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Abstract

We introduce VF-Net, a probabilistic extension of
FoldingNet, for learning representations of point
cloud data. VF-Net overcomes the limitations of
existing models by incorporating a 1-to-1 map-
ping between input and output points. By elim-
inating the need for Chamfer distance optimiza-
tion, this approach enables the development of a
fully probabilistic model. We demonstrate that
VF-Net outperforms other models in dental recon-
struction tasks, including shape completion and
tooth wear simulation. The learned latent repre-
sentations exhibit robustness and enable meaning-
ful interpolation between dental scans.

1. Introduction
Recent advances has lead to large scale adoption of intrao-
ral dental scanners. Our research is motivated by the need
to analyze, search, and organize large collections of such
dental scans. These 3-dimensional dental mesh models are
used for surgical planning, tooth crown generation, tooth
wear estimation, etc. The sensitivity of the such tasks ne-
cessitates robustness to noisy data and feedback on model
uncertainty to the responsible dentist. Treating these meshes
as point clouds enables us to efficiently represent the shape
and topology of patients’ teeth using a sparse set of points,
leading to improved computational efficiency. However,
consequently any modeling of point clouds must be invari-
ant to any reordering and variability in cardinality that may
be present. The foundation of our paper is a new dataset,
the FDI 16 Tooth Dataset, which provides a large collection
of dental scans. Our primary objective is to learn useful
and reliable representations of this data. However, in our
paper, we also highlight other crucial tasks such as shape
completion of the sides of the tooth unable to be scanned by
the intraoral scanner, as well as shape completion of areas
previous obstructed by braces or other orthodontic devices.

13Shape A/S 2Technical University of Denmark. Correspon-
dence to: Johan Ziruo Ye <Johan.Ye@3shape.dk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Point cloud representation learning for teeth. As most
teeth both move and degrade continuously with time, it is
reasonable to seek a continuous vectorial representation
when organizing extensive collections of dental scans. This
motivates the development of autoencoder-style representa-
tion learning models for point cloud data (Rumelhart et al.,
1986; Yang et al., 2018). An obvious candidate model is
FoldingNet (Yang et al., 2018), which reconstructs the origi-
nal point cloud by deforming points from a 2D plane, as it
shares topology with the FDI 16 dataset. FoldingNet and
other encoder-decoder models for point clouds reconstruct
input point clouds using a learned vectorial representation
by minimizing reconstruction error. Since there are no cor-
respondences between points in two given clouds, permuta-
tion invariant metrics are used, with the Chamfer distance
(Barrow et al., 1977) being popular,
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for point clouds X and Y. Although this metric solves the
invariance problem, it poses a new one: The Chamfer dis-
tance (1) does not lead to a likelihood, preventing its use in
probabilistic models. For instance, when used in the Gaus-
sian distribution, the function X 7→ 1/C exp(−CD2(X, µ))
cannot be normalized to have unit integral due to the explicit
minimization in Eq. 1. We need robustness to noise and
general quantification of uncertainty, and consider the lack
of an explicit likelihood detrimental.

In this paper, we propose a new architecture that allows
us to sidestep the use of Chamfer distances, which, in turn,
allow for straight-forward constructions of models akin to
variational autoencoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014). We call the resulting model the Vari-
ational FoldingNet (Sec. 3), as it bridges FoldingNet (Yang
et al., 2018) and VAEs. A key aspect of our model is that it
avoids the usage of Chamfer distances, and instead relies on
a more appropriate encoder. Moreover, we contribute a new
dataset of dental scans (Sec. 2) of the first maxillary molar
tooth on the right side of the upper jaw1 — one of the most
common teeth to receive dental treatment/restoration. Using

1Referred to as FDI 16 according to the ISO 3950 notation.
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Figure 1: Top row: two teeth from the FDI 16 dataset.
Bottom row: reconstructions from VF-Net.

this dataset, we explore keys tasks, such as shape comple-
tion in cases where neighboring teeth obstruct the view or
shape completion impeded by orthodontic treatment. We
also showcase the potential for future tasks in representation
learning and style transfer. Finally, we demonstrate that for
dental scans, our model performs superior or competitively
on various standardized generative modeling tasks when
compared to current state-of-the-art models (Sec. 4).

2. The FDI 16 Tooth Dataset
We release the FDI 16 dataset, which is a collection of 6,309
irregular anonymous meshes that were collected from intrao-
ral scans by 3Shape2. Each tooth in the FDI 16 Tooth dataset
is algorithmically segmented and oriented from a scan of
an upper jaw. These meshes are from patients undergoing
aligner treatment, biasing the data towards younger indi-
viduals, who generally have fewer restorations and dental
problems. As a result, aligner attachments may be observed
in the data. The top row of Fig. 1 displays two such meshes.

The FDI 16 teeth meshes were collected using TRIOS
scanners, primarily the TRIOS 3 model. These meshes all
share highly similar topologies, so the main differences
between them are in their shapes. All teeth have clearly
defined boundaries and are consequently open with no
representation of the interior object volume. We have made
the meshes publicly available. All teeth have been rotated
to ensure that the x-axis is turned towards the neighboring
tooth (FDI 17), while the y-axis points in the occlusal
direction (direction of the biting surface). Finally, the
z-axis is given by the cross-product to ensure a right-hand
coordinate system. The scale of the data is in millimeters.

2https://www.3shape.com/

3. Variational Inference on Point Clouds
Background: PointNet and FoldingNet. As stated earlier,
point clouds are sets of points with varying size and arbitrary
order, and models thereof should unaffected by such changes
to the point cloud. Therefore, one of the primary approaches
to address such data is to develop neural networks that are
invariant to such changes (Qi et al., 2017; Yang et al., 2018).
Unfortunately, when it comes to the variational autoencoder,
this is not possible with current designs. A variational au-
toencoder outputs a distribution for each element in which
the corresponding input element is evaluated (Kingma &
Welling, 2014; Rezende et al., 2014). Current models lack
a 1-to-1 connection, resulting in an output permutation that
is unlikely to match the input permutation, preventing such
aforementioned evaluation. Consequently, any modeling of
data with more complicated distributions fails.

FoldingNet becomes invariant to changes in point cloud per-
mutation and cardinality by using a PointNet-like encoder,
e, which entails utilizing multi-layer perceptrons (MLPs)
that operate independently on each point of the point cloud.
The folding-based decoder, µ : Z × R2 → R3, is com-
posed of two MLPs. These are applied to the latent code,
z, concatenated with each point in the chosen latent point
encoding shape, G = {gi}Ii=1, which in our case is the two-
dimensional planar patch [−1, 1]2 (Yang et al., 2018). The
folding of the planar patch, {µ(gi)}Ni=1, is determined by
the parameter vector z predicted by the PointNet encoder e.
Both the encoder e and the decoder µ are jointly trained to
minimize the reconstruction error

E =

N∑
n=1

∥xn − projS(xn)∥2, (2)

where projS : R3 → R3 denotes the projection of a point x
onto the surface spanned by S = µ(G),
projS(x) = µ(ĝ) where ĝ = argmin

g∈G
∥x− µ(g)∥2. (3)

This creates a permutation invariant and cardinality invari-
ant autoencoder. FoldingNet approximates this projection
during training using Chamfer distances (1).

3.1. The Variational FoldingNet

First, we describe the generative process of our proposed
Variational FoldingNet (VF-Net) and then cover approxi-
mate inference and training. Let p(z) be a Normalizing flow
prior over the parameters describing the shape of an object
(Kingma et al., 2017). As FoldingNet, we limit our flat mesh
grid G to be within the planar patch [−1, 1]2. This grid is,
as in FoldingNet, subsequently deformed according to z.
Let g ∈ G denote a point on this grid, then the correspond-
ing three-dimensional point x is defined to be distributed
as p(x | z,g) = N (x|µ(z,g), σ2(z,g)I), where µ :
Z×R2 → R3 and σ2 : Z×R2 → R+ are neural networks.

https://www.3shape.com/
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In this model, new samples can be generated by first sam-
pling z and then mapping the grid points through µ and σ,

x = µ(z,g) + σ(z,g) · ϵ, ϵ ∼ N (0, I). (4)

This defines the likelihood p(x) =
∫
p(x | z)p(z)dz which

gives a training objective. Unfortunately, the integral is
intractable, and approximations are necessary. Following
conventional variational inference (Kingma & Welling,
2014; Rezende et al., 2014), a lower bound on p(x) is

L (x) = Eq(z|x) [log p (x | z)]−KL (q (z | x) ∥p(z)) (5)

where q(z | x) is any approximation to p(z | x).
To evaluate Eq. 5, we first introduce a projection
projĜ(x) : R3 → G modeled with a neural network. We
optimize Eq. 3, where the introduction of projĜ means
that Ĝ is no longer independent and can now be optimized
together with µ. Ĝ are our latent point encodings, which
give a 1-to-1 mapping throughout the network, allowing
for evaluation of the ELBO (5), see suppl. Fig. S1. We use
a multivariate normal distribution with isotropic variance
as the reconstruction term in the ELBO. This would not be
possible with the Chamfer distance as it does not have a
distributional counterpart as the associated normalization
constant does not exist. The result is a novel method of
evaluation for 3D reconstruction networks, which is both
probabilistic and avoids the computationally expensive
Chamfer distance. Supplementary Fig. S2 demonstrate that
our approach can effectively replace Chamfer distances.

4. Experimental results
Limitations. As a baseline, we sanity-checked VF-Net by
reconstructing the airplanes from ShapeNet (Chang et al.,
2015). On this dataset, it is clear from the supp. Table S1
that VF-Net and FoldingNet perform great in terms of recon-
struction (Kim et al., 2021; Luo & Hu, 2021), but VF-Net
poorly samples new meshes. This is due to information on
the shape being stored in the latent point encodings, see
suppl. Fig. S3, which potentially could be alleviated with a
flow or diffusion prior, similar to LION (Zeng et al., 2022).
As this is not our focus, we have not pursued such.

FDI 16 Tooth Data. We evaluated the reconstruction on
FDI 16 using Chamfer distances and earth mover’s distance
(Rubner et al., 2000), see Table 1. On the FDI 16 data, VF-
Net outperforms its peers both when measured using both
metrics above. Notably, Point-Voxel Diffusion (PVD) (Zhou
et al., 2021) performs poorly in reconstruction as it cannot
return the same tooth when embedded. Instead, it returns a
randomly sampled tooth. Despite having the lowest recon-
struction error, VF-Net’s remain overly smooth and lack the
desired level of detail, see supp. Fig. S4. A common behav-
ior observed in variational autoencoders (Kingma & Welling,
2014; Vahdat & Kautz, 2021; Tolstikhin et al., 2019).

Table 1: Chamfer distances (CD) and earth mover’s dis-
tances (EMD) are multiplied by 100. Lower values indicate
better reconstruction performance. Bracket sim and Gap
sim are untrained extrapolation performances of the models.

METHOD
FDI 16 TOOTH BRACKET GAP

CD EMD CD CD

DPC 8.46 41.38 11.38 14.40
SETVAE 19.86 57.52 12.28 14.16

PVD 119.62 835.82 18.10 20.32
LION 5.44 22.29 — —

FOLDINGNET 5.25 33.59 95.38 143.56
VF-NET 1.20 6.24 5.79 4.81

Variance Estimation for Point Clouds. The relative
predicted variance has been visualized in Fig. 2, where
red indicates a higher variance and green indicates a lower
variance. Interestingly, the network assigns higher variance
to the fifth cusp and to aligner attachments. Given that
both features are only observed in a subset of individuals,
it is natural that these areas would exhibit higher levels of
uncertainty. The occlusal surface consistently exhibits a
moderate amount of variance.

Figure 2: Visualization of VF-Net’s predicted relative vari-
ance effectively highlights areas of high and low variance,
denoted by the colors red and green respectively.

Model Sampling Performances. We evaluate our gener-
ative performance using metrics proposed by Yang et al.
(2019), including the Minimum Matching Distance (MMD),
Coverage (COV), and 1-nearest neighbor accuracy (1-NNA).
MMD measures the average distance to the nearest neigh-
bor point cloud, while COV quantifies the fraction of point
clouds in the ground truth test set that are considered nearest
neighbors to the generated samples. The 1-NNA metric uti-
lizes a 1-nearest neighbor classifier to determine if a sample
is generated or from the ground truth dataset, with a 50%
accuracy threshold indicating the data are indistinguishable.

Figure 3: Samples produced by VF-Net. The right-most
tooth has been generated with an aligner attachments
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Table 2: Sampling performances on FDI 16 Tooth data.

METHOD
MMD(↓) COV(%↑) 1-NNA(%↓)

CD EMD CD EMD CD EMD

DPC 14.79 2.40 0.068 0.14 100 100
SETVAE 0.40 0.67 10.31 9.35 98.50 98.46

PVD 0.21 0.40 43.48 44.16 61.87 60.79
LION 0.22 0.44 43.89 43.83 68.67 65.19

VF-NET 0.21 0.52 41.37 31.33 67.65 73.69

A few examples of generated FDI 16 teeth can be seen in
figure 3, and generated teeth across all teeth can be found in
supplementary figure S5. The sampling performances of the
models can be found in Table 2. VF-Net demonstrates supe-
rior performance compared to DPC and SetVAE. However,
there it is still slightly behind in sampling performance when
compared to PVD and LION. (Zhou et al., 2021; Zeng et al.,
2022). As our primary task is reconstruction and extrapola-
tion, our performances reflect equally. Due to the shape of
the latent point encoding and how it may vary, see Fig. S3,
sampling a grid shape each time may perform poorly accord-
ing to the metrics. Thus, we trained a minor network equat-
ing to one fold of VF-Net to output a point encoding from
the latent representation. We emphasize that this is com-
pletely unnecessary for sampling in general. However, sam-
pling naı̈vely may lead to systematic sharp edges/corners
in the sampled point clouds, which would be detrimental to
performance when measured using established metrics due
to only the model outputs having such artifacts.

Simulated Shape Completion. In dental reconstruction,
inferring the obstructed side of a tooth and reconstructing
the tooth surface beneath braces’ brackets are key challenges.
However, such paired data is exceedingly rare. Therefore,
it is valuable to develop a model capable of extrapolating
these surfaces without explicit training on such data.

As we lack a ground truth paired meshes, we instead
simulate the extrapolation on the test set. This is done by
sampling a point outside the tooth and deleting the 200
nearest neighbors to that point. An example of the synthetic
holes is shown in supp. Fig. S6. The point encodings of
the point cloud with a hole in the side and the one without
are highly similar. As such, extrapolation can be done by
sampling in the point encoding space. For this evaluation,
we sample a higher number of points in the latent encoding
and calculate the distance from the deleted points to their
nearest neighbor in the completed point cloud.

The performance averaged across the test set can be
found in Table 1. Bracket and gap denoted simulated
braces bracket removal and gap between teeth removal.
Here, VF-Net outperforms its peers. Due to its reliance
on continuous grid deformation, FoldingNet performs
subpar when an area is missing. On the other hand, we
were unable to perform shape completion using LION.

Removed Tooth Wear Medium Wear Reconstruction Added Tooth Wear

Figure 4: The effect of moving in the direction of tooth wear
in the latent space. Left: Highlighted in red are areas that
have grown. Middle: The original reconstruction. Right:
Areas depicted in blue are lower than the original mesh.

We attempted to use the latent points from the original
tooth, however, as it contained information about the shape
and rendered a fair comparison infeasible. Finally, we
compared our results to PVD when trained to complete
shapes. PVD achieved an reconstruction chamfer distance
of 0.97 and 0.74 for simulated bracket holes and gap
holes, respectively. Naturally, a trained model for shape
completion tasks outperforms its peers attempting untrained
shape completion. During shape completion without
explicit training, PVD’s performance was not as impressive.

Representation Learning. We compared our latent repre-
sentations to those of FoldingNet, as it is the comparison
model with the most interpretable latent variables. To ex-
plore the latent space, we manipulated the latent representa-
tions by adding and removing tooth wear in this space, see
Fig. 4. To determine the direction of tooth wear, we calcu-
lated the average directional change in latent representations
when encoding 10 teeth with synthetically induced wear,
see suppl. Fig. S7. We observe behavior highly similar to
the teeth with sculpted tooth wear.

Table 3: The percentage of teeth with the expected increase
in classification prediction when pushing the latent represen-
tation towards or away from the tooth wear direction. L, M,
and H denote light, medium, and heavy wear respectively.

METHOD L M H

FOLDINGNET 94.95% 91.77% 97.8%
VF-NET (OURS) 96.70% 95.71% 98.68%

To quantify the performance, we trained a small PointNet
model (Qi et al., 2017) on a proprietary dataset of 1400
teeth that were annotated with light/medium/heavy tooth
wear. Subsequently, we evaluated the latent representations
by determining if a movement in the latent space along
the tooth wear direction led to the expected change in
the PointNet’s predicted classification. In Table 3, each
class denotes the base class prior to adding/removing tooth
wear. To light and heavy we attempted to add and remove
tooth wear respectively, while medium tooth wear teeth
were evaluated both when adding/removing wear. The
findings presented in Table 3 indicate VF-Net’s latent
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representations show greater robustness.

5. Conclusion
We propose VF-Net, a fully probabilistic point cloud
model closely resembling variational autoencoders. The
novel contribution lies in the latent point encodings, which
replaces the Chamfer distance and enables working with
probability densities. Our experiments, including the
reconstruction and extrapolation on FDI 16 Tooth data,
showcase the effectiveness of VF-Net. Furthermore, VF-
Net demonstrates robust representations for interpolation
and modification of reconstructions.
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A. Supplementary Material
A.1. Model Architecture

Graph-based
Encoder

Decoder
(folding-based)

Local feature Vector
(n x 64)

Variance
Network

Point grid / Mesh

&&

&

Elbo optimization

Figure S1: The architecture of VF-Net closely resembles that of FoldingNet, with minor modifications. Notably, a novel
addition in VF-Net is the inclusion of a latent point encoding. This encoding allows for a 1:1 mapping throughout the
network while maintaining invariance with respect to permutation and cardinality. Furthermore, a variance prediction
network has been incorporated to estimate the variance at each output point. Note that ”&” denotes concatenation.

A.2. Chamfer vs Euclidean
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Chamfer vs Euclidean Distance for a Single Point Cloud

Figure S2: In the above plot, we observe that the euclidean distance acts as an upper bound for the chamfer distance. In the
majority of cases, when optimized using VF-Net, these distances are identical. This empirical observation provides support
for our claim that the Chamfer distance can be effectively substituted with an appropriate encoder choice.
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A.3. ShapeNet Reconstruction Performances

Table S1: Both Chamfer distances (CD) and earth mover’s distances (EMD) are multiplied by 1000, and for both, lower
values indicate better reconstruction performance.

Method
ShapeNet Airplanes

CD EMD

DPC 0.18 47.82
SetVAE 0.14 30.60

PVD 3.12 90.45
LION 0.061 10.19

FoldingNet 0.079 31.47
VF-Net (ours) 0.031 7.31

A.4. Latent Point Encodings
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Figure S3: Left: While the airplane from ShapeNet is accurately reconstructed, it poses a challenge in terms of sampling due
to its non-continuous distribution in the latent point encoding. Right: An incisor and its corresponding point encodings.
Notably, the encoded points correctly reflects the missing sides of the tooth. Sampling and decoding from this region of the
latent point encodings enables extrapolation in 3D space.
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A.5. VF-Net reconstructions
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Figure S4: Examples of reconstructions of meshes from the FDI 16 dataset.

A.6. Samples Across all Teeth

Figure S5: A showcase of meshes sampled by VF-Net. All four major modalities are covered: Incisor, canine, pre-molar,
and molar, the four major types of teeth.



Variational Point Encoding Deformation for Dental Modeling

A.7. Hole Completion
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Reconstructions and the Corresponding Latent Point Encoding
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Figure S6: Left: To illustrate the hole reconstruction problem, we present an example where the red points are removed from
the point cloud. Right: The latent point encodings remain highly similar to the shape of the encoded points prior to the
deletion of points. Sampling the missing area becomes a straightforward task by sampling within the corresponding empty
region of the latent point encoding.

A.8. Synthetic Toothwear Teeth

Light Tooth Wear Medium Tooth Wear Heavy Tooth Wear

Figure S7: Two of the ten manually sculpted teeth to simulate tooth wear. Left: Highlighted in red are areas that have higher
values compared to the original reconstruction. Middle: The original reconstruction. Right: Areas depicted in blue are lower
than the original mesh.


