability
issues and the difficulty of stating realistic assumptions that are conducive to extrapolation guarantees
are pervasive throughout the data sciences. Our hope is that our analysis with a more surgical encoding
of structural differences between domains that allow the empirical investigator to determine whether
(and how) her/his understanding of the underlying system is sufficient to support the generalization
of prediction algorithm is an important addition towards safe and reliable AI. This approach is
not without limitations, however. We have shown that selection diagrams are sufficient to ensure
consistent domain generalization (through bounds instead of point estimates) but arguably restrict the
analysis to a narrow class of problems as graphs or super-structures need to be defined. This stands in
contrast with representation learning methods that operate on higher-dimensional spaces, e.g. text,
images, which are difficult to reason about in a causal framework. The trade-off is that guarantees
for consistent extrapolation are difficult to define and that one-size-fits-all assumptions are difficult
to justify in practice. Partial transportability may be understood as a complementary view-point on
this problem, applicable in a different class of problems in which structural knowledge is available
implying that non-trivial guarantees for extrapolation can be established. Pushing the boundaries of
methods based on causal graphs to reach compelling real-world applications is arguably one the most
important frontiers for the causal community as a whole. In this work, there is scope for improving
posterior estimation and for introducing assumptions on the class of SCMs that are modelled, e.g.
linear Gaussian models, etc., that could lead to efficient predictors in higher-dimensional spaces.
Similarly, relaxations of selection diagrams, e.g. in the form of equivalence classes or partially-known
graphs, could be developed for applications in domains where knowledge of graph structure is
unrealistic.
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Answer: [Yes]

Justification: Please see the contribution bullets.

Guidelines:
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• The claims made should match theoretical and experimental results, and reflect how
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Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: See appendix F.
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• The answer NA means that the paper has no limitation while the answer No means that
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depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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a complete (and correct) proof?

Answer: [Yes]
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [No]
Justification: The code will be accessible through git-hub after publication. We ensured
that the results are reproducible; please see Appendix B.3 for some details on the used
architecture.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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material?

Answer: [Yes]

Justification: Code is provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See the corresponding examples for each experiment, and the reproducibility
note in B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: All the examples are small, so it is not applicable.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were executed on a Macbook Pro M2 32 GB RAM.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We respect NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See appendix F.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is theoretical and bears no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All related and used results are cited properly.
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• The answer NA means that the paper does not use existing assets.
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URL.
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• If assets are released, the license, copyright information, and terms of use in the package
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of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The code is annotated and provided.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
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well as details about compensation (if any)?
Answer: [NA]
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collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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