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Abstract — Emissions Trade Systems (ETS) and Circular
Economy (CE) are currently the biggest ways of engaging in
emissions management. However, traditional emission trade
mechanisms face roadblocks in terms of computation speed and
forecasting accuracy. Whilst Al-centric solutions have solved
this to an extent, they are found to be engulfed with problems
like issues in validating carbon credits, being unable to consider
external driving factors for carbon prices and lack of
interpretation of the price-related insights generated. To
overcome this study proposes a hybrid novel carbon price
forecasting model comprising of hybrid Deep Convolutional
Generative Adversarial Network (DCGAN) coupled with
Explainable AI (XAI) for interpretable price forecasting. The
study serves as a testament for integration of DCGAN and XAI
based models as its findings uncover key insights related to
carbon prices which can help stakeholders to improve their
emissions trade performance significantly in real time and
improve circular economy (CE) based lifecycle development.

Keywords— DCGAN, XAIl, N-Beats, Random Forest, Price
Forecasting, Emission Trade Systems

I. INTRODUCTION

In recent years, the need of devising robust methods for
tackling excessive CO2 emissions has grown. Whilst several
initiatives have been taken, there is very little impact of these
within the corporate landscape [1]. This necessitates the
demand for solutions that actively encourages business to
reduce carbon emissions [2]. So far there are 2 solutions that
have emerged to do exactly what is intended - ETS and CE.
On one hand ETS encourages carbon offsetting through
exchange of carbon credit units (CCUs) [3]. On the other
hand, CE achieves the same through development of closed
loop systems for waste minimization [4]. Owing to the similar
nature of intent both methods employ i.e. - reducing excessive
wastage albeit in different forms, an opportunity to assimilate
them is realized from a theoretical perspective, as they both
exhibit benefits like supply chain optimization, better
emission management and easy policy alignment [5], [6].
However, on the practical front, a number of implementation
gaps emerge that prohibit the same. Past studies indicate that
traditional forecasting methods fail in terms of assessing
complex parameters within carbon price, something which is
necessary due to its interdisciplinary nature [7]. Whilst AI has
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been able to effectively mitigate this, it has introduced a newer
set of problems. Current Al based forecasting methods fail to
authenticate the CCUs generated in terms of applicability, are
unable to consider external factors in the global context like
energy prices and are not able to provide insights that can be
easily interpreted by stakeholders [8], [9], [10]. On the CE
front, Al tends to grapple with similar issues as it prioritizes
individualistic goals over large scale interests, ignoring
organizational goals and potentially steering away from
emission reduction goals from a compliance perspective [11],
[12]. Such gaps pave the need for innovative solutions to be
devised which can mitigate them effectively. Sensing the need
to do the same, this study proposes a hybrid interpretable
framework for resilient carbon price prediction, by harnessing
the power of XAI and DCGAN for generating day-ahead
carbon prices and interpretable insights into what influences
the predicted carbon prices in real time.

II. METHODOLOGY ADOPTED

A. Techniques Implemented For Model Development

Relevant literature reveals that current AI/ML forecasting
models suffer from a multitude of issues. For instance -
Autoregressive Integrated Moving Average (ARIMA)
struggles in capturing external insights influencing carbon
prices [13]. Similarly, Long Short-Term Memory (LSTM)
struggles with daily prices, offering both low value
interpretability and optimum forecasting stability [14]. Hence
to develop our proposed framework, two techniques were
chosen for integration - DCGAN and XAI owing to the
benefits they brought forth in the context of our study. This
is because DCGAN is found to improve time-series forecast
through use of deep convolutional layers for better data
augmentation [15]. Similarly, XAl was found to bring
multiple benefits in the context of improving model
interpretation as it provides data backed insights regarding
the overall influence both the internal and external features
considered have over the predicted price [16]. Fig 1
showcases the flowchart depicting the methodology adopted
for model development and Fig 2 showcases the DCGAN
Model Architecture devised.
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Fig 1. Methodology Adopted for Price Forecasting Framework Development
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Fig 2. DCGAN Architecture developed for interpretable carbon price forecasting

The Neural Basis Expansion Analysis for Time Series
(N-Beats) framework was integrated as the Generator for our
DCGAN model. This technique was chosen due to its ability
to capture data trends and long-term relationships, effective
information management along with providing better insight
interpretability when compared to LSTM and other neural
networks [17].
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Similarly, 1D Convolution Layer (ConvlD) was
integrated as our DCGAN's discriminator to assist with data
validation. We opted to use this technique owing to its ability
to recognize frequently emerging patterns within time series
datasets, provide faster training speeds, offers stable training
cycles and providing realistic results [18].
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This was followed by implementation of Random Forest
as both the feature selection mechanism and the prediction
system for our model. It offers independent feature
importance precedence selection and being computationally
faster, provide robust predictions, improve forecast
interpretability, better management of complex data and
faster performance compared to similar techniques [19].
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Finally, for integrating XAI into our model, we
implemented Shapley Additive Explanations (SHAP) for
achieving model interpretability [20].
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B. Datasets Considered and Data Processing

For our primary forecast dataset, we opted to use the
Hubei ETS Historical Transaction Dataset. It is one of the
eight regional ETS systems established in the first phase of
China's national carbon market development. First operated
in 2014, it is known for its high-grade stability and strong
industrial diversity, which helped it to emerge as the forefront
framework for shaping up China's National ETS market as
well [21]. For this study, Hubei ETS was not only chosen
based on its benefits but also based on two major aspects -
Compared to other regional ETS systems like Beijing and
Guandong and National ETS like China ETS it showcases a
higher degree of market freedom and is far more mature in
terms of its sectoral focus and price allocation [22]. In
comparison to EU ETS, it is relatively simpler in its market
structure, as it relied more on sectoral dependencies within its
region alongside govt. initiatives [23]. Additionally, it made
sense to choose Hubei ETS, as its forecasting insights could
help towards developing India's upcoming Carbon Credit
Trading Scheme (CCTS). Like China which ran Hubei ETS
as regional pilot program, India also currently runs its pilot
ETS program, the Perform, Achieve and Trade (PAT)
scheme. Thus, Hubei ETS tends to serve as a benchmark
narrative to understand how carbon markets behave on a
regional level, something that the India's upcoming plan
would greatly benefit from as it expands its coverage from
sectoral to national level emission management [24].

The forecast dataset was acquired from the official Hubei
carbon emission exchange website [25]. We acquired data of
daily price frequency for the last 8 years between 05th April
2017 to 30th September 2025. For ensuring resilient

forecasting, the forecasting features for the dataset were
considered using the OHLC framework - leading us to
consider parameters like Open, High, Low and Close prices
alongside other parameters like volume, transaction amount
and price rise-fall. Table 1 gives us insights related to the data
values observed within our price dataset relevant to our

research.
TABLE 1 FORECAST DATA STATISTICS

Name Value
Maximum Price 61.48
Minimum Price 11.56

Average Price 34.22
Std Dev. 10.99

Additionally, the Fig 3 below showcases the trend of
carbon price allowance considered (Hubei Emission
Allowance (HBEA) between the considered time period.
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Fig 3. Prices observed for HBEA during the considered collection period

Alongside our forecast dataset, we considered 8 other
datasets across 4 factors for feature engineering based on
relevant literature to ensure that our model offers results that
are reliable and explainable from a market perspective based
on relevant literature [26]. All datasets followed the same
time period of daily data frequency as the forecast dataset for
the sake of homogeneity and were obtained from open-source
trading websites and repositories. Table 2 showcases the

features considered alongside the datasets chosen -
TABLE 2 FEATURE DATASET INFORMATION

Feature Value Dataset Considered
Feature 1 Energy-Centric WTI Crude Oil [27]
Commodities Natural Gas Futures [28]
Feature 2 Market Indexes S&P 500 Index [29]
NASDAQ 100 Index [30]
Feature 3 Economic Indicators Volatility Index (VIX) [31]
Nominal Broad US Dollar
Index (DTWEXBGS) [32]
Feature 4 Environmental Factors Average PM 2.5 [33]
Daily Temperature [34]

For ensuring resilient price prediction several data processing
steps were undertaken like non-price feature data imputation
through linear interpolation, implementing a train test split of
80:20 for both feature selection and price forecasting along
with implementation of 30-day rolling windows and its
subsequent values for driving final price forecasts so as to
preserve temporal features and to improve prediction
accuracy.



III. RESULTS OBTAINED AND PRICE INTERPRETATION

After developing our forecasting model and engaging in
the process of price prediction using it over our chosen dataset,
the final step is to evaluate the results derived. In accordance
with our objectives, the result has been obtained in 2 different
ways - firstly, we have acquired our model's performance
metrics in a numeric manner to comparatively analyse our
model's performance against other models of similar kind. To
analyze and deduce how our model fared in comparison to
other published studies, we considered three benchmark
values - Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE) and Mean Absolute Error (MAE).
RMSE is a metric utilized to calculate the standard deviation
achieved by an error. MAPE is used to calculate the absolute
percentage difference between predicted values and the actual
value. MAE is used to calculate the absolute difference
between the predicted and actual values.
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As we can see in Table 3, we compared our model's
metrics with other forecasting models developed and tested
over Hubei ETS, other regional ETS, China National ETS and
EU ETS. We chose to compare our metrics to both historic
models developed and recent models developed so as to
effectively analyze how our model fares compared to historic
implementations and recent forecasting endeavor. As our
model is a hybrid mixture of DCGAN with multiple neural
networks and tree-based models, we chose to compare our
model with other forecasting architecture that adopts either
neural network-based architecture, hybrid architecture or
GAN-based architecture for effective comparison and result
reporting.

TABLE 3 COMPARISON OF THE HYBRID DCGAN MODEL

RESULT WITH OTHER PUBLISHED MODELS

Study ETS Model Used RMSE | MAPE MAE
considered
[35] Hubei ETS | PSO-LSSVM 2.01 6.74 1.79
(2015-18)
BA-LSSVM 2.36 7.15 1.81
LSSVM 3.10 9.01 2.46
Hubei ETS | PSO-LSSVM 3.12 8.44 1.36
(2016-18)
BA-LSSVM 2.68 8.56 2.41
Hubei ETS | PSO-LSSVM 2.81 8.44 1.36
(2017-18)
BA-LSSVM 2.68 8.56 2.41
[36] Hubei ETS BP 1.98 5.19 1.61
Beijing ELM 3.18 2.23 1.67
ICEEMDAN- 2.84 2.52 1.99
PSR-BP
Guangdong BP 1.97 5.93 1.67
ETS

[37] China GRU-CNN- 4 438 3.62
National LSTM
ETS GRU-CNN- 2.53 2.31 1.94
LSTM-BO
EU ETS GRU-CNN- 1.87 1.75 1.46
LSTM
GRU-CNN- 1.70 1.66 1.38
LSTM-BO
[38] Beijing CPFNet 5.34 10.5 3.59
ETS
Tianjin CPFNet 3.02 11.6 1.96
ETS
Shanghai CPFNet 1.74 2.10 1.07
ETS
Chongqing CPFNet 1.76 6.6 1.29
ETS
Our Hubei ETS DCGAN- 1.17 2.27 0.92
Study NBeats-
ConvlD-RF

Apart from this, we also considered GAN training loss
graph and RF next day forecast vs actual to validate our model
performance. As we can see in Fig 4. the GAN training loss
appears to be stable and showcases expected normal behavior,
which translates to our model effectively engaging in data
augmentation and training. Similarly, in Fig 5, the RF forecast
vs actual graph showcases that our model is able to achieve
predicted price values closer to the actual value, validating the
forecasting accuracy.
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Fig 4. GAN Training Loss Graph Observed for our model
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Fig 5. Forecast vs Actual Price Graph for our model using RF

To interpret the feature importance considered by our
model during price prediction we have constructed both
SHAP bar charts and bee swarm plots to showcase impact
magnitude and relationship dynamics. As observed in Fig 6,
the latest value observed for HBEA's daily closing price in
the last 30 days (Close last) was interpreted to be the most
influential factor, owing to its immense value of impact over
model output magnitude (over 10) which directly translates
to it having the biggest impact over price prediction in case
of one day-ahead price forecasting.



SHAP results for the top-most influential feature
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Fig 6. SHAP Bar Chart of magnitude of average impact on price for the top
feature

As observed in Fig 7, the other remaining 25 selected
features have relatively low impact values compared to the
top-most parameter (between 0.005 and 0.5), which meant
that they did not have that big of impact on day-ahead
predicted prices as that of the top-most feature. However, this
does not imply that the features were by themselves useless
or did not play any role towards influencing carbon prices.
The very presence of non-zero values in the SHAP plots
displays that there is a relationship exhibited between the
prices predicted and the features considered. What this means
is that whilst their influence on short-term forecasting may
appear minimal, but they are still important, as they emerge
to be excellent explanatory indicators for the prices
forecasted. These thereby act as secondary constructs that
could be enforced in case of extraordinary circumstances
emerge (regime change, new policies introduced etc.) to
ensure correct prices are predicted, nonetheless.

SHAP results for the remaining influential features
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Fig 7. SHAP Bar Chart of magnitude of average impact on price for the
remaining features

The SHAP bee swarm reflect the nature of relationship
between features and the price predicted with red signifying
higher values, purple signifying neutral values and blue
signifying negative value. In the case of the topmost feature,
as seen in Fig 8- the latest value observed for HBEA's daily
closing price in the last 30 days (Close last) has a direct
relationship, as its reports red on positive end, indicating that
its higher values drive higher carbon prices.

SHAP results for the top-most influential feature
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Fig 6. Bee Swarm Chart depicting relationship interpreted between impact
and price for the top feature
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For rest 25 features as seen in Fig 9, we see different
correlations arising, like the latest value observed for Natural
Gas's daily high price in the last 30 days (FEA1 Natural Gas
Price High Last) effect on the price predicted depends on the
value achieved as depicted by its majority purple values near
zero, meaning that the predicted price does not rise or fall
based on this parameter's rise or fall, it is more of context-
specific dependency. Similarly, the standard deviation
observed for S&P 500's daily Change parameter in the last 30
days (FEA2_S&P 500 Index Data Change roll std 30) has
a direct relationship with the price predicted as it reports blue
on the negative end, indicating that its lower values drive
lower carbon prices. However, there are instances wherein
inverse relationship is observed. For instance, the standard
deviation observed for WTI Crude Oil's daily High Price in
the last 30 days (FEA1 WTI Crude Oil
Price High roll std 30) has an inverse relationship as it
reports red on the negative end, indicating that its higher
value drives lower carbon prices. Finally, the standard
deviation observed for Hubei Temperature's daily minimum
value in the last 30 days has an inverse relationship as it
reports blue on positive end indicating that its lower value
drives higher carbon prices.
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for remaining features



IV. CONCLUSION

In past few years, there is urgent need for companies to
tackle emissions produced so as to protect the environment.
Whilst concrete initiatives have been taken such as ETS and
CE practices, roadblocks emerge in terms of their individual
and integrated application owing to issues pertaining to
integration of Al-centric methods. To mitigate the gaps
realized, a novel hybrid DCGAN-XAI carbon price
forecasting model was proposed to derive interpretable
carbon prices. Whilst our study showcases a promising use
for the model developed based on the findings interpreted
from the results, a scope for further improving the model is
realized. Future work plans involve integrating optimization
techniques for improving model performance, utilizing other
frameworks within the DCGAN model etc.
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