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Abstract
Multimodal machine learning provides a myriad
of opportunities for developing models that in-
tegrate multiple modalities and mimic decision-
making in the real-world, such as in medical
settings. However, benchmarks involving mul-
timodal medical data are scarce, especially rou-
tinely collected modalities such as Electronic
Health Records (EHR) and Chest X-ray images
(CXR). To contribute towards advancing multi-
modal learning in tackling real-world prediction
tasks, we present MedMod, a multimodal medi-
cal benchmark with EHR and CXR using pub-
licly available datasets MIMIC-IV and MIMIC-
CXR, respectively. MedMod comprises five clin-
ical prediction tasks: clinical conditions, in-
hospital mortality, decompensation, length of
stay, and radiological findings. We extensively
evaluate multimodal supervised learning mod-
els and self-supervised learning frameworks,
making our code and models open-source.

Data and Code Availability The data used
for this study is available from the public MIMIC-
IV database (Johnson et al., 2023) and MIMIC-
CXR database (Johnson et al., 2019). To facili-
tate the use of our benchmark and pre-trained mod-
els as feature extractors by the research community,
we make all of the code and models open source
at: https://github.com/nyuad-cai/MedMod. We
also create a public leaderboard to support fu-
ture research at: https://github.com/nyuad-cai/
medmodleaderboard.

Institutional Review Board (IRB) This work
did not involve human subjects, so IRB approval was
not required.

1. Introduction

Multimodal learning involves leveraging multiple
sources of information to build models with a bet-
ter understanding and representation of real-world
data. Multimodal fusion models aggregate informa-
tion from multiple modalities with the aim of improv-
ing predictive performance in downstream tasks (Bal-
trušaitis et al., 2018; Ngiam et al., 2011). Despite
their success, many state-of-the-art models are evalu-
ated on artificially standardized multimodal datasets
that do not reflect the complexity and variability of
real-world data, such as hateful memes (Kiela et al.,
2020) or colored MNIST (Arjovsky et al., 2019).
Hence, there is a critical need for new multimodal
benchmarks to assess the generalizability of multi-
modal learning in practical real-world use-cases.

While fields such as computer vision and natural
language processing have access to numerous large
multimodal datasets, healthcare lacks similarly com-
prehensive benchmarks. Considering the multimodal
nature of clinical decision-making (Kline et al., 2022)
and the wide availability of multimodal data across
healthcare institutions, such as Electronic Health
Records (EHR), medical imaging, and clinical notes,
multimodal learning holds a lot of promise for im-
proving medical prediction tasks (Kline et al., 2022;
Soenksen et al., 2022; Amal et al., 2022). Data ex-
tracted from the patient’s EHR is intrinsically mul-
timodal, as it includes all relevant patient data, such
as medical history, diagnoses, vital signs, lab re-
sults, treatments plans, and administered medica-
tion (Shickel et al., 2017; Pivovarov et al., 2015),
making it an invaluable source of contextual infor-
mation for understanding patient status. Further-
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more, EHR data has the potential to be combined
with other modalities to enable multimodal learning
with varying sources of data. The rise of multimodal
learning involving EHR was especially evident dur-
ing the COVID-19 pandemic (Shamout et al., 2021;
Satterfield et al., 2021; Estiri et al., 2021) due to the
increased accessibility of publicly available Chest X-
Ray (CXR) images. Chest radiography is considered
to be a low-cost and widely used modality globally
compared to other modalities such as computed to-
mography and magnetic resonance imaging. The in-
tegration of both EHR and CXR data for clinical pre-
diction tasks is promising not only for its expected
clinical impact, but also for enabling the evaluation
and development of more sophisticated methodolo-
gies. These methodologies aim to capture complex
interactions within multimodal data, leading to im-
proved predictive performance (Zheng et al., 2022;
Bardak and Tan, 2021; El-Sappagh et al., 2021).
To address the aforementioned challenges and the

lack of comprehensive medical benchmarks, in this
paper we present MedMod, a multimodal benchmark
for clinical prediction tasks using EHR and CXR
data. An overview of the benchmark is shown in Fig-
ure 1. The goal is to establish a suite of benchmark
tasks with routine clinical features and medical imag-
ing, with a focus on clinical outcome prediction tasks.
The MedMod benchmark is designed for both super-
vised and self-supervised learning applications. For
supervised learning, we establish a suite of tasks rel-
evant to acute care for benchmarking of multimodal
fusion approaches. For self-supervised learning, we
aim to provide a basis for developing methods that
are able to learn multimodal representations which
are agnostic to the downstream task. The develop-
ment of pretrained feature extractors without labels
is highly relevant, as it means that they can be ap-
plied to situations where annotated data is not largely
available. Hence, we believe there is merit in includ-
ing both of these machine learning paradigms in our
benchmark. To the best of our knowledge, MedMod
is the first comprehensive EHR and CXR benchmark
developed for five clinical prediction tasks of high rel-
evance in acute care, including state-of-the-art super-
vised and self-supervised learning models.
Our main contributions are summarized as follows:

• We propose a diverse and comprehensive mul-
timodal clinical benchmark (MedMod) using two
publicly available datasets MIMIC-IV (Johnson
et al., 2023) and MIMIC-CXR (Johnson et al.,
2019) and extending the work of Harutyunyan

et al. (2019), comprising five clinical prediction
tasks: in-hospital mortality, prediction of clini-
cal conditions, decompensation, length of stay,
and radiological findings.

• We perform extensive evaluations of six super-
vised learning models, encompassing vanilla fu-
sion paradigms (early, joint, late) and other so-
phisticated multimodal frameworks. We also
evaluate three state-of-the-art self-supervised
learning methods and present a unified evalua-
tion scheme and protocol for each task.

• We publicly release our code, models, and im-
plementation for all of the proposed clinical pre-
diction tasks to enhance the usability of MedMod
by the research community and support the ad-
vancement of multimodal learning. We also in-
troduce a public leaderboard to support future
work.

2. Related Work

Recently, there have been numerous research efforts
towards developing benchmarks for medical predic-
tion tasks. Such benchmarks are essential for ad-
vancing machine learning research in healthcare (Xie
et al., 2022; Strodthoff et al., 2020). They enable
standardizing evaluation as well as comparing differ-
ent machine learning methods and facilitating their
reproducibility (Dueben et al., 2022; Pereira et al.,
2024). Several studies introduced EHR-based bench-
marks covering a wide range of tasks, such as pre-
diction of mortality, length of stay, and patient diag-
nosis (Harutyunyan et al., 2019; McDermott et al.,
2021; Wornow et al., 2024; Gao et al., 2024). Simi-
larly, there are many publicly available medical imag-
ing datasets that are suitable for various tasks, such
as disease detection and segmentation (Phillips et al.,
2020; Holste et al., 2023; Chen et al., 2023; Kermany
et al., 2018; Ji et al., 2022).

Although there are many unimodal benchmarks
based on EHR (Harutyunyan et al., 2019; McDermott
et al., 2021; Wornow et al., 2024; Gao et al., 2024)
and CXR (Phillips et al., 2020; Holste et al., 2023;
Chen et al., 2023) data independently, multimodal
benchmarks that integrate both modalities are still
relatively scarce (Heiliger et al., 2023; Poon, 2023).
This scarcity is attributed to both the lack of publicly
available datasets and the difficulty of collecting mul-
tiple and diverse medical data modalities for the same
group of patients (Shaik et al., 2023). For example,
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Figure 1: Overview of the MedMod benchmark. The main components of the MedMod benchmark include the
medical prediction tasks and the training schemes. (a) The MedMod benchmark involves five medical
prediction tasks including in-hospital mortality prediction, clinical conditions prediction, decompensation
prediction, length of stay prediction, and radiological findings classification. tadmicu represents the time
of admission to the ICU, tdisicu represents the time of discharge from the ICU, the red arrow indicates
the time of death in the ICU, and t48hicu represents the 48 hour mark at which the prediction is made
for the in-hospital mortality task. Note that only the CXRs shaded in blue and EHRs shaded in pink
are used as input to the model. For a detailed description of each task set-up, refer to Section 4. (b)
Illustration of the supervised learning methods including early, joint, and late fusion as vanilla fusion
paradigms, and MedFuse, MMTM, and DAFT as sophisticated fusion models. Early Fusion directly
concatenates the encoder outputs vehr and vcxr (i.e., [vehr; vcxr]) from randomly initialized encoders,
while Joint Fusion also concatenates [vehr; vcxr] but learns both fehr and fcxr entirely from scratch in a
shared training process. In contrast, Late Fusion first obtains unimodal predictions ŷehr and ŷcxr from
frozen pretrained encoders then computes the final output by averaging ŷfusion = 1

2
(ŷehr + ŷcxr). The

more advanced fusion models - MedFuse, MMTM, and DAFT - introduce additional layers or modules
for richer multimodal interactions. MedFuse relies on pretrained encoders fehr and fcxr, concatenates
the resulting features [vehr; vcxr], and then passes them through an LSTM to generate the prediction
ŷfusion. MMTM inserts specialized modules that exchange channel-level features between the latent
representations vehr and vcxr to better capture cross-modal interactions. Finally, DAFT, as illustrated in
the dashed boxes within the LSTM and ResNet pipelines, introduces dynamic affine transformations that
allow vehr and vcxr to modulate each other’s feature extraction stages. (c) Illustration of the self-supervised
pretraining frameworks, including ConVIRT, VICReg, and ALIGN, and the evaluation protocols used
(linear evaluation and fine-tuning). The EHR and CXR input are processed through encoders fehr and
fcxr followed by projection heads hehr and hcxr to produce the embeddings zehr and zcxr on which the
loss is computed. ConVIRT and ALIGN employ a bi-directional contrastive loss, while VICReg uses
the three-term VICReg loss. For a detailed description of each of the models, refer to Section 3.
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patients may not always require a CXR scan during
their hospital visits. Moreover, for patients who do
have both modalities collected within the same hos-
pital encounter, pairing the two modalities requires
additional pre-processing steps and domain expertise.
This further hinders the development of multimodal
clinical benchmarks (Krones et al., 2024). For in-
stance, the Medical Information Mart for Intensive
Care (MIMIC)-IV (Johnson et al., 2023) and MIMIC-
CXR (Johnson et al., 2019) datasets include EHR and
CXR data, respectively, and overlap with respect to
the included patients. However, linking both datasets
is not straightforward (Wornow et al., 2024). This is
attributed to the remarkable difference between both
modalities in terms of the source of each modality
and the collection scheme, which leads to discrepan-
cies in timing, granularity, and relevance. In addition,
the fact that not all patients may have corresponding
data for all modalities leads to incomplete datasets
that can affect the reliability of the multimodal tasks.
Lastly, the privacy regulations in healthcare impose
further challenges on gathering diverse multimodal
datasets suitable for benchmarking (Rajpurkar et al.,
2022). As such, these challenges emphasize the need
for comprehensive multimodal benchmarks that re-
flect the complexity and diversity of real-world clini-
cal data.

Due to the increase in the availability of mul-
timodal medical datasets (Demner-Fushman et al.,
2016; Ionescu et al., 2018; Bustos et al., 2020; Lit-
tlejohns et al., 2020; Clark et al., 2013), several
benchmarks have recently emerged. We provide an
overview of benchmarks that were recently intro-
duced and are closely related to the scope of our
study in Table 1. While all included benchmarks
use EHR as an input modality, only a few consider
medical imaging. In the context of acute care, only
one study introduced a multimodal fusion bench-
mark (supervised learning) for the in-hospital mor-
tality and clinical conditions classification tasks us-
ing CXR and EHR (Hayat et al., 2022). Two stud-
ies included both medical imaging and EHR for
pulmonary embolism detection (Zhou et al., 2021;
Huang et al., 2023), and another for question an-
swering (Bae et al., 2024). A limited number of
benchmarks included self-supervised learning models,
specifically for EHR time-series classification (Mc-
Dermott et al., 2021), electrocardiogram question an-
swering (Oh et al., 2024), and EHR for in-hospital
prediction tasks.

3. Methods

3.1. Preliminaries

To present the benchmark and its development pro-
cess, we first introduce some relevant notation. For
a given patient p, let xehr ∈ Rd×t be a multivariate
time-series modality consisting of d features and t
time steps representing an Intensive Care Unit (ICU)
stay. Also, let xi

cxr ∈ Rh×w×c be the i-th CXR
scan collected from patient p during the same ICU
stay, where h, w, and c represent the image height,
width, and number of channels, respectively. Our
goal is to build a set of medical prediction tasks suit-
able for multimodal benchmarking in both supervised
and self-supervised learning settings. Each super-
vised task is associated with its specific ground-truth
label set y for a given unimodal or multimodal input.
The self-supervised learning models do not require
any labels during training.

3.2. Data Preprocessing

We provide a conceptual description of the prepro-
cessing operations performed to create the multi-
modal datasets for all tasks. We note that all pro-
cedures described in this section are implemented
based on recent work (Hayat et al., 2022; Harutyun-
yan et al., 2019) and are made readily available in
our open-access repository.

3.2.1. Data Source

We used two large-scale publicly available datasets,
MIMIC-IV (Johnson et al., 2023) and MIMIC-
CXR (Johnson et al., 2019), to develop the proposed
benchmark. MIMIC-IV consists of EHR data col-
lected from patients admitted at the Beth Israel Dea-
coness Medical Center to the ICU between 2008 and
2019. In total, MIMIC-IV includes clinical data col-
lected from 315, 460 patients from 454, 324 admis-
sions and 76, 943 ICU stays (Johnson et al., 2020). It
also includes extensive information pertaining to the
patient stay such as demographics, vital signs, lab-
oratory test results, and procedure codes. MIMIC-
CXR is composed of 377, 110 CXR scans collected
from 65, 152 patients between 2011 and 2016, span-
ning over 227, 835 studies. A waiver of informed con-
sent was approved by the Institutional Review Board
(IRB) to allow the sharing of this data. Additional
information pertaining to the dataset can be found
in the original work (Johnson et al., 2023, 2019).
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Table 1: Summary of existing medical multimodal benchmarks. We briefly highlight the characteristics
of existing benchmarks, including the medical scope and number of included tasks. Note that SSL is
Self-Supervised Learning, IMG is Imaging, and QA is Question Answering.

Benchmark Data Source Scope EHR IMG # Tasks SSL

EHRXQA (Bae et al., 2024)† MIMIC-IV (Johnson et al., 2020), MIMIC-
CXR (Johnson et al., 2019), ImaGenome (Wu
et al., 2021)

QA ✓ ✓ 1 ×

ECG-QA (Oh et al., 2024)† PTB-XL ECG (Wagner et al., 2020) QA ✓ × 1 ✓
EHRSHOT (Wornow et al., 2024)† STARR (Callahan et al., 2023) In-hospital tasks ✓ × 15 ✓
MC-BEC (Chen et al., 2024a)† Stanford MC-MED Emergency Care ✓ × 3 ×
RadFusion (Zhou et al., 2021) STARR (Callahan et al., 2023) Pulmonary Embolism ✓ ✓ 1 ×
INSPECT (Huang et al., 2023) STARR (Callahan et al., 2023) Pulmonary Embolism ✓ ✓ 4 ×
MIMIC-Extract (Harutyunyan et al., 2019) MIMIC-III (Johnson et al., 2016) Acute care ✓ × 4 ×
EHR-TS-PT (McDermott et al., 2021) MIMIC-III (Johnson et al., 2016), eICU (Pollard

et al., 2018)
Acute care ✓ × 10 ✓

MedFuse (Hayat et al., 2022) MIMIC-IV (Johnson et al., 2020), MIMIC-
CXR (Johnson et al., 2019)

Acute care ✓ ✓ 2 ×

MedMod (Ours) MIMIC-IV (Johnson et al., 2020), MIMIC-
CXR (Johnson et al., 2019)

Acute care ✓ ✓ 5 ✓

† Studies include other modalities, such as text and/or time-series data (e.g., ECG or PPG) that are not considered in our work.

3.2.2. EHR Feature Extraction

We extracted a diverse set of clinically relevant vari-
ables from the MIMIC-IV dataset that are critical for
the prediction tasks in our benchmark. We utilized a
consistent set of 17 clinical variables, comprising both
categorical and continuous data (Harutyunyan et al.,
2019; Hayat et al., 2022). The extracted variables in-
clude vital signs, laboratory measurements, and clin-
ical assessment scores. Our selection was based on
the proven predictive power of the selected variables
in previous studies as well as the utilization frequency
in clinical practice. We provide a description of these
data items, including their source table and impute
value in Appendix A. The following are the EHR pre-
processing steps conducted:

• Time-series Data Generation: The EHR fea-
tures extracted are collected at irregular inter-
vals during the patient’s ICU stay. Hence, to
obtain a temporal representation of the data, we
sample all extracted features at regular intervals,
specifically every two hours. This step will result
in an array of data such that xehr ∈ Rd×t, where
d is the number of EHR features (d = 17) and t
is the bi-hourly time step.

• Handling Missing Data: As a result of the bi-
hourly data sampling, there will be a significant
amount of missing data in each EHR timeseries.
To overcome this issue, we employ two impu-
tation strategies including (i) imputation with
the most recent measurement and (ii) imputa-

tion with the normal value. The normal values
used for imputation are summarized in Appendix
A.

• Data Discretization & Normalization: As
the initial set of clinical variables is composed
of both categorical and continuous variables, we
perform discretization to one-hot encode all cat-
egorical variables. This results in a data ma-
trix consisting of 76 features encapsulating both
categorical and continuous features, such that
xehr ∈ Rd×t, where d = 76 and t is the time step.
We also standardize the continuous variables to
ensure consistency across different scales. Each
task uses a task-specific normalizer where the
statistics (mean and standard deviations) are
computed based on the dataset.

3.2.3. CXR Filtering

We follow a series of preprocessing steps to filter the
CXR images and verify that the selected images are
clinically relevant and in accordance with the EHR
data. Firstly, we only consider CXR scans that are
gathered during the patient’s current ICU stay, en-
suring that the images reflect the patient’s condition.
Then, we only consider frontal scans with a view po-
sition of Anterior-Posterior (AP), as this is the stan-
dard perspective used for clinical assessment in criti-
cal care settings. Given that patients may have mul-
tiple CXR scans during their ICU stay, the utilization
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Figure 2: Data Filtering Pipeline. Overview of the data filtering process starting from the initial MIMIC-CXR
and MIMIC-IV datasets to the creation of task-specific datasets for each of the five benchmark task. The
initial pairing is common across all tasks and involves pairing CXR images and EHR records based on
the ICU stay identification number (stay id). The following filtering steps are task-specific, outlining the
steps to generate the CXR-EHR pairs in the final task datasets.

of these images depends on the task, with two differ-
ent filtering strategies employed. In the case of the
radiological findings classification task, we consider
all CXR scans gathered within an ICU stay, while for
all other tasks we consider only the most recent CXR
scan.

3.2.4. Multimodal Pairing

To construct our multimodal dataset from MIMIC-IV
and MIMIC-CXR, we included paired samples only,
where both the CXR and EHR modalities must be
present in a given ICU stay. We used the patient iden-
tifier to randomly split our dataset into 70%, 10%,
and 20% for the training, validation, and test sets,
respectively. The resulting task label distributions is
provided in Appendix B. Figure 2 presents a detailed
description of the data filtering pipeline used to link
the EHR and CXR data and create the multimodal
dataset for each task.

3.3. Baselines

3.3.1. Supervised Learning

In the supervised learning setting, we evaluate all
tasks using vanilla fusion techniques involving early,
joint and late fusion. We also consider sophisticated
fusion frameworks present in the literature, namely
MedFuse, DAFT, and MMTM. For all models, we
use an LSTM (Hochreiter and Schmidhuber, 1997)
as an encoder for the EHR data, denoted as fehr,
and a ResNet-34 (He et al., 2016) as an encoder for
CXR data, denoted as fcxr. Specifically, we pretrain
fcxr using the radiology labels from MIMIC-CXR,
and pretrain fehr on the EHR labels for the respec-
tive task. Figure 1 provides a visual illustration of
all supervised learning models. For the length of stay
task, we use the Cross Entropy loss. For all other
tasks, we use Binary Cross Entropy. We briefly sum-
marize the supervised baselines.

Early fusion is the simplest form of fusion where
modalities are fused at the input level and processed
via a single encoder that models both modalities si-
multaneously (Huang et al., 2020). It pretrains uni-
modal models fehr and fcxr separately, then fuses
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the extracted features vehr and vcxr as vfusion =
[vehr; vcxr] to learn from the combined data, with a
classification layer g that computes the final output.

Joint Fusion is another type of fusion where rep-
resentations learned from multiple modality-specific
encoders are combined during training by means of
a fusion layer (Huang et al., 2020). It extracts fea-
tures using fehr for EHR and fcxr for CXR, then
concatenates vehr and vcxr early in the network as
vfusion = [vehr; vcxr] to allow for joint learning with-
out pretraining, with a classification layer g to pro-
duce the prediction.

Late Fusion operates on the output level by
aggregating the predictions obtained from multiple
modality-specific classifiers by averaging or majority
voting (Huang et al., 2020). In our work, we average
the predictions of both modalities.

MedFuse (Hayat et al., 2022) is a recent multi-
modal framework proposed for processing CXR scans
and multivariate clinical time-series data. Med-
Fuse replaces traditional fusion mechanisms with an
LSTM-based fusion module that processes the joint
representations of the input modalities.

Dynamic Affine Feature Map Transform
(DAFT) (Pölsterl et al., 2021) is a multimodal fusion
framework developed for processing medical images
and tabular medical data. It operates on the dynamic
conditioning (including feature map shifting and scal-
ing) of the representations learned from medical im-
ages on a patient’s tabular clinical information. It
uses dynamic affine transformations on feature maps
from modality-specific encoders. These transforma-
tions are conditioned on global context vectors de-
rived from the input data. The transformed features
are then fused, and a classification layer g is applied
to the final fused representation for prediction.

Multimodal Transfer Module
(MMTM) (Joze et al., 2020) is a multimodal
fusion framework that operates on the intermediate
layers of convolutional neural network (CNNs).
The MMTM module is characterized by its ability
to be located at different levels of the feature
hierarchy, which allows for slow modality fusion.
It uses modality-specific encoders fehr and fcxr to
generate feature representations vehr and vcxr and
uses squeeze and excitation operations to recalibrate
channel-wise features from both modalities combin-
ing them into a joint representation to modulate the
original features.

3.3.2. Self-supervised Learning

We apply three self-supervised learning methods (il-
lustrated in Figure 1) to assess their ability in learn-
ing multimodal representations that are agnostic to
task-specific labels. After pretraining without labels,
we evaluate the quality of the learned representations
via linear evaluation and fine-tuning for the five tasks
proposed in MedMod.

Variance-Invariance-Covariance Regulariza-
tion (VICReg) (Bardes et al., 2021) is a pretrain-
ing framework developed mainly to eliminate dimen-
sional collapse in joint embedding frameworks. VI-
CReg introduces regularization terms that prevent
collapse by maintaining feature variance at certain
thresholds and keeping the correlation between fea-
tures minimal, while maintaining similarity. Regu-
larization in VICReg is applied separately to each
branch which renders it suitable for multimodal rep-
resentation learning. The loss is defined as L =
S(zehr, zcxr), where S is the VICReg loss.

Contrastive VIsual Representation Learning
from Text (ConVIRT) (Zhang et al., 2022) is
a contrastive vision-language pretraining framework
developed mainly for medical images and radiology
reports. ConVIRT introduced a bidirectional con-
trastive objective between the pretraining modalities
that maximizes the similarity of the embeddings of
an image-text pair. The loss function of ConVIRT is
defined as L = S(zehr, zcxr) + S(zcxr, zehr), where S
is the infoNCE loss.

A Large-scale ImaGe and Noisy-text embed-
ding (ALIGN) (Jia et al., 2021) is a contrastive
vision-language representation learning framework
developed on natural image-caption pairs. The ob-
jective of ALIGN is to scale up the pretraining
data by generating noisy image-caption pretraining
pairs, while maintaining quality representations. The
loss of the ALIGN framework is defined as L =
S(zehr, zcxr), where S is the infoNCE loss.

It is worth noting that both ConVIRT (Zhang
et al., 2022) and ALIGN (Jia et al., 2021) are
Contrastive Language-Image Pretraining (CLIP) ap-
proaches which we adapt for EHR-CXR data. In
ConVIRT, matching pairs of CXR and EHR from the
same patient are considered as positive pairs, while in
ALIGN, noisy pairs of CXR and EHR (which may or
may not come from the same patient) are considered
as positive pairs. Further implementation details are
described in Appendix C.

7



MedMod: Multimodal Benchmark for Medical Prediction Tasks

4. Results

We introduce a set of five clinical prediction tasks and
perform evaluations of six supervised learning mod-
els and three self-supervised learning models, with a
unified evaluation scheme followed for each task.

4.1. Overview of Tasks

We define five medical prediction tasks for MedMod,
building upon prior benchmarks that only introduced
unimodal tasks and two multimodal tasks (Harutyun-
yan et al., 2019; Hayat et al., 2022). Figure 1 provides
a visual illustration of the proposed tasks and Table
2 provides a summary of their characteristics.

1. In-hospital mortality prediction is a binary
classification task that involves predicting in-
hospital mortality by the end of the first 48 hours
of a patient’s ICU stay. We consider Area Un-
der the Receiver Operating Characteristic Curve
(AUROC) and Area Under the Precision-Recall
Curve (AUPRC) for evaluation of this task.
Clinically, this task helps in identifying high-
risk patients early, enabling interventions which
could potentially lower mortality rates.

2. Clinical conditions classification is a multi-
label classification task that aims at predicting
the presence of any of 25 chronic, mixed, and
acute care conditions, which are assigned to a
patient at the end of an ICU stay. We use
AUROC and AUPRC to evaluate model perfor-
mance. The outcome of this task guides clinical
decision-making and care.

3. Decompensation prediction is a binary pre-
diction task that defines decompensation as mor-
tality within the next 24 hours, computed at each
hour of an ICU stay. The main metrics used for
evaluating this task are AUROC and AUPRC.
The aim is to replace early warning scores used
in hospitals (Harutyunyan et al., 2019), and iden-
tify patients with deteriorating conditions.

4. Length of stay prediction is a multi-class
classification task that entails predicting the pa-
tient’s remaining time in the ICU at each hour
of an ICU stay. The task involves the classi-
fication of the predicted length of stay values
by sorting them into 10 buckets (Harutyunyan
et al., 2019). To evaluate model performance on
this task, we use Cohen’s linear weighted kappa

score (KAPPA) and Median Absolute Deviation
(MAD). Although slightly different to the previ-
ous tasks, length of stay is essential in enabling
better hospital management and better use of
resources (Chen et al., 2024a), and has the po-
tential to improve overall patient care.

5. Radiological findings classification is a
multi-label classification task that involves pre-
dicting a set of 14 chest observations extracted
from the available radiology reports of a CXR
scan gathered during an ICU stay. The predic-
tion is made at the end of the stay, with AU-
ROC and AUPRC used to evaluate performance.
With CXRs being one of the most widely uti-
lized medical imaging exams, improving predic-
tive performance for chest disease classification
is a highly relevant clinical task.

Our selection of these tasks is driven by the goal
of exploring how multimodal data can enhance pre-
dictive performance over a range of clinical scenarios.
Each task was chosen with the consideration of the
potential contribution of CXR imaging to the predic-
tive model. For example, in relation to the length
of stay task which might be an EHR oriented task,
abnormalities present in a CXR scan may indicate
complications that could extend the patient’s ICU
stay, making the task relevant to both modalities.

Importantly, we note that integrating EHR data
with medical images has demonstrated performance
improvements in multiple studies for several tasks
such as length of stay (Chen et al., 2024b; Wang et al.,
2024) and in-hospital mortality (Hayat et al., 2022;
Wang et al., 2024; Khader et al., 2023). Therefore, all
tasks introduced as part of MedMod are routine clini-
cal prediction tasks which are essential for improving
patient outcomes, and are widely researched within
both the medical and machine learning communities.

4.2. Supervised Learning Results

Table 3 summarizes the results of the supervised
baselines for the five tasks presented in MedMod.
To evaluate the performance gain achieved through
the multimodal fusion models, we include unimodal
(EHR and CXR) results as well as multimodal results
using different fusion strategies. We report AUROC
and AUPRC for all tasks aside from length of stay,
which is reported using KAPPA and MAD.

The multimodal models consistently outperform
the unimodal models in all benchmark tasks. For
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Table 2: Overview of MedMod Benchmark Tasks. We briefly summarize the main characteristics of the MedMod

benchmark involving labels information, time horizon, training splits, and metrics.

Task Label Type # Labels Time Horizon Train/Val/Test Evaluation

In-hospital mortality Binary label 2 First 48 hours 4485/488/1242 AUROC, AUPRC
Clinical conditions Multi-label 25 End of stay 7756/882/2166 AUROC, AUPRC
Decompensation Binary label 2 Hourly 716836/78149/216663 AUROC, AUPRC
Length of stay Multi-class 10 Hourly 720042/78519/217504 KAPPA, MAD
Radiology Multi-label 14 End of stay 25022/2745/7220 AUROC, AUPRC

Table 3: Performance results for each task comparing the unimodal and multimodal models in the
supervised setting. We report the (average ± std) KAPPA and MAD for the length of stay task and
the (average ± std) AUROC and AUPRC for the remaining four tasks. Results for the best modality and
best model for each task are in bold.

In-hospital mortality Clinical conditions Decompensation Length of stay Radiology

Method AUROC AUPRC AUROC AUPRC AUROC AUPRC KAPPA MAD AUROC AUPRC

Unimodal

EHR (LSTM) 0.829 ± 0.009 0.502 ± 0.028 0.720 ± 0.004 0.409 ± 0.006 0.862 ± 0.012 0.247 ± 0.009 0.380 ± 0.010 143.6 ± 2.3 - -
CXR (ResNet-34) 0.679 ± 0.007 0.246 ± 0.020 0.673 ± 0.006 0.360 ± 0.009 0.694 ± 0.007 0.037 ± 0.003 - - 0.705 ± 0.008 0.323 ± 0.006

Multimodal (Pretrained)

Early fusion 0.842 ± 0.004 0.515 ± 0.020 0.742 ± 0.008 0.431 ± 0.014 0.857 ± 0.011 0.154 ± 0.007 0.371 ± 0.008 455.1 ± 4.8 0.728 ± 0.012 0.338 ± 0.008

Late fusion 0.833 ± 0.009 0.472 ± 0.022 0.743 ± 0.010 0.427 ± 0.012 0.868 ± 0.010 0.261 ± 0.014 0.339 ± 0.004 140.6 ± 4.2 0.732 ± 0.013 0.328 ± 0.009

MedFuse 0.819 ± 0.007 0.482 ± 0.028 0.744 ± 0.003 0.440 ± 0.010 0.822 ± 0.014 0.178 ± 0.009 0.307 ± 0.009 140.9 ± 3.9 0.720 ± 0.011 0.334 ± 0.007

Multimodal (Random Initialization)

Joint fusion 0.830 ± 0.008 0.499 ± 0.028 0.741 ± 0.002 0.433 ± 0.003 0.864 ± 0.013 0.245 ± 0.008 0.238 ± 0.007 150.2 ± 4.7 0.646 ± 0.013 0.290 ± 0.009

MMTM 0.783 ± 0.013 0.363 ± 0.032 0.721 ± 0.006 0.399 ± 0.019 0.844 ± 0.015 0.108 ± 0.005 0.261 ± 0.006 146.6 ± 4.5 0.653 ± 0.011 0.282 ± 0.010

DAFT 0.826 ± 0.008 0.494 ± 0.030 0.722 ± 0.004 0.414 ± 0.004 0.756 ± 0.015 0.070 ± 0.006 0.417 ± 0.007 174.2 ± 4.6 0.658 ± 0.012 0.294 ± 0.008

instance, early fusion shows the best performance
for the in-hospital mortality task (0.842 ± 0.004),
outperforming the unimodal EHR model (0.829 ±
0.009). Similarly, MedFuse (0.744 ± 0.003), a more
sophisticated fusion technique, shows a noticable im-
provement in the clinical conditions task, compared
to the unimodal EHR model (0.720 ± 0.004). This
indicates that combining data from multiple modali-
ties enhances the predictive power of the model and
improves overall performance. Moreover, the pre-
trained multimodal performed better for four out of
the five tasks when compared to the randomly ini-
tialized models.

However, while the multimodal models may have
a significant advantage in tasks such as in-hospital
mortality prediction and clinical conditions classifi-
cation, they only marginally improved performance
compared to the unimodal EHR model for the de-
compensation task, where late fusion (0.868 ± 0.010)
performs comparably to the unimodal EHR model
(0.862 ± 0.012). Therefore, further investigation into
task-specific characteristics is needed to better ex-

plain the performance boost achieved by using mul-
tiple modalities.

4.3. Self-supervised Learning Results

We evaluate three self-supervised learning methods,
ConVIRT (Zhang et al., 2022), VICReg (Bardes
et al., 2021), and ALIGN (Jia et al., 2021) on their
ability to learn representations that are agnostic to
the downstream task. The quality of the learned rep-
resentations is evaluated via linear probing and fine-
tuning. Results for all three baselines on the mul-
timodal dataset are reported in Table 4, while uni-
modal EHR and unimodal CXR results are in Table
5 and Table 6, respectively.

By comparing the results of linear probing to fine-
tuning in Table 4, we observe only a marginal im-
provement from fine-tuning the multimodal model.
For example, for both the in-hospital mortality
and decompensation tasks, the best performing self-
supervised method is ConVIRT using linear probing.
This suggests that pre-trained generalized models can
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Table 4: Downstream performance results for linear probing and fine-tuning across the five benchmark
tasks with multimodal data. We report the (average ± std) KAPPA and MAD for the length of stay
task and the (average ± std) AUROC and AUPRC for the remaining four tasks. We include the best
supervised learning results obtained for each task in the multimodal setting, based on AUROC.

In-hospital mortality Clinical conditions Decompensation Length of stay Radiology

Method AUROC AUPRC AUROC AUPRC AUROC AUPRC KAPPA MAD AUROC AUPRC

Supervised learning 0.842 ± 0.004 0.515 ± 0.020 0.744 ± 0.0003 0.440 ± 0.010 0.868 ± 0.010 0.261 ± 0.014 0.417 ± 0.007 174.2 ± 4.6 0.732 ± 0.013 0.328 ± 0.009

Linear probing

ConVIRT 0.847 ± 0.002 0.482 ± 0.016 0.701 ± 0.014 0.365 ± 0.015 0.890 ± 0.011 0.267 ± 0.012 0.373 ± 0.015 140.2 ± 4.3 0.661 ± 0.010 0.277 ± 0.016

VICReg 0.811 ± 0.008 0.458 ± 0.017 0.644 ± 0.018 0.322 ± 0.016 0.874 ± 0.012 0.233 ± 0.014 0.366 ± 0.013 142.0 ± 3.8 0.623 ± 0.011 0.251 ± 0.017

ALIGN 0.803 ± 0.014 0.464 ± 0.016 0.665 ± 0.017 0.359 ± 0.015 0.869 ± 0.013 0.258 ± 0.015 0.327 ± 0.014 143.5 ± 4.9 0.651 ± 0.009 0.274 ± 0.018

Fine-tuning

ConVIRT 0.813 ± 0.010 0.449 ± 0.018 0.728 ± 0.016 0.422 ± 0.017 0.859 ± 0.010 0.088 ± 0.011 0.368 ± 0.014 101.3 ± 3.7 0.660 ± 0.012 0.287 ± 0.015

VICReg 0.834 ± 0.017 0.510 ± 0.017 0.693 ± 0.014 0.405 ± 0.016 0.832 ± 0.009 0.050 ± 0.009 0.379 ± 0.012 108.8 ± 4.3 0.637 ± 0.014 0.273 ± 0.016

ALIGN 0.811 ± 0.012 0.475 ± 0.019 0.711 ± 0.015 0.416 ± 0.018 0.807 ± 0.018 0.055 ± 0.012 0.374 ± 0.013 100.9 ± 4.4 0.628 ± 0.010 0.261 ± 0.015

Table 5: Downstream performance results for linear probing and fine-tuning across the five benchmark
tasks with EHR data. We report the (average ± std) KAPPA and MAD for the length of stay task and
the (average ± std) AUROC and AUPRC for the remaining four tasks. We include the supervised learning
results obtained for each task in the unimodal EHR setting, based on AUROC.

In-hospital mortality Clinical conditions Decompensation Length of stay

Method AUROC AUPRC AUROC AUPRC AUROC AUPRC KAPPA MAD

Supervised learning 0.829 ± 0.009 0.502 ± 0.028 0.720 ± 0.004 0.409 ± 0.006 0.862 ± 0.012 0.252 ± 0.005 0.380 ± 0.010 143.6 ± 2.3

Linear probing

ConVIRT 0.789 ± 0.015 0.445 ± 0.012 0.664 ± 0.019 0.365 ± 0.013 0.873 ± 0.017 0.247 ± 0.020 0.360 ± 0.017 137.4 ± 6.2

VICReg 0.801 ± 0.009 0.437 ± 0.014 0.648 ± 0.016 0.321 ± 0.018 0.884 ± 0.018 0.264 ± 0.016 0.374 ± 0.015 140.1 ± 6.8

ALIGN 0.812 ± 0.020 0.453 ± 0.015 0.655 ± 0.021 0.335 ± 0.012 0.871 ± 0.014 0.253 ± 0.017 0.377 ± 0.018 138.7 ± 6.5

Fine-tuning

ConVIRT 0.822 ± 0.019 0.453 ± 0.016 0.721 ± 0.017 0.425 ± 0.010 0.842 ± 0.013 0.090 ± 0.020 0.389 ± 0.015 103.2 ± 4.7

VICReg 0.827 ± 0.021 0.463 ± 0.014 0.730 ± 0.020 0.412 ± 0.009 0.853 ± 0.020 0.085 ± 0.018 0.384 ± 0.017 104.5 ± 5.1

ALIGN 0.831 ± 0.006 0.470 ± 0.017 0.715 ± 0.015 0.425 ± 0.013 0.845 ± 0.019 0.095 ± 0.016 0.377 ± 0.016 105.3 ± 5.4

perform well across most tasks without the need for
additional and costly fine-tuning.

Additionally, by comparing the unimodal results in
Tables 5 and 6, we observe that only using the EHR
modality, compared to only using the CXR modal-
ity, resulted in consistently higher performance across
all tasks except for the radiology task. This shows
the relevance and inherent multimodality of the EHR
data. Finally, the multimodal results presented in
Table 4 compared with the unimodal results in Ta-
bles 5 and 6 highlight that the multimodal methods
achieved improved results across all tasks. For ex-
ample, ConVIRT trained on multimodal data is the
best-performing model for the in-hospital mortality
task (0.847 ± 0.002), a substantial improvement over
the best model trained with EHR (0.831 ± 0.006) or
CXR (0.687 ± 0.018) data only. This enhancement

in performance indicates that multimodal data is es-
pecially important in obtaining generalized represen-
tations that are agnostic to the downstream task.

We note that we did not include results for the
length of stay task based solely on CXR data, as
our experiments showed that using CXR scans alone
yielded very poor performance. This outcome aligns
with clinical literature, which highlights the chal-
lenges of predicting length of stay without fine-
grained temporal data and continuous physiological
measurements, such as those present in EHRs (Wilk
et al., 2020; Pungitore and Subbian, 2023).

5. Discussion

In this paper we presented MedMod, a comprehensive
multimodal benchmark designed to facilitate advanc-
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Table 6: Downstream performance results for linear probing and fine-tuning across the five benchmark
tasks with CXR data. We report the (average ± std) KAPPA and MAD for the length of stay task and
the (average ± std) AUROC and AUPRC for the remaining four tasks. We include the supervised learning
results obtained for each task in the unimodal CXR setting, based on AUROC.

In-hospital mortality Clinical conditions Decompensation Radiology

Method AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Supervised learning 0.679 ± 0.007 0.246 ± 0.020 0.673 ± 0.006 0.360 ± 0.009 0.694 ± 0.011 0.037 ± 0.003 0.705 ± 0.013 0.323 ± 0.006

Linear probing

ConVIRT 0.687 ± 0.018 0.275 ± 0.016 0.652 ± 0.021 0.326 ± 0.014 0.723 ± 0.018 0.037 ± 0.020 0.670 ± 0.015 0.275 ± 0.017

VICReg 0.641 ± 0.019 0.239 ± 0.017 0.589 ± 0.020 0.263 ± 0.016 0.613 ± 0.021 0.029 ± 0.018 0.604 ± 0.014 0.245 ± 0.019

ALIGN 0.675 ± 0.020 0.254 ± 0.015 0.621 ± 0.018 0.308 ± 0.017 0.524 ± 0.016 0.021 ± 0.014 0.610 ± 0.018 0.263 ± 0.016

Fine-tuning

ConVIRT 0.620 ± 0.015 0.205 ± 0.018 0.660 ± 0.017 0.266 ± 0.014 0.534 ± 0.019 0.023 ± 0.016 0.638 ± 0.016 0.259 ± 0.018

VICReg 0.590 ± 0.020 0.212 ± 0.015 0.645 ± 0.016 0.222 ± 0.017 0.552 ± 0.018 0.019 ± 0.020 0.615 ± 0.017 0.261 ± 0.017

ALIGN 0.603 ± 0.017 0.198 ± 0.016 0.550 ± 0.020 0.259 ± 0.014 0.560 ± 0.020 0.017 ± 0.015 0.595 ± 0.018 0.233 ± 0.016

ing medical prediction tasks using EHR data and
CXR scans. MedMod comprises five medical predic-
tion tasks along with baseline results to provide a
foundation for future research. MedMod addresses the
critical need for multimodal benchmarks that reflect
the complexities present in real-world clinical envi-
ronments.

To the best of our knowledge, our benchmark
serves as the first multimodal benchmark using EHR
and CXR data and including both supervised and
self-supervised baseline results. While there has been
increasing attention to machine learning methods for
medical applications, there has been limited work
focusing on generating multimodal datasets (specifi-
cally for EHR and CXR) and introducing benchmark
tasks that they can be evaluated on. As we make our
code publicly-accessible, we aim to provide a valuable
resource to be used by the research community.

Despite the comprehensiveness of our benchmark,
it still possesses some limitations. First, our bench-
mark considers a single source of data represented by
the MIMIC patient cohort, which might hinder the
generalizability of the models developed and evalu-
ated on the presented tasks. Additionally, our bench-
mark’s reliance on the CXR and EHR modalities may
lead to temporal misalignment, as EHR data is col-
lected continuously while CXR data is collected dis-
cretely, making it challenging to ensure that both
modalities are representative of the patient status at
prediction time. Furthermore, some of the bench-
mark tasks such as decompensation and length of stay
require massive computational resources which might
limit their usage in the absence of sufficient computa-

tional resources. Lastly, we evaluated our benchmark
on a relatively small number of baselines which may
not cover all state-of-the-art models.

As a future research direction, we plan to enhance
the comprehensiveness of MedMod by introducing ad-
ditional clinically relevant tasks such as predicting
ICU readmission (Barbieri et al., 2020), chronic ob-
structive pulmonary disease (COPD) (Wang et al.,
2022) or assessing pulmonary edema severity (Horng
et al., 2021). These tasks have mostly been evalu-
ated using unimodal data, thus developing MedMod to
produce comprehensive multimodal results will fur-
ther support future research. In addition, radiology
reports hold valuable context that describes the find-
ings present in CXR scans. They have been used as
an additional source of data in self-supervised pre-
training (Tiu et al., 2022) as well as in disease de-
tection tasks (Chauhan et al., 2020). Hence, we aim
to expand the dimensionality of the modalities in-
cluded in MedMod by incorporating radiology reports
associated with CXR scans. Additionally, we would
like to incorporate transformer-based architectures in
MedMod, to help address challenges like temporal mis-
alignment between EHR and CXR. Moreover, given
that MedMod currently relies on fully paired data, we
encourage future research to develop methods capa-
ble of handling missing modalities, a common sce-
nario in clinical settings. These are promising future
research directions that will enable more comprehen-
sive comparisons, better reflect real-world scenarios,
and contribute to the advancement of the field.
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Appendix A. EHR Data Items

The extracted EHR data items are shown in Table 7. All variables are extracted from the chartevents table,
except for Glucose and pH laboratory measurements which were extracted from the labevents tables. All
features are collected during the patient ICU stay.

Table 7: EHR data items. A summary of the EHR data items utilized in MedMod, including their types,
source tables, impute values, and a brief description of each variable.

# Variable Name Variable Description Source Table Impute Value

Categorical Variables

1 Capillary Refill Rate Indicator of circulatory system function chartevents 0.0
2 Glasgow Coma Scale - Eye Opening Assesses eye response to stimuli chartevents 4 Spontaneously
3 Glasgow Coma Scale - Motor Response Assesses motor response to stimuli chartevents 6 Obeys Commands
4 Glasgow Coma Scale - Verbal Response Assesses verbal response to stimuli chartevents 5 Oriented
5 Glasgow Coma Scale - Total Overall assessment of consciousness level chartevents 15

Continuous Variables

6 Diastolic Blood Pressure Blood pressure during heart’s relaxation phase chartevents 59.0
7 Fraction of Inspired Oxygen Oxygen concentration in inhaled air chartevents 0.21
8 Glucose Blood sugar level labevents 128.0
9 Heart Rate Number of heartbeats per minute chartevents 86
10 Height Patient’s height chartevents 170.0
11 Mean Blood Pressure Average blood pressure during a single cardiac cycle chartevents 77.0
12 Oxygen Saturation Percentage of oxygen-saturated hemoglobin chartevents 98.0
13 Respiratory Rate Number of breaths per minute chartevents 19
14 Systolic Blood Pressure Blood pressure during heart’s contraction phase chartevents 118.0
15 Temperature Body temperature chartevents 36.6
16 Weight Patient’s weight chartevents 81.0
17 pH Acidity or alkalinity of the blood labevents 7.4
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Appendix B. Task Distribution

The label distributions for the benchmark tasks are shown in Figure 3. The figure shows the labels used
for each of the tasks, including 25 phenotypes, 14 radiology classes, 10 length of stay buckets, and binary
mortality labels (for both in-hospital mortality and decompensation). These distributions pertain to the test
set of each task.
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Figure 3: Label Distribution for Benchmark Tasks. (a) The distribution of the classes for the clinical condi-
tions task is presented. The 25 clinical conditions labels displayed are: Acute and unspecified renal failure
(C1), Acute cerebrovascular disease (C2), Acute myocardial infarction (C3), Cardiac dysrhythmias (C4),
Chronic kidney disease (C5), Chronic obstructive pulmonary disease (C6), Complications of surgical pro-
cedures (C7), Conduction disorders (C8), Congestive heart failure (C9), Coronary atherosclerosis (C10),
Diabetes mellitus with complications (C11), Diabetes mellitus without complication (C12), Disorders of
lipid metabolism (C13), Essential hypertension (C14), Fluid and electrolyte disorders (C15), Gastroin-
testinal hemorrhage (C16), Hypertension with complications (C17), Other liver diseases (C18), Other
lower respiratory disease (C19), Other upper respiratory disease (C20), Pleurisy; pneumothorax (C21),
Pneumonia (except tuberculosis) (C22), Respiratory failure (C23), Septicemia (C24), Shock (C25). (b)
The label distribution of the 14 chest observations for the radiology task is shown. The abbreviated labels
of the observations are: Atelectasis (R1), Cardiomegaly (R2), Consolidation (R3), Edema (R4), Enlarged
cardiomediastinum (R5), Fracture (R6), Lung lesion (R7), Lung opacity (R8), No finding (R9), Pleural
effusion (R10), Pleural other (R11), Pneumonia (R12), Pneumothorax (R13), Support devices (R14). (c)
The 10 length of stay buckets, showing the remaining duration of stay in the ICU. (d) The distribution of
the binary labels for the in-hospital mortality task is shown, where the ’positive’ label indicates mortality
and the ’negative’ label indicates the patient is alive. (e) The distribution of the hourly mortality labels
for the decompensation task are displayed, with ’positive’ indicating mortality and ’negative’ indicating
the patient is alive.
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Appendix C. Implementation Details

Unimodal supervised training settings. We conducted thorough sweeps for training the unimodal EHR
(LSTM) and CXR (ResNet-34) models to select the learning rate, by sampling from a uniform distribution
in the range [10−6, 10−2]. This involved 100 runs for mortality, 20 runs for clinical conditions classification,
and 10 runs each for the length-of-stay and decompensation tasks. For mortality and clinical conditions,
the number of epochs was fixed as 50, while for decompensation and length-of-stay, it was set as 10. For
MedFuse, early, and joint fusion, we pretrained the CXR encoder with the radiology labels for 100 epochs
as in previous work (Hayat et al., 2022), and trained on the full CXR dataset.

Multimodal supervised fusion settings. We ran 100 hyperparameter tuning runs for mortality (50
epochs), 20 for clinical conditions (50 epochs), 10 for decompensation (10 epochs), 10 for length of stay (10
epochs), and 5 for radiology (50 epochs), by sampling the learning rate from a uniform distribution in the
range [10−6, 10−2]. The batch size was fixed at 16 for all runs. We selected the best model checkpoint
based on the epoch with the highest AUROC on the validation set. We implemented early stopping if the
validation AUROC did not improve for 10 epochs (excluding the decompensation and length of stay tasks).

Self-supervised pre-training settings. We conducted 10 hyperparameter tuning runs for all baselines
via random search by sampling a learning rate from a uniform distribution in the range [10−1, 10−2]. We used
a batch size of 256 across all experiments, set the maximum number of epochs to 300, and introduced early
stopping if the validation loss did not improve for 30 epochs. To select the best model for the downstream
tasks, we ran linear evaluation for each pre-training epoch and chose the best checkpoint based on the best
AUROC score achieved on the validation set across epochs and models.

Self-supervised linear evaluation/fine-tuning settings. For the linear evaluation and fine-tuning set-
up, we conducted 5 runs of hyperparameter tuning with learning rates sampled from a uniform distribution
in the range of [10−4, 10−1]. We used the Adam optimizer and ran experiments for 300 epochs and batch
size 256 with early stopping implemented if validation AUROC did not improve for 10 epochs. We reported
the best evaluation results achieved on the test set.

Chunk-wise training. We consider the chunk-wise training approach for the decompensation and length
of stay tasks following the work of (Harutyunyan et al., 2019). Chunk-wise training involves training the
model on a variable subset of the data and reporting metrics at the end of every N chunks instead of every
N epochs. We consider this training strategy for these two tasks due to their large dataset size that requires
a longer training time and due to the model overfitting before iterating over the full dataset.

Experimental details. All experiments were conducted using NVIDIA A100/V100 GPUs provided
through an internal cluster. Each experiment is conducted with five random seeds, and the results pre-
sented in the respective results tables reflect the averages of the five independent runs.
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Appendix D. Computational Cost

To explore how the computational cost of the different fusion models compare, we compute the number of
parameters and average inference time for various multimodal fusion frameworks and present the results in
Table 8. The number of parameters correspond to the trainable parameters of each fusion method. The
average inference time is computed per batch, with the batch size fixed to 16.
In regard to the model size, the number of trainable parameters seems to be comparable among the

advanced fusion techniques (MedFuse, MMTM, DAFT) as well as joint fusion (which involves joint training
of the two modalities without pre-trained encoders). Self-supervised fine-tuning also involves a similar
number of parameters. A similar trend is observed in terms of inference time, which is within the same
range for all the supervised models. However, fine-tuning has a notably longer inference time, while linear
evaluation is over 500x faster compared to the supervised methods.
To further analyze whether there exists a trade-off between the computational cost (as approximated by

model size) and performance, we also include AUROC results for the in-hospital mortality task in Table 8.
We find that though self-supervised fine-tuning has the smallest number of parameters among the advanced
fusion techniques, it outperforms all other methods in this task. Notably, Early Fusion has nearly 20
times fewer parameters than the other supervised techniques but achieves the strongest performance in
the supervised setting. We also highlight that linear evaluation involves an extremely minimal number of
trainable parameters and achieves a significantly shorter inference time while delivering a strong performance
that is comparable to the other fusion methods. Thus, in terms of deployment, utilizing linear evaluation of
self-supervised pre-trained appears to be a promising approach, balancing performance, inference speed and
computational cost.

Table 8: Computational cost and inference time. A summary of the number of trainable parameters,
average inference time per batch (with a fixed batch size of 16), and AUROC on the in-hospital
mortality task for a set of supervised and self-supervised multimodal fusion models.

Model Parameters (millions) Inference time per batch (seconds) AUROC

MedFuse 23.9 0.0316 0.819±0.007

MMTM 23.5 0.0328 0.783±0.013

DAFT 22.3 0.0298 0.826±0.008

Early Fusion 1.70 0.0318 0.842±0.004

Joint Fusion 23.9 0.0321 0.830±0.008

Late Fusion N/A 0.0284 0.833±0.009

ConVIRT (Fine-tune) 21.4 0.2232 0.847±0.002

ConVIRT (Linear evaluation) 0.000641 0.00004875 0.813±0.010
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Appendix E. Transformer-based Results

To enhance the flexibility of our benchmark, we incorporate an option in our codebase to switch encoders
to alternative architectures, specifically the transformer architecture. We provide results of a subset of
the presented multimodal fusion approaches using transformer-based encoders for both the CXR and EHR
modalities in Table 9.

Table 9: Performance results using a transformer backbone for the in-hospital mortality, clinical
conditions, and radiology tasks. The table shows results using transformer-based encoders for
both the CXR and EHR modalities.

Model In-hospital mortality Clinical Conditions Radiology

AUROC AUPRC AUROC AUPRC AUROC AUPRC

Early Fusion 0.8064 0.4481 0.7760 0.5812 0.6035 0.2786
Joint Fusion 0.8001 0.4695 0.7601 0.5574 0.7332 0.3893
Late Fusion 0.8092 0.3979 0.7713 0.5603 0.7453 0.4031

Appendix F. Calibration Scores

We provide calibration scores (Expected Calibration Error, ECE) for the unimodal and multimodal fusion
models on the in-hospital mortality task in Table 10. MMTM achieves the lowest ECE of 0.518, indicating
the best calibration among all methods. MedFuse also demonstrates comparatively competitive calibration
with an ECE of 0.666, outperforming the unimodal models (ECE: 0.762 for EHR; 0.699 for CXR). These
results indicate the advantages of multimodal fusion in improving reliability.

Table 10: Calibration scores. Expected Calibration Error (ECE) of unimodal and multimodal fusion
models for predictions made on the in-hospital mortality task.

Model ECE

Uni-modal EHR 0.762
Uni-modal CXR 0.699

MedFuse 0.666
MMTM 0.518
Daft 0.732
Early Fusion 0.741
Joint Fusion 0.774
Late Fusion 0.519
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Appendix G. Task-specific Multimodal Improvement

We evaluate the performance improvement achieved by the multimodal models compared to the best-
performing unimodal baselines across the five benchmark tasks. As shown in Table 11, while the multimodal
models consistently outperform the unimodal models across all tasks, the percentage improvement is varying
according to task-specific characteristics.

Table 11: Performance improvement as a result of multimodal modelling. Performance gain re-
ported in percentage, based on the best unimodal and multimodal model for each of the five
benchmark tasks.

Task Unimodal result Multimodal result Gain (%)

In-hospital Mortality 0.829 0.842 1.57
Clinical Conditions 0.720 0.744 3.33
Decompensation 0.862 0.868 0.69
Length of Stay 0.380 0.417 9.74
Radiology 0.705 0.732 3.83
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Appendix H. Interpretability Analysis

Figure 4 presents Grad-CAM visualizations of the unimodal CXR baseline (ResNet-34) and a multimodal
fusion technique (MedFuse) for predictions made on the radiological classifications findings task across the
following labels: Pleural Effusion, Support Devices, and No Finding.

Figure 4: Grad-CAM visualizations on the radiological findings classification task. The generated Grad-
CAM visualizations and respective predictions for the unimodal CXR and MedFuse baselines across the
following labels: Pleural Effusion, Support Devices, and No Finding.
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