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Abstract

Modern machine learning often requires training with large batch size, distributed
data, and massively parallel compute hardware (like mobile and other edge devices
or distributed data centers). Communication becomes a major bottleneck in such
settings but methods like Local Stochastic Gradient Descent (Local SGD) show
great promise in reducing this additional communication overhead. Local SGD
consists of three parts: a local optimization process, an aggregation mechanism,
and an outer optimizer that uses the aggregated updates from the nodes to produce
a new model. While there exists an extensive literature on understanding the impact
of hyperparameters in the local optimization process, the choice of outer optimizer
and its hyperparameters is less clear. We study the role of the outer optimizer in
Local SGD, and prove new convergence guarantees for the algorithm. In particular,
we show that tuning the outer learning rate allows us to (a) trade off between
optimization error and stochastic gradient noise variance, and (b) make up for
ill-tuning of the inner learning rate. Our theory suggests that the outer learning rate
should sometimes be set to values greater than 1. We extend our results to settings
where we use momentum in the outer optimizer, and we show a similar role for
the momentum-adjusted outer learning rate. We also study acceleration in the
outer optimizer and show that it improves the convergence rate as a function of the
number of communication rounds, improving upon the convergence rate of prior
algorithms that apply acceleration locally. Finally, we also introduce a novel data-
dependent analysis of Local SGD that yields further insights on outer learning rate
tuning. We conduct comprehensive experiments with standard language models
and various outer optimizers to validate our theory.

1 Introduction

Training very large scale machine learning models requires a lot of compute. This compute is
often centrally controlled by a single entity and tightly connected in a data center. Gradients are
constantly synchronized, hardware failures are controlled and mitigated, and things (mostly) run
smoothly. Building this training infrastructure is expensive, however, and centralized control might
not be desirable for all models. This has led to a surge of interest in decentralized collaborative
training of large-scale models across different, potentially poorly connected clusters (Douillard,
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Feng, Rusu, Chhaparia, et al., 2023; Jaghouar, Ong, and Hagemann, 2024; Jaghouar, Ong, Basra,
et al., 2024). This has motivated the adoption of federated learning algorithms in training language
models, chiefly for scalability and communication efficiency rather than data privacy. Efficient
parallelization strategies also factored in the remarkable recent training of DeepSeek V3 and R1 on a
tight budget (DeepSeek-AI, Liu, et al., 2024; DeepSeek-AI, Guo, et al., 2025).

A foundational algorithm in distributed and federated optimization is Local SGD (Wang, Charles,
et al., 2021). Many popular algorithms fit in the FedOpt template (Reddi et al., 2021) (Algorithm 1),
including FedAdam (Reddi et al., 2021), FedRR (Mishchenko, Khaled, and Richtárik, 2022; Mali-
novsky and Richtárik, 2022), DiLoCo (Douillard, Feng, Rusu, Chhaparia, et al., 2023; Jaghouar, Ong,
and Hagemann, 2024) and many others. FedOpt solves the minimization problem minx∈Rd f(x)
given access to M different computational nodes and unbiased stochastic gradients of f . FedOpt
consists of three main components: an inner update loop on every client, an aggregation of the client
updates, and then an outer update step taken on the server.

Algorithm 1 The FedOpt Algorithmic Template
1: Input. Update rules LocalUpdate and OuterUpdate. Initial point x0.
2: for communication rounds r = 0, 1, . . . , R− 1 do
3: Broadcast xr to each node m
4: for each node m in parallel do
5: Set ym,r,0 = xr.
6: for local steps h = 0, 1, . . . ,H − 1 do
7: Set ym,r,h+1 = LocalUpdate(ym,r,h, gm,r,h) for stochastic gradient gm,r,h at ym,r,h.
8: end for
9: Communicate ym,r,H to the server.

10: end for
11: Compute the update or “outer gradient” ∆̂r,H = 1

M

∑M
m=1(ym,r,H − xr).

12: Update xr+1 = OuterUpdate(xr,−∆̂r,H).
13: end for

When both the local and outer update rules correspond to gradient descent (i.e. xnew = xold − β∆
for some stepsize β and update vector ∆), the corresponding algorithm is Generalized Local SGD.
If we additionally take the outer stepsize to be 1, we get Local SGD. Local SGD simply does H
steps of SGD on each node, and then averages the result after applying the updates. This is the most
common form in which the algorithm is analyzed, as in e.g. (Stich, 2019; Khaled, Mishchenko, and
Richtárik, 2020; Woodworth, Patel, Stich, et al., 2020; Koloskova et al., 2020; Glasgow, Yuan, and
Ma, 2022; Patel, Glasgow, Zindari, et al., 2024). In practice, different choices of outer optimizers
perform better. For example, DiLoCo/OpenDiLoCo use SGD with Nesterov Momentum as the
outer optimizer (Douillard, Feng, Rusu, Chhaparia, et al., 2023). This has motivated much analysis
of different outer optimizers and their impact (Reddi et al., 2021; Malinovsky, Mishchenko, and
Richtárik, 2022; Jhunjhunwala, Wang, and Joshi, 2023; Sun et al., 2024). However, our theoretical
understanding of the fundamental Generalized Local SGD algorithm remains limited. In particular, it
is not clear why the bilevel optimization structure of the algorithm is helpful from an optimization
perspective, even in the i.i.d. setting where the data distribution is the same on all the nodes.
Additionally and to the best of our knowledge, we have no explicit expressions for what the ideal
learning rate pair (η, γ) for the inner and outer updates, respectively, should be. Empirically, outer
optimizers employing Nesterov acceleration have the best performance, yet to the best of our
knowledge why or how it improves convergence is not known.

Contributions. Our paper takes steps to address the above questions and makes the following
contributions.

• We conduct a novel, tighter analysis of Generalized Local SGD (Theorem 3.3) that shows the
outer learning rate plays a dual role. It (a) interpolates between two extreme regimes: taking
many effective steps at the cost of higher variance to taking fewer steps but at reduced variance
and (b) increases the algorithmic robustness to hyperparameter tuning by making up for ill-tuned
inner learning rates. The latter holds even in the absence of any stochastic gradient noise.

• We extend the above analysis to cover Generalized Local SGD where the outer optimizer also
uses momentum (Theorem 3.5) and show that this gives additional leeway in tuning γ.
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• We provide a convergence analysis for Local SGD with an accelerated outer optimizer and
unaccelerated inner optimizer (Theorem 3.6), showing that using Nesterov acceleration in the
outer loop achieves better dependence on the number of communication rounds R in the drift
terms compared to standard Local SGD and improving upon the convergence rate of FedAc (Yuan
and Ma, 2020).

• We also derive a data-dependent, high-probability guarantee for the convergence of Local SGD
with GD as the outer optimizer (Theorem 3.8) that shows further benefits of tuning the outer
stepsize in more nuanced settings.

• We additionally conduct an extensive empirical analysis for training large-scale language models
with various outer optimizers (gradient descent, accelerated gradient descent, and Schedule-Free
gradient descent).

We now review related work, then proceed to our main results.

2 Related Work

There is a rich literature on algorithms for communication-efficient distributed optimization for
federated learning (Konečný et al., 2016), where multiple clients collaborate on solving a machine
learning problem (Wang, Charles, et al., 2021). Federated learning algorithms are designed to reduce
the effect of data heterogeneity (Karimireddy et al., 2020; Wang, Charles, et al., 2021; Murata and
Suzuki, 2021), ensure the data stays private (Wei et al., 2020), deal with intermittent or cyclic client
availability (Eichner et al., 2019), among other issues.

As models have grown larger in size over the past few years, going from a few million parameters to
billions (Brown et al., 2020), the scale of training runs has also grown to include many more devices
divided across multiple computing clusters rather than a single cluster (Diskin et al., 2021; Huang,
Huang, and Liu, 2022; Borzunov et al., 2022; Douillard, Feng, Rusu, Chhaparia, et al., 2023). Even
within a single datacenter, training runs now involve tens of thousands of GPUs (Jiang et al., 2024).
This has motivated researchers to develop and use algorithms inspired by the federated learning
setting for large-scale training instead. Examples of such algorithms include DiLoCo (Douillard,
Feng, Rusu, Chhaparia, et al., 2023), its open cousin OpenDiLoCo (Jaghouar, Ong, and Hagemann,
2024), DiPaCo (Douillard, Feng, Rusu, Kuncoro, et al., 2024), and others (Liu et al., 2024; Liang
et al., 2024; DeepSeek-AI, Liu, et al., 2024). Federated learning methods thus have found use in
pretraining and fine-tuning language models (Jaghouar, Ong, and Hagemann, 2024; Yang et al., 2025),
and may prove particularly important for scaling even larger models in the future (Iacob et al., 2024;
Sani et al., 2024; Rush et al., 2024). We note that the use of methods for federated learning even for
i.i.d. distributed training is not new, and is perhaps being “re-discovered” as training runs grow too
large to fit on single clusters. For example, Lin et al. (2020) argued that using Local SGD can be
more efficient than traditional Minibatch SGD in some settings. Ortiz et al. (2021) also conducted
experiments studying the trade-offs of using Local SGD in training image classification models.

The most popular algorithm in the federated optimization literature is Local SGD or Federated
Averaging (Wang, Charles, et al., 2021). It is a generalization of minibatch SGD that, rather than
communicating at every step of the optimization process, communicates only intermittently. Local
SGD shows remarkable efficiency in many settings in practice, and therefore its convergence and
generalization properties have been the subject of intense theoretical investigation over the past few
years (Stich, 2019; Khaled, Mishchenko, and Richtárik, 2020; Woodworth, Patel, Stich, et al., 2020;
Woodworth, Patel, and Srebro, 2020; Patel, Glasgow, Wang, et al., 2023; Glasgow, Yuan, and Ma,
2022; Gu, Lyu, Huang, et al., 2023; Patel, Glasgow, Zindari, et al., 2024). Many variants of Local
SGD exist, including those that use random reshuffling instead of i.i.d. sampling locally (Yun, Rajput,
and Sra, 2022; Mishchenko, Khaled, and Richtárik, 2022), adaptive methods such as Adam (Reddi et
al., 2021; Wang, Lin, and Chen, 2022), and modifications to handle data heterogeneity (Karimireddy
et al., 2020; Mitra et al., 2021), personalization (Hanzely et al., 2020), or additionally use gradient
compression (Haddadpour et al., 2021; Safaryan, Hanzely, and Richtárik, 2021). Generalized Local
SGD, where we use two stepsizes (as in Algorithm 1), is known to be important in managing
the trade-off between converging quickly and converging to a mismatched point in heterogeneous
distributed optimization (Woodworth, Patel, and Srebro, 2020; Charles and Konečný, 2020; Patel,
Glasgow, Zindari, et al., 2024). Our focus here is on the homogeneous or i.i.d. data setting; Here, the
most related works are (Karimireddy et al., 2020; Malinovsky, Mishchenko, and Richtárik, 2022;
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Jhunjhunwala, Wang, and Joshi, 2023; Sun et al., 2024) and we discuss our work’s relation to theirs
in detail in the next section after reviewing some preliminaries.

3 Theory

In this section we conduct the study our main algorithm, Generalized Local SGD (Algorithm 1
with LocalUpdate(y, g) = y − ηg and OuterUpdate(x,∆) = x − γ∆). We first review some
preliminaries, then present our main results.

3.1 Preliminaries

We are solving the optimization problem min
x∈Rd

f(x), where we assume f satisfies the following

curvature and regularity condition.
Assumption 3.1. The function f is differentiable, convex, has L-Lipschitz gradients, and has a
minimizer x∗.
We suppose that we can access a stochastic first-order oracle that given a point x returns a gradient
g(x) that satisfies the following assumption.

Assumption 3.2. Given a point x ∈ Rd, the stochastic gradients g(x) ∈ Rd are (a) unbiased in
expectation E [g(x)] = ∇f(x), and (b) has variance bounded as E

[
∥g(x)−∇f(x)∥2

]
≤ σ2, where

E [·] denotes the expectation operator.

Our setting is distributed, but with identically distributed data: there are M different nodes, but they
all sample stochastic gradients from the same data distribution in an i.i.d. (independent and identically
distributed) manner. We denote the inner product between two vectors a and b by ⟨a, b⟩ and by ∥·∥
the corresponding Euclidean norm. For the purpose of theoretical analysis, can write Generalized
Local SGD succinctly as

ym,r,0 = xr, gm,r,h = Stochastic gradient of ym,r,h

ym,r,h+1 = ym,r,h − ηgm,r,h, for m = 1, . . . ,M in parallel and h = 0, 1, . . . ,H − 1 in sequence.

xr+1 = xr − γη

H−1∑
h=0

1

M

M∑
m=1

gm,r,h. (GEN-LOC-SGD)

To simplify our analysis, we follow (Stich, 2019) and define the virtual sequences

yr,h
def
=

1

M

M∑
m=1

ym,r,h, gr,h
def
=

1

M

M∑
m=1

gm,r,h

gm,r,h
def
= Er,h−1 [gm,r,h] = ∇f(ym,r,h), gr,h

def
= Er,h−1 [gr,h] .

(1)

3.2 Main convergence result

Recall that we consider Algorithm 1 the particular case when LocalUpdate(y, g) = y − ηg and
OuterUpdate(x,∆) = x− γ∆.

Existing results on the convergence of Gen. Local SGD. When the outer stepsize γ = 1, the
convergence of (GEN-LOC-SGD) is very well understood, with tightly matching upper and lower
bounds (Khaled, Mishchenko, and Richtárik, 2020; Woodworth, Patel, Stich, et al., 2020; Glasgow,
Yuan, and Ma, 2022). In particular, the best rate for the algorithm is

E

[
f

(
1

RH

R−1∑
r=0

H−1∑
h=0

yr,h

)]
−f(x∗) ≤ O

(
L∥x0− x∗∥2

RH
+

σ ∥x0− x∗∥√
MRH

+
L

1
3σ

2
3 ∥x0− x∗∥

4
3

H
1
3R

2
3

)
. (2)

The first two terms in the above convergence guarantee show that increasing the number of local
steps has the same effect as increasing the number of communication rounds R, and are identical to
the convergence guarantee of doing RH steps of SGD with minibatch size M . Local SGD differs
from ordinary minibatch SGD in the last term, which shows different scaling between H and R,

4



where increasing R helps more than increasing H . This is because increasing H incurrs additional
client drift that slows down the convergence of the algorithm in the presence of stochastic gradient
noise. When the outer stepsize γ is allowed to vary, the convergence of the algorithm is less clear.
Karimireddy et al. (2020) gives the following convergence rate in the absence of data heterogeneity,

E
[
f
(

1
R

∑R−1
r=0 xr

)]
− f(x∗) ≤ O

(
L∥x0−x∗∥2

R + σ∥x0−x∗∥√
MR

)
,

for specially chosen η and γ pairs. This rate matches that of Minibatch SGD, but does not recover
the convergence rate of vanilla Local SGD given by Equation (2). Jhunjhunwala, Wang, and Joshi
(2023) also give a guarantee for Generalized Local SGD with a specific outer learning rate that is
always at least 1 and that depends on the heterogeneity of the iterates across the different clients.
Since the analysis is conducted in the heterogeneous setting, the local stepsize required to scale with
1/H . A guarantee that applies to any outer learning rate in the nonconvex, heterogeneous setting
given by (Sun et al., 2024).

The limiting factor in existing analysis is that we are forced to choose the local stepsize η to scale as
1

LH , whereas to obtain Equation (2) we sometimes need to choose η to be much larger, on the order
of 1

L . If we aim to accurately characterize the convergence of (GEN-LOC-SGD), our analysis has to
encompass both large and small local stepsizes η.

New analysis. We now present our main convergence theorem for (GEN-LOC-SGD).
Theorem 3.3. Suppose that Assumptions 3.1 and 3.2 hold. Then the iterates generated by Generalized
Local SGD run with local stepsize η > 0 and outer stepsize γ > 0 for R communication rounds and
with H local steps per round satisfy,

E
[
f
(

1
RH

∑R−1
r=0

∑H−1
h=0 yr,h

)]
− f(x∗) ≤ O

(
∥x0−x∗∥2

ηγRH + ησ2(1+(γ−1)+)
M + Lη2σ2H

)
, (3)

where (a)+ = max(a, 0). and provided the stepsizes η and γ jointly satisfy ηL(1+(γ−1)+H) ≤ 1
4 .

Implications of Theorem 3.3. Before giving a proof sketch for Theorem 3.3, we first discuss its
implications. Observe that when γ ≤ 1, we are allowed to choose η larger than Ω( 1

LH ). This is
crucial to obtain the rate of Equation (2). Indeed, when γ = 1, the requirement on η reduces to
ηL ≤ 1

4 and we can choose η following (Woodworth, Patel, Stich, et al., 2020) as

η = min

(
1
4L ,

√
M∥x0−x∗∥2

σ2RH ,
[
∥x0−x∗∥2

Lσ2H2R

] 1
3

)
Plugging this choice of η yields the convergence guarantee of Equation (2). Alternatively, when
8ηL ≤ 1, the stepsize requirement is met if we choose ηγLH ≤ 1

8 and we immediately get the

Minibatch SGD guarantee. In particular, choose η=O
(

1
RL

)
and γ=O

(
γ∗

ηLH

)
, the rate then becomes

f(yout)− f(x∗) ≤ 8L∥x0−x∗∥2

γ∗R
+ σ2H

8R2L + γ∗σ
2

4LMH ,

where yout denotes the average over all iterations and clients as in Equation (3). Then for R large

enough we can choose γ∗ = O
(√

LD2σ2MH
Rσ2

)
and this gives us the minibatch SGD rate

f(yout)− f(x∗) ≤ LD2

R + σD√
MRH

.

This confirms the intuition that at the extremes, manipulating the stepsizes γ and η allows us to
interpolate between minibatch SGD and (vanilla) Local SGD, as observed by (Woodworth, Patel,
and Srebro, 2020). In fact, Theorem 3.3 allows us to go a step further and get an explicit expression
for the optimal inner and outer stepsizes depending on the problem parameters. This is given by the
following proposition.
Proposition 3.4. Let h(η, γ) be defined as

h(η, γ) = D2

ηγRH + Lσ2Hη2 + η(1+(γ−1)+)σ2

M . (4)

Consider the optimization problem:
minη>0,γ>0 h(η, γ) subject to ηL (1 + (γ − 1)+H) ≤ 1

4
. (5)

The solution (η∗, γ∗) is given by comparing the following two candidates.
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1. Candidate (η∗A, γ
∗
A) defined by γ∗

A = 1 and η∗A = min( 1
4L , η

′
A) where η′A is the unique

positive root of the cubic equation
2LHσ2η3 + σ2

M η2 − D2

RH = 0.

2. Candidate (η∗B , γ
∗
B) for the regime γ ≥ 1 with 4ηL < 1, where (a) the constraint is enforced

with equality:

γB(η) = 1 + 1
H

(
1

4Lη − 1
)
,

and (b) η∗B is the unique positive root of the cubic equation

− 4L2D2(H−1)
R + 2Lσ2Hη (ηL(H − 1) + 1)

2
+ σ2(H−1)

MH (ηL(H − 1) + 1)2 = 0.

The optimal solution (η∗, γ∗) is the candidate pair from {(η∗A, γ∗
A), (η

∗
B , γ

∗
B)} that yields the smaller

value of h(η, γ).

The proof of the above proposition is straightforward and follows by writing the KKT conditions for
the optimization problem in Equation (5). A consequence of Proposition 3.4 is that in the case of
ill-tuning of the inner stepsize η, a large outer stepsize γ can make up for it. For example, if σ → 0
and ηLH ≪ O(1), we can make up for this by choosing γ as 1

ηLH . Thus, we can interpret the outer
learning rate γ as having two dual roles. (a) It allows us to interpolate between minibatch SGD
(γ > 1) and vanilla Local SGD (γ = 1), giving us the better of the two rates, and (b) it provides us
some additional leeway in hyperparameter tuning by making up for ill-tuned inner learning rate η.

Our theory suggests that in the worst case, choices of γ < 1 are not useful from an optimization
perspective. We should either choose γ = 1 or γ > 1. This can be seen even on quadratic
objectives, for example if f(x) = x⊤Qx

2 for some positive definite matrix Q, then a straightforward
computation gives the expected iterate after H local steps and R communication rounds is E [xR] =
((1 − γ)I + γ(I − ηQ)H)x0. From this, it is clear that if η is chosen such that (I − ηQ)H has
eigenvalues smaller than 1, we should choose γ ≥ 1. While if (I − ηQ)H has any eigenvalues larger
than 1, we should just choose γ = 0 (i.e. just don’t apply the algorithm at all). In other words, γ can
make up for a learning rate that is too small, but not a learning rate that is too large. This observation
does not exclude that γ < 1 can be useful from a generalization perspective, as noted for the case of
a single client by Zhou et al. (2021), in the presence of data heterogeneity, as noted by Charles and
Konecný (2021), or in the presence of specific stochastic gradient distributions (see Section 3.4).

Proof sketch for Theorem 3.3. We first start by expanding the update for the round iterate xr+1 −
x∗ = xr+1 − xr + xr − x∗ similar to (Karimireddy et al., 2020) to get,

∥xr+1 − x∗∥2 = ∥xr − x∗∥2 − 2γη

H−1∑
h=0

⟨xr − x∗, gr,h⟩+ γ2η2

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2

= ∥xr − x∗∥2 − 2γη
H−1∑
h=0

⟨xr − yr,h, gr,h⟩ − 2γη
H−1∑
h=0

⟨yr,h − x∗, gr,h⟩+ γ2η2

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2

,

where gr,h is defined as in Equation (1). Karimireddy et al. (2020) and Jhunjhunwala, Wang, and
Joshi (2023) control the inner product −⟨xr − yr,h, gr,h⟩ by either using smoothness or Young’s
inequality; This would force us to bound the stray ∥yr,h − xr∥2 and take the local stepsize η to be
small in order to ensure convergence. Instead, we rely on bounding this quantity directly by viewing
it as the regret in the online convex optimization sense with respect to the comparator xr. Observe
that the virtual sequence of averaged local iterates satisfies yr,h+1 = yr,h − ηgr,h, and thus through
standard regret analysis we have∑H−1

h=0 −⟨xr − yr,h, gr,h⟩ =
−∥yr,h − xr∥2

2η
+

η

2

H−1∑
h=0

∥gr,h∥2. (6)

The negative terms −∥yr,H − xr∥2 in Equation (6) turn out to be crucial in obtaining an analysis that
works for all η and not just small η. With this change and through carefully bounding the variance
terms following (Khaled, Mishchenko, and Richtárik, 2020; Woodworth, Patel, Stich, et al., 2020),
we obtain the guarantee of Theorem 3.3. The full proof is provided in Appendix B.2.

Comparison with results on related algorithms. Malinovsky, Mishchenko, and Richtárik (2022)
analyze a closely related variant of the algorithm that uses federated random reshuffling (Mishchenko,
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Khaled, and Richtárik, 2022) as a base. This is a significantly different algorithm that doesn’t
allow for an arbitrary number of local steps H and depends on f posessing finite-sum structure.
Nevertheless, we can still specialize (Malinovsky and Richtárik, 2022, Theorem 2) approximately to
our setting, by using H as the number of data points in an epoch. In our notation, their convergence
guarantee reads

E
[
f
(

1
R

∑R−1
r=0 xr

)]
− f(x∗) ≤ O

(
∥x0−x∗∥2

ηγHR + η2H2σ2
)
,

under the conditions ηH ≤ 1
L and 1 ≤ γ ≤ 1

LηH . Their theory thus also suggests that γ ≥ 1 can be
useful. Optimizing over η and γ yields the convergence rate

E
[
f
(

1
R

∑R−1
r=0 xr

)]
− f(x∗) ≤ O

(
L∥x0−x∗∥2

R

)
,

this rate is the same as gradient descent for R steps (since the finite-sum structure means that per-
epoch we approximate one step of gradient descent when η is small). A similar rate is derived in (Li,
Acharya, and Richtárik, 2024; Li and Richtárik, 2024) if we have access to the proximal operator
(i.e. we can do many local steps H on a modified objective). Li, Acharya, and Richtárik (2024) in
particular show that an outer learning rate greater than 1 can be particularly useful for improving the
convergence of FedProx (Li, Sahu, et al., 2020) in the heterogeneous setting when the smoothness
constant varies significantly between different clients.

Analysis with momentum. Our analysis suggests that values of γ > 1 are potentially very useful, but
in practice such values are rarely used. One reason this might be the case is because the momentum
effectively acts as a stepsize multiplier, i.e. in the presence of momentum parameter µ the effective
outer stepsize becomes γ

1−µ . Our next theorem establishes this rigorously.

Theorem 3.5. Suppose that Assumptions 3.1 and 3.2 hold. Suppose that the outer update is gradient
descent with momentum, OuterUpdate(xr,−∆r,H) = xr+γ∆r,H+µ(xr−xr−1) with momentum
parameter µ ∈ [0, 1) and the local update is gradient descent LocalUpdate(y, g) = y − ηg in

Algorithm 1. Let the step sizes η, γ satisfy ηL

(
1 +

(
γ

1−µ − 1
)
+
H

)
≤ 1

4 and ηγµLH
1−µ ≤ 1

16 . Then

after R rounds of communication, the averaged iterate satisfies

E [f(y)]− f(x∗) ≤ O

 (1− µ)∥z0 − x∗∥2

ηγHR
+ Lη2σ2H +

ησ2
(
1 + ( γ

1−µ − 1)+

)
M

+
ηγµ

1− µ

σ2

M

 ,

where ȳ is defined as the average of all local iterates across training (as in Equation (3)) and
(a)+ = max(a, 0).

The proof is provided in Appendix B.3. Theorem 3.5 shows the requirement on the outer stepsize is
relaxed from a requirement on γ to a requirement on γ

1−µ , allowing us to reap the same benefits of
γ > 1 observed earlier if we also tune µ. Momentum thus changes the range of stepsizes allowed
but does not fundamentally alter the uter stepsize tradeoffs. This benefit was first observed in (Sun
et al., 2024) for nonconvex optimization with small local stepsize η provided we use an additional
momentum buffer. Our work gives direct theoretical support to this observation even with a single
momentum buffer and allowing for large η.

3.3 Convergence with accelerated outer optimizer

We now consider the use of acceleration. To the best of our knowledge, the combination of an
accelerated outer optimizer with an unaccelerated inner optimizer, as in e.g. DiLoCo (Douillard,
Feng, Rusu, Chhaparia, et al., 2023; Jaghouar, Ong, and Hagemann, 2024), has not been analyzed in
the literature before. We take steps towards addressing this gap and understanding the convergence
properties of such algorithms by considering Nesterov’s accelerated gradient descent (Nesterov, 2018)
as the outer optimizer and (stochastic) gradient descent as the inner optimizer. The following theorem
gives a convergence guarantee for this setting.
Theorem 3.6. Suppose that Assumptions 3.1 and 3.2 hold and the stepsizes satisfy 2Lη ≤ 1 and
γ ≤ 1. Suppose that the outer update is accelerated gradient descent with Nesterov momentum as
follows

ur+1 = xr − η∆r,H , zr+1 = zr − γrη∆r,H , xr+1 = (1− τr+1)ur+1 + τr+1zr+1,
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with parameters γr = γ(r+1)
2 and τr = 2

r+2 , and the local update is gradient descent
LocalUpdate(y, g) = y − ηg in Algorithm 1. Then after R rounds of H steps, the final iterate uR

satisfies

E [f(uR)]− f(x∗) ≤
2∥x0 − x∗∥2

γηR2H
+

RLη2σ2H

2M
+

RL2η3σ2H2

2
+

γησ2R

2M
. (7)

To understand the implications of the above guarantee, we specialize it with a tuned pair of learning
rates (γ, η) below.
Corollary 3.7. In the same setting as Theorem 3.6, setting γ = 1 in Equation (7), and choosing

η = min

{
1
2L ,
(

2MD2

R3Lσ2H2

)1/3
,
(

4D2

3R3L2σ2H3

)1/4
,
√

4MD2

R3Hσ2

}
,

where D = ∥x0 − x∗∥ and the final iterate uR satisfies

E[f(uR)]− f(x∗) ≤ O
(LD2

R2H
+

L1/3σ2/3D4/3

RM1/3H1/3
+

L1/2σ1/2D3/2

R5/4H1/4
+

σD√
MRH

)
. (8)

Equation (8) shows that in the absence of noise, we obtain a rate accelerated in R but not H .
This intuitively makes sense, since we do acceleration only in the outer loop. In the presence of
noise, we have in the worst-case the unimprovable σD√

MRH
term and two additional noise terms that

characterize the drift suffered by this algorithm. Notably, the drift terms have much better dependence
on R compared to Local SGD, as given by Equation (2). Yuan and Ma (2020) analyze FedAC, an
accelerated variant of Local SGD that uses acceleration locally and applies simple averaging as the
outer optimizer. Their algorithm enjoys the convergence rate

E[f(xout)]− f(x∗) ≤ O
(

LD2

R2H + L1/3σ2/3D4/3

RH1/3 + L1/2σ1/2D3/2

RH1/4 + σD√
MRH

)
.

Comparing with Equation (8), our algorithm enjoys better dependence on R and M in the denomina-
tors of the two drift terms while using momentum sequences only on the server.

3.4 Data-dependent convergence result

To further understand the role of the outer stepsize, we now present a data-dependent, high-probability
guarantee for Generalized Local SGD in Theorem 3.8, compared to the rather worst-case analysis of
Theorem 3.3. This analysis may also provide insights into practical tuning of the outer learning rate
Theorem 3.8. Suppose that Assumptions 3.1 and 3.2 hold. Then in Algorithm 1 with outer update
x = x− γ∆ and local update y = y − ηg, if the local stepsize satisfies η ≤ 1

L then with probability
at least 1− δ the iterates generated satisfy

f

(
1

RH

R−1∑
r=0

H−1∑
h=0

yr,h

)
− f(x∗) ≤ Õ

(
∥x0 − x∗∥2

γηRH
+

γη

RH

∑
r,h

∥gr,h∥2 + γησ2

+
|1− γ| η
RH

∑
r

(∑
h

∥gr,h∥

)2

+
η

γH

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

+ ησ

√
1

MR

∑
m,r,h

∥gm,r,h∥2
)
.

The proof of Theorem 3.8 is provided in Appendix B.5. Compared to Theorem 3.3, the guarantee we
obtain here is weaker in some areas, e.g., the variance term γησ2 does not benefit from increasing
M . On the other hand, this guarantee is a high-probability and data-dependent guarantee. To the
best of our knowledge, this is the first high-probability convergence guarantee for Local SGD in
the literature. Theorem 3.8 allows us to observe another potential benefit of using γ ̸= 1. To see
how, let us make the simplifying assumption that ∥ĝr,h∥ ≊ G1 and ∥gm,r,h∥ ≊ G2. Observe that
by the triangle inequality we have G1 ≤ G2, but in fact G1 can be significantly smaller than G2,
particularly in the later stages of the optimization process, due to the variance reduction effect of
averaging together the gradients on different nodes. Then we can rewrite the above guarantee as

f(y)−f(x∗) ≤ Õ
(

d20
γηRH

+γηG2
1 +γησ2 +|1−γ| ηHG2

1 +
ηHG2

2

γ
+ησ

√
HG2

)
(9)

The γ that minimizes this upper bound is given by the following proposition.

8



Proposition 3.9. Let g(x) = a
x + bx+ |1− x| c for a, b, c ≥ 0.

• if a ≥ b+ c, then
√
a/(b+ c) minimizes g,

• if b− c ≥ 0 and a ≤ b− c, then
√
a/(b− c) minimizes g,

• Otherwise, x = 1 minimizes g.

Applying this lemma to Equation (9) one can see that simple averaging is suboptimal depending on
the variance and relative magnitudes of G1 and G2. In particular, the first condition in our setting is

d20
ηRH

+ ηHG2
2 ≳ η(G2

1 + σ2) + ηHG2
1,

where ≳ indicates that the inequality holds up to constant factors of the terms on both sides. Since
G2 ≥ G1, we can simplify the above condition to d2

0

η2RH +HG2
2 ≳ σ2. This condition essentially asks

if the noise is large relative to the “optimization term” d2
0

η2RH or not. In the latter case, choosing γ > 1

is helpful, and the outer optimizer acts as a form of momentum that helps reduce the optimization term
further. On the other hand, the second condition yields γ < 1 and requires that σ2 ≳ d2

0

η2RH +HG2
2.

This is an especially noise-dominated regime, which we may expect to observe towards the end of
the training process. In this case, decaying the outer learning rate to γ ≪ 1 allows the algorithm to
maintain convergence despite the high noise magnitude. When the optimization term and the noise
term are of the same order, then γ = 1 is the optimal choice.

4 Experiments

We conduct two sets of experiments: (a) solving convex optimization problems to provide the most
direct verification of the predictions of our theory, and (b) training transformer based language models.
Due to limitations of space, we present only highlights of the results here and most of the details and
ablations are provided in the supplementary materials (Appendix A).

4.1 Convex optimization
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Figure 1: Effect of varying noise magnitude σ and outer
learning rate γ for quadratic optimization.

We conduct experiments on the quadratic
objective f(x) = 1

2∥Q(x− x∗)∥2, where
Q = A⊤A ∈ Rd for d = 50 and the en-
tries Ai,j are all drawn from a normal dis-
tribution Ai,j ∼ N (0, 1) for i = 1, . . . , d
and j = 1, . . . , d, and x∗ is similarly
drawn from the standard d-dimensional
Gaussian. We use stochastic gradients
of the form g(x) = ∇f(x) + v, where
the v’s are random vectors drawn from
the Gaussian with mean 0 and variance
σ2, v ∼ N (0, σ2). We evaluate the performance of Algorithm 1 for various values of σ,
σ ∈ {10−3, 10−2, 10−1, 0.5, 1, 5, 10, 15, 25, 50}. For each σ we perform an extensive grid search
over γ ∈ {0.001, 0.01, 0.1, 0.5, 0.9, 1.0, 1.1, 1.25, 1.5, 2} to determine the best one in terms of mini-
mum average loss over the last ten rounds. We use R = 1000 rounds and H = 50 local steps, and fix
η = 0.001 in all cases.

Figure 1(a) shows how the optimal value of γ varies with different noise levels σ. We observe that, as
σ increases, the optimal γ decreases from 1.0 to 0.1, as predicted by our analysis. Figure 1(b) also
illustrates the loss trajectories for different noise levels σ with the best γ.

4.2 Transformer pretraining

Setup Following the DiLoCo paper (Douillard, Feng, Rusu, Chhaparia, et al., 2023), we experiment
using a Chinchilla decoder transformer (Hoffmann et al., 2022) on the C4 dataset (Raffel et al.,
2020). The architecture hyperparameters are identical from the DiLoCo paper (Douillard, Feng,
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Figure 2: Scaling distributed pretraining, at 150M, 400M, and 1B parameters. The x-axis shows the
total number of training steps, including both local and communication steps. The y-axis shows the
perplexity achieved by each method. Legend represents final perplexity values.

Rusu, Chhaparia, et al., 2023) and are given in Appendix A.1.1. We fix the batch size at 512 and the
sequence length at 1024. We experiment at different scales, from 150 million to 1 billion parameters.
For all experiments, the inner optimizer is AdamW (Loshchilov and Hutter, 2019) trained with a
cosine learning rate schedule defined across the total amount of steps. The inner optimizer state is
never shared across replicas, and is passed from one round to the other.

Methods We compare three distributed methods, using different outer optimizers: SGD(lr=1) (equiv-
alent to simple averaging of local models (McMahan et al., 2017)), Nesterov (equivalent to DiLoCo
(Douillard, Feng, Rusu, Chhaparia, et al., 2023)), and ScheduleFree-SGD (SF-SGD) (Defazio et al.,
2024). We use SF-SGD to substitute for outer learning rate scheduling, though it still requires tuning
hyperparameters. We also include two “high-communication" data-parallel baselines: one with
the global batch size as the local per-replica batch size used by the distributed methods, and one
with the same batch size as the global batch size (M× the local per-replica batch size) used by the
distributed methods. The latter requires either more GPUs and more thus communication, or gradient
accumulation and thus more time. The latter also has an equal flops budget as the distributed methods.
We tuned all our optimizers on the pretraining setting on a separate validation set . We also considered
using SF-Nesterov, but it was hard to tune and unstable.

Hyperparameter Selected Range considered

Number of inner steps H 50, 500 50 to 2000
Peak outer LR for Nesterov 0.7 0.1 to 2.0
Peak outer LR for SF-SGD 2.0 1e−4 to 10.0
b1 for SF-SGD 0.2 0.0 to 0.99

Peak inner learning rate (150M) 4e−4 4e−4

Peak inner learning rate (400M) 4e−4 4e−4

Peak inner learning rate (1B) 2e−4 2e−4

Table 1: Optimizer hyperparameters for the three eval-
uated sizes. All are based on the transformer architecture,
chinchilla-style (Hoffmann et al., 2022).

Results Table 1 gives the optimal hy-
perparameters per scale, and Figure 2
gives the perplexity curves. The per-
plexity was calculated on the C4 val-
idation set. Consistent with the pre-
dictions of our theory, we found that
an outer learning rate greater than 1.0
performed best for SF-SGD and a rel-
atively large effective outer learning
rate also performed best for Nesterov;
Moreover, acceleration consistently
improved performance relative to the
baseline Local SGD. In the supple-
mentary material, we report the effect of varying the number of local steps (Appendix A.1.2),
the number of clients/replicas and different ways of FLOPs allocation (Appendix A.1.3), and gradient
variance (Appendix A.1.6). We also include the validation results for all the main experiments we ran
in Tables 3 to 5.

5 Conclusion and Future Work

In this paper, we studied the impact of the outer learning rate on the convergence of Local SGD
through two novel convergence theorems that characterize its role in balancing a trade-off between
convergence speed and stochastic gradient variance. We have also studied the impact of using
momentum in the presence of an outer learning rate, and provided a new convergence analysis for
using Nesterov acceleration in the outer optimizer. One limitation of our results is that we only
consider the i.i.d. setting; Studying the impact of data heterogeneity is therefore a natural next step.
Another avenue for future work is to investigate the role of adaptive outer optimizers in enhancing
robustness to client failures and communication delays.

10



References
Bauschke, Heinz H. and Patrick L. Combettes (2009). “The Baillon-Haddad Theorem Revisited”. In:

arXiv preprint arXiv:0906.0807. URL: https://arXiv.org/abs/0906.0807.
Borzunov, Alexander, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem

Chumachenko, Pavel Samygin, and Colin Raffel (2022). “Petals: Collaborative Inference and
Fine-tuning of Large Models”. In: arXiv preprint arXiv:2209.01188.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei (2020). “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. URL: https://proceedings.
neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Charles, Zachary and Jakub Konecný (2021). “Convergence and Accuracy Trade-Offs in Federated
Learning and Meta-Learning”. In: The 24th International Conference on Artificial Intelligence
and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event. Ed. by Arindam Banerjee and
Kenji Fukumizu. Vol. 130. Proceedings of Machine Learning Research. PMLR, pp. 2575–2583.
URL: http://proceedings.mlr.press/v130/charles21a.html.
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Answer: [Yes]
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Justification: We include the complete proof in the supplementary and a proof sketch for the
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• Inversely, any informal proof provided in the core of the paper should be complemented
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• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose the the data used, all details of the architecture used, and all
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The datasets are openly available, and some of the training code will be shared.
However, much of the training code is proprietary and won’t be shared.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See our response to the reproducibility question.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments are conducted at large scale, involve extensive hyperparameter
tuning, and replicating them many times for statistical significance would be too costly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of the FLOP budget in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our contribution is primarily theoretical and complies with the ethics guide-
lines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our contribution is primarily theoretical and does not affect any societal
applications directly.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The training data are the publicly available C4 and CIFAR-10 datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: no new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourced experiments or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourced experiments or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We did not use LLMs for any core component in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary material
A Supplementary experimental details

In this section we provide the details on the language model pretraining experiments discussed in the
main text.

A.1 Language model pretraining

We study the impact of using various outer optimizers on large language model pretraining. We
utilized Chinchilla-style decoder transformer architectures (Hoffmann et al., 2022) trained on the C4
dataset (Raffel et al., 2020), consistent with common practices in large-scale model training (Douillard,
Feng, Rusu, Chhaparia, et al., 2023). The following subsections detail the specific hyperparameters,
variations in training configurations (such as the number of inner steps and replicas/clients), and
analyses of optimizer behavior, including learning rate scheduling and observed gradient cosine
similarities.

A.1.1 Hyperparameters details

We show in Table 1 the hyperparameters considered and kept, and in Table 2 the architectural
hyperparameters. We use the SentencePiece tokenizer with a sequence length of 1024 for all models.
We tuned all our optimizers on a separate validation set. We also considered using the Schedule-Free
Optimizer with Nesterov acceleration on top but it was hard to tune and unstable. We include the
validation results for all the main experiments we ran in Tables 3 to 5.

Table 2: Model Configuration for the three evaluated sizes. All are based on the transformer
architecture, chinchilla-style (Hoffmann et al., 2022).

Hyperparameter 150M 400M 1B

Number of layers 12 12 24
Hidden dim 896 1536 2048
Number of heads 16 12 16
K/V size 64 128 128
Vocab size 32,000

A.1.2 Varying inner steps

In Figure 3, we compare the stability of different outer optimizers when varying the synchronization
frequency. We experiments a different amount of inner steps, from 50, to 2000. All experiments are
run in pretraining from scratch, with 150 millions (150M) parameters. We note that as the synchro-
nization frequency decreases (number of inner/local steps increases), performance decreases. Notably,
averaging (in orange), is relatively constant w.r.t the synchronization frequency: its performance stay
stable from H = 250 to H = 2000. On the other hand, using Nesterov with high outer learning rate
(in light green) is particularly unstable, its performance decreases by 10.7%, this indicates that the
learning rate should be tuned alongside the synchronization frequency. On the hand, SF-SGD (in
blue) has minimal degradation of performance (4.2%), highlighting the schedule-free property when
varying hyperparameters.

A.1.3 Varying replicas / flops budget

When increasing the number of distributed replicas, two options are possible: (a) Keeping the local
per-replica batch size constant and thus increasing global batch size and flops budget, and (b) Keeping
the global batch size/flops budget constant and thus reducing the local per-replica batch size.

We present in Figure 4 results of the first option with x-axis the flops budget for a single model
size (150M). It is worth noting that increasing the number of replicas improves the performance of
Nesterov (in green) and SF-SGD (in blue) but the gain quickly plateau. On the other hand, increasing
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Figure 3: Varying the communication frequency, i.e. number of inner steps H , when pretraining
from scratch at 150M parameters.
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Figure 4: Pareto front of the flops vs perplexity, comparing various approach scaling the flops
budget: increasing the number of steps, increasing the batch size in data-parallel, and increasing the
number of replicas for federated learning.

the batch size for data-parallel (at the cost of more communication, because more DP replicas) or
the number of steps (at the cost of longer training) still rapidly improves perplexity. Therefore, we
wish to highlight here a disadvantage of federated learning methods seldom mentioned: while those
methods are extremely communication-efficient, and can be made flops-efficient, their flops-efficiency
disappear as the number of replicas increases.

To this problem, several hypotheses could be raised, such as the decreasing cosine similarity between
outer gradients as the number of replicas increase, even when using an i.i.d. data split across replicas.
In Figure 5, we report the average similarity across a whole training for different number of replicas.
For momentum-based methods (Nesterov, SF-SGD), the similarity decreases from 30% at M = 2
replicas to 10% at M = 16 replicas. Full details across training steps can be found in the appendix.

Finally, note that we didn’t investigate further the second option of keeping the global batch size/flops
budget constant and thus reducing the local per-replica batch size. We found that dividing the batch
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size by the number of replicas leads quickly to a local per-replica batch size that is critically low, and
further reduces the flops-efficiency. More investigations should be pushed in that direction.

A.1.4 Schedule-free but not tuning-free

The schedule-free method of Defazio et al., 2024 enables not doing any learning rate scheduling,
greatly simplifying training configuration. However, it doesn’t mean it is hyperparameters-tuning-free.
Indeed, we found out that we had to extensively tune the initial learning rate (to 2.0), remove learning
rate warm-up contrarily to what is advised, and use a particularly low b1 decay: 0.2, as illustrated in
Figure 6.

A.1.5 Pretraining: outer learning rate scheduling

Schedule-free SGD enables not having to manually scheduling the outer learning rate. Therefore,
we wondered if we could improve the SotA federated learning baseline, DiLoCo (Nesterov outer
optimizer), with an outer learning rate schedule. We investigate in Figure 7 three schedules: constant
as in (Douillard, Feng, Rusu, Chhaparia, et al., 2023), cosine decay, and linear after a plateau. For
the latter we consider a constant plateau for 10% and 25% of the total steps. For each method, we
also tuned the peak outer learning rate. We don’t use any warm-up in the outer optimization as we
always found it to be harmful.

We find that constant outer learning rate is the best performing schedule. It’s unclear how the other
schedules are interacting with the inner learning rate scheduling. A possible solution, not investigated
in this report, would be to increase the number of inner steps H as the inner learning rate decreases
(Gu, Lyu, Arora, et al., 2024).

A.1.6 Cosine similarity between outer gradients

We display the cosine similarity between outer gradients, across scales (150M, 400M, and 1B) in
Figure 8, and across replicas (for 150M, from 2 to 16 replicas) in Figure 9. The solid line represent
the mean, and the shaded area the standard deviation. We normalize the x-axis as a percentage of the
training in order to compare models which have done different amount of steps (e.g. 24,000 steps for
150M vs 30,000 for 400M).
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Figure 5: Cosine similarity between outer gradients across different number of replicas (left) and
model scales (right). We average the similarity across the middle 50% of the training.
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Figure 6: Tuning b1 decay has a major impact
on performance, and its value must be very low.

Figure 7: Which outer learning rate schedule
to use?

(a) 150M (b) 400M (c) 1B

Figure 8: Similarity between outer gradients across steps and scales.
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(a) M=2 replicas (b) M=4 replicas

(c) M=8 replicas (d) M=16 replicas

Figure 9: Cosine similarity between outer gradients across steps and number of replicas.
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Table 3: Complete hyperparameter sweep results across model scales and configurations. All
experiments use C4 validation set with sequence length 1024 and batch size 512.

H M Algorithm Learning Rate Perplexity Model Size

Data-Parallel Baselines

- 1 Data-Parallel - 18.07 150M
- 1 Data-Parallel 4x BS 16.89 150M
- 1 Data-Parallel - 15.28 400M
- 1 Data-Parallel 4x BS 13.21 400M
- 1 Data-Parallel - 13.38 1B
- 1 Data-Parallel 4x BS 11.34 1B

Local SGD Experiments

50 4 SGD 1.0 17.75 150M
50 4 Nesterov 0.7 17.25 150M
50 4 Nesterov 1.0 16.38 150M
50 4 SF-SGD 2.0 (β=0.2) 16.88 150M
50 4 SGD 1.0 14.90 400M
50 4 Nesterov 0.7 13.71 400M
50 4 Nesterov 1.0 >30 400M
50 4 SF-SGD 2.0 (β=0.2) 13.95 400M
50 4 SGD 1.0 13.67 1B
50 4 Nesterov 0.7 12.51 1B
50 4 SF-SGD 2.0 (β=0.2) 12.40 1B

Varying H (Local Steps) at 150M, M = 4

150 4 SGD 1.0 17.58 150M
150 4 Nesterov 0.7 17.90 150M
150 4 Nesterov 1.0 16.79 150M
150 4 SF-SGD 2.0 (β=0.2) 16.96 150M
250 4 SGD 1.0 18.20 150M
250 4 Nesterov 0.7 18.09 150M
250 4 Nesterov 1.0 17.12 150M
250 4 SF-SGD 2.0 (β=0.2) 16.97 150M
500 4 SGD 1.0 18.44 150M
500 4 Nesterov 0.7 17.95 150M
500 4 Nesterov 1.0 18.15 150M
500 4 SF-SGD 2.0 (β=0.2) 17.18 150M
1000 4 SGD 1.0 18.18 150M
1000 4 Nesterov 0.7 18.16 150M
1000 4 Nesterov 1.0 18.75 150M
1000 4 SF-SGD 2.0 (β=0.2) 17.29 150M
2000 4 SGD 1.0 18.11 150M
2000 4 Nesterov 0.7 18.40 150M
2000 4 Nesterov 1.0 18.36 150M
2000 4 SF-SGD 2.0 (β=0.2) 17.59 150M

Varying M (Number of Nodes) at 150M, H = 50

50 2 SGD 1.0 18.64 150M
50 2 Nesterov 1.0 16.81 150M
50 2 SF-SGD 2.0 (β=0.2) 17.13 150M
50 8 SGD 1.0 18.38 150M
50 8 Nesterov 1.0 16.27 150M
50 8 SF-SGD 2.0 (β=0.2) 16.92 150M
50 16 SGD 1.0 19.86 150M
50 16 Nesterov 1.0 16.25 150M
50 16 SF-SGD 2.0 (β=0.2) 16.75 150M
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Table 4: Additional outer learning rate sweeps for different outer optimizers. All experiments at
150M model size with H = 50 and M = 4.

Algorithm Learning Rate Perplexity

SF-SGD Learning Rate Sweep (β = 0.2)

SF-SGD 0.1 >30
SF-SGD 0.5 22.89
SF-SGD 1.0 19.42
SF-SGD 1.5 18.32
SF-SGD 2.0 17.98
SF-SGD 3.0 17.96
SF-SGD 4.0 18.09
SF-SGD 5.0 17.51

Nesterov Learning Rate Sweep (Cosine Schedule)

Nesterov 0.3 17.16
Nesterov 0.5 17.06
Nesterov 0.7 16.93
Nesterov 0.9 17.19
Nesterov 1.1 17.56

SGD Learning Rate Sweep

SGD 0.3 (fixed) 21.04
SGD 0.3 (cosine) 17.68
SGD 0.5 (cosine) 16.63
SGD 0.7 (cosine) 18.84
SGD 1.0 (cosine) 19.21

Table 5: SF-SGD β parameter sweep at 150M model size with H = 50, M = 4, and outer learning
rate γ = 2.0.

β Value Perplexity

0.0 >30
0.05 16.88
0.1 16.78
0.2 16.89
0.4 17.15
0.5 17.35
0.7 17.93
0.9 19.07

0.95 19.65
0.99 20.51
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Theory
B Guarantees for Local SGD

First, we recall our setting and define some notation. We consider the problem of minimizing a
function f in a distributed setting with M workers performing Local SGD. Let xr denote the global
model parameters at the beginning of round r. Each worker m initializes its local parameters as
ym,r,0 = xr and performs H local SGD steps according to

ym,r,h+1 = ym,r,h − ηgm,r,h,

where gm,r,h = ∇f(ym,r,h) + nm,r,h is the stochastic gradient with noise nm,r,h, and gm,r,h =
∇f(ym,r,h) is the true gradient. By Assumption 3.2 we have E [gm,r,h] = gm,r,h. After H local
steps, the global model update can be equivalently written as xr+1 = xr − γη

∑H−1
h=0 gr,h where

gr,h = 1
M

∑M
m=1 gm,r,h is the average gradient across workers and yr,h = 1

M

∑M
m=1 ym,r,h is the

average model. Note that these two last sequences are virtual sequences and not actually computed.
We also define xr,h = xr − γη

∑H−1
h=0 gr,h as an intermediate quantity used in the analysis. Table 6

summarizes some of the notation we use throughout this section.

Table 6: Key notation.

Symbol Description Symbol Description

M Number of nodes xr Global iterate at round r
H Local steps per round yr,h Averaged local iterate
R Communication rounds gr,h Averaged stochastic gradient
η Inner learning rate L Smoothness constant
γ Outer learning rate σ2 Gradient variance bound
µ Momentum parameter D ∥ x0 − x∗ ∥ initial distance to optimum

B.1 Algorithm-independent results

Lemma B.1. (Karimireddy et al., 2020, Lemma 6) Let f be a convex and L-smooth function. Suppose
that η ≤ 2

L , let Tη(x) = x− η∇f(x). Then

∥Tη(x)− Tη(y)∥2 ≤ ∥x− y∥2.

Proof. The proof is provided for completeness only. We have

∥Tη(x)− Tη(y)∥2 = ∥x− y∥2 + η2∥∇f(x)−∇f(y)∥2 − 2η ⟨x− y,∇f(x)−∇f(y)⟩ . (10)

By the Baillon-Haddad theorem (Bauschke and Combettes, 2009) we have

⟨x− y,∇f(x)−∇f(y)⟩ ≥ 1

L
∥∇f(x)−∇f(y)∥2.

Using this in Equation (10) gives

∥Tη(x)− Tη(y)∥2 ≤ ∥x− y∥2 − η

(
2

L
− η

)
∥∇f(x)−∇f(y)∥2.

If η ≤ 1
L then 2

L − η ≥ 0 and therefore ∥Tη(x)− Tη(y)∥2 ≤ ∥x− y∥2.

Lemma B.2. Let y1, . . . , yn be real numbers. Then,

1

n

n∑
k=1

|yi| ≤

√√√√ 1

n

n∑
k=1

y2i .
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Proof. This is just the arithmetic mean-root mean square inequality and we include the proof solely
for completeness. Let Y be a random variable that takes the value y2i with probability 1

n , and let
g(x) =

√
x. Observe that

1

n

n∑
k=1

|yi| = E [g(Y )] .

Since g is a concave function, by Jensen’s inequality we have that E [g(Y )] ≤ g(E [Y ]). Therefore,

1

n

n∑
k=1

|yi| = E [g(Y )] ≤ g(E [Y ]) =

√√√√ 1

n

n∑
k=1

y2i .

Lemma B.3. (Variance of Sum of Conditionally Independent Random Variables). Let Z1, . . . , Zn be
random variables such that Zi satisfies

Ei−1 [Zi] = 0, and, E
[
∥Zi∥2

]
= σ2

i ,

where Ei [·] denotes expectation conditional on Z1, Z2, . . . , Zi. Then,

E

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
2
 =

n∑
i=1

σ2
i .

Proof.

E

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
2
 = E

En−1

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
2


= E

En−1

∥∥∥∥∥
n−1∑
i=1

Zi

∥∥∥∥∥
2

+ ∥Zn∥2 + 2

〈
n−1∑
i=1

Zi, Zn

〉
= E

En−1

∥∥∥∥∥
n−1∑
i=1

Zi

∥∥∥∥∥
2
+ σ2

n

 .

The cross-term En−1

[
2
〈∑n−1

i=1 Zi, Zn

〉]
vanishes because En−1 [Zn] = 0 and

∑n−1
i=1 Zi is mea-

surable with respect to the sigma-algebra generated by Z1, . . . , Zn−1. Continuing,

E

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
2
 = E

∥∥∥∥∥
n−1∑
i=1

Zi

∥∥∥∥∥
2
+ σ2

n.

Recursing we get,

E

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
2
 =

n∑
i=1

σ2
i .

This completes the proof.

Lemma B.4. (Ivgi, Hinder, and Carmon, 2023, Lemma 7). Let S be the set of nonnegative and
nondecreasing sequences. Let y1, y2, . . . be a sequence in S. Let Ct ∈ Ft−1 for all t = 1, 2, . . . , T
and let Xt be a martingale difference sequence adapted to Ft such that |Xt| ≤ Ct with probability 1

for t = 1, 2, . . . , T . Then for all δ ∈ (0, 1) and X̂t ∈ Ft−1 such that
∣∣∣X̂t

∣∣∣ ≤ Ct with probability 1,

we have that with probability at least 1− δ − Prob (∃t ≤ T | Ct > c) that for all c > 0∣∣∣∣∣
t∑

i=1

yiXi

∣∣∣∣∣ ≤ 8yt

√√√√θt,δ

t∑
i=1

(Xi − X̂i)2 + c2θ2t,δ,

where θt,δ = log 60 log 6t
δ .
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Lemma B.5. Suppose we have

rk+1 ≤ (1 + a)rk − bδk + c

Then,

min
j

δj ≤
r0e

aK

bK
+

c

b
.

Proof. Let wk+1 = wk

1+a . We have

wk+1rk+1 ≤ (1 + a)wk+1rk − bwk+1δk + cwk+1

= wkrk − bwk+1δk + cwk+1.

Telescoping,

wKrK ≤ w0r0 − b

K−1∑
j=0

wj+1δj + c

K−1∑
j=0

wj+1.

Rearranging,

1∑K−1
j=0 wj+1

K−1∑
j=0

wj+1δj ≤
w0r0

b
∑K−1

j=0 wj+1

+
c

b
.

We have wk = wk−1

1+a = w0

(1+a)k
. Therefore,

K−1∑
j=0

wj+1 =

K−1∑
j=0

w0

(1 + a)k+1

≥
K−1∑
j=0

w0

(1 + a)K

=
w0K

(1 + a)K
.

Therefore,

1∑K−1
j=0 wj+1

K−1∑
j=0

wj+1δj ≤
r0(1 + a)K

bK
+

c

b
.

Finally, it remains to use that 1 + a ≤ ea.

B.2 Convergence guarantees without momentum

We begin with a lemma that establishes the regret of the local optimizer. Often the regret is measured
against the optimal point (like x∗) but here we instead utilize it against the initial point yr,0 = xr.
Lemma B.6 (Regret against starting point). For any learning rate η > 0, the inner product between
the displacement from the initial average iterate and the average gradient satisfies,

H−1∑
h=0

⟨yr,h − yr,0, gr,h⟩ ≤
η

2

H−1∑
h=0

∥gr,h∥2 −
1

2η
∥yr,H − yr,0∥2.

Proof. We begin by using that yr,h+1 = yr,h − ηgr,h and expanding the square as

∥yr,h+1 − yr,0∥2 = ∥yr,h − ηgr,h − yr,0∥2

= ∥yr,h − yr,0∥2 + η2∥gr,h∥2 − 2η ⟨yr,h − yr,0, gr,h⟩ .
Rearranging to isolate the inner product term, we obtain

⟨yr,h − yr,0, gr,h⟩ =
∥yr,h − yr,0∥2 − ∥yr,h+1 − yr,0∥2

2η
+

η

2
∥gr,h∥2.
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Summing over h from 0 to H − 1,

H−1∑
h=0

⟨yr,h − yr,0, gr,h⟩ =
H−1∑
h=0

(
∥yr,h − yr,0∥2 − ∥yr,h+1 − yr,0∥2

2η
+

η

2
∥gr,h∥2

)

=
1

2η

H−1∑
h=0

(∥yr,h − yr,0∥2 − ∥yr,h+1 − yr,0∥2) +
η

2

H−1∑
h=0

∥gr,h∥2.

The first sum telescopes

H−1∑
h=0

(∥yr,h − yr,0∥2 − ∥yr,h+1 − yr,0∥2) = ∥yr,0 − yr,0∥2 − ∥yr,H − yr,0∥2

= −∥yr,H − yr,0∥2.

Therefore,

H−1∑
h=0

⟨yr,h − yr,0, gr,h⟩ = −∥yr,H − yr,0∥2

2η
+

η

2

H−1∑
h=0

∥gr,h∥2

≤ η

2

H−1∑
h=0

∥gr,h∥2 −
∥yr,H − yr,0∥2

2η
.

Lemma B.7. (Local client drift bound). Suppose that Assumptions 3.1 and 3.2 hold. Then in
Algorithm GEN-LOC-SGD for all r and h, if η ≤ 1

L , then

E

[
1

M2

M∑
m,s=1

∥ym,r,h − ys,r,h∥2
]
≤ 2η2σ2h.

Proof. Let T̃η(ym,r,h) = ym,r,h− ηgm,r,h where gm,r,h is the stochastic gradient, and Tη(ym,r,h) =
y − ηgm,r,h is the corresponding expected gradient update. We have

ym,r,h+1 − ys,r,h+1 = T̃η(ym,r,h)− T̃η(ys,r,h)

= Tη(ym,r,h)− Tη(ys,r,h) +
[
T̃η(ym,r,h)− T̃η(ys,r,h)− (Tη(ym,r,h)− Tη(ys,r,h))

]
= Tη(ym,r,h)− Tη(ys,r,h) + [ξm,r,h − ξs,r,h] ,

where ξm,r,h = T̃η(ym,r,h) − Tη(ym,r,h) = −ηnm,r,h is the noise term. Define Vr,h =
1

M2

∑M
m,s=1 ∥ym,r,h − ys,r,h∥2. It follows that

Vr,h+1 =
1

M2

M∑
m,s=1

∥ym,r,h+1 − ys,r,h+1∥2

=
1

M2

M∑
m,s=1

[
∥Tη(ym,r,h)− Tη(ys,r,h)∥2 + ∥ξm,r,h − ξs,r,h∥2

+ 2 ⟨Tη(ym,r,h)− Tη(ys,r,h), ξm,r,h − ξs,r,h⟩

]
.

Taking conditional expectation gives

Er,h [Vr,h+1] =
1

M2

M∑
m,s=1

[
∥Tη(ym,r,h)− Tη(ys,r,h)∥2 + Eh

[
∥ξm,r,h − ξs,r,h∥2

] ]
.
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Finally, using the fact that ∥Tη(x)− Tη(y)∥2 ≤ ∥x− y∥2 whenever η ≤ 2
L (Lemma B.1) and

Assumption 3.2, we get

Er,h [Vr,h+1] ≤
1

M2

M∑
m,s=1

[
∥ym,r,h − ys,r,h∥2 + 2η2σ2

]
= Vr,h + 2η2σ2.

Therefore by taking unconditional expectation and recursing from h = 0 where all local iterates are
equal to xr (so Vr,0 = 0), we get E [Vr,h] ≤ 2η2σ2h.

Proof of Theorem 3.3. W begin by analyzing how the squared distance to the optimal solution
changes after one round of communication. From the update rule, we have,

∥xr+1 − x∗∥2 = ∥xr − x∗∥2 − 2ηγ

H−1∑
h=0

⟨xr − x∗, gr,h⟩+ η2γ2

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2

. (11)

We rewrite the inner product term as

−⟨xr − x∗, gr,h⟩ = ⟨x∗ − xr, gr,h⟩
= ⟨x∗ − yr,h, gr,h⟩+ ⟨yr,h − xr, gr,h⟩ .

Summing over all local steps we obtain

−
H−1∑
h=0

⟨xr − x∗, gr,h⟩ =
H−1∑
h=0

⟨x∗ − yr,h, gr,h⟩+
H−1∑
h=0

⟨yr,h − xr, gr,h⟩ .

Applying Lemma B.6 we get

−
H−1∑
h=0

⟨xr − x∗, gr,h⟩ =
H−1∑
h=0

⟨x∗ − yr,h, gr,h⟩ −
∥yr,H − yr,0∥2

2η
+

η

2

H−1∑
h=0

∥gr,h∥2. (12)

Observe that since yr,H − yr,0 = −η
∑H−1

h=0 gr,h, Equation (12) becomes,

−
H−1∑
h=0

⟨xr − x∗, gr,h⟩ =
H−1∑
h=0

⟨x∗ − yr,h, gr,h⟩ −
η

2

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2

+
η

2

H−1∑
h=0

∥gr,h∥2.

Plugging this back into Equation (11),

∥xr+1 − x∗∥2 ≤ ∥xr − x∗∥2 + 2ηγ

H−1∑
h=0

⟨x∗ − yr,h, gr,h⟩

+ γη2
H−1∑
h=0

∥gr,h∥2 + η2γ(γ − 1)

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2

.

Let us take expectation conditional on x1, . . . , xr,

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2 + 2ηγ

H−1∑
h=0

Er [⟨x∗ − yr,h, gr,h⟩]

+ γη2
H−1∑
h=0

Er

[
∥gr,h∥2

]
+ η2γ(γ − 1)Er

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2
 .

(13)

For the squared norm of the average gradient:

Er

[
∥gr,h∥2

]
= Er

[
Er,h−1

[
∥gr,h∥2

]]
= Er

[
Er,h−1

[∥∥gr,h − gr,h
∥∥2]+ ∥∥gr,h∥∥2]

=
σ2

M
+ Er

[∥∥gr,h∥∥2] ,
34



where we use Er,h−1 [·] to denote expectation conditional on the σ-algebra generated by all the
stochastic gradients up to and including step h− 1. Substituting this into Equation (13),

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2 + 2ηγ

H−1∑
h=0

Er [⟨x∗ − yr,h, gr,h⟩] +
γη2Hσ2

M

+ γη2
H−1∑
h=0

Er

[∥∥gr,h∥∥2]+ η2γ(γ − 1)Er

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2
 .

(14)

Now we bound the inner product term:

Er [⟨x∗ − yr,h, gr,h⟩] = Er [Eh−1 [⟨x∗ − yr,h, gr,h⟩]]
= Er

[〈
x∗ − yr,h, gr,h

〉]
=

1

M

M∑
m=1

Er

[〈
x∗ − yr,h, gm,r,h

〉]
=

1

M

M∑
m=1

Er

[〈
x∗ − ym,r,h + ym,r,h − yr,h, gm,r,h

〉]
=

1

M

M∑
m=1

Er

[〈
x∗ − ym,r,h, gm,r,h

〉]
+

1

M

M∑
m=1

Er

[〈
ym,r,h − yr,h, gm,r,h

〉]
.

Using Young’s inequality for the second term,

Er [⟨x∗ − yr,h, gr,h⟩] (15)

≤ 1

M

M∑
m=1

Er

[〈
x∗ − ym,r,h, gm,r,h

〉]
+

1

M

M∑
m=1

Er

[
∥ym,r,h − yr,h∥2

2α
+

α

2

∥∥gm,r,h

∥∥2]

=
1

M

M∑
m=1

Er

[〈
x∗ − ym,r,h, gm,r,h

〉]
+

Vr,h

2α
+

α

2M

M∑
m=1

Er

[∥∥gm,r,h

∥∥2] , (16)

where Vr,h = 1
M

∑M
m=1 Er

[
∥ym,r,h − yr,h∥2

]
by definition. By the convexity of f ,〈

x∗ − ym,r,h, gm,r,h

〉
= ⟨x∗ − ym,r,h,∇f(ym,r,h)⟩
≤ f(x∗)− f(ym,r,h)

= − (f(ym,r,h)− f(x∗)) . (17)

For the variance term, when η ≤ 1
L we use Lemma B.7

Vr,h =
1

M

M∑
m=1

Er

[
∥ym,r,h − yr,h∥2

]
≤ 1

M

M∑
m=1

1

M

M∑
s=1

Er

[
∥ym,r,h − ys,r,h∥2

]
=

1

M2

M∑
m=1

M∑
s=1

Er

[
∥ym,r,h − ys,r,h∥2

]
≤ 2η2σ2h ≤ 2η2σ2H. (18)

By smoothness, ∥∥gm,r,h

∥∥2 = ∥∇f(ym,r,h)∥2 ≤ 2L(f(ym,r,h)− f(x∗)). (19)
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Plugging Equations (17) to (19) back into Equation (16) we get

Er [⟨x∗ − yr,h, gr,h⟩] ≤
−(1− αL)

M

M∑
m=1

(Er [f(ym,r,h)]− f(x∗)) +
η2σ2H

α
. (20)

Substituting (20) back into our main recursion (Equation (13)),

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2 −

2ηγ(1− αL)

M

H−1∑
h=0

M∑
m=1

(Er [f(ym,r,h)]− f(x∗)) +
2η3γσ2H2

α

+
γη2Hσ2

M
+ γη2

H−1∑
h=0

Er

[∥∥gr,h∥∥2]+ η2γ(γ − 1)Er

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2
 .

(21)

We now have two cases. Case 1. If γ ≥ 1, then we have by Lemma B.3 and Jensen’s inequality
applied to ∥·∥2,

Er

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2
 = Er

∥∥∥∥∥
H−1∑
h=0

(gr,h − Er [gr,h])

∥∥∥∥∥
2
+

∥∥∥∥∥
H−1∑
h=0

(Er [gr,h])

∥∥∥∥∥
2

= Er

∥∥∥∥∥
H−1∑
h=0

(gr,h − Er [gr,h])

∥∥∥∥∥
2
+

∥∥∥∥∥
H−1∑
h=0

(Er [Er,h−1 [gr,h]])

∥∥∥∥∥
2

= Er

∥∥∥∥∥
H−1∑
h=0

(gr,h − Er [gr,h])

∥∥∥∥∥
2
+

∥∥∥∥∥
H−1∑
h=0

Er

[
gr,h

]∥∥∥∥∥
2

≤ σ2H

M
+ Er

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2


≤ σ2H

M
+H

H−1∑
h=0

Er

[∥∥gr,h∥∥2] . (22)

Using Jensen’s inequality and smoothness we have

Er

[∥∥gr,h∥∥2] = Er

∥∥∥∥∥ 1

M

M∑
m=1

∇f(ym,r,h)

∥∥∥∥∥
2


≤ 1

M

M∑
m=1

Er

[
∥∇f(ym,r,h)∥2

]
≤ 2L

M

M∑
m=1

Er [f(ym,r,h)− f(x∗)] . (23)
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Using Equations (22) and (23) into Equation (21) we get

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2

− 2ηγ(1− αL)− 2Lγη2(1 + (γ − 1)H)

M

H−1∑
h=0

M∑
m=1

(Er [f(ym,r,h)]− f(x∗)) +
2η3γσ2H2

α

+
γ2η2Hσ2

M
.

= ∥xr − x∗∥2 −
2ηγ [1− αL− Lη(1 + (γ − 1)H)]

M

H−1∑
h=0

M∑
m=1

(Er [f(ym,r,h)]− f(x∗))

+
2η3γσ2H2

α
+

γ2η2Hσ2

M
.

= ∥xr − x∗∥2 − 2ηγH(1− αL− Lη(1 + (γ − 1)H))Er

[
δ̂r+1

]
+

2η3γσ2H2

α
+

η2γ2Hσ2

M
,

(24)

where in the last line we defined

δ̂r+1 =
1

MH

H−1∑
h=0

M∑
m=1

(f(ym,r,h)− f(x∗)) (25)

Case 2. If γ ≤ 1, then we can simply drop the last term in Equation (21) and use Equation (19) to get

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2 −

2ηγ(1− αL− ηL)

M

H−1∑
h=0

M∑
m=1

(Er [f(ym,r,h)]− f(x∗))

+
2η3γσ2H2

α
+

γη2Hσ2

M

= ∥xr − x∗∥2 − 2ηγH(1− αL− ηL)Er

[
δ̂r+1

]
+

2η3γσ2H2

α
+

γη2Hσ2

M
,

(26)

where in Equation (26) we again used the definition in Equation (25). Looking at both Equations (24)
and (26) and taking the maximum we get that for any γ,

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2 − 2ηγH(1− αL− ηL(1 + (γ − 1)+H))Er

[
δ̂r+1

]
+

2η3γσ2H2

α
+

η2 max{γ2, γ}Hσ2

M
,

where (x)+ = max(x, 0) is the ReLU function. Putting α = 1
2L we get

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2 − ηγH(1− 2ηL(1 + (γ − 1)+H))Er

[
δ̂r+1

]
+ 4Lη3γσ2H2 +

η2 max{γ2, γ}Hσ2

M
.

Under the requirement that the stepsizes η, γ satisfy

ηL(1 + (γ − 1)+H) ≤ 1

4
,

we obtain our recursion

Er

[
∥xr+1 − x∗∥2

]
≤ ∥xr − x∗∥2 −

ηγH

2
Er

[
δ̂r+1

]
+ 4Lη3γσ2H2 +

η2 max{γ2, γ}Hσ2

M
.

Taking unconditional expectations and rearranging we obtain,

E
[
δ̂r+1

]
≤ 2

γηH

[
E
[
∥xr − x∗∥2

]
− E

[
∥xr+1 − x∗∥2

]]
+ 8Lη2σ2H +

2ηmax(γ, 1)σ2

M
.
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Summing up both sides as r varies from 0 to R− 1 and dividing by 1/R we get

1

R

R−1∑
r=0

E
[
δ̂r+1

]
≤ 2

γηRH

[
∥x0 − x∗∥2 − E

[
∥xR − x∗∥2

]]
+ 8Lη2σ2H +

2ηmax(γ, 1)σ2

M
.

Observe that we can write max(γ, 1) = 1+(γ−1)+. Dropping the negative term and using Jensen’s
inequality gives

E

[
f

(
1

MRH

R−1∑
r=0

H−1∑
h=0

M∑
m=1

f(ym,r,h)

)]
− f(x∗) ≤

1

R

R−1∑
r=0

E
[
δ̂r+1

]
≤ 2∥x0 − x∗∥2

γηRH
+ 8Lη2σ2H +

2ηmax(γ, 1)σ2

M
,

and this is the statement of our theorem.

B.3 Convergence guarantees with momentum

Proof of Theorem 3.5. We analyze the momentum variant of Local SGD:

xr+1 = xr − ηγ

(
H−1∑
h=0

gr,h

)
+ µ(xr − xr−1).

Define

zr = xr +
µ

1− µ
(xr − xr−1).

Then

zr+1 = zr −
ηγ

1− µ

H−1∑
h=0

gr,h.

We have

∥zr+1 − x∗∥2 = ∥zr − x∗∥2 +
η2γ2

(1− µ)2

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2

− 2ηγ

1− µ

H−1∑
h=0

⟨zr − x∗, gr,h⟩

= ∥zr − x∗∥2 +
η2γ2

(1− µ)2

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2

− 2ηγ

1− µ

H−1∑
h=0

⟨xr − x∗, gr,h⟩

− 2ηγµ

1− µ

H−1∑
h=0

⟨xr − xr−1, gr,h⟩ .

(27)

Following the same proof as Theorem 3.3, we can bound (in expectation)

− 2ηγ

1− µ

H−1∑
h=0

Er [⟨xr − x∗, gr,h⟩] +
η2γ2

(1− µ)2
Er

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2
 ≤ − ηγH

2(1− µ)
Er

[
δ̂r+1

]

+ 4Lη3
γ

1− µ
σ2H2 +

η2Hσ2

M
max

((
γ

1− µ

)2

,
γ

1− µ

)
,

(28)

because the local optimization procedure is the same– the same analysis holds line-by-line, only
replacing γ by γ

1−µ , and requiring instead that

ηL

(
1 +

(
γ

1− µ
− 1

)
+

H

)
≤ 1

4
. (29)

38



Using Equation (28) in Equation (27) (after taking expectation in the latter) we obtain

Er

[
∥zr+1 − x∗∥2

]
≤ ∥zr − x∗∥2 −

ηγH

2(1− µ)
Er

[
δ̂r+1

]
+ 4Lη3

γσ2H2

1− µ

+
η2Hσ2

M
max

((
γ

1− µ

)2

,
γ

1− µ

)
− 2ηγµ

1− µ

H−1∑
h=0

〈
xr − xr−1, gr,h

〉
.

(30)

In the following, we use the shorthand Gr
def
=

∑H−1
h=0 gr,h. We now proceed to bound∑H−1

h=0 ⟨xr−1 − xr, gr,h⟩ = ⟨xr−1 − xr, Gr⟩ without using the bounded iterates assumption. We
note that by definition:

xr − xr−1 = −ηγGr−1 + µ(xr−1 − xr−2).

Expanding this out recursively, we get the following formula:

xr − xr−1 = −ηγ

r−1∑
s=0

µr−1−sGs.

For our analysis, we’ll bound the inner product

⟨xr−1 − xr, Gr⟩ =

〈
ηγ

r−1∑
s=0

µr−1−sGs, Gr

〉

= ηγ

r−1∑
s=0

µr−1−s ⟨Gs, Gr⟩

We will actually bound the sum of the momentum terms over r, i.e.
∑

r ⟨xr−1 − xr, Gr⟩. We have∑
r

⟨xr−1 − xr, Gr⟩ =
ηγ

µ

∑
r

∑
s<r

〈
µr−sGs, Gr

〉
=

ηγ

2µ

[∑
r

∑
s

〈
µ|r−s|Gs, Gr

〉
−
∑
r

∥ Gr ∥2
]
.

To bound the first term above, let A be the R×R matrix whose (r, s)th entry equals µ|r−s|, and let
Γ = [G1|G2| . . . |GR]. Then ∑

r

∑
s

〈
µ|r−s|Gs, Gr

〉
= Tr(ΓAΓ⊤).

We now apply the Gershgorin circle theorem to bound this sum, observe that largest sum of absolute
values of entries in a row satisfy

1 + 2

(R−1)/2∑
r=1

µr = 1 + 2µ
1− µ(R−1)/2

1− µ
=

1 + µ− 2µ(R+1)/2

1− µ
≤ 1 + µ

1− µ
.

Then, we have

Tr(ΓAΓ⊤) ≤ 1 + µ

1− µ
Tr(ΓΓ⊤) =

1 + µ

1− µ

∑
r

∥Gr∥2.

Therefore, taking expectations we have

− 2ηγµ

1− µ

R−1∑
r=0

H−1∑
h=0

E [⟨xr − xr−1, gr,h⟩] =
2ηγµ

1− µ

R−1∑
r=0

E [⟨xr−1 − xr, Gr⟩]

≤ 2ηγµ

1− µ

ηγ

1− µ

R−1∑
r=0

E

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2
 . (31)
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Using Lemma B.3 we have

E

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2
 ≤ σ2H

M
+ E

∥∥∥∥∥
H−1∑
h=0

gr,h

∥∥∥∥∥
2


≤ σ2H

M
+H

H−1∑
h=0

E
[∥∥gr,h∥∥2]

≤ σ2H

M
+ 2LH2E

[
δ̂r+1

]
,

where in the last line we used Jensen’s inequality and smoothness. Using this result in Equation (31)
we get

− 2ηγµ

1− µ

R−1∑
r=0

H−1∑
h=0

E [⟨xr − xr−1, gr,h⟩] ≤
ηγ

2(1− µ)

4ηγµ

1− µ

[
σ2RH

M
+ 2LH2

R−1∑
r=0

E
[
δ̂r+1

]]
.

(32)
Rearranging and summing up Equation (30) then using Equation (32) we have

E
[
∥zR − x∗∥2

]
≤ ∥z0 − x∗∥2 −

ηγH

2(1− µ)

[
1− 8ηγµLH

1− µ

]R−1∑
r=0

E
[
δ̂r+1

]
+ 4Lη3

γσ2H2

1− µ
R+

η2Hσ2

M
max

((
γ

1− µ

)2

,
γ

1− µ

)
R+

ηγH

1− µ

2ηγµ

1− µ

σ2R

M
.

Observe that under the condition
ηγµLH

1− µ
≤ 1

16

the last inequality becomes

E
[
∥zR − x∗∥2

]
≤ ∥z0 − x∗∥2 −

ηγH

4(1− µ)

R−1∑
r=0

E
[
δ̂r+1

]
+ 4Lη3

γσ2H2

1− µ
R+

η2Hσ2

M
max

((
γ

1− µ

)2

,
γ

1− µ

)
R+

ηγH

1− µ

2ηγµ

1− µ

σ2R

M
.

Continuing the proof and rearranging we get

1

R

R−1∑
r=0

E
[
δ̂r+1

]
≤ 4(1− µ)∥z0 − x∗∥2

ηγHR
+ 16Lη2σ2H +

4ησ2

M
max

(
γ

1− µ
, 1

)
+

8ηγµ

1− µ

σ2

M
.

It remains to use Jensen’s inequality.

B.4 Acceleration proofs

We recall the algorithm under analysis as
ym,r,0 = xr for m = 1, . . . ,M

ym,r,h+1 = ym,r,h − ηgm,r,h for h = 0, 1, . . . ,H − 1

ur+1 = xr − η

H−1∑
h=0

gr,h

zr+1 = zr − γrη

H−1∑
h=0

gr,h

xr+1 = (1− τr+1)ur+1 + τr+1zr+1,

where gr,h = 1
M

∑M
m=1 gm,r,h, γr = γ(r+1)

2 , and τr = 2
r+2 . Note that under the above, um,r,h =

ym,r,h and ur,h = 1
M

∑M
m=1 um,r,h. We first derive two intermediate lemmas, then proceed to the

main proof.
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Lemma B.8. Suppose that the local stepsize η satisfies η ≤ 1
2L . Then, for all h ∈ [H − 1] and r, we

have

Hf(ur+1) ≤
1

M

∑
m,h<H

[
E [f(ym,r,h)]−

η

4

H−1∑
h′=h

E
[
∥ḡm,r,h∥2

]]
+

Lη2σ2H2

2M
+

η3σ2H3

2
.

Proof. By smoothness,

f(ur,h+1) ≤ f(ur,h) + ⟨∇f(ur,h), ur,h+1 − ur,h⟩+
L

2
∥ur,h+1 − ur,h∥2

= f(ur,h)− η ⟨∇f(ur,h), gr,h⟩+
Lη2

2
∥gr,h∥2.

Taking conditional expectation we have

Eh [f(ur,h+1)] ≤ f(ur,h)−
η

M

M∑
m=1

⟨∇f(ur,h),∇f(um,r,h)⟩+
Lη2σ2

2M
+

Lη2

2

∥∥∥∥∥ 1

M

M∑
m=1

∇f(um,r,h)

∥∥∥∥∥
2

≤ f(ur,h)−
η

2M

M∑
m=1

[
∥∇f(ur,h)∥2 + ∥∇f(um,r,h)∥2 − ∥∇f(ur,h)−∇f(um,r,h)∥2

]
+

Lη2σ2

2M

+
Lη2

2M

M∑
m=1

∥∇f(um,r,h)∥2

= f(ur,h)−
η

2
∥∇f(ur,h)∥2 −

η(1− Lη)

2M

M∑
m=1

∥∇f(um,r,h)∥2 +
η

2
Vr,h +

Lη2σ2

2M
,

where Vr,h = 1
M

∑M
m=1 ∥∇f(ur,h)−∇f(um,r,h)∥2 ≤ L2

M

∑M
m=1 ∥ur,h − um,r,h∥2. Taking un-

conditional expectation, dropping the ∥∇f(ur,h)∥2 term and using Lemma B.7 we have

E [f(ur,h+1)] ≤ E [f(ur,h)]−
η(1− Lη)

2M

M∑
m=1

E
[
∥∇f(um,r,h)∥2

]
+

Lη2σ2

2M
+ η3L2σ2h.

Observe that in the current scheme, ḡm,r,h = ∇f(um,r,h). Suppose that 1− Lη ≥ 1
2 , using this and

telescoping yields

E [f(ur+1)] ≤ E [f(ur,h)]−
η

4M

M∑
m=1

H−1∑
h′=h

E
[
∥ḡm,r,h′∥2

]
+

Lη2σ2(H − h)

2M
+ η3L2σ2

H−1∑
h′=h

h′.

Using Jensen’s inequality on ur,h = 1
M

∑M
m=1 um,r,h = 1

M

∑M
m=1 ym,r,h we obtain

E [f(ur+1)] ≤
1

M

M∑
m=1

[
f(ym,r,h)−

η

4

H−1∑
h′=h

E
[
∥ḡm,r,h∥2

]]
+

Lη2σ2(H − h)

2M
+ L2η3σ2

H−1∑
h′=h

h′.

Summing up both sides as h varies from 0 to H − 1 we get

Hf(ur+1) ≤
1

M

∑
m,h<H

[
E [f(ym,r,h)]−

η

4

H−1∑
h′=h

E
[
∥ḡm,r,h∥2

]]
+

Lη2σ2H2

2M
+

η3L2σ2H3

2
.

Define Gr =
∑H−1

h=0 gr,h and Ḡr =
∑H−1

h=0 ḡr,h. The following lemma characterizes the evolution
of the momentum sequence z1, z2, . . ..
Lemma B.9 (Momentum sequence bound). For any r ≥ 0, the momentum sequence satisfies:

Er

[
∥zr+1 − x∗∥2

]
= ∥zr − x∗∥2 + γ2

rη
2Er

[∥∥Ḡr

∥∥2]+ γ2
rη

2σ2

M
− γrη

〈
zr − x∗,Er

[
Ḡr

]〉
.
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Proof. Expanding the square,

∥zr+1 − x∗∥2 = ∥zr − x∗∥2 + γ2
rη

2∥Gr∥2 − 2γrη ⟨zr − x∗, Gr⟩ .

Taking expectations and using Lemma B.3,

Er

[
∥zr+1 − x∗∥2

]
= ∥zr − x∗∥2 + γ2

rη
2Er

[∥∥Ḡr

∥∥2]+ γ2
rη

2σ2H

M
− γrη

〈
zr − x∗,Er

[
Ḡr

]〉
.

Proof of Theorem 3.6. Define the potential function

Φr = r(r + 1)H(f(ur)− f(x∗)) +
2

γη
∥ zr − x∗ ∥2 .

Using Lemma B.8 and Lemma B.9, we have

Er[Φr+1]− Φr

= (r + 1)(r + 2)H (Er[f(ur+1)]− f(x∗))− r(r + 1)H (f(ur)− f(x∗))

+
2

γη

[
Er[∥ zr+1 − x∗ ∥2]− ∥ zr − x∗ ∥2

]
≤ (r + 1)(r + 2)

 1

M

∑
m,h<H

[
(Er[f(ym,r,h)]− f(x∗))−

η

4

H−1∑
h′=h

Er[∥ ḡm,r,h′ ∥2]

]
+

Lη2σ2H2

2M
+

η3L2σ2H3

2


− r(r + 1)H (f(ur)− f(x∗))

+
γη(r + 1)2

2
Er[∥ Ḡr ∥2] + γησ2(r + 1)2H

2M
− 2(r + 1)⟨zr − x∗,Er[Ḡr]⟩

=
1

M

∑
m,h<H

[2(r + 1)(Er[f(ym,r,h)]− f(x∗)) + r(r + 1)(Er[f(ym,r,h)]− f(ur))− 2(r + 1)⟨zr − x∗,Er[ḡm,r,h]⟩]︸ ︷︷ ︸
=:A

− (r + 1)(r + 2)η

4M

∑
m,h<H

H−1∑
h′=h

Er[∥ ḡm,r,h′ ∥2] + γη(r + 1)2

2
Er[∥ Ḡr ∥2]︸ ︷︷ ︸

=:B

+
(r + 1)(r + 2)Lη2σ2H2

2M
+

(r + 1)(r + 2)η3L2σ2H3

2
+

γησ2(r + 1)2H

2M
.

Now, we bound the terms above separately. First, we bound A. Fix any m,h < H . We have, using
convexity of f ,

2(r + 1)(f(ym,r,h)− f(x∗)) + r(r + 1)(f(ym,r,h)− f(ur))− 2(r + 1)⟨zr − x∗, ḡm,r,h⟩
≤ 2(r + 1)⟨ym,r,h − x∗, ḡm,r,h⟩+ r(r + 1)⟨ym,r,h − ur, ḡm,r,h⟩ − 2(r + 1)⟨zr − x∗, ḡm,r,h⟩
= ⟨(r + 1)(r + 2)ym,r,h − r(r + 1)ur − 2(r + 1)zr, ḡm,r,h⟩
= (r + 1)(r + 2)⟨ym,r,h − xr, ḡm,r,h⟩

= −η(r + 1)(r + 2)
∑
h′<h

⟨gm,r,h′ , ḡm,r,h⟩.

Hence,

2(r + 1)(Er[f(ym,r,h)]− f(x∗)) + r(r + 1)(Er[f(ym,r,h)]− f(ur))− 2(r + 1)⟨zr − x∗,Er[ḡm,r,h]⟩

≤ −η(r + 1)(r + 2)
∑
h′<h

Er[⟨ḡm,r,h′ , ḡm,r,h⟩]
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Since A equals the sum of the above over all m,h < H and dividing by M , we get:

A =
−η(r + 1)(r + 2)

M

∑
m,h<H

∑
h′<h

Er[⟨ḡm,r,h′ , ḡm,r,h⟩]

=
−η(r + 1)(r + 2)

2M

∑
m

Er

[
∥
∑
h<H

ḡm,r,h ∥2 −
∑
h<H

∥ ḡm,r,h ∥2
]
,

where in the last line we used the algebraic identity that for any sequence of vectors v0, . . . , vH−1,∑
h<H

∑
s<h

⟨vs, vh⟩ =
1

2

[
∥
∑
h<H

vh ∥2 −
∑
h<H

∥ vh ∥2
]
.

Next, we have

B = − (r + 1)(r + 2)η

4M

∑
m,h<H

H−1∑
h′=h

Er[∥ ḡm,r,h′ ∥2] + γη(r + 1)2

2
Er[∥ Ḡr ∥2]

≤ − (r + 1)(r + 2)η

4M

∑
m

∑
h<H

Er[∥ ḡm,r,h ∥2] + γη(r + 1)2

2M

∑
m

Er

[
∥
∑
h<H

ḡm,r,h ∥2
]
.

Hence, we have

A+B ≤ −η(r + 1)(r + 2)

2M

∑
m

Er

[
∥
∑
h<H

ḡm,r,h ∥2 −
∑
h<H

∥ ḡm,r,h ∥2
]

− (r + 1)(r + 2)η

4M

∑
m

∑
h<H

Er[∥ ḡm,r,h ∥2] + γη(r + 1)2

2M

∑
m

Er

[
∥
∑
h<H

ḡm,r,h ∥2
]

=
η(r + 1)

2M

∑
m

Er

[
∥
∑
h<H

ḡm,r,h ∥2
]
[γ(r + 1)− (r + 2)]

+
η(r + 1)(r + 2)

4M

∑
m

∑
h<H

Er[∥ ḡm,r,h ∥2]
≤ 0

since γ ≤ 1 implies γ(r + 1)− (r + 2) = (r + 1)(γ − 1)− 1 ≤ −1 < 0, and the second term has a
positive coefficient with a negative sign.

So overall, we have

Er[Φr+1]− Φr ≤ (r + 1)(r + 2)Lη2σ2H2

2M
+

(r + 1)(r + 2)η3L2σ2H3

2
+

γησ2(r + 1)2H

2M

≤ R2Lη2σ2H2

2M
+

R2η3L2σ2H3

2
+

γησ2R2H

2M
.

Summing up from r = 0 to R− 1, and taking expectations, we get

E[ΦR]− Φ0 ≤ R3Lη2σ2H2

2M
+

R3η3L2σ2H3

2
+

γησ2R3H

2M
.

Thus,
R2H(E[f(uR)]− f(x∗))

≤ E[ΦR] ≤
2 ∥ x0 − x∗ ∥2

γη
+

R3Lη2σ2H2

2M
+

R3η3L2σ2H3

2
+

γησ2R3H

2M
,

which implies that

E[f(uR)]− f(x∗) ≤
2 ∥ x0 − x∗ ∥2

γηR2H
+

RLη2σ2H

2M
+

RL2η3σ2H2

2
+

γησ2R

2M
.

The proof of Corollary 3.7 is straightforward by substitution and is omitted for brevity.
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B.5 Data-dependent guarantees

Lemma B.10. Let f be a convex and L-smooth function. Suppose that we run SGD on f on M
parallel nodes as follows

ym,r,0 = xr,

ym,r,h+1 = ym,r,h − ηgm,r,h,

where m = 1, 2, . . . ,M , h = 0, 1, . . . ,H − 1, and g1,r,h, g2,r,h, . . . , gM,r,h are i.i.d. stochastic gra-
dient estimates such that Er,h [gm,r,h] = ∇f(ym,r,h), where Er,h [·] denotes expectation conditional
on all information up to and including round r and local step h, and ∥gm,r,h −∇f(ym,r,h)∥ ≤ σ.
Define further yr,h = 1

M

∑M
m=1 ym,r,h. Let Vr,h = 1

M

∑M
m=1 ∥ym,r,h − yr,h∥2. Then for all η ≤ 1

L
we have with probability at least 1− δ that for all h = 0, 1, . . . ,H

Vr,h ≤ 4104η2σ2(h+ 1)θ2h−1,δ,

where θh,δ = log 60 log 6h
δ .

Proof. Define

Λr,h+1 =
1

M2

M∑
m=1

M∑
s=1

∥ym,r,h+1 − ys,r,h+1∥2. (33)

We will bound Λr,h first, and then use it to bound Vr,h later. We have

ym,r,h+1 − ys,r,h+1 = ym,r,h − ηgm,r,h − [ys,r,h − ηgs,r,h]

= ym,r,h − η∇f(ym,r,h)− η [gm,r,h −∇f(ym,r,h)]− [ys,r,h − η∇f(ys,r,h)− η [gs,r,h −∇f(ys,r,h)]]

= [ym,r,h − η∇f(ym,r,h)− [ys,r,h − η∇f(ys,r,h)]]− η [(gm,r,h − gs,r,h)− [∇f(ym,r,h)−∇f(ys,r,h)]] .

Therefore

∥ym,r,h+1 − ys,r,h+1∥2 = ∥ Tη(ym,r,h)− Tη(ys,r,h) ∥2

+ η2 ∥ (gm,r,h − gs,r,h)− (∇f(ym,r,h)−∇f(ys,r,h)) ∥2

− 2η ⟨Tη(ym,r,h)− Tη(ys,r,h), (gm,r,h − gs,r,h)− (∇f(ym,r,h)−∇f(ys,r,h))⟩
(34)

We define ρm,r,h as the stochastic gradient noise on node m at round r, step h: ρm,r,h = gm,r,h −
∇f(ym,r,h). Then we can write Equation (34) as

∥ym,r,h+1 − ys,r,h+1∥2 = ∥ Tη(ym,r,h)− Tη(ys,r,h) ∥2 +η2 ∥ ρm,r,h − ρs,r,h ∥2

− 2η ⟨Tη(ym,r,h)− Tη(ys,r,h), ρm,r,h − ρs,r,h⟩ . (35)

We now use the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 to get

∥ym,r,h+1 − ys,r,h+1∥2 ≤∥ Tη(ym,r,h)− Tη(ys,r,h) ∥2 +2η2 ∥ ρm,r,h ∥2 +2η2∥ρs,r,h∥2

− 2η ⟨Tη(ym,r,h)− Tη(ys,r,h), ρm,r,h − ρs,r,h⟩ .

By Lemma B.1, we have

∥ym,r,h+1 − ys,r,h+1∥2 ≤ ∥ym,r,h − ys,r,h∥2 + 2η2∥ρm,r,h∥2 + 2η2∥ρs,r,h∥2

− 2η ⟨Tη(ym,r,h)− Tη(ys,r,h), ρm,r,h − ρs,r,h⟩ .

Now, we consider the inner product term, observe

⟨Tη(ym,r,h)− Tη(ys,r,h), ρm,r,h − ρs,r,h⟩
= ⟨Tη(ym,r,h)− Tη(yr,h) + Tη(yr,h)− Tη(ys,r,h), ρm,r,h − ρs,r,h⟩
= ⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩+ ⟨Tη(yr,h)− Tη(ys,r,h), ρm,r,h − ρs,r,h⟩
= ⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩+ ⟨−(Tη(ys,r,h)− Tη(yr,h)),−(ρs,r,h − ρm,r,h)⟩
= ⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩+ ⟨Tη(ys,r,h)− Tη(yr,h), ρs,r,h − ρm,r,h⟩ .
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Averaging with respect to s and m

1

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h) + Tη(yr,h)− Tη(ys,r,h), ρm,r,h − ρs,r,h⟩

=
1

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩

+
1

M2

M∑
m=1

M∑
s=1

⟨Tη(ys,r,h)− Tη(yr,h), ρs,r,h − ρm,r,h⟩

=
2

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩ . (36)

Averaging Equation (35) with respect to m and s and using Equation (36) we get

1

M2

M∑
m=1

M∑
s=1

∥ym,r,h+1 − ys,r,h+1∥2 ≤ 1

M2

M∑
m=1

M∑
s=1

∥ym,r,h − ys,r,h∥2 +
4η2

M

M∑
m=1

∥ρm,r,h∥2

− 2η

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩ .

Using Λr,h as defined in Equation (33) we obtain the recursion

Λr,h+1 ≤ Λr,h +
4η2

M

M∑
m=1

∥ρm,r,h∥2 −
2η

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩ .

Now observe that ∥ρm,r,h∥2 ≤ σ2 by assumption, therefore

Λr,h+1 ≤ Λr,h + 4η2σ2 − 2η

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩ .

Recursing the above inequality we get

Λr,h ≤ Λr,0 + 4η2σ2h− 2η

M2

h−1∑
k=0

M∑
m=1

M∑
s=1

⟨Tη(ym,r,k)− Tη(yr,k), ρm,r,k − ρs,r,k⟩

= 4η2σ2h− 2η

M2

h−1∑
k=0

M∑
m=1

M∑
s=1

⟨Tη(ym,r,k)− Tη(yr,k), ρm,r,k − ρs,r,k⟩ , (37)

where we used the fact that since ym,r,0 = ys,r,0 = xr for all m, s then Λr,0 = 0. Define

µr,h =
1

M

M∑
m=1

∥ym,r,h − yr,h∥ , µr,h = max
k≤h

µr,k, (38)

Xr,h =
1

µr,h

1

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩ . (39)

Let Er,h [·] denote the expectation conditional on all information up to and including round r and
local step h. Then,

Er,h [Xr,h] = 0.

Furthermore, we have by the triangle inequality, then our assumption on the noise followed by
Lemma B.1 that almost surely

|⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩| ≤ ∥Tη(ym,r,h)− Tη(yr,h)∥ ∥ρm,r,h − ρs,r,h∥
≤ ∥Tη(ym,r,h)− Tη(yr,h)∥ (∥ρm,r,h∥+ ∥ρs,r,h∥)
≤ 2σ ∥Tη(ym,r,h)− Tη(yr,h)∥
≤ 2σ ∥ym,r,h − yr,h∥ . (40)
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By the definition of Xr,h (Equation (39)), the triangle inequality, Equation (40), and the definition of
µr,h (Equation (38)) we have almost surely

|Xr,h| =
1

µr,h

∣∣∣∣∣ 1

M2

M∑
m=1

M∑
s=1

⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩

∣∣∣∣∣
≤ 1

µr,h

1

M2

M∑
m=1

M∑
s=1

|⟨Tη(ym,r,h)− Tη(yr,h), ρm,r,h − ρs,r,h⟩|

≤ 2σ

µr,h

1

M2

M∑
m=1

M∑
s=1

∥ym,r,h − yr,h∥

= 2σ
1
M

∑M
m=1 ∥ym,r,h − yr,h∥

µr,h

≤ 2σ.

Then by Lemma B.4 with yh = µr,h we have with probability at least 1− δ∣∣∣∣∣
h−1∑
k=0

µr,kXr,k

∣∣∣∣∣ ≤ 8µr,h−1

√√√√θh−1,δ

h−1∑
k=0

X2
r,k + 4σ2θ2h,δ

≤ 8µr,h−1

√
θh−1,δ4hσ2 + 4σ2θ2h,δ

≤ 16µr,h−1θh−1,δσ
√
h+ 1. (41)

Observe that

h−1∑
k=0

µr,kXr,k =
1

M2

h−1∑
k=0

M∑
m=1

M∑
s=1

⟨Tη(ym,r,k)− Tη(yr,k), ρm,r,k − ρs,r,k⟩ .

Using this and Equation (41) to upper bound the right hand side of Equation (37) we obtain

Λr,h ≤ 4η2σ2h+ 32ηµr,h−1θh−1,δσ
√
h+ 1

≤ 4η2σ2h+ 2α(32ηθh−1,δσ
√
h+ 1)2 +

µ2
r,h−1

2α

= η2σ2(h+ 1)θ2h−1,δ(4 + 2048α) +
µ2
r,h−1

2α
, (42)

where we used that 2ab ≤ αa2 + 1
αb

2 in the second step. Let Λr,h = maxk≤h Λr,k. Observe that the
right hand side of Equation (42) is increasing in h, therefore

Λr,h ≤ η2σ2(h+ 1)θ2h−1,δ(4 + 2048α) +
µ2
r,h−1

2α
. (43)

Observe that by the triangle inequality followed by Lemma B.2

µr,h =
1

M

M∑
m=1

∥ym,r,h − yr,h∥

≤ 1

M2

M∑
m=1

M∑
s=1

∥ym,r,h − ys,r,h∥

≤

√√√√ 1

M2

M∑
m=1

M∑
s=1

∥ym,r,h − ys,r,h∥2

=
√
Λr,h.
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It follows that µr,h ≤
√
Λr,h. Using this in Equation (43) we get

Λr,h ≤ η2σ2(h+ 1)θ2h−1,δ(4 + 2048α) +
Λr,h−1

2α

≤ η2σ2(h+ 1)θ2h−1,δ(4 + 2048α) +
Λr,h

2α
.

Rearranging we get (
1− 1

2α

)
Λr,h ≤ η2σ2(h+ 1)θ2h−1,δ(4 + 2048α)

Put α = 1, then

Λr,h ≤ 4104η2σ2(h+ 1)θ2h−1,δ. (44)

Now that we have our bound on Λr,h, we can use it to bound Vr,h as follows

Vr,h =
1

M

M∑
m=1

∥ym,r,h − yr,h∥2. (45)

Observe that by Jensen’s inequality

∥ym,r,h − yr,h∥2 =

∥∥∥∥∥ym,r,h − 1

M

M∑
s=1

ys,r,h

∥∥∥∥∥
2

=

∥∥∥∥ 1

M
(ym,r,h − ys,r,h)

∥∥∥∥2
≤ 1

M

M∑
s=1

∥ym,r,h − ys,r,h∥2. (46)

Combining Equations (45) and (46) we have

Vr,h ≤ 1

M2

M∑
m=1

M∑
s=1

∥ym,r,h − ys,r,h∥2 = Λr,h.

Combining this with Equation (44) yields the lemma’s statement.

Lemma B.11. (Per-round regret). In Algorithm 1, the iterates in a single communication round
satisfy

∥xr+1 − x∗∥2 ≤ ∥xr − x∗∥2 + γ2η2
H−1∑
h=0

∥gr,h∥2 + 2γη |1− γ| ζ2
H−1∑
h=0

∥gr,h∥

+
γζ3H

α
+

αγη2

2

1

M

M∑
m=1

H−1∑
h=0

∥gm,r,h∥2 −
2γη

M

H−1∑
h=0

M∑
m=1

⟨ym,r,h − x∗, gm,r,h⟩ ,

where α > 0 is arbitrary and

ζ2 = max
h

∥yr,h − yr,0∥ , ζ3 = max
h

1

M

M∑
m=1

∥ym,r,h − yr,h∥2.

Proof. Define the virtual sequences

gr,h =
1

M

M∑
m=1

gm,r,h, xr,0 = xr, xr,h+1 = xr,h − γηgr,h.

We have

∥xr,h+1 − x∗∥2 = ∥xr,h − x∗∥2 + γ2η2∥gr,h∥2 − 2γη ⟨xr,h − x∗, gr,h⟩ (47)
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The inner product term can be decomposed as

−⟨xr,h − x∗, gr,h⟩ = −⟨xr,h − yr,h, gr,h⟩ − ⟨yr,h − x∗, gr,h⟩ . (48)

Observe that xr,h = xr − γη
∑h−1

s=0 gr,s and yr,h = xr − η
∑h−1

s=0 gr,s. Therefore,

∥xr,h − yr,h∥ =

∥∥∥∥∥(γ − 1)η

h−1∑
s=0

gr,s

∥∥∥∥∥
= |γ − 1| ∥yr,h − yr,0∥
≤ |γ − 1| ζ2,

where ζ2 = maxh ∥yr,h − yr,0∥. Using this in Equation (48)

−⟨xr,h − yr,h, gr,h⟩ ≤ ∥xr,h − yr,h∥ ∥gr,h∥ ≤ |1− γ| ζ2 ∥gr,h∥ . (49)

Plugging Equation (49) into Equation (48) we get

−⟨xr,h − x∗, gr,h⟩ ≤ |1− γ| ζ2 ∥gr,h∥ − ⟨yr,h − x∗, gr,h⟩

= |1− γ| ζ2 ∥gr,h∥ −
1

M

M∑
m=1

⟨yr,h − x∗, gm,r,h⟩

= |1− γ| ζ2 ∥gr,h∥ −
1

M

M∑
m=1

⟨yr,h − ym,r,h, gm,r,h⟩ −
1

M

M∑
m=1

⟨ym,r,h − x∗, gm,r,h⟩ . (50)

For the second term in Equation (50) we have

− 1

M

M∑
m=1

⟨yr,h − ym,r,h, gm,r,h⟩ ≤
1

M

M∑
m=1

∥yr,h − ym,r,h∥ ∥gm,r,h∥

≤ 1

M

M∑
m=1

[
∥yr,h − ym,r,h∥2

2αη
+

αη

2
∥gm,r,h∥2

]

≤ ζ3
2αη

+
αη

2

1

M

M∑
m=1

∥gm,r,h∥2. (51)

Plugging Equation (51) into Equation (50) we get

−⟨xr,h − x∗, gr,h⟩ ≤ |1− γ| ζ2 ∥gr,h∥+
ζ3
2αη

+
αη

2

1

M

M∑
m=1

∥gm,r,h∥2

− 1

M

M∑
m=1

⟨ym,r,h − x∗, gm,r,h⟩ .

(52)

Plug Equation (52) back into Equation (47) to get

∥xr,h+1 − x∗∥2 ≤ ∥xr,h − x∗∥2 + γ2η2∥gr,h∥2 + 2γη |1− γ| ζ2 ∥gr,h∥

+
γζ3
α

+
αγη2

M

M∑
m=1

∥gm,r,h∥2 −
2γη

M

M∑
m=1

⟨ym,r,h − x∗, gm,r,h⟩ .

Recursing we get

∥xr+1 − x∗∥2 ≤ ∥xr − x∗∥2 + γ2η2
H−1∑
h=0

∥gr,h∥2 + 2γη |1− γ| ζ2
H−1∑
h=0

∥gr,h∥

+
γζ3H

α
+

αγη2

2

1

M

M∑
m=1

H−1∑
h=0

∥gm,r,h∥2 −
2γη

M

H−1∑
h=0

M∑
m=1

⟨ym,r,h − x∗, gm,r,h⟩ .
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Proof of Theorem 3.8. Starting with the per-round recursion lemma, we have

∥xr+1 − x∗∥2 ≤ ∥xr − x∗∥2 + γ2η2
H−1∑
h=0

∥gr,h∥2 + 2γη |1− γ| ζ2
H−1∑
h=0

∥gr,h∥

+
γζ3H

α
+

αγη2

2

1

M

M∑
m=1

H−1∑
h=0

∥gm,r,h∥2 −
2γη

M

H−1∑
h=0

M∑
m=1

⟨ym,r,h − x∗, gm,r,h⟩ .

Observe that

∥yr,h − yr,0∥ = η

∥∥∥∥∥
h−1∑
k=0

gr,k

∥∥∥∥∥
≤ η

h−1∑
k=0

∥gr,k∥

≤ η

H−1∑
k=0

∥gr,k∥ . (53)

Since this holds for any h, we have that ζ2 ≤ η
∑H−1

k=0 ∥ gr,k ∥, where ζ2 is defined in Lemma B.11.
Moreover, by Lemma B.10 we have that with probability 1− δ and an application of the union bound
that for all r, h

1

M

M∑
m=1

∥ ym,r,h − yr,h ∥2≤ 4104ιη2σ2H, (54)

where ι = 2 · log 60 log 6RH
δ and we used that H +1 ≤ 2H . Since this bound holds for all h, we have

ζ3 = max
h

1

M

M∑
m=1

∥ ym,r,h − yr,h ∥2≤ 4104ιη2σ2H.

Therefore by Equation (53) and Lemma B.10

∥xr+1 − x∗∥2 ≤ ∥xr − x∗∥2 + γ2η2
H−1∑
h=0

∥gr,h∥2 + 2γ |1− γ| η2
(

H−1∑
h=0

∥gr,h∥

)2

+
4104γη2σ2H2

α
ι+

αγη2

2

1

M

M∑
m=1

H−1∑
h=0

∥gm,r,h∥2 −
2γη

M

H−1∑
h=0

M∑
m=1

⟨ym,r,h − x∗, gm,r,h⟩ .

Let ξm,r,h = gm,r,h −∇f(ym,r,h). Then,

∥xr+1 − x∗∥2 ≤ ∥xr − x∗∥2 + γ2η2
H−1∑
h=0

∥gr,h∥2 + 2γ |1− γ| η2
(

H−1∑
h=0

∥gr,h∥

)2

+
4104γη2σ2H2

α
ι

+
αγη2

2

1

M

M∑
m=1

H−1∑
h=0

∥gm,r,h∥2 −
2γη

M

H−1∑
h=0

M∑
m=1

⟨ym,r,h − x∗,∇f(ym,r,h)⟩

− 2γη

M

H−1∑
h=0

M∑
m=1

⟨ym,r,h − x∗, ξm,r,h⟩ ,

(55)

where ξm,r,h = gm,r,h −∇f(ym,r,h). Define

νr,h =
1

M

M∑
m=1

∥ym,r,h − x∗∥ , νr,h = max
p≤r,s≤h

νp,s.
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Let

Xr,h =
1

ν̄r,h

1

M

M∑
m=1

⟨ym,r,h − x∗, ξm,r,h⟩

Let Fr,h−1 denote the sigma algebra generated by all randomness up to and including step r, h− 1.
Note that

EFr,h−1
[Xr,h] =

1

ν̄r,h

1

M

M∑
m=1

EFr,h
[⟨ym,r,h − x∗, ξm,r,h⟩]

=
1

ν̄r,h

1

M

M∑
m=1

〈
ym,r,h − x∗,EFr,h

[ξm,r,h]
〉

= 0,

where we used that νr,h and ym,r,h are both Fr,h−1-measurable and that the noise has mean zero.
The edge cases Xr,0 are handled similarly. Moreover, using the assumption that ∥ξm,r,h∥ ≤ σ almost
surely and the definition of ν̄r,h,

∥Xr,h∥ =

∥∥∥∥∥ 1

ν̄r,h

1

M

M∑
m=1

⟨ym,r,h − x∗, ξm,r,h⟩

∥∥∥∥∥
≤ 1

M

M∑
m=1

∥ym,r,h − x∗∥ ∥ξm,r,h∥
ν̄r,h

≤ 1

M

M∑
m=1

(1 · σ)

= σ.

Applying Lemma B.4 on Xr,h with yr,h = ν̄r,h, Cr,h = σ, X̂r,h = 0 we have∣∣∣∣∣ 1M
R−1∑
r=0

H−1∑
h=0

M∑
m=1

⟨ym,r,h − x∗, ξm,r,h⟩

∣∣∣∣∣ ≤ 16νR,Hισ
√
RH, (56)

where ι is defined as before. Using Equation (56) in Equation (55)
2γη

M

∑
m,r,h

⟨ym,r,h − x∗,∇f(ym,r,h)⟩ ≤ ∥x0 − x∗∥2 − ∥xR − x∗∥2 + γ2η2
∑
r,h

∥gr,h∥2

+ 2γ |1− γ| η2
R−1∑
r=0

(
H−1∑
h=0

∥gr,h∥

)2

+R · 4104γη
2σ2H2

α
ι

+
αγη2

2

1

M

∑
m,r,h

∥gm,r,h∥2 + 2γη
[
16νR,Hισ

√
RH

]
.

(57)

Let

Ω = γ2η2
∑
r,h

∥gr,h∥2 + 2γ |1− γ| η2
R−1∑
r=0

(
H−1∑
h=0

∥gr,h∥

)2

+R · 4104γη
2σ2H2

α
ι

+
αγη2

2

1

M

∑
m,r,h

∥gm,r,h∥2
(58)

Then by convexity and Equation (57) we get

∥xR − x∗∥2 ≤ ∥x0 − x∗∥2 +Ω+ 2γη
[
16νR,Hισ

√
RH

]
− 2γη

M

∑
m,r,h

⟨ym,r,h − x∗,∇f(ym,r,h)⟩

≤ ∥x0 − x∗∥2 +Ω+ 2γη
[
16νR,Hισ

√
RH

]
, (59)
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where in the second line we used that x∗ is the minimizer of f and therefore
⟨ym,r,h − x∗,∇f(ym,r,h)⟩ ≥ 0 by convexity. It is not difficult to see that this guarantee in fact
applies not just on ∥xR − x∗∥2 but on any xr. Let dr = ∥xr − x∗∥ and dr = maxr′≤r dr′ . Observe

νr,h =
1

M

M∑
m=1

∥ym,r,h − x∗∥ ≤ 1

M

M∑
m=1

[∥ym,r,h − ym,r,0∥+ ∥xr − x∗∥]

≤

[
η

M

M∑
m=1

h−1∑
k=0

∥gm,r,k∥

]
+ ∥xr − x∗∥

≤

[
η

M

M∑
m=1

H−1∑
k=0

∥gm,r,k∥

]
+ ∥xr − x∗∥ . (60)

Using Equation (60) in Equation (59) we get

d
2

R ≤ d20 +Ω+ 32γηισ
√
RHνR,H

≤ d20 +Ω+ 32γηισ
√
RH

 η

M

∑
m,h

∥gm,r,h∥

+ 32γηισ
√
RHdR

≤ d20 +Ω+ 2
(
32γηισ

√
RH

)2
+ η2

 1

M

∑
m,h

∥gm,r,h∥

2

+
d
2

R

2
.

Therefore

d
2

R ≤ 2d20 + 2Ω + 4096γ2η2ι2σ2RH + 2η2

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

. (61)

By the triangle inequality applied twice and the definition of d̄R,

∥ym,r,s − x∗∥ ≤ ∥ym,r,0 − ym,r,s∥+ ∥ym,r,0 − x∗∥

= η

∥∥∥∥∥
s−1∑
h=0

gm,r,h

∥∥∥∥∥+ ∥ym,r,0 − x∗∥

≤ η

s−1∑
h=0

∥gm,r,h∥+ ∥ym,r,0 − x∗∥

≤ η

s−1∑
h=0

∥gm,r,h∥+ d̄R

≤ η

H−1∑
h=0

∥gm,r,h∥+ d̄R.

Therefore

1

M

M∑
m=1

∥ym,r,s − x∗∥ ≤ η

(
1

M

M∑
m=1

H−1∑
h=0

∥gm,r,h∥

)
+ d̄R
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We now use the inequality (a+ b)2 ≤ 2a2 + 2b2 to get

ν2r,s =

(
1

M

M∑
m=1

∥ym,r,s − x∗∥

)2

≤ 2

(
η

(
1

M

M∑
m=1

H−1∑
h=0

∥gm,r,h∥

))2

+ 2d̄2R

= 2η2

 1

M

∑
m,h

∥gm,r,h∥

2

+ 2d
2

R.

Finally, using our bound on d̄2R given by equation (61)

ν2r,s ≤ 4d20 + 4Ω + 8192γ2η2ι2σ2RH + 6η2

 1

M

∑
m,h

∥gm,r,h∥

2

,

Therefore

ν̄2R,H = max
r,s

ν2r,s

≤ 4d20 + 4Ω + 8192γ2η2ι2σ2RH + 6η2

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

.

By Equations (57) and (58) and the last equation,

2γη

M

∑
m,r,h

⟨ym,r,h − x∗,∇f(ym,r,h)⟩ ≤ ∥x0 − x∗∥2 − ∥xR − x∗∥2 +Ω+ 2γη
[
16νR,Hισ

√
RH

]

≤ d20 − d2R +Ω+
(32γηισ

√
RH)2

2
+ 4

[
d20 +Ω+ 2048γ2η2ι2σ2RH

]
+ 6η2R

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

= d20 − d2R +Ω+
(32γηισ

√
RH)2

2
+ 4

[
d20 +Ω+ 2048γ2η2ι2σ2RH

]
+ 6η2R

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

≤ d20 − d2R + 6Ω + 8704γ2η2ι2σ2RH + 4d20 + 6η2R

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

. (62)

Dropping the −d2R term, we get

2γη

M

∑
m,r,h

⟨ym,r,h − x∗,∇f(ym,r,h)⟩ ≤ 5d20 + 6Ω + 8704γ2η2ι2σ2RH + 6η2R

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

≤ 5d20 + 6γ2η2
∑
r,h

∥gr,h∥2 + 12γ |1− γ| η2
R−1∑
r=0

(
H−1∑
h=0

∥gr,h∥

)2

+RH
24624γη2σ2Hι

α

+
3αγη2

M

∑
m,r,h

∥gm,r,h∥2 + 8704γ2η2ι2σ2RH + 6η2R

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

.
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Dividing both sides by 2γηRH gives

1

MRH

∑
m,r,h

⟨ym,r,h − x∗,∇f(ym,r,h)⟩ ≤
5d20

2γηRH
+

3γη

RH

∑
r,h

∥gr,h∥2

+
6 |1− γ| η

RH

R−1∑
r=0

(
H−1∑
h=0

∥gr,h∥

)2

+
24624ησ2Hι

α

+
3αη

MRH

∑
m,r,h

∥gm,r,h∥2 + 8704γηι2σ2 +
6η

γH

 1

M
max

r

∑
m,h

∥gm,r,h∥

2

.

(63)

Observe that by optimizing over α we have

24624ησ2Hι

α
+

3αη

MRH

∑
m,r,h

∥gm,r,h∥2 ≤ 2

√√√√√(24624ησ2Hι)

 3η

MRH

∑
m,r,h

∥gm,r,h∥2


≤ 544ησι

√
1

MR

∑
m,r,h

∥gm,r,h∥2.

Using this in Equation (63) followed by convexity completes the proof.
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