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Abstract

Out-of-distribution (OOD) detection is crucial for ensuring the reliability of deep learning
models in real-world applications. Existing methods typically focus on feature representa-
tions or output-space analysis, often assuming a distribution over these spaces or leveraging
gradient norms with respect to model parameters. However, these approaches struggle to
distinguish near-OOD samples and often require extensive hyper-parameter tuning, limiting
their practicality. In this work, we propose GRadient-aware Out-Of-Distribution detection
(GROOD), a method that derives an OOD prototype from synthetic samples and computes
class prototypes directly from In-distribution (ID) training data. By analyzing the gradients
of a nearest-class-prototype loss function concerning an artificial OOD prototype, our ap-
proach achieves a clear separation between in-distribution and OOD samples. Experimental
evaluations demonstrate that gradients computed from the OOD prototype enhance the
distinction between ID and OOD data, surpassing established baselines in robustness, par-
ticularly on ImageNet-1k. These findings highlight the potential of gradient-based methods
and prototype-driven approaches in advancing OOD detection within deep neural networks.

1 Introduction

Deep neural networks (DNNs) have demonstrated exceptional performance across domains such as computer
vision, natural language processing, and robotics (Goodfellow et al., 2016; LeCun et al., 2015). Their success
largely relies on the assumption that training and test data follow an independent and identically distributed
(iid) pattern (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). However, this assumption often fails
in real-world scenarios, where DNNs encounter out-of-distribution (OOD) inputs that deviate significantly
from the training distribution (Hendrycks & Gimpel, 2016). As a result, models that perform well on in-
distribution (ID) data frequently produce overly confident yet incorrect predictions on OOD samples, posing
significant risks to safety-critical applications such as healthcare and autonomous driving (Litjens et al., 2017;
Bojarski et al., 2016). In such scenarios, it becomes imperative for the model to exhibit self-awareness about
its own limitations (Gal & Ghahramani, 2015). Conventional approaches that focus solely on minimizing
the training loss are often ill-equipped to cope with OOD samples, thereby jeopardizing the safe and reliable
deployment of deep learning systems (Duchi & Namkoong, 2018; Arjovsky et al., 2019; Shen et al., 2019; Liu
et al., 2021a).

Consequently, several active lines of research work toward equipping DNNs with the capability to effectively
detect unknown or OOD samples. Among these, post-hoc OOD detection methods stand out as the most
convenient, as they utilize the representations of a pre-trained DNNs, require no additional training, and
can be applied to any neural network. Experimental studies using large benchmarks have underscored the
effectiveness of post-hoc OOD detection methods, which has led to the development of several specialized
OOD libraries (Yang et al., 2022; Zhang et al., 2023a; Kirchheim et al., 2022; Novello et al., 2023).

Existing OOD detection methods typically focus on either feature-space-based measures, which assess the
distance of inputs to learned feature representations (Sun et al., 2022; Lee et al., 2018), or gradient infor-
mation (Lee et al., 2022; Sun et al., 2021a; Lee & AlRegib, 2020; Chen et al., 2023), which analyze the
model’s gradient space. However, these methods often struggle in scenarios where OOD samples lie near
class boundaries or exhibit characteristics similar to hard in-distribution ID examples. Furthermore, current
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approaches rarely exploit the inherent geometry of learned feature manifolds, limiting their robustness and
generalization.

To address these challenges, we propose a novel post-hoc method called GRadient-aware Out-Of-Distribution
detection (GROOD) that relies on feature and gradient spaces for improved OOD discrimination.

Our approach is built upon key insights from recent advancements in understanding neural network behavior,
particularly the concept of neural collapse (NC). This property suggests that prototype-based methods,
like GROOD, can be highly effective when in-distribution data exhibits well-defined cluster structure. We
leverage these insights to develop a more effective way of distinguishing between ID and OOD samples in
the feature space of pre-trained networks. The core idea behind GROOD is to examine how sensitive the
distances between sample representations and class prototypes are to changes in an artificially introduced
OOD prototype. By analyzing this sensitivity through gradients, we can effectively differentiate between ID
and OOD samples without the need for additional training.

GROOD is specifically designed to address three persistent challenges in post-hoc and gradient-based OOD
detection. First, it improves the detection of near-OOD samples those that are semantically close to the in-
distribution by leveraging gradient vectors with respect to an artificial OOD prototype, which provide a more
discriminative signal than feature or logit-based scores. Second, GROOD generalizes robustly across diverse
architectures, including ResNets and Vision Transformers, where many existing methods suffer performance
degradation. Third, it significantly reduces hyper-parameter sensitivity and exhibits stable AUROC perfor-
mance across training epochs, alleviating the common issue of checkpoint instability. These properties make
GROOD a practical and reliable post-hoc framework for real-world deployment.

Our method is inspired by two key observations:

1. The NC property (Papyan et al., 2020) suggests that at the end of neural network training, within-
class variability tends to zero for sample representation in the feature space. This observation
motivates the use of nearest class prototype (NCP) classification, which relies on the distance to
class prototypes, defined as the means of the samples of each class in the feature space. To further
enhance the discriminative power of this approach for out-of-distribution detection, we construct
logits by incorporating distances to an additional OOD prototype, alongside the distances to the
class prototypes.

2. We also observe that OOD samples tend to exhibit a more dispersed distribution in the feature
space compared to ID samples. Capitalizing on this characteristic, we introduce an artificial OOD
prototype, strategically positioned to be distinct from the ID class prototypes. By then examining
how sample representations respond to this OOD prototype, specifically by analyzing gradients of
the NCP loss with respect to it, we can gain a more nuanced understanding of the differences between
ID and OOD samples, leading to more effective discrimination in the gradient space.

Our approach differs from traditional post-hoc methods by computing gradients with respect to an artificial
OOD prototype rather than the network’s parameters. The magnitude of these gradients serves as a key
indicator: for ID data, the OOD prototype has a relatively small influence on the confidence of the prediction
in the feature space, reflecting stable classification. In contrast, for OOD data, the OOD prototype has a
more substantial influence on the confidence of the prediction; meaning that a smaller shift in the OOD
prototype’s representation is sufficient to cause a larger change in the classification confidence.

We conduct an extensive empirical study following the recent methodology introduced in the OpenOOD
Benchmark (Zhang et al., 2023a), but we also evaluate our method on other recent architectures.

Our key results and contributions are summarized as follows.

• We propose GROOD, a gradient-aware OOD detection framework that integrates neural collapse
geometry, gradient-space analysis, and synthetic OOD generation for robust OOD discrimination.

• We demonstrate, via an oracle experiment, that an idealized OOD prototype significantly improves
OOD detection.
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• We introduce a novel mixup-based approach for generating synthetic OOD data, enhancing ID/OOD
decision boundaries and reducing the need for additional auxiliary OOD data.

• We conduct extensive empirical evaluations and ablations, demonstrating GROOD’s effectiveness
and providing new insights into the interplay of feature and gradient spaces for OOD detection.

While Neural Collapse is often viewed as a limitation for OOD detection since tightly clustered ID features
can lead to overconfident misclassifications GROOD turns this behavior into a strength. By exploiting the
geometric regularity of class prototypes formed under NC, GROOD identifies OOD samples not through
raw confidence scores but through their abnormal gradient sensitivity to a fixed synthetic OOD prototype.
This allows GROOD to leverage the structure imposed by NC while sidestepping the typical overconfidence
failure mode.

2 Related Work

Neural Network Properties Prior research has emphasized the significance of linear interpolation within
manifold spaces, with applications ranging from word embeddings (Mikolov et al., 2013) to machine trans-
lation (Hassan et al., 2017). Extending these concepts, Verma et al. (2019) proposed manifold mixup, a
method that smooths decision boundaries and reduces overconfidence near ID data. Our work primarily
leverages the NC property (Papyan et al., 2020; Kothapalli et al., 2022) and prototype/centroid-based clas-
sification. Specifically, we exploit the sensitivity of the OOD prototype to enhance the distinction between
ID and OOD samples. To construct this OOD prototype, we employ manifold mixup to generate a synthetic
OOD dataset, enabling a more robust and structured detection framework.

History of OOD Detection The study of handling OOD samples has a long history, dating back to early
works on classification with rejection (Chow, 1970; Fumera & Roli, 2002). These early methods introduced
the idea of abstaining from classification when confidence was low, often using simple model families such as
SVM (Cortes & Vapnik, 1995). The phenomenon of neural networks producing overconfident predictions on
OOD data was first revealed by Nguyen et al. (2015), highlighting the need for robust detection mechanisms
in modern deep learning systems. Building on this foundational work, subsequent research has focused on
various techniques for detecting OOD samples, which can be broadly categorized as output-based, feature-
based, and gradient-based methods.

Output-Based Methods Many OOD detection approaches directly utilize the model’s outputs. Max-
imum softmax probability, often scaled for calibration, is a classic OOD detection metric (Hendrycks &
Gimpel, 2016; Guo et al., 2017). Building on this, temperature scaling combined with input perturbations
has shown promise in refining the separation between ID and OOD data (Liang et al., 2018). Additionally,
logits themselves have been used for OOD detection, with some methods applying metrics such as KL di-
vergence (Hendrycks et al., 2022). Beyond these, energy-based methods compute OOD scores using energy
derived from logits (Liu et al., 2020). Refinements such as truncating activations (Sun et al., 2021b; Sun &
Li, 2022) or removing dominant singular values (Song et al., 2022; Djurisic et al., 2022) have been proposed
to reduce overconfidence. Generalized entropy scores over logits have also emerged as a robust alterna-
tive (Liu et al., 2023). Unlike the aforementioned techniques, GROOD achieves robust OOD detection, even
for samples near ID boundaries, by combining gradient norms with class prototype-based representations.

Feature-Based Methods The feature space of neural networks has been a rich avenue for OOD detec-
tion. Techniques such as Mahalanobis distance from class centroids (Lee et al., 2018; Ren et al., 2021) and
Gram matrices of features (Sastry & Oore, 2020) are prominent examples. Additional methods utilize noise
prototypes (Huang et al., 2021a), virtual logits (Wang et al., 2022), and nearest neighbor distances (Sun
et al., 2022). Modern Hopfield networks (Zhang et al., 2023b) have also been explored for this purpose.
Cosine similarity between test samples and class features (Techapanurak et al., 2020; Chen et al., 2020)
has gained traction, with some methods proposing the use of singular vectors for enhanced detection (Za-
eemzadeh et al., 2021). Our approach extends these ideas by incorporating an artificial OOD prototype into
the feature space, creating a novel gradient-based perspective for OOD detection.
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Gradient-Based Methods Gradient-based methods have gained attention for their ability to capture
additional information beyond intermediate layers or network outputs. The seminal ODIN approach intro-
duced input perturbations guided by gradients to enhance OOD separation (Hsu et al., 2020). Subsequent
works explored the use of gradients with respect to network weights to quantify uncertainties (Lee & AlRegib,
2020; Igoe et al., 2022; Huang et al., 2021b). Another direction utilizes Mahalanobis distances between input
gradients, combined with self-supervised classifiers, to detect OOD samples (Sun et al., 2021a). GradNorm
calculates an OOD score based on the gradient space of the final layer weights (Huang et al., 2021b). Recent
methods, like GAIA (Chen et al., 2023), leverage gradient-based attribution abnormalities with respect
to the feature space, combining channel-wise features and zero-deflation patterns. In contrast, GROOD
uniquely focuses on gradients with respect to an artificial OOD prototype, capturing subtle differences be-
tween ID and OOD data. This approach enables GROOD to improve detection performance by leveraging
gradient information in conjunction with prototype-based representations.

3 Preliminaries and Notation

We first introduce the foundational problem of OOD detection and establish the notations.

3.1 Context and Notations

Robust deployment of machine learning models in dynamic real-world environments often requires distin-
guishing between in-distribution (ID) and out-of-distribution (OOD) data to ensure reliability and safety.
To formalize this challenge, we consider a supervised classification problem. Let X denote the input space
and Y = {1, 2, . . . , C} the label space, where each input-output pair (x, y) is sampled from a joint data
distribution PXY . The training set Din = {(xi, yi)}n

i=1 is assumed to be drawn iid from PXY . Let PX

represent the marginal distribution over X. The marginal distribution of the in-distribution data, denoted
as Pin, is assumed to be sampled from PX .

The neural network f : X → R|Y | is trained on samples from PXY to produce a logit vector, subsequently
used for label prediction. The architecture of f is decomposed as:

f = f clf ◦ fpen, where fpen = fmid ◦ f early. (1)

Here, f early extracts low-level features, fmid processes mid-level representations, and fpen produces penulti-
mate features. The final classification module f clf outputs the predictions.

3.2 Problem Setting: Out-of-Distribution Detection

When deploying a machine learning model in practice, the classifier should not only be accurate on ID
samples but should also identify any OOD inputs as “unknown”.

Formally, OOD detection can be viewed as a binary classification task. During testing, the task is to
determine whether a sample x ∈ X comes from Pin (ID) or not (OOD). The decision can be framed as a
level set estimation:

Gτ (x) =
{

ID, if S(x) ≤ τ,

OOD, if S(x) > τ,

where S : X → R is a score function quantifying the likelihood of a sample belonging to the ID distribution,
and τ is a threshold ensuring that a high fraction (e.g., 95%) of ID data is correctly classified.

4 GROOD Methodology

Overview In this section, we introduce our proposed method GRadient-aware Out-Of-Distribution de-
tection (GROOD), a novel framework for distinguishing between ID and OOD samples. To illustrate the
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Figure 1: Initially, we build ID class prototypes as the means of the activations of ID data along with an OOD
prototype capturing OOD characteristics (§ 5). Subsequently, gradients of the softmax loss built upon the
NCPs distance as logits are computed w.r.t. OOD prototype (§ 4.1). Finally, the OOD score is determined
using nearest neighbor distance in the gradient space (§ 4.2).

core mechanism, we will initially assume the existence of a representative OOD prototype, the calculation
of which will be detailed in § 5.1. Notably, our oracle experiments (§ 5.1) demonstrate the existence of such
an OOD prototype that exhibits strong discriminative properties. The framework itself utilizes gradient
information with respect to this OOD prototype to capture distributional shifts that may not be apparent
in feature representations alone.

The method comprises two primary components, illustrated in Figure 1: (1) A gradient computation frame-
work that quantifies sample responses to an OOD prototype (§ 4.1), and (2) A nearest-neighbor scoring
mechanism operating in gradient space (§ 4.2).

4.1 Gradients Computation

Inspired by the neural collapse property (Papyan et al., 2020) and prototype-based recognition (Shu et al.,
2019), we construct a distance-based classification framework that incorporates both class and OOD proto-
types. The key idea is to transform distances to prototypes into logits, with the crucial addition of an OOD
prototype that serves as a reference point for out-of-distribution detection.

For a feature vector h in the penultimate layer space, we define the logit vector as

L(h) = −[∥h − ppen
1 ∥2, . . . , ∥h − ppen

C ∥2, ∥h − ppen
ood∥2], (2)

where ppen
i represents the prototype for class i, and ppen

ood denotes the OOD prototype. These negative
distances are transformed into probabilities through the softmax function:

pi(h) = exp(Li(h))∑C+1
j=1 exp(Lj(h))

, i = 1, . . . , C + 1, (3)

where pC+1(h) = pood(h) represents the probability of the sample being OOD.

This formulation enables us to quantify, through the NCP loss, how well a sample aligns with the ID
prototypes versus the OOD prototype. For an ID sample, we expect strong alignment with one of the class
prototypes and weak alignment with the OOD prototype.

For a given feature vector h and a class y ∈ 1, .., C, C + 1, the cross-entropy loss associated with the NCP
output [pi(h)]C+1

i=1 from equation 3 is given by:

H(h, y) = − log py(h), (4)

The key insight of our method lies in analyzing the gradient of the loss H(h, y) for some (any) iid class
y with respect to the OOD prototype ppen

ood. Intuitively, this quantity represents the update vector for the
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(a) (b)

Figure 2: t-SNE Visualizations of ID and OOD Samples. (a) Distribution within the feature representation
space including the OOD prototype using synthetic data. (b) Gradient distributions from a CIFAR-10 pre-
trained ResNet-18 model, differentiating ID and OOD samples.

OOD prototype assuming that the feature h corresponds to an iid sample. This gradient can be expressed
in closed form as follows:

∇H(h) := ∇ppen
ood

H(h, C + 1) = pood(h) h − ppen
ood

∥h − ppen
ood∥2

. (5)

These computations are grounded in two core observations. The first is inspired by the Neural Collapse
phenomenon (Papyan et al., 2020), which shows that well-trained networks often align penultimate-layer
features with their corresponding class prototypes. This alignment justifies using distances in feature space
as a reliable signal for class identity. The second is that OOD samples tend to lie outside these tight clusters,
often in low-density or dispersed regions. By introducing a synthetic OOD prototype and computing the
gradient of prediction confidence with respect to its position, GROOD distinguishes ID from OOD samples
by measuring how sensitive each sample’s classification confidence is to small shifts in the OOD prototype.

This gradient expression reveals two important properties (see the Appendix for derivation details): 1) The
gradient norm equals the softmax probability pood(h) of the OOD class, providing a direct measure of out-of-
distribution likelihood. 2) The gradient direction, given by the unit vector (h − ppen

ood)/∥h − ppen
ood∥2, captures

the geometric relationship between the sample and the OOD prototype.

For ID samples, we observe smaller gradient norms due to lower OOD probabilities. However, the complete
gradient vector provides richer information than the norm alone, encoding both magnitude and directional
differences between ID and OOD samples. This allows us to detect OOD samples through both the size of
the hypothetical update to ppen

ood and its direction.

To analyze the potential for enhanced separability, fig. 2 visualizes (a) the penultimate feature space and
(b) the gradient space using t-SNE. Our intuition is that the gradient ∇H(h) will yield a more distinct
separation between ID and OOD samples compared to the feature space. As seen in fig. 2 (a), ID samples
form class-specific clusters, while OOD samples are scatttered in the space. However, the t-SNE plot of the
gradient space in fig. 2 (b) reveals a different spatial arrangement, suggesting that the gradient transforma-
tion highlights discriminative characteristics for OOD detection, which GROOD leverages through distance
computations in this space (eq. (6)). Thus, the single OOD prototype, ppen

ood, serves as a fixed reference point
rather than a geometric representative of all OOD diversity. Its role is not to span the OOD distribution, but
to anchor gradient-based sensitivity: how much an input’s classification would change if “OODness” were
perturbed. The resulting gradient vector encodes both magnitude and direction, providing a rich signal to
discriminate between ID and OOD samples. As shown in Figure 2, this transformation yields significantly
improved ID-OOD separation in gradient space, even when the raw feature space exhibits overlap.

4.2 Final OOD Score Computation

Having established how to compute discriminative gradients with respect to an OOD prototype, we now
address a key challenge: how to effectively use these gradients to distinguish between ID and OOD samples.
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Our solution leverages the observation that ID samples produce similar gradient patterns, while OOD samples
generate distinctly different ones.

4.2.1 Distance-Based Scoring

For a test sample xnew, we first compute its feature representation h(xnew) and corresponding gradient
∇H(h(xnew)). Our OOD score is then defined as the distance to the nearest training gradient:

S(xnew) = min
x∈Din

∥∇H(h(xnew)) − ∇H(h(x))∥2 (6)

This formulation captures our intuition that OOD samples will produce gradients that deviate significantly
from those seen during training. The minimum distance provides a natural measure of “outlierness” - the
further a gradient is from its nearest training neighbor, the more likely the sample is to be OOD.

Efficient Implementation A naive implementation of nearest neighbor search in high-dimensional gra-
dient space would be computationally prohibitive. We address this challenge using the FAISS library Douze
et al. (2024), which provides efficient approximate nearest neighbor search through inverted lists and quan-
tization. This makes our method practical for large-scale applications while maintaining accuracy.

The preceding section outlined the core methodology of GROOD, detailing how gradients with respect to
an OOD prototype are computed and subsequently used within a nearest-neighbor scoring mechanism to
distinguish ID and OOD samples. A critical element underpinning the effectiveness of this methodology is
the choice and construction of the OOD prototype, ppen

ood. The nature and location of this prototype in the
feature space directly influence the direction and magnitude of the computed gradients, thereby impacting
the separability of ID and OOD samples in the gradient space. Therefore, the following section delves into
the specific strategies we employ for Prototype Computation (§ 5), exploring various approaches to define
both the class prototypes and, crucially, the OOD prototype. These approaches are designed to yield a ppen

ood
that optimizes the discriminative power of the gradient-based OOD score introduced in our methodology.

5 Prototype Computation

5.1 Class and OOD Prototypes

The foundation of our method lies in computing class-discriminative prototypes. For each class, we compute
prototypes at both early and penultimate layers as the average of feature vectors:

pl
y = 1

|Xy|
∑

x∈Xy

f l(x), l ∈ {early, pen} (7)

where Xy is the set of training instances in class y.

Similarly, the OOD prototype is computed as the average of feature vectors from a dataset Xood:

ppen
ood = 1

|Xood|
∑

x∈Xood

fpen(x) (8)

The less variability in the representation space of each ID class as per NC(Papyan et al., 2020), the more
effective GROOD will be in distinguishing ID and OOD samples.

Clearly, the choice of dataset Xood will have a significant impact on GROOD’s ability to differentiate between
ID and OOD samples. In the remainder of this section we will first show that, given access to actual OOD
data, GROOD performs significantly better than the state of the art (Sec. 5.1.1). Subsequently, we propose
a method for synthesizing the OOD data used to calculate the OOD prototype that approximates the
performance of the priviliged case (Sec. 5.2).
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Table 1: Oracle experiment results compared to SOTA excluding GROOD from Table 2. AUROC (%) on far-
OOD and near-OOD detection using 100 prototype samples. Results are averaged over different checkpoints;
standard deviations in parentheses.

ID Dataset Architecture Local Oracle Global Oracle SOTA
AUROC (%) ↑

Far-OOD Near-OOD Far-OOD Near-OOD Far-OOD Near-OOD
CIFAR-10 ResNet-18 96.7 (±0.2) 95.4 (±0.1) 94.8 (±0.1) 90.8 (±0.1) 94.7 90.7
CIFAR-100 ResNet-18 94.8 (±0.2) 85.5 (±0.5) 88.1 (±0.03) 82.1 (±0.1) 82.4 81.3
ImageNet-200 ResNet-18 98.8 (±0.2) 92.1 (±0.2) 94.22 (±0.02) 84.1 (±0.2) 93.16 82.9
ImageNet-1K ResNet-50 97.9 91.0 96.2 79 95.1 78.1

5.1.1 “Oracle” Experiment

To validate the core idea that an OOD prototype can help distinguish ID and OOD data, we performed an
“oracle” experiment, assuming temporary access to some OOD information.

Local Oracle (Idealized): For each ID-OOD test pair, we used a small sample (100) from the test OOD
data to build a specific OOD prototype. We then tested the remaining OOD data. This setup essentially
asks: “If we had perfect knowledge of a small subset of the specific OOD data we’d encounter, how well
could our method perform?”. The remarkable performance achieved in this setting (over 95% AUROC on
far-OOD detection, as shown in table 1) highlights the inherent potential of an OOD prototype tailored to
the specific distributional shift.

Global Oracle (Generalizable): For each ID dataset, we used a small “validation” portion of all other
OOD datasets to create a single, general OOD prototype. We then tested on the held-out portion of each
specific OOD dataset. This setup aims to mimic a scenario where we have access to some diverse OOD
data (the validation sets) but not the specific OOD data we are currently testing on. The results from the
Global Oracle provide insights into how well a more general OOD prototype can generalize across different
out-of-distribution scenarios.

Despite the strong performance in the far-OOD detection tasks under both oracle settings, the notably
lower performance on near-OOD detection underscores the inherent difficulty of distinguishing between
distributions that are semantically or statistically close to the in-distribution data. Nevertheless, the oracle
experiments strongly suggest that the concept of an OOD prototype holds significant promise for OOD
detection when a representative prototype can be effectively determined.

On the other hand, in real-world scenarios, we cannot construct this oracle prototype using test OOD data.
This raises a key question: How can we approximate this optimal OOD prototype without access to the test
distribution?

5.2 Practical OOD Prototype Construction

The oracle experiments presented in § 5.1 demonstrated the significant potential of employing an OOD
prototype to distinguish between ID and OOD data, achieving high performance when even approximate
knowledge of the OOD distribution was available. This motivates our goal: to effectively approximate such
an optimal OOD prototype, ppen

ood, without requiring access to the specific test OOD distribution, which is
unavailable in practical scenarios.

While real-world OOD samples exhibit considerable diversity, representing them with a single prototype
ppen

ood proves effective within our gradient-aware framework. Our approach does not aim to represent all
OOD samples geometrically, but rather uses the prototype as a fixed reference point. The core OOD score
relies on the sensitivity of the NCP loss to this prototype, measured via the gradient ∇ppen

ood
H(h) (§ 4, eq. (5)).

We hypothesize that OOD samples, inherently deviating from learned ID manifolds, exhibit distinct gradient

8



Under review as submission to TMLR

sensitivity patterns (both magnitude and direction) relative to this OOD reference point, allowing separation
from more stable ID samples.

We propose several complementary approaches to construct ppen
ood, leveraging information from an auxiliary

OOD dataset Xood:

Synthetic OOD Generation using mixup Our first approach requires no external OOD data, instead
synthesizing OOD-like features by exploiting decision boundaries. We perform guided prototype interpolation
towards the second-highest predicted class c2 at an early layer (after the first block):

ĥ(x) = fmid (
λf early(x) + (1 − λ)pearly

c2

)
(9)

where λ = 0.5 positions the synthetic samples near decision boundaries. This approach leverages our
observation that early layer representations are more sensitive to perturbations, making them ideal for
generating OOD-like features.

Auxiliary OOD Validation When available, we can utilize a small auxiliary OOD validation set as Xood

to construct the prototype following eq. (8) using 100 OOD validation samples. Importantly, we ensure these
samples have no category overlap with the test set. Our method shows remarkable stability to the specific
choice of validation samples, with a maximum AUROC standard deviation of only 0.5% across five different
random selections.

Proximity-Based OOD Filtering (Postprocessing) Initially, we explored constructing the OOD pro-
totype by simply averaging feature vectors from all available OOD samples. However, this approach yielded
prototypes that lacked sufficient discriminative power, resulting in poor separation between ID and OOD
data. To address this, we introduce a proximity-based filtering step to refine the OOD prototype, enhancing
its ability to distinguish OOD samples from ID samples.

Specifically, given a set of candidate OOD feature vectors, we discard OOD samples whose distance
di = minj ∥fpen(oi) − pj∥2 falls below an adaptive threshold τ , computed as the q-th quantile of {di}nood

i=1 .
This filtering step refines the OOD prototype by ensuring separation from ID data while preserving repre-
sentativeness.

A comparison of alternative XOOD generation methods is presented in the appendix. The results reported
in the remainder of this paper utilize the OOD prototype derived from synthetic data generated from ID
samples.

6 Experiments

For a comprehensive evaluation of GROOD’s performance, we adhere to the OpenOOD v1.5 criteria Zhang
et al. (2023a); Yang et al. (2022). Results are aggregated in table 2 including the performance of the nearest
class prototype used instead of the classification head. For robustness, each evaluation metric except for
ImageNet-1k is derived from three runs with unique initialization seeds. In the case of ImageNet-1k, we
report results based on a single seed run provided by torchvision maintainers & contributors (2016).

Experimental Setup We evaluate performance using the Area Under the Receiver Operating Charac-
teristic curve (AUROC), where higher values are better. Our benchmarking strategy follows the OpenOOD
framework Zhang et al. (2023a); Yang et al. (2022), involving four core ID datasets (CIFAR-10, CIFAR-100,
ImageNet-200, ImageNet-1k) and examining both near and far-OOD scenarios. For CIFAR-10/100 (50k
train/10k test images each), near-OOD datasets are CIFAR-100/TinyImageNet, and far-OOD are MNIST,
SVHN, Textures, and Places365. For ImageNet-200 (200 classes, 64x64 resolution), near-OOD datasets are
SSB-hard/NINCO, and far-OOD are iNaturalist, Textures, and OpenImage-O; ImageNet-1k shares these
OOD datasets. Regarding configuration, we deploy ResNet-18 for CIFAR-10/100 and ImageNet-200 using
pre-trained checkpoints from OpenOOD for consistency, testing with three distinct seeds for robustness. For
ImageNet-1k, we apply pre-trained torchvision models (ResNet-50, ViT-B-16, Swin-T) to explore GROOD’s
effectiveness in a broader context than OpenOOD v1 Yang et al. (2022). To allow for reproducibility and
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facilitate further research, the complete code, including training and evaluation scripts, is available at:
https://anonymous.4open.science/r/grood.

For CIFAR-10/100 and ImageNet-200, we train ResNet-18 models for 100 epochs using SGD with momentum
0.9, weight decay 5e-4, cosine learning rate decay (starting from 0.1), and batch sizes of 128 (CIFAR) and 256
(ImageNet-200). For ImageNet-1K, we use pretrained models from torchvision (ResNet-50, ViT, Swin).
When fine-tuning is required, we follow the OpenOOD v1.5 protocol (Zhang et al., 2023a) with 30 epochs,
learning rate 0.001, and batch size 256.

Table 2: Main results from OpenOOD v1.5 on standard OOD detection (AUROC). GROOD using synthetic
OOD data(§ 5.2) shows superior results compared to existing baselines.

CIFAR-10 CIFAR-100 ImageNet-200 ImageNet-1K
ID Acc. (%) 95.06%(±0.30) 77.25%(±0.10) 86.37%(±0.08) 76.18%

NCP Acc. (%) 95.01%(±0.08) 77.10%(±0.001) 85.75%(±0.003) 71.38%
Method Near-OOD (%) ↑ Far-OOD (%) ↑ Near-OOD (%) ↑ Far-OOD (%) ↑ Near-OOD (%) ↑ Far-OOD (%) ↑ Near-OOD (%) ↑ Far-OOD (%) ↑
OpenMax Bendale & Boult (2015) 87.62%(±0.29) 89.62%(±0.19) 76.41%(±0.25) 79.48%(±0.41) 80.27%(±0.10) 90.20%(±0.17) 74.77% 89.26%
MSP Hendrycks & Gimpel (2016) 88.03%(±0.25) 90.73%(±0.43) 80.27%(±0.11) 77.76%(±0.44) 83.34%(±0.06) 90.13%(±0.09) 76.02% 85.23%
ODIN Liang et al. (2018) 82.87%(±1.85) 87.96%(±0.61) 79.90%(±0.11) 79.28%(±0.21) 80.27%(±0.08) 91.71%(±0.19) 74.75% 89.47%
MDS Lee et al. (2018) 84.20%(±2.40) 89.72%(±1.36) 58.69%(±0.09) 69.39%(±1.39) 61.93%(±0.51) 74.72%(±0.26) 55.44% 74.25%
EBO Liu et al. (2020) 87.58%(±0.46) 91.21%(±0.92) 80.91%(±0.08) 79.77%(±0.61) 82.50%(±0.05) 90.86%(±0.21) 75.89% 89.47%
ReAct Sun et al. (2021b) 87.11%(±0.61) 90.42%(±1.41) 80.77%(±0.05) 80.39%(±0.49) 81.87%(±0.98) 92.31%(±0.56) 77.38% 93.67%
MLS Hendrycks et al. (2022) 87.52%(±0.47) 91.10%(±0.89) 81.05%(±0.07) 79.67%(±0.57) 82.90%(±0.04) 91.11%(±0.19) 76.46% 89.57%
GradNorm Huang et al. (2021b) 54.90%(±0.98) 57.55%(±3.22) 70.13%(±0.47) 69.14%(±1.05) 72.75%(±0.48) 84.26%(±0.87) 72.96% 90.25%
GAIA Chen et al. (2023) 85.1%(±10.2) 92.1%(±2.9) 70.75%(±2.11) 86.2%(±5.1) 75.1%(±9.8) 88.14%(±1.8) 66.98% 90.2%
CIDER Ming et al. (2023) 90.7%(±0.1) 94.7%(±0.36) 73.10%(±0.3) 80.49%(±0.68) 80.58%(±1.7) 90.66%(±1.6) 68.9% 92.18%
VIM Wang et al. (2022) 88.68%(±0.28) 93.48%(±0.24) 74.98%(±0.13) 81.70%(±0.62) 78.68%(±0.24) 91.26%(±0.19) 72.08% 92.68%
KNN Sun et al. (2022) 90.64%(±0.20) 92.96%(±0.14) 80.18%(±0.15) 82.40%(±0.17) 81.57%(±0.17) 93.16%(±0.22) 71.10% 90.18%
DICE Sun & Li (2022) 78.34%(±0.79) 84.23%(±1.89) 79.38%(±0.23) 80.01%(±0.18) 81.78%(±0.14) 90.80%(±0.31) 73.07% 90.95%
ASH Djurisic et al. (2022) 75.27%(±1.04) 78.49%(±2.58) 78.20%(±0.15) 80.58%(±0.66) 82.38%(±0.19) 93.90%(±0.27) 78.17% 95.1%
SHE Zhang et al. (2023b) 81.54%(±0.51) 85.32%(±1.43) 78.95%(±0.18) 76.92%(±1.16) 80.18%(±0.25) 89.81%(±0.61) 73.78% 90.92%
GEN Liu et al. (2023) 88.2%(±0.3) 91.35%(±0.55) 81.31%(±0.1) 79.68%(±0.6) 82.9%(±0.34) 91.36%(±0.45) 76.85% 89.76%
fdbd Liu & Qin (2023) 90.4%(±0.12) 93.16%(±0.25) 81.2%(±0.05) 79.85%(±0.15) 84.2%(±0.3) 93.4%(±0.2) 76.6% 92.7%
NCI Liu & Qin (2025) 88.8%(±0.1) 91.26%(±0.2) 81%(±0.2) 81.3%(±0.15) 83.5%(±0.4) 93.7%(±0.15) 78.6% 95.5%
GROOD(OURS) 91.16%(±0.001) 93.8%(±0.02) 78.9%(±0.05) 84.44%(±0.9) 83.4%(±0.12) 92.19%(±0.12) 78.91% 94.8 %

Main Results Discussion GROOD shows strong performance across datasets, but performance varies
depending on the trade-off between Near- and Far-OOD detection. On CIFAR-100, GROOD achieves state-
of-the-art Far-OOD AUROC (84.44%) among post-hoc methods and competitive Near-OOD performance
(78.9%). While some methods like VIM (Wang et al., 2022) (81.70%) report higher Near-OOD scores, they
trade off Far-OOD robustness. GROOD achieves top performance in several categories, notably securing
the best results for Near-OOD detection on CIFAR-10 (91.16%), ImageNet-200 (83.4%), and ImageNet-1K
(78.91%), as well as for Far-OOD detection on CIFAR-100 (84.44%).

On ImageNet-1k, GROOD achieves a top Far-OOD score (94.8%) but a lower Near-OOD score (78.91%),
whereas CombOOD (Rajasekaran et al., 2024) yields 95.22% Near-OOD and 90.24% Far-OOD.

These results reflect a key characteristic of GROOD: its effectiveness depends on the structure of the ID
feature space. As GROOD relies on geometric separation of class prototypes (inspired by Neural Collapse (Pa-
pyan et al., 2020)), its performance can degrade when ID representations are less well-clustered. Additionally,
the choice of OOD prototype impacts this trade-off. For example, using an “ID-corrupted val” prototype
improves Near-OOD AUROC to 80.27% (CIFAR-100) and 83.5% (ImageNet-1k), while maintaining strong
Far-OOD scores.

Importantly, many top-performing methods on the OpenOOD leaderboard require access to OOD data (e.g.,
OE, CIDER). GROOD remains fully post-hoc and training-free, making it more practical for deployment
across varied scenarios.

Performance on Transformer Architectures Further demonstrating the robustness and generaliza-
tion capabilities of our approach, table 3 presents the OOD detection performance on ImageNet-1K us-
ing Transformer-based architectures, ViT-B-16 (Dosovitskiy et al., 2020) and Swin-T (Liu et al., 2021b).
GROOD maintains strong performance, achieving the top AUROC scores for both Near-OOD and Far-OOD
detection on ViT-B-16 (Dosovitskiy et al., 2020), and the best Near-OOD score on Swin-T (Liu et al., 2021b)
while being highly competitive for Far-OOD. This contrasts significantly with several other methods, such
as GradNorm and ASH, whose performance severely degrades on these Transformer architectures compared
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Table 3: Performance comparison (AUROC %) on ImageNet-1K using different architectures.

ViT-B-16 Swin-T
Method Near-OOD (%) ↑ Far-OOD (%) ↑ Near-OOD (%) ↑ Far-OOD (%) ↑
GROOD (OURS) 76.47% 90.84% 76.10% 88.90%
ReACT Sun et al. (2021b) 69.26% 85.69% 75.64% 88.23%
GradNorm Huang et al. (2021b) 39.28% 41.75% 47.58% 35.47%
KNN Sun et al. (2022) 74.11% 90.60% 71.62% 89.37%
ASH Djurisic et al. (2022) 53.21% 51.56% 46.47% 44.64%

to their ResNet-based results. This suggests that GROOD’s mechanism, relying on gradient sensitivity rel-
ative to class and OOD prototypes, generalizes more effectively across fundamentally different architectural
paradigms than methods potentially more sensitive to specific CNN feature properties.

6.1 Ablation Studies

To understand the contribution of each component in GROOD, we conduct a series of ablation studies on
CIFAR-10 (table 4). Each study isolates a key design choice and quantifies its impact on both near-OOD
and far-OOD detection performance.

Table 4: Ablation study using different losses and OOD scores to show the effectiveness of each proposed
part. Evaluation done on CIFAR-10.

Model Variant AUROC (%)
Far-OOD Near-OOD

(1) Distance to the Noise prototype 84.3(±6.1) 79.9(±6.5)
(2) Gradient L1-norm only 92.4(±0.48) 89.35(±0.41)
(3) Grads. wrt class prototypes 92.7(±0.15) 89.9(±0.05)
(4) OOD prototype with uniform noise only 91.7(±0.6) 88.1(±0.55)
GROOD 93.8(±0.02) 91.16(±0.001)

Distance vs. Gradient-based Scoring Our first experiment examines whether the gradient computation
is truly necessary. We compare directly using the distance to the OOD prototype against our full gradient-
based approach. The significant performance gap (79.9% vs. 91.16% for near-OOD and 84.3% vs 93.8%
for far-OOD) demonstrates that gradients capture richer information about sample distribution than raw
distances alone.

Nearest Neighbor vs. Gradient Norm While prior work like GradNorm Huang et al. (2021b) uses
L1-norm of gradients as the OOD score, we hypothesized that our full approach, GROOD, would be more
informative. The results support this: GROOD achieves 93.8% AUROC on far-OOD detection and 91.16%
on near-OOD detection compared to 92.4% and 89.35% respectively with gradient norm alone, suggesting
that the combination of our design choices in GROOD provides valuable signal beyond the magnitude of the
gradient alone.

OOD vs. Class Prototypes A natural question is whether we need a dedicated OOD prototype at all
- could we achieve similar results using gradients with respect to class prototypes? The experiment shows
that OOD-specific prototypes provide superior performance (93.8% vs. 92.7% on far-OOD and 91.16% vs
89.9% on near-OOD), validating our design choice to explicitly model out-of-distribution behavior.

Impact of Noise Sources Finally, we investigate the value of our synthetic OOD data generation for
OOD prototype construction compared to simply using uniform noise. Using only uniform noise degrades
performance by 2.1% on far-OOD (93.8% vs 91.7%) and 3.06% on near-OOD detection (91.16% vs 88.1%),
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respectively, demonstrating the benefit of our comprehensive synthetic approach to prototype construction
over basic uniform noise.

These ablations collectively validate GROOD’s key design choices: each component contributes meaningfully
to the final performance, with the full method achieving the best results across all metrics. The consistent
improvements and low standard deviations (≤ 0.6%) across experiments indicate the robustness of our
approach.

6.2 Robustness to Checkpoint Choice

Table 5: Standard Deviation of AUROC for the Last 15 Epochs on CIFAR-100

Method Std (Far OOD) Std (Near OOD)
MDS Lee et al. (2018) 1.05 0.24
ODIN Liang et al. (2018) 0.40 0.22
GradNorm Huang et al. (2021b) 0.62 0.72
VIM Wang et al. (2022) 0.95 0.37
GROOD 0.38 0.2

(a) Near-OOD AUROC (b) Far-OOD AUROC

Figure 3: AUROC Performance on Cifar100 (Near and Far OOD) across different checkpoints showing the
stability of GROOD

The AUROC metric, while widely used for evaluating OOD detection, can exhibit instability during training,
particularly in the later stages. This instability means that small fluctuations in the model’s weights can lead
to significant variations in AUROC scores, making the selection of an optimal checkpoint challenging. The
AUROC curve can vary sharply, even when the test error is relatively stable, indicating a sensitivity to minor
weight perturbations. In contrast, GROOD’s design contributes to more stable OOD detection performance.
The key intuition behind GROOD’s robustness lies in its focus on the sensitivity of weights relative to the
OOD prototype. Throughout training, while the representation space and the OOD prototype’s absolute
location change as the network’s weights are updated, their inherent relationship—the sensitivity—remains
stable, leading to consistent OOD detection , as further evidenced by the reduced standard deviations shown
in table 5 and fig. 3.

Further ablation experiments and detailed analyses are provided in the Appendix.
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7 Discussion and Conclusion

In this work, we presented GRadient-aware Out-Of-Distribution detection (GROOD), a novel approach to
address the critical challenge of detecting OOD samples in DNN-based image classifiers. GROOD leverages
the complementary strengths of gradient information and distance metrics, demonstrating a significant ad-
vancement in identifying OOD instances, which is crucial for deploying DNNs reliably and safely in real-world
applications (Litjens et al., 2017; Bojarski et al., 2016). The extensive experimental evaluation across vari-
ous benchmarks illustrates the efficacy of GROOD in detecting both near and far OOD samples, exhibiting
robust performance independent of specific DNN architectures or training data distributions. Furthermore,
GROOD’s ability to operate effectively without extensive hyper-parameter tuning underscores its practicality
and adaptability in diverse settings.

However, it is important to consider the appropriate use cases and potential limitations of GROOD. As
GROOD relies on the concept of class prototypes and is inspired by the Neural Collapse phenomenon (Papyan
et al., 2020), it is inherently well-suited for applications where the in-distribution data exhibits a clear cluster
structure in the feature space. In such scenarios, GROOD’s ability to effectively distinguish between these
clusters and identify deviations becomes particularly advantageous. Conversely, GROOD may face challenges
in applications where the in-distribution data is inherently noisy, or where the underlying model fails to
clearly separates the in-distribution classes.

Beyond application-specific considerations, GROOD also presents certain practical limitations. While our
approach demonstrates improved inference speed compared to KNN-based methods, as detailed in ap-
pendix A.4, there are computational costs associated with storing and processing gradient information,
which can become significant for very large datasets or high-resolution images. Furthermore, the construc-
tion of effective OOD prototypes requires careful consideration. As discussed in § 5.2, while GROOD is
relatively robust to the specific choice of auxiliary OOD samples, the diversity and representativeness of
these samples can influence performance as shown in appendix A.2.

Several subtle but important design choices were made during the development of GROOD. For example,
the proximity-based filtering step in OOD prototype construction, as described in § 5.2, proved crucial for
enhancing the discriminative power of the prototype. We also observed that using a mixup strategy targeting
the second-highest predicted class for synthetic OOD data generation led to better results than interpolating
towards a random class, likely due to the resulting samples being closer to the decision boundary.

In conclusion, GROOD offers a promising approach for OOD detection, particularly in applications with
well-structured in-distribution data. Future research could explore methods to extend GROOD to handle
more complex data distributions or to further optimize its computational efficiency.
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A Appendix

A.1 GROOD Algorithm

For a comprehensive overview, the complete GROOD algorithm is outlined in algorithm 1 and algorithm 2.

Algorithm 1 GROOD initialization: Compute prototypes and gradients for the training set
Require: Training set Din, trained model f
Require: mixup parameter λ

1: Compute class prototypes Pearly and Ppen ▷ eq. (7)
2: Compute OOD prototype ppen

ood using synthetic data generation§ 5.2 ▷ eq. (8)
3: function comp_grad(h, ppen

y=1,··· ,C , ppen
ood)

4: compute ∇H(h) ▷ eq. (5) using ppen
y=1,··· ,C , ppen

ood
5: return ∇H(h)
6: end function
7: for each x ∈ Din do
8: ∇(x) = comp_grad (h(x), ppen

y=1,··· ,C , ppen
ood)

9: end for
10: return {∇(x)}x∈Din , pearly

y=1,··· ,C , ppen
y=1,··· ,C , ppen

ood

Algorithm 2 OOD score using GROOD
Require: Training dataset Din, trained model f
Require: {∇(x))}x∈Din , ppen

y=1,··· ,C , ppen
ood from GROOD initialization

Require: function comp_grad (in Alg. 1)
Require: Sample xnew, threshold τ

1: ∇(xnew) = comp_grad(h(xnew), ppen
y=1,··· ,C , ppen

ood)
2: Compute OOD score using Nearest Neighbor search: S(xnew) = minx∈Din ∥∇(xnew) − ∇(x)∥2
3: return ID if S(xnew) ≤ τ else OOD
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Table 6: OOD Detection Performance (AUROC %) by Dataset and OOD Prototype Construction Method.

Cifar-10 Cifar-100 ImageNet-200 ImageNet
OOD Prototype Near-OOD Far-OOD Near-OOD Far-OOD Near-OOD Far-OOD Near-OOD Far-OOD
Synthetic OOD 91.16 93.8 78.9 84.44 83.4 92.19 78.91 94.8
ID-Corrupted Val 90.55 93.88 80.27 81.41 83.9 92.58 83.5 94.6
OpenOOD Val 91.01 94.18 80.92 80.7 81.86 94.77 78.05 96.16
Uniform 90.9 94.1 77.26 84.5 82.84 94.46 75.23 94.55
Mean of Prototypes 88.5 91.4 77.2 81.4 82.3 92.9 71.25 82.21

A.2 Choice of OOD data for OOD prototype computation

OpenOOD Val To form ppen
ood, we selected 100 data points from an auxiliary OOD validation dataset, as

per the OpenOOD framework Zhang et al. (2023a); Yang et al. (2022), ensuring no category overlap with
test set images. This selection criterion aligns with practices in established post-hoc analyses Lee et al.
(2022; 2018); Kong & Ramanan (2021). Our method demonstrated robustness to the specific choice of OOD
samples. An investigation with five distinct sets of 100 OOD validation samples each revealed negligible
variation in AUROC, with a maximum standard deviation of 0.5%, underscoring our approach’s stability
across different OOD selections.

ID-Corrupted Val We further validated our approach using 100 i.i.d. samples from CIFAR-10-
C Hendrycks & Dietterich (2019) for CIFAR-10 as ID and CIFAR-100C for rest of ID datasets including
CIFAR-100, ImageNet-200 and ImageNet to ensure no possible overlap or leaks to the test set.

Uniform We try to approximate the representation of OOD data by leveraging uniform noise data. Ini-
tially, a batch of random noise images is created using uniformly distributed pixel values across all channels.
These noise images are then passed through a neural network to extract logits and features from intermediate
layers. An energy score is computed for each image, where lower scores indicate a higher likelihood of being
OOD. The images with the lowest energy scores, which are most similar to out-of-distribution (OOD) data,
are selected, and their penultimate layer features are extracted. These features are then aggregated to form
an OOD prototype.

Synthetic OOD To simulate OOD data representations, we utilize a manifold mixup technique on the
early layer, similar to the targeted mixup approach described in § 5. However, our method differs in the
interpolation target. Instead of interpolating towards the predicted class prototype, we interpolate towards
the second-highest predicted class c2, which is the closest incorrect class on the decision boundary.

Mean of Prototypes Instead of trying to approximate the representation of OOD data using auxiliary
OOD data we rely on the mean of ID prototypes.

Table 6 illustrates our method’s robustness to different validation OOD datasets.

A.3 Density Plots

To comprehensively evaluate the GROOD method’s ability to distinguish between in-distribution (ID) and
out-of-distribution (OOD) data, we visualize the distribution of OOD scores across a range of datasets with
varying characteristics. Figure 4 presents these visualizations for ID, Near-OOD, and Far-OOD samples
on CIFAR-10, CIFAR-100 (datasets with relatively small, natural images), ImageNet-200 (a subset of Im-
ageNet), and ImageNet-1k (a large-scale, complex dataset). Analyzing performance across this spectrum
demonstrates GROOD’s robustness to differences in image complexity and dataset size. In each subplot,
we use density plots to represent the distribution of OOD scores, allowing for a clear visual comparison of
separation between ID and OOD distributions.
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(a) CIFAR-10 (b) CIFAR-100

(c) ImageNet-200 (d) ImageNet-1k

Figure 4: Distribution of OOD scores on Near-OOD and Far-OOD across different datasets.

A.4 Inference Speed

GROOD introduces a novel Out-of-Distribution (OOD) detection method involving two forward passes for
the mixup part which is inexpensive to compute, a backward pass over the OOD prototype which can be
computed using its closed form expression as in eq. (5) of the main paper and the ne arest neighbor search
which is more computationally intensive. For the latter, Our approach employs the FAISS IndexIVF method
for efficient distance computation, utilizing centroids and inverted lists instead of the complete dataset. This
technique notably enhances inference speed compared to KNN, particularly in our CIFAR benchmarks.
Specifically, on CIFAR-10 and CIFAR-100 datasets, GROOD recorded evaluation inference times over all
OOD test sets of 130 seconds and 155 seconds, respectively. This is significantly faster than KNN, which
took 434 seconds for CIFAR-10 and 641 seconds for CIFAR-100, demonstrating the efficiency of our approach.

A.5 Ablate value of kth nearest neighbor

Figure 5 illustrates the impact of using the distance to the k-th nearest neighbor, as proposed by Sun et al.
(2022). The plot demonstrates that employing the distance to the nearest point in gradient space leads to
optimal results.
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Figure 5: Ablating different values for k-th nearest neighbor parameter on CIFAR-10

A.6 Gradient computation in closed form

This section details the derivation of the closed-form expression for the gradient, as presented in eq. (5) of
the main paper. The cross-entropy loss for a logit L = (Lj)C

j=1 + 1 and some (any) ID label y is given by:

H(L, y) = − ln exp(Ly)∑C+1
i=1 exp(Lj)

The partial derivative of this loss with respect to LC+1 is given by:

∂

∂LC+1
H(L, C + 1) = exp(LC+1)∑C+1

i=1 exp(Lj)

which is equal to the softmax probability corresponding to the OOD class and does not depend on the
specific ID class label y anymore. Now for a feature vector h, the corresponding logit vector L(h) is given
by eq. (2). Since LC+1(h) = ∥h − ppen

ood∥2 is the only logit depending on ppen
ood, the gradient of the above loss

with respect to ppen
ood is given by the chain rule:

∇ppen
ood

H(L(h), y) = ∂

∂L
H(L(h), y)∇ppen

ood
L(h) = exp(LC+1)∑C+1

i=1 exp(Lj)
h − ppen

ood
∥h − ppen

ood∥2
= pood(h) h − ppen

ood
∥h − ppen

ood∥2
,

as desired.

A.7 Impact of Mixup-Trained Backbones on GROOD

Method Near-OOD AUROC (%) Far-OOD AUROC (%)
GROOD (mean prototype) 81.05 80.26
ASH (Djurisic et al., 2022) 79.1 56.0
KNN (Sun et al., 2022) 78.0 81.85
GradNorm (Huang et al., 2021b) 50.0 50.0

Table 7: GROOD with mean prototype on manifold mixup-trained ResNet-18.
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We investigate how GROOD’s OOD prototype construction interacts with backbones trained using manifold
mixup (Verma et al., 2019). Since these models are explicitly trained to generalize across interpolated
samples, we hypothesized that synthetic mixup-based OOD prototypes might no longer serve as an effective
deviation reference. To test this, we evaluated GROOD on a ResNet-18 trained with manifold mixup.
Instead of using mixup-based OOD prototypes since it will no longer represent OOD data, we used a mean
prototype computed from ID class prototypes. The results are shown below:

These results show that GROOD maintains competitive performance by adjusting its prototype strategy to
the model’s training procedure. The mixup-based prototype remains optimal for standard-trained models,
while alternative strategies like mean prototypes are preferable when the backbone is mixup-regularized.
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