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Abstract

Large language models (LLMs) have demonstrated remarkable capabilities across
various tasks. However, their ability to generate human-like text has raised con-
cerns about potential misuse. This underscores the need for reliable and effective
methods to detect LLM-generated text. In this paper, we propose IRM, a novel
zero-shot approach that leverages Implicit Reward Models for LLM-generated
text detection. Such implicit reward models can be derived from publicly avail-
able instruction-tuned and base models. Previous reward-based method relies
on preference construction and task-specific fine-tuning. In comparison, IRM
requires neither preference collection nor additional training. We evaluate IRM
on the DetectRL benchmark and demonstrate that IRM can achieve superior de-
tection performance, outperforms existing zero-shot and supervised methods in
LLM-generated text detection.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks
[1, 2]. In particular, their ability to follow instructions and generate human-like content has made
them essential tools in various real-world applications. However, this trend raises concerns about the
misuse of LLMs, such as generating fake news [3] and plagiarism [4]. Since LLM-generated text can
be indistinguishable from human-written text [5], it is necessary to develop effective methods for
detecting such content.

Detection methods can generally be categorized into two paradigms: supervised and zero-shot
approaches. Supervised methods typically train a classifier using both human-written and LLM-
generated texts. However, such classifiers often fail to generalize well to texts generated by unseen
LLMs [6, 7]. In contrast, zero-shot methods provide an alternative with more generalization ability
and without the need for training [8]. These methods leverage various LLMs and exploit statistical
classification metrics to assess how likely a text is to be generated by an LLM, such as the average log
likelihood or the log-rank of each tokens within the detected text [9, 10, 5]. However, in real-world
the source LLM of the detected text is often unknown, thus these zero-shot methods have to rely on a
proxy LLM and suffer from a performance drop. This highlights the need to identify model-agnostic
metrics for detection.

ReMoDetect [11] has recently proposed using the reward score—the output of a reward model
that measures the extent to which a text aligns with human values—as a detection metric. The
rationale is that powerful LLMs are typically trained to obtain high reward score, making this signal
potentially model-agnostic. Specifically, ReMoDetect constructs a preference dataset from human
and ChatGPT responses to the same prompt, and fine-tunes a pre-trained reward model for adaptation
to the detection task. However, this fine-tuning inherits the drawbacks of supervised methods. As
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Figure 1: Distributions of reward scores for human-written and LLM-generated texts from the multi-
LLM sub-task of the DetectRL benchmark. The source LLMs include GPT-3.5-turbo, PaLM-2-Bison,
Claude-Instant, and LLaMA-2-70B. (a) shows distributions under RM-deberta-v3-large-v2, which is
a pre-trained reward model. (b) shows distributions under ReMoDetect, which is initialized from
RM-deberta-v3-large-v2 and fine-tuned on task-specific preference dataset. (c) illustrates distributions
under an implicit reward model derived from Llama-3.2-1B family without additional training.

shown in Figure 1 (b), when ReMoDetect is evaluated on texts generated by unseen LLMs, there
remains substantial overlap between the two score distributions of human-written and LLM-generated
texts, suggesting the limited generalization ability.

In this paper, we propose IRM, a novel zero-shot method that leverages implicit reward models for
LLM-generated text detection. Such implicit reward models can be derived from publicly available
instruction-tuned and base models. Given a detected text y, an instruction-tuned model πθ and a base
model πref, the implicit reward score of y is formulated as r(y) = log πθ(y)

πref(y)
. This score serves as the

detection metric in our method, where a higher score indicates that the input text is more likely to be
generated by LLMs. This formulation is built on Direct Preference Optimization (DPO) [12], which
provides theoretical support for parameterizing implicit reward models. Compared to ReMoDetect,
IRM requires neither preference collection nor additional training. As shown in Figure 1 (c), the two
distributions under IRM are more separable than those in (b), suggesting that our zero-shot metric
transfers well to unseen LLMs.

We evaluate IRM on the DetectRL benchmark [13] and demonstrate that IRM is an effective zero-shot
method for LLM-generated text detection. Notably, with Llama-3.2-1B family, IRM achieves an aver-
age score of 91.77%, surpassing previous zero-shot baselines such as Log-Likelihood (77.46%) and
Log-Rank (77.42%), as well as Binoculars (87.67%), a method which also utilizes two LLMs during
detection. Furthermore, IRM even outperforms the supervised reward-based method, ReMoDetect
(85.86%). These results underscore IRM’s potential as a effective zero-shot detector for real-world
applications.

2 Preliminaries

The mainstream alignment approach for LLMs is Reinforcement Learning from Human Feedback
(RLHF) [14, 15], which relies on a reward model as a proxy for human preferences. In this section,
we first introduce the concept of reward modeling, followed by an overview of the RLHF process.

Reward modeling. Typically, the reward model is initialized from a pre-trained language model
with a additional linear head that outputs a scalar value. It is trained on a preference dataset, where
human annotators compare multiple responses to the same prompt and rank them based on quality
such as helpfulness or harmlessness. Formally, the preference is modeled using the Bradley-Terry
(BT) model [16]:

p(y1 ≻ y2|x) =
exp(r(x, y1))

exp(r(x, y1)) + exp(r(x, y2))
, (1)
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Figure 2: IRM leverages open-source instruction-tuned and base models to construct an implicit
reward model. The resulting reward score is used as a detection metric, where a higher score indicates
a higher probability that y is generated by an LLM.

where r denotes the reward model, x is the prompt, and y1, y2 are two candidate responses. Given a
prompt–response pair (x, y), the reward model outputs a scalar score r(x, y), where a higher score
indicates stronger alignment with human values.

RLHF. During RLHF, the learned reward model is used to provide feedback for optimizing the
language model. The LLM is framed as a policy model πθ, which generates responses conditioned on
input prompts. The policy is optimized to maximize its expected reward while remaining close to a
reference model πref, typically the original base LLM prior to alignment. This leads to the following
optimization objective:

max
πθ

Ex∼D,y∼πθ(y|x)[r(x, y)]− βDKL[πθ(y|x)∥πref(y|x)], (2)

where x denotes the prompt, y the response, r the reward model, and β a hyper-parameter controlling
the strength of KL regularization.

3 Method

We introduce IRM, a zero-shot detection method for LLM-generated text detection. We formalize the
approach and show how it can be instantiated using publicly available instruction-tuned and base
models.

Implicit reward model for detection. Direct Preference Optimization (DPO) [12] offers a closed-
form solution to the RLHF objective in Eq. 2:

π∗
θ(y|x) =

1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
, (3)

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x, y)

)
is the partition function that normalizes the distribution.

By rearranging this equation, we can express the reward as a function of the policy and reference
models, yielding an implicit reward model:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x). (4)

For simplicity, we let x = ∅ and y be the detected text. In this case, the term β logZ(x) becomes a
constant across all detected texts. Importantly, applying a linear transformation to the reward scores
does not affect commonly used classification metrics such as AUROC and F1, as long as the threshold
is adjusted accordingly. As a result, we define the detection metric as:

r(y) = log
πθ(y)

πref(y)
=

L∑
i=1

log
πθ(yi|y<i)

πref(yi|y<i)
, (5)

where L is the length of y and yi denotes the i-th token. DPO also provides a theoretical justification
for the effectiveness of the implicit reward model. As shown in Eq. 4, given a reward model r(x, y)
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and a reference model πref, one can analytically derive the optimal policy model π∗
θ under the RLHF

objective. Conversely, given a learned policy model πθ and a reference model πref, one can recover
a corresponding reward model such that πθ is optimal with respect to that reward under the same
reference model. This bidirectional relationship ensures that the implicit reward model is consistent
with the behavior of the policy model relative to the reference model. Therefore, if the policy model
aligns well with human preferences, the derived implicit reward model is also expected to exhibit
strong performance in tasks such as LLM-generated text detection.

Constructing IRM using instruction-tuned and base models. Typically, publicly available LLMs
release both instruction-tuned model and its corresponding base model. We leverage the instruction-
tuned model as the policy model and the base model as the reference model. In this way, without
any fine-tuning, we can obtain an implicit reward model for LLM-generated text detection. Given a
detected text y, its reward score can be computed via Eq. 5. Moreover, the same formulation naturally
extends to LLMs trained via iterative alignment. Suppose instruction model πT is obtained from
the base model π0 through T rounds of optimization: π0 → π1 → ... → πT−1 → πT . While the
intermediate models π1, ..., πT−1 are typically not publicly released, we can still conceptually define
the implicit reward at each step i by applying Eq. 4:

ri(x, y) = β log
πi+1(y|x)
πi(y|x)

+ β logZi(x). (6)

By summing the rewards over all iterations, we obtain the total reward:
T∑

i=1

ri(x, y) = β log
πT (y|x)
π0(y|x)

+ β

T∑
i=1

Zi(x). (7)

Since x = ∅, the term β
∑T

i=1 Zi(x) becomes a constant. As linear transformation does not affect
the ranking of detected texts, the overall reward is determined by log πT (y)

π0(y)
. Therefore, given only the

instruction-tuned and base models, we can construct an implicit reward model for detection without
requiring access to intermediate checkpoints.

4 Experiments

4.1 Settings

Datasets. We conduct evaluations on a large benchmark, DetectRL [13], which covers various
domains, multiple LLMs and diverse attacks scenarios in real-world settings. We follow the test
setting of DetectRL in the evaluation of detection methods. The statistics of the benchmark are
reported in Table 6 in Appendix A.1. Notably, the texts in DetectRL are mostly complete, unlike
previous works where the texts are often truncated to prefixes of complete texts. This allows for
a more realistic evaluation of detection methods, as texts are typically not truncated in real-world
scenarios.

Models. We employ Gemma-2 [17], Llama-3.2, Gemma [18], Qwen-2 [19], and Qwen-2.5 [20]
model families for implementation. These model families provide both publicly available base models
and instruction-tuned models, which are essential for deriving the implicit reward model. Within
these families, we focus on lightweight LLMs, such as Gemma-2-2B-it, and Llama-3.2-1B-Instruct,
to ensure computational efficiency while maintaining competitive performance.

Baselines. We compare IRM with recent zero-shot methods, including Binoculars [21] and Lastde
[22], as well as typical zero-shot baselines such as Log-Likelihood [9, 10], Rank [5], Log-Rank [5],
LRR [23] and Fast-DetectGPT [24]. Since we employs reward score as detection metrics, we also
include ReMoDetect [11] and its initialization, RM-Deberta-v3-large-v2, as well as reward models
from RewardBench [25], such as GRM [26] as baselines. For practical consideration, we exclude
methods that require additional LLMs to perturb the original text for metric computation, as the extra
cost is too high in real-world settings.

Metrics. Follow the settings of DetectRL, we report AUROC and F1 Score as the main evaluation
metrics. AUROC is widely used for assessing zero-shot detection methods and F1 Score provides a
comprehensive evaluation of detector capabilities by balancing the Precision and Recall.
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Table 1: The overall performance of zero-shot detection methods on the DetectRL benchmark,
covering robustness and generalization tasks, which include various domains, LLMs and attacks
scenarios. It also considers the effects of text length and real-world human writing characteristics.
The reported average score is computed across all tasks. For each task, the best results are marked
in bold and the second best results are marked by underline. More detailed detection results are
available in Table 8, 9, 10 and 11 in Appendix A.2.

Tasks Settings→ Multi- Multi- Multi- Generalization Length Human
Avg.Domain LLM Attack Domain LLM Attack Train Test Writing

Methods ↓ AUROC F1 AUROC F1 AUROC F1 F1 F1 F1 F1 F1 AUROC F1

Gemma-2-2B-it
Log-Likelihood 74.75 68.75 74.65 62.81 77.92 70.65 65.76 63.07 64.79 69.78 69.70 92.78 87.54 72.53
Rank 53.56 45.45 53.45 45.64 57.62 46.14 44.08 43.78 36.86 44.92 44.93 79.05 71.77 51.33
Log-Rank 75.78 69.81 75.62 65.36 78.75 71.37 66.79 64.85 66.30 69.50 68.79 93.02 88.05 73.38
LRR 77.43 70.81 76.81 66.62 79.28 71.32 68.20 66.05 68.30 65.75 63.44 91.41 85.75 73.17
Fast-DetectGPT 70.26 63.62 69.51 59.85 73.30 66.02 62.42 59.94 62.63 56.60 61.66 89.56 83.61 67.61
Lastde 60.62 55.83 59.70 54.91 66.11 56.31 54.45 53.61 45.29 47.25 53.76 90.64 85.63 60.32

Gemma-2-2B family (Gemma-2-2B-it+Gemma-2-2B)
Binoculars 80.85 74.57 80.43 71.24 83.00 76.58 73.11 70.95 73.64 73.03 71.71 93.29 89.07 77.81
IRM 84.65 77.70 86.56 77.43 88.38 79.02 76.97 76.62 78.64 60.30 58.15 81.19 76.04 77.05

Llama-3.2-1B-Instruct
Log-Likelihood 79.40 73.49 79.67 71.34 82.65 76.31 72.29 70.84 73.32 72.87 70.98 94.02 89.85 77.46
Rank 59.65 53.70 59.50 50.84 63.60 52.35 51.02 49.52 41.91 51.20 49.12 84.37 78.20 57.31
Log-Rank 79.64 73.41 79.78 71.50 82.55 75.37 72.05 70.54 73.32 73.08 71.46 93.94 89.81 77.42
LRR 77.99 70.66 77.79 69.33 79.56 70.65 69.25 68.28 68.38 69.97 68.05 91.62 86.72 74.48
Fast-DetectGPT 68.04 58.44 68.62 58.72 69.58 62.47 56.76 58.40 60.90 45.94 55.84 60.83 53.12 59.82
Lastde 65.11 56.03 59.70 54.91 69.59 69.42 53.40 53.14 59.47 41.59 49.79 87.52 82.00 61.67

Llama-3.2-1B family (Llama-3.2-1B-Instruct+Llama-3.2-1B)
Binoculars 92.48 85.63 92.08 86.67 93.04 87.02 85.07 83.18 85.60 80.62 81.88 94.63 91.82 87.67
IRM 97.97 93.75 97.24 92.12 97.19 92.01 90.23 90.72 90.87 82.34 83.34 94.48 90.78 91.77

Implementation Details. All experiments are conducted on two NVIDIA RTX 4090 GPUs (24GB
each). All model and datasets used in this paper are fully detailed and referenced in Table 7 in
Appendix A.1.

4.2 Main Results

4.2.1 Zero-shot LLM-generated Text Detection

In Table 1, we present the overall performance of IRM and other zero-shot detection methods on
the DetectRL benchmark. Detailed results for each sub-task are reported in Table 8, 9, 10 and 11 in
Appendix A.2. With the Llama-3.2-1B family, IRM achieves the highest average score, improving
the best result by 4.1%, from 87.67% to 91.77%. Using the Gemma-2-2B family, IRM also attains a
competitive average score of 77.05%, slightly below the best result of 77.81%. All methods, except
Fast-DetectGPT, perform better when using the Llama-3.2-1B family than with the Gemma-2-2B
family, indicating that Llama-3.2-1B family is more suitable for these zero-shot detection approaches.

4.2.2 Reward-based LLM-generated Text Detection

In Table 2, we present the overall performance of IRM and other reward models on the DetectRL
benchmark. With the Llama-3.2-1B family, IRM achieves the highest average score, improving
the best result by 5.8%, from 85.86% to 91.77%. Notably, IRM outperforms ReMoDetect, a
supervised reward model that fine-tunes a pre-trained reward model (RM-deberta-v3-large-v2)
using task-specific data. In addition, IRM also outperforms competitive reward models from the
RewardBench benchmark, such as GRM-Llama3.2-3B and GRM-gemma2-2B, when evaluated on
DetectRL benchmark. This suggests a potential mismatch between reward models optimized for
preference classification and the requirements of LLM-generated text detection, indicating that
directly leveraging such models for detection may be suboptimal.

4.3 Analysis

Robustness to domains. As shown in Table 8, IRM outperforms other detection methods on 6
out of 8 evaluation metrics and achieves the best average performance across all domains. While its
performance varies slightly across domains—for instance, achieving particularly strong results on
the arXiv dataset and relatively lower scores on the Review dataset—it maintains overall superiority
throughout. For example, using the Llama-3.2-1B family, IRM achieves an AUROC of 98.56% and
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Table 2: The overall performance of reward-based detection methods on the DetectRL benchmark,
covering robustness and generalization tasks, which include various domains, LLMs and attacks
scenarios. It also considers the effects of text length and real-world human writing characteristics.
The reported average score is computed across all tasks. For each task, the best results are marked
in bold and the second best results are marked by underline. More detailed detection results are
available in Table 8, 9, 10 and 11 in Appendix A.2.

Tasks Settings→ Multi- Multi- Multi- Generalization Length Human
Avg.Domain LLM Attack Domain LLM Attack Train Test Writing

Reward Models ↓ AUROC F1 AUROC F1 AUROC F1 F1 F1 F1 F1 F1 AUROC F1

ReMoDetect 91.99 85.95 90.41 83.17 91.22 82.09 79.08 78.36 80.22 88.53 85.87 91.63 87.65 85.86

RM-Deberta-v3-large-v2 73.08 65.01 70.37 64.91 71.34 63.44 56.70 62.28 61.21 79.68 72.71 81.48 74.62 68.99
GRM-gemma2-2B 51.07 31.20 50.57 45.32 50.69 59.97 27.53 41.58 56.30 45.71 53.97 63.69 60.37 49.07
GRM-Llama3.2-3B 45.47 21.27 46.15 22.85 48.56 30.80 19.12 19.63 29.15 46.81 49.99 60.71 54.64 38.09

IRM
Gemma-2-2B family 84.65 77.70 86.56 77.43 88.38 79.02 76.97 76.62 78.64 60.30 58.15 81.19 76.04 77.05
Llama-3.2-1B family 97.97 93.75 97.24 92.12 97.19 92.01 90.23 90.72 90.87 82.34 83.34 94.48 90.78 91.77

Table 3: The performance of IRM using the Llama-3.2-1B family on various attacks to human-written
texts.

DIPPER Paraphrase Polish using LLMs Back Translation
Pre Rec F1 AUROC Pre Rec F1 AUROC Pre Rec F1 AUROC

93.02 83.33 87.91 94.39 77.76 79.76 78.75 85.36 93.11 87.10 90.01 95.54

an F1 Score of 95.02% on the arXiv dataset, and an AUROC of 97.03% and an F1 Score of 91.65%
on the Review dataset. One possible explanation is that positive reviews are tend to be more neutral or
benign compared to negative reviews, making them more likely to receive higher reward scores. This
subtle property of the data may slightly reduce the separation margin between human-written and
LLM-generated texts. Still, IRM maintains strong performance overall, underscoring its effectiveness
across diverse domains.

Robustness to LLMs. As shown in Table 9, IRM outperforms other detection methods on 7 out
of 8 evaluation metrics and achieves the best average performance across all LLMs. While IRM
demonstrates strong generalization across a wide range of generation models, its performance can
be further enhanced when the instruction-tuned and base models used to construct the implicit
reward model share a similar model-family background with the generation model. For example,
when using the Gemma-2-2B family, IRM performs particularly well in detecting texts generated
by PaLM-2-bison, achieving an AUROC of 88.65% and an F1 Score of 79.41%. Similarly, with
the Llama-3.2-1B family, IRM demonstrates outstanding performance in detecting Llama-2-70B’s
outputs, achieving an AUROC of 99.35% and an F1 Score of 96.58%.

Robustness to attacks. As shown in Table 10, IRM outperforms other detection methods on 8
out of 10 evaluation metrics and achieves the highest average performance across all attacks applied
to LLM-generated texts. For example, when using Llama-3.2-1B family, IRM achieves an average
AUROC of 97.19% and an average F1 Score of 92.01%. While IRM demonstrates strong robustness
against attacks on LLM-generated texts, its performance is relatively lower but still competitive when
attacks are applied to human-written texts, as shown in Table 11. For example, with the Llama-3.2-1B
family, IRM achieves an average AUROC of 94.48% and an average F1 Score of 90.78%, which
are slightly below than the best results: 94.63% for AUROC and 91.82% for F1 Score. We further
investigate which attack type has the greatest impact on IRM’s performance. As shown in Table 3,
with the Llama-3.2-1B family, IRM is particularly affected by the polishing attack, where LLMs
are prompted to improve human-written texts. This result is intuitive: since the polished texts are
generated by LLMs and typically exhibit improved fluency or coherence, they tend to receive higher
reward scores than their original, unpolished counterparts. As a result, the distinction between
human-written and LLM-generated texts become less clear, leading to a moderate drop in detection
performance for IRM.

Generalization of IRM. In the generalization task, following the DetectRL benchmark settings,
we evaluate each sub-task using the optimal threshold from other sub-tasks and calculate the average
F1 Score across all sub-tasks. As shown in Table 1, IRM exhibits strong generalization capability
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Table 4: The performance comparison of baseline zero-shot methods using instruction-tuned and base
models. Gemma-2-2B-it and Llama-3.2-1B-Instruct are instruction-tuned models, while Gemma-2-
2B and Llama-3.2-1B are their corresponding base models.

Model Log-Likelihood Rank Log-Rank LRR Fast-DetectGPT Lastde

Llama-3.2-1B-Instruct 77.46 57.31 77.42 74.48 59.82 61.67
Llama-3.2-1B 66.44 50.80 66.81 65.78 63.80 59.13
∆ -11.02 -6.51 -10.61 -8.70 +3.98 -2.54

Gemma-2-2B-it 72.53 51.33 73.38 73.17 67.61 60.32
Gemma-2-2B 65.74 47.23 67.24 69.55 63.08 59.25
∆ -6.79 -4.10 -6.14 -3.62 -4.53 -1.07
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Figure 3: The performance of various zero-shot detection methods across different text lengths during
training-time and test-time.

across different domains, LLMs and attacks. For instance, when using Llama-3.2-1B family, IRM
achieves F1 Score of 90.23%, 90.72% and 90.87% on domain, LLM and attack generalization tasks.
These results suggest that the decision boundary of the implicit reward score is stable across various
conditions, highlighting IRM’s superior generalization ability.

Effectiveness of instruction-tuned models for detection methods. As prior works often utilize
base models when implementing detection methods, we follow this practice and implement baseline
methods using both Llama-3.2-1B and Gemma-2-2B. As shown in Figure 4, using instruction-
tuned models consistently improves the performance of 5 out of 6 baseline methods. For instance,
when using Llama-3.2-1B-Instruct, the performance of Log-Likelihood improves from 66.44% to
77.46%. Similarly, with Gemma-2-2B-it, the performance increases from 65.74% to 72.53%. These
results suggest that instruction-tuned models are generally more effective for implementing detection
methods.

Impact of text length. In the length task, following the DetectRL benchmark settings, we analyze
the impact of text length on IRM’s performance. For the train sub-task, we use the optimal threshold
derived from the dataset with a length interval of 160-180 and apply it to datasets with other length
intervals. Conversely, for the test sub-task, the optimal threshold of each dataset is evaluated on the
dataset with a 160-180 length interval. We refer to the dataset used to derive the threshold as the
training dataset, and the dataset used to evaluate the threshold as the test dataset. As shown in Table 1,
when using Llama-3.2-1B family, IRM achieves the highest F1 Score of 82.34% and 83.34% on the
train and test sub-tasks, respectively. However, when using Gemma-2-2B family, IRM’s performance
drops significantly compared to other methods. To further investigate the influence of text length, we
present the detailed results of train and test sub-tasks in Figure 3. IRM exhibits a distinct performance
pattern trend compared to the other methods. Specifically, IRM tends to perform better than the length
interval of the training dataset is similar to that of the test dataset. For example, using Gemma-2-2B
family, thresholds derived from texts with lengths of 180-260 words perform better on 160-180-word
texts (Figure 3 (a)), while the threshold from texts with 160-180-word is more effective for texts of
80-140 words (Figure 3 (b)). Similarly, using Llama-3.2-1B family, thresholds derived from texts
of 140-260 words perform better on 160-180-word texts (Figure 3 (c)), whereas the threshold from
160-180-word texts performs better on texts of 140-200 words (Figure 3 (d)). This phenomenon may
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Figure 4: Optimal classification thresholds of IRM across datasets with varying text length intervals.
The solid line shows the threshold values for each length interval (from 0 to 360 words), and the red
dashed line represents a linear fit to illustrate the overall trend.

Table 5: The performance of IRM with different model versions and sizes.
Tasks Settings→ Multi- Multi- Multi- Generalization Length Human

Avg.Domain LLM Attack Domain LLM Attack Train Test Writing
Model Family ↓ AUROC F1 AUROC F1 AUROC F1 F1 F1 F1 F1 F1 AUROC F1

Qwen2-0.5B 90.14 83.57 89.43 82.54 90.47 83.55 82.48 81.59 83.34 74.17 70.67 86.11 78.27 82.79
Qwen2-1.5B 89.68 82.49 89.64 82.59 89.44 81.59 81.80 81.82 81.33 76.21 74.52 85.22 77.03 82.57
Qwen2.5-0.5B 79.44 76.28 77.84 74.02 78.48 73.55 74.75 73.35 73.03 66.80 62.30 74.18 68.10 73.24
Qwen2.5-1.5B 76.22 73.51 74.75 69.68 74.70 68.93 69.11 68.56 68.33 65.54 63.17 70.55 62.86 69.69

Gemma-2B 91.84 84.06 92.08 84.77 93.17 85.48 83.19 82.18 85.13 58.06 68.00 92.50 87.90 83.72
Gemma-2-2B 84.65 77.70 86.56 77.43 88.38 79.02 76.97 76.62 78.64 60.30 58.15 81.19 76.04 77.05

Llama-3.2-1B 97.97 93.75 97.24 92.12 97.19 92.01 90.23 90.72 90.87 82.34 83.34 94.48 90.78 91.77
Llama-3.2-3B 97.31 92.51 97.25 92.15 97.21 91.69 91.68 90.67 91.37 78.59 80.97 93.85 88.85 91.08

be attributed to the way the implicit reward score is computed. As shown in Eq. 5, the reward is
accumulated over all tokens, so the total reward varies with text length. Consequently, the reward
distribution shifts across different length intervals, which affects the optimal threshold value. This
trend is illustrated in Figure 4, where the optimal threshold of IRM changes with text length, showing
an approximately linear relationship. Notably, for the Gemma-2-2B family, the optimal threshold
fluctuates and deviates from the fitted red dashed line within the 160–220-word intervals. Besides,
we can also observe that, with Gemma-2-2B family, the optimal threshold of IRM fluctuates and
deviates from the red dash within 160-220-words intervals, which can explain the performance drop
of IRM when using Gemma-2-2B family. Since this length range corresponds to the train and test
dataset in the length task, such instability in threshold values may explains the observed performance
drop of IRM when using the Gemma-2-2B family in this task.

Impact of model version and size. We further investigate the impact of model version and size
on the performance of IRM by implementing it across various model families, as presented in Table
5. When using the Llama-3.2-1B family, IRM achieves the best average score of 91.77%, slightly
higher than the 91.08% achieved with the larger Llama-3.2-3B family. A similar trend is observed
in the Qwen2 and Qwen2.5 families: for example, IRM attains 73.24% with Qwen2.5-0.5B family,
outperforming Qwen2.5-1.5B family (69.69%). Besides, IRM achieves 83.72% with the Gemma-2B
family, compared to 77.05% with Gemma-2-2B family. These results suggest that larger or newer
versions of a model do not always lead to better detection performance.

5 Related Works

LLM-generated text detection. Since generative language models have shown remarkable ca-
pability in text generation, detecting AI-generated texts has attracted significant research attention.
Current research primarily focus on supervised methods and zero-shot methods for LLMs. Supervised
methods involve collecting labeled data and training classifiers for distinguishing human-written and
machine-generated texts [27–29, 11]. However, it has been shown that many supervised methods
often suffer from overfitting to the training set [6, 7], limiting their generalization ability. In contrast,
zero-shot methods have shown better generalization ability, making them a promising alternative.
Current zero-shot methods are based on pretrained LLMs and utilize heuristic metrics to classify
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LLM-generated texts and human-written texts. These metrics include likelihood [9, 10], entropy,
rank, log-rank [5], probability curvature [8, 24, 30], etc. Additionally, perturbing texts and measuring
the variation of metrics is a commonly used augmentation method for constructing better metrics
[22, 31–33], but it incurs extra computational costs. Our method is a zero-shot method that leverages
the characteristics of aligned LLMs and derives a metric from LLMs in an off-the-shelf manner,
without the need of additional training. Additionally, our method does not require perturbing texts to
compute the variation of metrics, avoiding extra computational costs.

Implicit reward model. In LLM alignment, the primary focus is on obtaining a well-aligned LLM,
rather than a high-quality reward model. Thus, although DPO and other methods use implicit reward
models to implement LLM alignment, the implicit reward models obtained after training are typically
not reused. Recently, some research has leveraged implicit reward models to label process rewards
for reasoning tasks [34]. Since our method uses the reward score as a metric for distinguishing
human-written and LLM-generated texts, we propose leveraging implicit reward models to compute
the reward score for texts.

6 Discussion and Conclusion

In this paper, we propose IRM, a novel method for zero-shot detection of LLM-generated text. IRM
utilizes implicit reward models to compute reward scores as detection metrics. Experiments on the
DetectRL benchmark demonstrate that IRM is an effective zero-shot method for LLM-generated text
detection. Notably, with Llama-3.2-1B family, IRM achieves an average score of 91.77%, surpassing
previous zero-shot baselines such as Log-Likelihood, Log-Rank and Binoculars. Furthermore, IRM
even outperforms the supervised baseline ReMoDetect, showing that IRM remains highly effective
without any task-specific adaptation. These results underscore IRM’s potential as a effective zero-shot
detector for real-world applications.

Limitations and future works. In our experiments, we focus exclusively on lightweight LLMs,
excluding larger LLMs due to computational constraints. Similarly, we do not consider generative
reward models as baselines, as they typically require larger LLMs and more computation resources.
Besides, we restrict our analysis to deriving IRM from LLMs within the same model family. For
cases where only instruction-tuned models are available, deriving corresponding IRM is not feasible.
We leave how to effectively leverage LLMs from different model families for future work.

Societal impact. IRM contributes to the responsible use of LLMs by providing a zero-shot method
for detecting LLM-generated text. This capability can enhance transparency and help mitigate misuse
in high-stakes domains such as education and media. On the other hand, misclassifications may
inadvertently suppress human-generated text, highlighting that need for continuous development
more powerful detection methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide codes and data with instruction files in supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our method is deterministic and does not involve stochastic components such
as random initialization, sampling, or data splits. Therefore, statistical significance measures
or error bars are not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm our paper with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models in this paper, and thus no specific
safeguards are required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have clearly cite all the existing assets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: None.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: None.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our proposed method IRM leverages publicly available LLMs, including
instruction-tuned and base models, to construct an implicit reward model for LLM-generated
text detection. These models are integral to the core methodology and are clearly described
in the main text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Main Experiments

A.1 Details of Models and Datasets

Table 6: Statistic of DetectRL benchmark.
Setting Sub Setting Size

Multi-Domain

Academic 2008
News 2008

Creative 2008
Social Media 2008

Multi-LLM

GPT-3.5-turbo 2008
Claude-instant 2008
PaLM-2-bison 2008
Llama-2-70b 2008

Multi-Attack

Direct 2016
Prompt 2032

Paraphrase 2016
Perturbation 2016
Data Mixing 2008

Varing Text Length - 16200

Human Writing

Direct 2016
Paraphrase 2016

Perturbation 2016
Data Mixing 2012

Table 7: Dataset and model details.
Name Used Full Name Author Source

DetectRL DetectRL [13] GitHub
Llama-3.2-3B-Instruct meta-llama/Llama-3.2-3B-Instruct meta HuggingFace
Llama-3.2-3B meta-llama/Llama-3.2-3B meta HuggingFace
Llama-3.2-1B-Instruct meta-llama/Llama-3.2-1B-Instruct meta HuggingFace
Llama-3.2-1B meta-llama/Llama-3.2-1B meta HuggingFace
Gemma-2-2B-it google/gemma-2-2b-it [17] HuggingFace
Gemma-2-2B google/gemma-2-2b [17] HuggingFace
Gemma-2B-it google/gemma-2-2b-it [18] HuggingFace
Gemma-2B google/gemma-2-2b [18] HuggingFace
Qwen2.5-1.5B-Instruct Qwen/Qwen2.5-1.5B-Instruct [20] HuggingFace
Qwen2.5-1.5B Qwen/Qwen2.5-1.5B [20] HuggingFace
Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct [20] HuggingFace
Qwen2.5-0.5B Qwen/Qwen2.5-0.5B [20] HuggingFace
Qwen2-1.5B-Instruct Qwen/Qwen2-1.5B-Instruct [19] HuggingFace
Qwen2-1.5B Qwen/Qwen2-1.5B [19] HuggingFace
Qwen2-0.5B-Instruct Qwen/Qwen2-0.5B-Instruct [19] HuggingFace
Qwen2-0.5B Qwen/Qwen2-0.5B [19] HuggingFace
RM-Deberta-v3-large-v2 OpenAssistant/reward-model-deberta-v3-large-v2 OpenAssistant HuggingFace
ReMoDetect hyunseoki/ReMoDetect-deberta [11] HuggingFace
GRM-gemma2-2B Ray2333/GRM-gemma2-2B-rewardmodel-ft [26] HuggingFace
GRM-Llama3.2-3B Ray2333/GRM-Llama3.2-3B-rewardmodel-ft [26] HuggingFace
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https://huggingface.co/Qwen/Qwen2-0.5B
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https://huggingface.co/hyunseoki/ReMoDetect-deberta
https://huggingface.co/Ray2333/GRM-gemma2-2B-rewardmodel-ft
https://huggingface.co/Ray2333/GRM-Llama3.2-3B-rewardmodel-ft


A.2 Detailed Results of Main Results

Table 8: The performance of various detection methods in the multi-domain task. The best results are
marked in bold and the second best results are marked by underline.

Metrics → AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Domain Settings → ArXiv XSum Writing Review Avg.

Gemma-2-2B-it
Log-Likelihood 74.48 68.01 59.84 54.29 81.23 74.37 83.44 78.34 74.75 68.75
Rank 50.87 41.75 41.25 28.91 60.26 54.23 61.86 56.92 53.56 45.45
Log-Rank 76.11 70.78 61.23 55.84 81.18 74.43 84.60 78.19 75.78 69.81
LRR 78.98 73.43 65.07 60.53 78.80 70.29 86.86 79.01 77.43 70.81
Fast-DetectGPT 73.25 67.17 70.92 65.08 68.41 61.06 68.49 61.18 70.26 63.62
Lastde 65.63 58.99 58.50 52.64 58.52 52.81 59.84 58.89 60.62 55.83

Gemma-2-2B family (Gemma-2-2B-it+Gemma-2-2B)
Binoculars 84.07 79.69 69.40 64.60 84.60 75.80 85.34 78.20 80.85 74.57
IRM 97.17 91.24 96.55 90.80 76.47 69.18 68.42 59.60 84.65 77.70

Llama-3.2-1B-Instruct
Log-Likelihood 79.00 72.61 67.10 61.74 83.15 76.22 88.37 83.38 79.40 73.49
Rank 58.48 51.12 44.80 37.06 59.81 56.76 75.50 69.87 59.65 53.70
Log-Rank 79.36 73.63 67.55 60.60 83.12 76.54 88.56 82.89 79.64 73.41
LRR 77.46 69.80 65.95 59.30 81.25 74.68 87.29 78.85 77.99 70.66
Fast-DetectGPT 85.71 78.26 78.71 72.16 42.42 24.82 65.33 58.50 68.04 58.44
Lastde 80.17 71.95 65.55 59.82 52.15 38.66 62.59 53.68 65.11 56.03

Llama-3.2-1B family (Llama-3.2-1B-Instruct+Llama-3.2-1B)
Binoculars 93.17 86.51 88.43 81.16 92.03 84.95 96.27 89.91 92.48 85.63
IRM 98.56 95.02 98.45 95.15 97.84 93.19 97.03 91.65 97.97 93.75

Reward Models
ReMoDetect 92.34 84.63 80.74 75.92 98.12 93.33 96.75 89.92 91.99 85.95
RM-Deberta-v3-large-v2 58.16 45.78 59.37 52.06 95.49 89.59 79.30 72.62 73.08 65.01
GRM-gemma2-2B 33.30 1.18 63.47 57.68 70.16 64.95 37.33 0.98 51.07 31.20
GRM-Llama3.2-3B 45.94 19.45 43.20 3.49 66.08 58.82 26.66 3.31 45.47 21.27
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Table 9: The performance of various detection methods in the multi-LLM task. The best results are
marked in bold and the second best results are marked by underline.

Metrics → AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

LLM Settings → GPT-3.5 Claude PaLM-2 Llama-2 Avg.

Gemma-2-2B-it
Log-Likelihood 78.20 69.58 51.97 29.87 80.40 73.01 88.03 78.78 74.65 62.81
Rank 55.17 47.92 48.46 41.12 52.18 44.44 57.99 49.09 53.45 45.64
Log-Rank 78.48 69.46 54.43 38.13 80.76 73.14 88.81 80.73 75.62 65.36
LRR 76.60 68.24 62.97 48.44 79.08 69.57 88.58 80.25 76.81 66.62
Fast-DetectGPT 67.94 62.45 38.21 20.61 81.85 74.71 90.02 81.62 69.51 59.85
Lastde 57.40 58.63 44.49 29.57 65.51 63.65 71.39 67.78 59.70 54.91

Gemma-2-2B family (Gemma-2-2B-it+Gemma-2-2B)
Binoculars 77.48 69.55 62.21 48.61 89.44 82.36 92.61 84.43 80.43 71.24
IRM 84.03 75.68 86.46 78.44 88.65 79.41 87.11 76.21 86.56 77.43

Llama-3.2-1B-Instruct
Log-Likelihood 83.26 77.22 59.05 45.91 83.76 76.20 92.63 86.03 79.67 71.34
Rank 63.72 55.82 51.31 36.78 58.10 51.88 64.86 58.90 59.50 50.84
Log-Rank 82.98 74.79 59.73 48.50 83.75 76.31 92.67 86.41 79.78 71.50
LRR 79.73 71.92 60.56 49.61 80.75 72.97 90.13 82.81 77.79 69.33
Fast-DetectGPT 66.27 61.23 44.10 23.85 79.15 72.33 84.96 77.47 68.62 58.72
Lastde 57.91 49.93 54.02 42.85 67.54 60.69 76.18 68.69 63.91 55.54

Llama-3.2-1B family (Llama-3.2-1B-Instruct+Llama-3.2-1B)
Binoculars 92.26 84.89 81.38 74.40 95.56 90.90 99.10 96.50 92.08 86.67
IRM 97.40 92.22 96.27 89.79 95.95 89.88 99.35 96.58 97.24 92.12

Reward Models
ReMoDetect 96.14 89.24 82.26 76.74 87.82 79.01 95.41 87.68 90.41 83.17
RM-Deberta-v3-large-v2 78.16 70.24 65.27 51.88 64.61 71.44 73.45 66.08 70.37 64.91
GRM-gemma2-2B 60.93 63.53 53.03 56.21 41.78 1.75 46.52 59.78 50.57 45.32
GRM-Llama3.2-3B 59.63 46.36 36.70 0.98 43.56 25.71 44.69 18.33 46.15 22.85

Table 10: The performance of various detection methods in the multi-attack task. The best results are
marked in bold and the second best results are marked by underline.

Metrics → AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Attack Settings → Direct Prompt Paraph. Perturb Mixing Avg.

Gemma-2-2B-it
Log-Likelihood 94.95 88.15 90.97 84.30 70.95 63.77 59.70 54.04 73.01 62.96 77.92 70.65
Rank 79.26 69.84 79.06 70.58 67.04 54.58 14.08 00.00 48.64 35.71 57.62 46.14
Log-Rank 95.25 88.56 91.21 84.38 71.40 64.61 61.72 55.57 74.19 63.71 78.75 71.37
LRR 93.16 85.08 88.92 80.63 70.88 63.38 67.39 59.72 76.07 67.77 79.28 71.32
Fast-DetectGPT 90.59 83.81 84.84 81.34 73.33 68.05 48.55 35.48 69.16 61.41 73.30 66.02
Lastde 91.75 84.12 87.26 81.02 71.32 60.46 18.77 0.00 61.46 55.96 66.11 56.31

Gemma-2-2B family (Gemma-2-2B-it+Gemma-2-2B)
Binoculars 97.19 91.76 93.27 88.30 79.39 73.27 66.54 57.00 78.59 72.55 83.00 76.58
IRM 89.13 80.01 88.12 77.83 85.50 77.67 85.44 74.45 92.70 85.13 88.38 79.02

Llama-3.2-1B-Instruct
Log-Likelihood 97.02 91.66 93.84 87.75 76.08 71.06 67.48 60.02 78.81 71.08 82.65 76.31
Rank 86.85 76.62 85.57 76.43 72.80 62.55 18.43 00.00 54.55 46.14 63.60 52.35
Log-Rank 97.06 92.08 93.49 87.83 76.40 70.75 67.16 56.74 78.66 69.46 82.55 75.37
LRR 94.55 87.67 89.94 83.10 74.92 67.65 63.73 52.90 74.67 61.95 79.56 70.65
Fast-DetectGPT 63.94 56.31 60.30 53.76 69.95 63.01 72.12 65.21 81.54 74.05 69.58 62.47
Lastde 87.30 79.51 82.70 74.39 74.29 64.53 31.80 66.69 71.86 61.99 69.59 69.42

Llama-3.2-1B family (Llama-3.2-1B-Instruct+Llama-3.2-1B)
Binoculars 99.15 96.10 96.52 91.94 90.56 83.01 88.62 81.60 90.37 82.46 93.04 87.02
IRM 98.94 95.52 97.70 93.02 98.00 92.57 95.65 88.65 95.68 90.28 97.19 92.01

Reward Models
ReMoDetect 97.12 91.00 93.47 84.59 88.59 73.86 88.74 80.44 88.19 80.55 91.22 82.09
RM-Deberta-v3-large-v2 81.88 73.10 76.54 65.28 62.23 45.66 70.96 70.44 65.11 62.74 71.34 63.44
GRM-gemma2-2B 57.93 56.02 56.33 52.33 46.54 66.68 47.42 63.66 45.20 61.15 50.69 59.97
GRM-Llama3.2-3B 54.84 46.79 53.77 41.73 44.56 34.62 39.87 6.92 49.75 23.95 48.56 30.80
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Table 11: The performance of various detection methods in the human writing task. The best results
are marked in bold and the second best results are marked by underline.

Metrics → AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Attack Settings → Direct Paraph. Perturb Mixing Avg.

Gemma-2-2B-it
Log-Likelihood 94.96 88.15 83.10 76.82 99.78 98.56 93.28 86.64 92.78 87.54
Rank 79.27 69.84 70.44 64.51 97.48 93.54 69.03 59.18 79.05 71.77
Log-Rank 95.25 88.56 83.20 78.49 99.81 98.60 93.80 86.53 93.02 88.05
LRR 93.16 85.08 81.79 78.78 99.41 96.66 91.27 82.49 91.41 85.75
Fast-DetectGPT 90.59 83.82 77.95 71.34 98.61 94.92 91.09 84.37 89.56 83.61
Lastde 91.75 84.12 78.53 75.68 99.66 97.53 92.62 85.20 90.64 85.63

Gemma-2-2B family (Gemma-2-2B-it+Gemma-2-2B)
Binoculars 97.19 91.77 81.44 77.73 99.85 98.51 94.67 88.28 93.29 89.07
IRM 89.13 80.02 64.60 60.92 75.28 74.29 95.77 88.92 81.19 76.04

Llama-3.2-1B-Instruct
Log-Likelihood 97.03 91.67 83.00 78.12 99.95 99.26 96.11 90.34 94.02 89.85
Rank 86.65 76.62 70.69 70.07 99.55 97.52 80.58 68.60 84.37 78.20
Log-Rank 97.06 92.08 82.78 78.16 99.96 99.45 95.98 89.52 93.94 89.81
LRR 94.55 87.67 80.36 77.37 99.79 97.91 91.80 83.91 91.62 86.72
Fast-DetectGPT 63.95 56.32 52.58 42.72 47.42 40.47 79.36 72.98 60.83 53.12
Lastde 87.30 79.51 73.02 70.37 97.98 93.72 91.79 84.38 87.52 82.00

Llama-3.2-1B family (Llama-3.2-1B-Instruct+Llama-3.2-1B)
Binoculars 99.16 96.10 81.25 78.81 99.84 98.56 98.26 93.82 94.63 91.82
IRM 98.94 95.52 80.84 76.22 99.35 96.33 98.79 95.06 94.48 90.78

Reward Models
ReMoDetect 97.12 91.00 76.02 74.91 99.51 97.09 93.89 87.59 91.63 87.65
RM-Deberta-v3-large-v2 81.88 73.10 78.40 75.71 88.37 79.06 77.29 70.60 81.48 74.62
GRM-gemma2-2B 57.94 56.03 68.50 61.71 69.80 65.10 58.53 58.63 63.69 60.37
GRM-Llama3.2-3B 54.84 46.79 63.65 59.71 65.91 59.13 58.44 52.93 60.71 54.64
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B Additional Experiments

B.1 Additional Benchmarks

Settings. We further evaluate our method on the RAID [35] and DivScore [36] benchmarks. We
adopt LLaMA-3.2-1B as the backbone detector, which demonstrated strong performance on the
DetectRL benchmark. For the RAID benchmark, due to the large scale, we randomly sample 512
annotated pairs from the training split for each source model. We report AUROC as the main
evaluation metric. For the DivScore benchmark, we use the official test split for evaluation and report
both AUROC and F1 Score. Since the lengths of test samples vary considerably, we compute the mean
of implicit rewards across all tokens, instead of the sum (Eq. 5), to normalize the decision threshold,
which empirically shows an approximately linear relationship with text length (see Figure 4).

Table 12: Results on RAID benchmark.
Method chatgpt gpt4 gpt3 gpt2 llama-chat mistral mistral-chat mpt mpt-chat cohere cohere-chat

Log-Likelihood 98.48 93.51 97.35 68.77 98.93 69.82 97.78 48.84 80.08 89.26 92.42
Log-Rank 98.71 92.95 96.94 71.13 99.12 71.34 98.03 51.83 81.27 87.43 91.89
Binoculars 99.66 96.38 99.12 79.30 99.05 72.45 98.22 51.99 83.41 97.06 98.00

IRM 99.58 99.27 87.43 86.31 99.99 62.25 99.35 57.57 92.42 87.14 92.10
ReMoDetect 99.69 97.82 94.57 57.36 99.33 59.18 97.70 43.06 89.63 85.29 93.02

Table 13: Results on DivScore benchmark.

Method DeepSeek-R1 DeepSeek-V3 GPT-4o O3-mini Avg.
AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1

Log-Likelihood 88.64 86.11 98.87 97.68 85.96 81.50 90.37 87.47 90.96 88.19
Log-Rank 87.56 84.85 98.91 97.69 86.28 82.34 90.86 88.01 90.90 88.22
Binoculars 98.03 94.18 99.87 99.03 94.84 90.74 95.61 91.88 97.09 93.96

IRM 97.39 93.67 99.27 97.77 99.08 96.74 97.95 94.25 98.42 96.61
ReMoDtect 95.86 90.69 99.73 98.20 99.56 97.46 98.73 94.73 98.47 95.27

Results. As shown in Table 12 and Table 13, IRM performs competitively across a wide range of
models, supporting the generalizability of our approach.

B.2 Additional Baselines

Settings. We further include Skywork-Reward-V2 [37] models as additional baselines. These
reward models are trained on large-scale preference data and use backbones up to 8B parameters.
They achieve SOTA on the RewardBench benchmark, providing a strong reference to evaluate whether
reward model scaling enhances generalization in LLM-generated text detection.

Table 14: Comparison of IRM and Skywork-Reward-V2 on the DetectRL benchmark.
Tasks Settings→ Multi- Multi- Multi- Generalization Length Human

Avg.Domain LLM Attack Domain LLM Attack Train Test Writing
Methods ↓ AUROC F1 AUROC F1 AUROC F1 F1 F1 F1 F1 F1 AUROC F1

Llama-3.1-8B
Skywork-Reward-V2 71.33 62.97 70.67 66.15 68.23 65.85 59.06 65.59 63.23 45.41 61.78 39.32 23.98 58.74
IRM 90.52 84.67 89.01 83.18 88.70 82.13 81.10 79.36 81.47 74.28 76.78 82.61 76.18 82.31

Llama-3.2-3B
Skywork-Reward-V2 63.48 48.47 63.33 57.78 60.32 41.35 44.50 56.99 32.58 34.77 49.65 30.52 6.91 45.43
IRM 97.31 92.51 97.25 92.15 97.21 91.69 91.68 90.67 91.37 78.59 80.97 93.85 88.85 91.08

Qwen3-8B
Skywork-Reward-V2 68.21 57.01 67.94 62.23 66.08 55.31 54.21 61.97 54.88 40.19 44.90 35.90 19.82 52.97
IRM 74.42 58.02 73.08 59.05 73.70 62.13 55.77 57.70 61.15 42.54 41.77 69.61 58.49 60.57

Results. As shown in Table 14, IRM consistently outperforms the reward-model-based methods,
even when using the same or smaller backbones. This further supports our claim that standard
preference-trained reward models, despite their size and strong performance on preference classifica-
tion, do not generalize well to the LLM-generated text detection task. In contrast, IRM’s implicit
reward modeling is inherently aligned with this detection objective, leading to robust performance
across different settings.
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Algorithm 1 Inference pipeline of IRM
Inputs: policy model πθ, reference model πref, detected text x, decision threshold t.
Output: authenticity label y ∈ {human-written,LLM-generated}

1: pref ← πref(x)
2: pθ ← πθ(x)
3: r ← log pθ − log pref ▷ Compute implicit reward score
4: if r < t then
5: y ← human-written
6: else
7: y ← LLM-generated
8: end if
9: return y
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