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Abstract — Emissions Trade Systems (ETS) and Circular 

Economy (CE) are currently the biggest ways of engaging in 

emissions management. However, traditional emission trade 

mechanisms face roadblocks in terms of computation speed and 

forecasting accuracy. Whilst AI-centric solutions have solved 

this to an extent, they are found to be engulfed with problems 

like issues in validating carbon credits, being unable to consider 

external driving factors for carbon prices and lack of 

interpretation of the price-related insights generated. To 

overcome this study proposes a hybrid novel carbon price 

forecasting model comprising of hybrid Deep Convolutional 

Generative Adversarial Network (DCGAN) coupled with 

Explainable AI (XAI) for interpretable price forecasting. The 

study serves as a testament for integration of DCGAN and XAI 

based models as its findings uncover key insights related to 

carbon prices which can help stakeholders to improve their 

emissions trade performance significantly in real time and 

improve circular economy (CE) based lifecycle development. 

Keywords— DCGAN, XAI, N-Beats, Random Forest, Price 

Forecasting, Emission Trade Systems 

I. INTRODUCTION  

In recent years, the need of devising robust methods for 
tackling excessive CO2 emissions has grown. Whilst several 
initiatives have been taken, there is very little impact of these 
within the corporate landscape [1]. This necessitates the 
demand for solutions that actively encourages business to 
reduce carbon emissions [2]. So far there are 2 solutions that 
have emerged to do exactly what is intended - ETS and CE. 
On one hand ETS encourages carbon offsetting through 
exchange of carbon credit units (CCUs) [3]. On the other 
hand, CE achieves the same through development of closed 
loop systems for waste minimization [4]. Owing to the similar 
nature of intent both methods employ i.e. - reducing excessive 
wastage albeit in different forms, an opportunity to assimilate 
them is realized from a theoretical perspective, as they both 
exhibit benefits like supply chain optimization, better 
emission management and easy policy alignment [5], [6]. 
However, on the practical front, a number of implementation 
gaps emerge that prohibit the same. Past studies indicate that 
traditional forecasting methods fail in terms of assessing 
complex parameters within carbon price, something which is 
necessary due to its interdisciplinary nature [7]. Whilst AI has 

been able to effectively mitigate this, it has introduced a newer 
set of problems. Current AI based forecasting methods fail to 
authenticate the CCUs generated in terms of applicability, are 
unable to consider external factors in the global context like 
energy prices and are not able to provide insights that can be 
easily interpreted by stakeholders [8], [9], [10]. On the CE 
front, AI tends to grapple with similar issues as it prioritizes 
individualistic goals over large scale interests, ignoring 
organizational goals and potentially steering away from 
emission reduction goals from a compliance perspective [11], 
[12]. Such gaps pave the need for innovative solutions to be 
devised which can mitigate them effectively. Sensing the need 
to do the same, this study proposes a hybrid interpretable 
framework for resilient carbon price prediction, by harnessing 
the power of XAI and DCGAN for generating day-ahead 
carbon prices and interpretable insights into what influences 
the predicted carbon prices in real time. 

II. METHODOLOGY ADOPTED  

A. Techniques Implemented For Model Development  

Relevant literature reveals that current AI/ML forecasting 

models suffer from a multitude of issues. For instance - 

Autoregressive Integrated Moving Average (ARIMA) 

struggles in capturing external insights influencing carbon 

prices [13]. Similarly, Long Short-Term Memory (LSTM) 

struggles with daily prices, offering both low value 

interpretability and optimum forecasting stability [14]. Hence 

to develop our proposed framework, two techniques were 

chosen for integration - DCGAN and XAI owing to the 

benefits they brought forth in the context of our study. This 

is because DCGAN is found to improve time-series forecast 

through use of deep convolutional layers for better data 

augmentation [15]. Similarly, XAI was found to bring 

multiple benefits in the context of improving model 

interpretation as it provides data backed insights regarding 

the overall influence both the internal and external features 

considered have over the predicted price [16]. Fig 1 

showcases the flowchart depicting the methodology adopted 

for model development and Fig 2 showcases the DCGAN 

Model Architecture devised.  



 
Fig 1. Methodology Adopted for Price Forecasting Framework Development 

 

 
Fig 2. DCGAN Architecture developed for interpretable carbon price forecasting

       The Neural Basis Expansion Analysis for Time Series 

(N-Beats) framework was integrated as the Generator for our 

DCGAN model. This technique was chosen due to its ability 

to capture data trends and long-term relationships, effective 

information management along with providing better insight 

interpretability when compared to LSTM and other neural 

networks [17].  

ℎ𝑏 = 𝑅𝑒𝐿𝑈 (𝑊𝑙 ∙ 𝑅𝑒𝐿𝑈(𝑊𝑙−1 ⋯ 𝑅𝑒𝐿𝑈(𝑊1𝑥𝑏))) 

          𝜃𝑏 =  𝑊𝜃𝜃𝑏, 𝜃 ∈  𝑅2𝑇                      

𝜃𝑏 =  [𝑏𝑎𝑐𝑘𝑐𝑎𝑠𝑡𝑏| 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑏], 𝑒𝑎𝑐ℎ ∈  𝑅𝑇    

𝑦 =  𝜎(𝑊𝑐 ∙ [𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡1 ⋯ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑏])                  

Similarly, 1D Convolution Layer (Conv1D) was 

integrated as our DCGAN's discriminator to assist with data 

validation. We opted to use this technique owing to its ability 

to recognize frequently emerging patterns within time series 

datasets, provide faster training speeds, offers stable training 

cycles and providing realistic results [18]. 

ℎ1 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣1𝐷(𝑥; 𝑊1, 𝑘 = 5, 𝑠 = 1, 𝑝 = 2)) 

ℎ2 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣1𝐷(ℎ1; 𝑊2, 𝑘 = 5, 𝑠 = 1, 𝑝 = 2)) 

  ℎ3 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊3 ∙ 𝑣𝑒𝑐(ℎ2)),  𝑊3 ∈  𝑅256×(64𝑇)  

  𝐷(𝑥) = 𝜎(𝑊4 ∙ ℎ3) ,   𝑊4 ∈  𝑅1×256 

  min
𝐺

max
𝐷

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧

[log(1 − 𝐷(𝐺(𝑧))] 



This was followed by implementation of Random Forest 

as both the feature selection mechanism and the prediction 

system for our model. It offers independent feature 

importance precedence selection and being computationally 

faster, provide robust predictions, improve forecast 

interpretability, better management of complex data and 

faster performance compared to similar techniques  [19]. 

𝑦(𝑥) =  
1

𝑀
∑ 𝑇𝑚(𝑥)

𝑀

𝑚=1

 

min
𝑗,𝑟

[𝑀𝑆𝐸𝑙𝑒𝑓𝑡 + 𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡] 

𝐼𝑗 =  ∑ 𝑝(𝑡)∆𝑀𝑆𝐸(𝑡)

𝑡∈𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑗

 

Finally, for integrating XAI into our model, we 

implemented Shapley Additive Explanations (SHAP) for 

achieving model interpretability [20]. 

𝜙𝑗(𝑓, 𝑥) =  ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹\{𝑗}

[𝑓𝑠(𝑥𝑠 ∪ {𝑗})

− 𝑓𝑠(𝑥𝑠)] 

𝜙𝑗 =  ∑ ∑ ∆𝑙𝑗 ∙ 𝑤𝑙

𝑙∈𝑙𝑒𝑎𝑣𝑒𝑠 𝑜𝑓 𝑇𝑇∈𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 

 (𝑓𝑜𝑟 𝑡𝑟𝑒𝑒 𝑣𝑎𝑙) 

B. Datasets Considered and Data Processing  

For our primary forecast dataset, we opted to use the 

Hubei ETS Historical Transaction Dataset. It is one of the 

eight regional ETS systems established in the first phase of 

China's national carbon market development. First operated 

in 2014, it is known for its high-grade stability and strong 

industrial diversity, which helped it to emerge as the forefront 

framework for shaping up China's National ETS market as 

well [21]. For this study, Hubei ETS was not only chosen 

based on its benefits but also based on two major aspects - 

Compared to other regional ETS systems like Beijing and 

Guandong and National ETS like China ETS it showcases a 

higher degree of market freedom and is far more mature in 

terms of its sectoral focus and price allocation [22]. In 

comparison to EU ETS, it is relatively simpler in its market 

structure, as it relied more on sectoral dependencies within its 

region alongside govt. initiatives [23]. Additionally, it made 

sense to choose Hubei ETS, as its forecasting insights could 

help towards developing India's upcoming Carbon Credit 

Trading Scheme (CCTS). Like China which ran Hubei ETS 

as regional pilot program, India also currently runs its pilot 

ETS program, the Perform, Achieve and Trade (PAT) 

scheme. Thus, Hubei ETS tends to serve as a benchmark 

narrative to understand how carbon markets behave on a 

regional level, something that the India's upcoming plan 

would greatly benefit from as it expands its coverage from 

sectoral to national level emission management [24]. 

 

The forecast dataset was acquired from the official Hubei 

carbon emission exchange website [25]. We acquired data of 

daily price frequency for the last 8 years between 05th April 

2017 to 30th September 2025. For ensuring resilient 

forecasting, the forecasting features for the dataset were 

considered using the OHLC framework - leading us to 

consider parameters like Open, High, Low and Close prices 

alongside other parameters like volume, transaction amount 

and price rise-fall. Table 1 gives us insights related to the data 

values observed within our price dataset relevant to our 

research.  
TABLE 1  FORECAST DATA STATISTICS 

Name Value 

Maximum Price 61.48 

Minimum Price 11.56 

Average Price 34.22 

Std Dev. 10.99 

 

Additionally, the Fig 3 below showcases the trend of 

carbon price allowance considered (Hubei Emission 

Allowance (HBEA) between the considered time period. 

 

Fig 3. Prices observed for HBEA during the considered collection period 
 

Alongside our forecast dataset, we considered 8 other 

datasets across 4 factors for feature engineering based on 

relevant literature to ensure that our model offers results that 

are reliable and explainable from a market perspective based 

on relevant literature [26]. All datasets followed the same 

time period of daily data frequency as the forecast dataset for 

the sake of homogeneity and were obtained from open-source 
trading websites and repositories. Table 2 showcases the 

features considered alongside the datasets chosen -  
TABLE 2  FEATURE DATASET INFORMATION 

Feature Value Dataset Considered 

Feature 1 Energy-Centric 

Commodities 

WTI Crude Oil [27] 

Natural Gas Futures [28] 

Feature 2 Market Indexes S&P 500 Index [29] 

NASDAQ 100 Index [30] 

Feature 3 Economic Indicators Volatility Index (VIX) [31] 

Nominal Broad US Dollar 

Index (DTWEXBGS) [32] 

Feature 4 Environmental Factors Average PM 2.5 [33] 

Daily Temperature [34] 

 

For ensuring resilient price prediction several data processing 

steps were undertaken like non-price feature data imputation 

through linear interpolation, implementing a train test split of 

80:20 for both feature selection and price forecasting along 

with implementation of 30-day rolling windows and its 

subsequent values for driving final price forecasts so as to 

preserve temporal features and to improve prediction 

accuracy. 
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III. RESULTS OBTAINED AND PRICE INTERPRETATION 

 After developing our forecasting model and engaging in 
the process of price prediction using it over our chosen dataset, 
the final step is to evaluate the results derived. In accordance 
with our objectives, the result has been obtained in 2 different 
ways - firstly, we have acquired our model's performance 
metrics in a numeric manner to comparatively analyse our 
model's performance against other models of similar kind. To 
analyze and deduce how our model fared in comparison to 
other published studies, we considered three benchmark 
values - Root Mean Squared Error (RMSE), Mean Absolute 
Percentage Error (MAPE) and Mean Absolute Error (MAE). 
RMSE is a metric utilized to calculate the standard deviation 
achieved by an error. MAPE is used to calculate the absolute 
percentage difference between predicted values and the actual 
value. MAE is used to calculate the absolute difference 
between the predicted and actual values. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑦𝑖 − 𝑦̇𝑖)2

𝑛

𝑖=1

 

𝑀𝐴𝑃𝐸 =  
100

𝑛
 ∑ |

𝑦𝑖 − 𝑦̇𝑖

𝑦𝑖

𝑛

𝑖=1

| 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̇𝑖|

𝑛

𝑖=1

 

       As we can see in Table 3, we compared our model's 
metrics with other forecasting models developed and tested 
over Hubei ETS, other regional ETS, China National ETS and 
EU ETS. We chose to compare our metrics to both historic 
models developed and recent models developed so as to 
effectively analyze how our model fares compared to historic 
implementations and recent forecasting endeavor. As our 
model is a hybrid mixture of DCGAN with multiple neural 
networks and tree-based models, we chose to compare our 
model with other forecasting architecture that adopts either 
neural network-based architecture, hybrid architecture or 
GAN-based architecture   for effective comparison and result 
reporting.  

TABLE 3  COMPARISON OF THE HYBRID DCGAN MODEL 

RESULT WITH OTHER PUBLISHED MODELS 

Study ETS 

considered 

Model Used RMSE MAPE  MAE 

[35] Hubei ETS 

(2015-18) 

 

PSO-LSSVM 2.01 6.74 1.79 

BA-LSSVM 2.36 7.15 1.81 

LSSVM 3.10 9.01 2.46 

Hubei ETS 
(2016-18) 

 

PSO-LSSVM 3.12 8.44 1.36 

BA-LSSVM 2.68 8.56 2.41 

Hubei ETS 

(2017-18) 

 

PSO-LSSVM 2.81 8.44 1.36 

BA-LSSVM 2.68 8.56 2.41 

[36] Hubei ETS BP 1.98 5.19 1.61 

Beijing ELM 3.18 2.23 1.67 

ICEEMDAN-

PSR-BP 

2.84 2.52 1.99 

Guangdong 

ETS 

 

BP 1.97 5.93 1.67 

[37] 

 

China 

National 
ETS 

GRU-CNN-

LSTM 

4 4.38 3.62 

GRU-CNN-

LSTM-BO 

2.53 2.31 1.94 

EU ETS GRU-CNN-

LSTM 

1.87 1.75 1.46 

GRU-CNN-
LSTM-BO 

1.70 1.66 1.38 

[38] Beijing 

ETS 

CPFNet 5.34 10.5 3.59 

Tianjin 

ETS 

CPFNet 3.02 11.6 1.96 

Shanghai  

ETS 

CPFNet 1.74 2.10 1.07 

Chongqing 

ETS 

CPFNet 1.76 6.6 1.29 

Our 

Study 

Hubei ETS DCGAN-

NBeats-

Conv1D-RF  

1.17 2.27 0.92 

 Apart from this, we also considered GAN training loss 
graph and RF next day forecast vs actual to validate our model 
performance. As we can see in Fig 4. the GAN training loss 
appears to be stable and showcases expected normal behavior, 
which translates to our model effectively engaging in data 
augmentation and training. Similarly, in Fig 5, the RF forecast 
vs actual graph showcases that our model is able to achieve 
predicted price values closer to the actual value, validating the 
forecasting accuracy.  

 
Fig 4. GAN Training Loss Graph Observed for our model 

 

 
Fig 5.  Forecast vs Actual Price Graph for our model using RF 

      To interpret the feature importance considered by our 

model during price prediction we have constructed both 

SHAP bar charts and bee swarm plots to showcase impact 

magnitude and relationship dynamics. As observed in Fig 6, 

the latest value observed for HBEA's daily closing price in 

the last 30 days (Close_last) was interpreted to be the most 

influential factor, owing to its immense value of impact over 

model output magnitude (over 10) which directly translates 

to it having the biggest impact over price prediction in case 

of one day-ahead price forecasting.  

 



 
Fig 6. SHAP Bar Chart of magnitude of average impact on price for the top 

feature 

      As observed in Fig 7, the other remaining 25 selected 

features have relatively low impact values compared to the 

top-most parameter (between 0.005 and 0.5), which meant 

that they did not have that big of impact on day-ahead 

predicted prices as that of the top-most feature. However, this 

does not imply that the features were by themselves useless 

or did not play any role towards influencing carbon prices. 

The very presence of non-zero values in the SHAP plots 

displays that there is a relationship exhibited between the 

prices predicted and the features considered. What this means 

is that whilst their influence on short-term forecasting may 

appear minimal, but they are still important, as they emerge 

to be excellent explanatory indicators for the prices 

forecasted. These thereby act as secondary constructs that 

could be enforced in case of extraordinary circumstances 

emerge (regime change, new policies introduced etc.) to 

ensure correct prices are predicted, nonetheless. 

 

 
Fig 7. SHAP Bar Chart of magnitude of average impact on price for the 

remaining features 

      The SHAP bee swarm reflect the nature of relationship 

between features and the price predicted with red signifying 

higher values, purple signifying neutral values and blue 

signifying negative value.  In the case of the topmost feature, 

as seen in Fig 8- the latest value observed for HBEA's daily 

closing price in the last 30 days (Close_last) has a direct 

relationship, as its reports red on positive end, indicating that 

its higher values drive higher carbon prices.  

 
Fig 6. Bee Swarm Chart depicting relationship interpreted between impact 

and price for the top feature 

      For rest 25 features as seen in Fig 9, we see different 

correlations arising, like the latest value observed for Natural 

Gas's daily high price in the last 30 days (FEA1_Natural Gas 

Price_High_Last) effect on the price predicted depends on the 

value achieved as depicted by its majority purple values near 

zero, meaning that the predicted price does not rise or fall 

based on this parameter's rise or fall, it is more of context-

specific dependency. Similarly, the standard deviation 

observed for S&P 500's daily Change parameter in the last 30 

days (FEA2_S&P 500_Index Data_Change_roll_std_30) has 

a direct relationship with the price predicted as it reports blue 

on the negative end, indicating that its lower values drive 

lower carbon prices. However, there are instances wherein 

inverse relationship is observed. For instance, the standard 

deviation observed for WTI Crude Oil's daily High Price in 

the last 30 days (FEA1_WTI Crude Oil 

Price_High_roll_std_30) has an inverse relationship as it 

reports red on the negative end, indicating that its higher 

value drives lower carbon prices. Finally, the standard 

deviation observed for Hubei Temperature's daily minimum 

value in the last 30 days has an inverse relationship as it 

reports blue on positive end indicating that its lower value 

drives higher carbon prices. 

 
Fig 7. Bee Swarm Chart of relationship between impact and predicted price 

for remaining features 



IV. CONCLUSION 

      In past few years, there is urgent need for companies to 

tackle emissions produced so as to protect the environment. 

Whilst concrete initiatives have been taken such as ETS and 

CE practices, roadblocks emerge in terms of their individual 

and integrated application owing to issues pertaining to 

integration of AI-centric methods. To mitigate the gaps 

realized, a novel hybrid DCGAN-XAI carbon price 

forecasting model was proposed to derive interpretable 

carbon prices. Whilst our study showcases a promising use 

for the model developed based on the findings interpreted 

from the results, a scope for further improving the model is 

realized. Future work plans involve integrating optimization 

techniques for improving model performance, utilizing other 

frameworks within the DCGAN model etc.  
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