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ABSTRACT

Binarized ReLU activations are considered as a metric space equipped with the
Hamming distance. While for two layer ReLU networks with random Gaussian
weights it can be shown theoretically that local metric properties are approxi-
mately preserved, we experimentally study the discrimination capability in this
Hamming space for deeper ReLU networks and look also at the non-local behav-
ior. It turns out that the discrimination capability is approximately preserved as
expected, but showing small saturation effects that differ from standard metrics
based on full activation information. These effects are explained based on the fact
that the binarized activation states induce a tessellation of polyhedral cells in the
input space.

1 INTRODUCTION

In this paper we concentrate on deep ReLU networks with binarized activations and outputs. ReLU
networks perform particularly well in many practical tasks, such as generative adversarial networks
(Heusel et al. (2017); Salimans et al. (2016)), domain adaptation methods (Ganin et al. (2016); Long
et al. (2017); Zellinger et al. (2021)), and two-sample tests based on neural networks (Lopez-Paz
& Oquab (2017); Kirchler et al. (2020)). Particularly for embedded systems, the reduction of pre-
cision in the inference is interesting from the point of view of keeping computational efforts and
power consumption low, see e.g. Conti et al. (2018); Meloni et al. (2019). But there is also a more
theoretical motivation that comes from metric embedding by looking at neural networks as met-
ric preserving mappings in some appropriate spaces (Indyk & Matousek (2004); van der Maaten
& Hinton (2008); Suárez-Dı́az et al. (2018); Xiao et al. (2018); Courty et al. (2018); Giryes et al.
(2016)). For example, in Giryes et al. (2016) two layer ReLU networks with random Gaussian
weights and binarized activations and outputs, respectively, are considered. Interestingly, this set-
ting guarantees approximately isometric embedding into the Hamming space. This analysis shows
that each standard DNN layer (with random Gaussian weights) performs a stable embedding of
the data from one layer to the next by preserving local structures in the manifold. For deeper net-
works, the analysis becomes much more complicated due to the nested composition of non-linear
functions. In contrast to shallow networks deep networks allow representing restricted Boltzmann
machines with a number of parameters exponentially greater than the number of the network pa-
rameters, as shown by Montúfar & Morton (2015). Looking at the preimage in the layer below
induced by the layer above for some specific output, for example 0, shows that a ReLU network
leads to a tree of nested polyhedral cells which become smaller in size the deeper the network.
By constructing specific ReLU networks Montufar et al. (2014) show exemplarily that deep net-
works divide the input space into an exponential number of (polyhedral) sets, which is not possible
with a single layer with the same number of parameters. This way, deep neural networks are more
expressive than shallow ones. Serra et al. (2018) provide an upper and lower bound on the num-
ber of polyhedral cells, and consider the influence of width versus depth of ReLU network on the
number of created linear regions, finding out that wider ReLU networks result in finer a tessella-
tion then deeper ones. Though such partial results it is not yet fully understood how the network
architecture influences the geometry and distribution of the induced cells, Shepeleva et al. (2020)
points out that these induced polyhedral cells Ci are actually equivalence classes [x] (up to the bor-
der) resulting from the equivalence relation, x ∼ y, that two sample points in the input space are
considered equivalent if they show the same binarized activation profile. We take up this view by
introducing a metric in the tessellation space of cells, T = {[x] |, x ∈ Rd}, as editing distance
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Figure 1: Illustration that dH does not establish an isometry if hyperplanes in the tessellation do not
intersect with the cell. For example, flipping the activation state β4 determines a cell not adjacent
with [x].

of adjacent cells. This means, the number of minimal adjacent cells sharing a common face con-
necting two cells in this tessellation introduces a notion of distance, dT . In our analysis we exploit
the relation that the Hamming distance, dH , on the binary activation states and the distance in the
tessellation have the same distinguishability behavior. This means, the Hamming distance is able to
distinguish between points in different cells, meaning dH(a(x1), a(x2)) > 0⇐⇒ dT (x1, x2) > 0,
where a(x) = (β1,1(x), . . . , β1,n1

(x); . . . ;βL,1(x), . . . , βL,nL
(x)) denotes the vector of binarized

activations βk,ik in the k-th layer of neuron ik ∈ {1, . . . , nk}: βk,ik(x) = 1 if ak,ik(x) > 0 and
βk,ik(x) = 0 else with a total number of L layers, where ak,ik denotes the activation in node ik
in layer k. Note that dH does not establish an isometry in general as illustrated by the example in
figure 1.

Our contribution: While for two layer ReLU networks with random Gaussian weights it can be
shown theoretically that local metric properties are approximately preserved, we experimentally
study the discrimination capability in this Hamming space for deeper ReLU networks and look also
at the non-local behavior. We show experimentally that the discrimination capability is approxi-
mately preserved locally also for deeper networks. In this context we give synthetic examples which
indicate that binarized activation values contain enough of information to distinguish between points
localized differently in the data space.

Section 2 discusses the used distances for the experiments in section 3, followed by final conclusions
and an outlook in section 4. Appendix A supplements some convergence results.

2 METRICS USED IN THE EXPERIMENTAL SETUP

We study the behaviour of the following distances:

(a) Hamming distance. For samples S1 = {x1} and S2 = {y1}, x1, y1 ∈ Rd, we study the
behaviour of the Hamming distance on the binarized activation values,

(b) Wasserstein. a Wasserstein-p distance with a Hamming base distance and p = 1 (see e.g.
Peyré et al. (2019)),

(c) Maximum Mean Discrepancy (MMD). (Gretton et al. (2012)) with exponentiated Ham-
ming kernel k(x, y) = exp {−dH(x, y)} (see Yang et al. (2018)).

Maximum Mean Discrepancy and Wasserstein-p distance belong to the family of integral probability
measures. Moreover, Wasserstein distance enjoys a geometrical interpretation, what makes it par-
ticularly well-suited to work with once geometry of data is involved. In appendix A we complement
our findings by convergence results of type

P (|Wp(S1, S2)−Wp({β(x) | x ∈ S1}, {β(x) | x ∈ S2})| > ε) < δ.

In our experiments, we estimate Wasserstein distance based on the Sinkhorn algorithm as proposed
in Cuturi (2013). Figure 2 illustrates the three steps of our experimental setup for distance analysis
based on discriminating two points.
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(a) Training data. (b) Tessellation and test data. (c) Metric analysis.

Figure 2: A “visual guide” to our paper: figure 2a shows the training set-up for a ReLU with 3 layers
and 15 neurons, figure 2b the testing set-up, and figure 2c the result in terms of metrics measured
in the activation space versus the Euclidean distance in the input space. The y axis is a normalized
value of proposed distances. For detailed description please see section 3.

3 EXPERIMENTS

We remain in the controlled environment: we create a number of multivariate normal distributions,
with means spaced evenly on n-dim space, and covariance matrices such that observations sampled
from differently centered distributions do not overlap significantly when visually inspected (as in
figure 2a). To verify discriminability, we check the alignment of distances listed in section 2 with
a chosen benchmark, here Wasserstein-2 distance, which in case of normal distributions can be
estimated using first and second moments (see Fréchet (1957), abbreviated fd in the plots), computed
on (1) data space, (2) space of activations. We follow the following procedure:

1. train a ReLU network to distinguish an indicated number of groups (for example, in figure
2a we distinguish 5 groups among 25 differently centered probability distributions, as indi-
cated by colours; grouping is done with k-means algorithm: we group each Gaussian in the
grid based on proximity to the nearest cluster center), and store the network’s parameters,

2. create sample consisting of one point (subsection 3.1) or more points (subsection 3.2) on
the diagonal of the cube of our training set-up (as in figure 2b)

3. propagate such a “diagonal data” through pretrained ReLU network, working henceforth
with its binarized activation values,

4. compare the behaviour of distances listed in section 2 with the benchmark distance de-
scribed above.

3.1 INFLUENCE OF NUMBER OF LAYERS

We present partly results in figure 3. Note that the saturation region tends to be larger for lower
numbers (e.g., 3) of layers compared to higher numbers (e.g., 10). This effect reflects the higher
concentration of cells in the tessellation for smaller distances versus decreasing concentration of
cells for larger distances and will be amplified by a higher number of cells caused by a higher
number of layers in consistency with the analysis of (Montufar et al. (2014)).

(a) 3 layers, 50 neurons each (b) 5 layers, 128 neurons each (c) 10 layers, 256 neurons each

Figure 3: Behaviour of metrics with varying number of layers. Prefixes indicate how we calculate
the distances: “code” - using binarized activation values, “activ” - using activation values on neurons
after applying ReLU, “data” - using pure data samples.
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3.2 INFLUENCE OF SAMPLE SIZE AND NUMBER OF TRAINING LABELS

In the following we show that our results extend to larger sample sizes, different number of labels
and also consider the Maximum Mean Discrepancy.

(a) 5 labels, 100 data points (b) 10 labels, 100 data points (c) 20 labels, 100 data points

(d) 5 labels, 10 data points (e) 10 labels, 10 data points (f) 20 labels, 10 data points

Figure 4: Comparison of distance behaviour with varying number of data points and number of
labels we assign to points. We used ReLU network with 3 hidden layers 50 neurons each.

4 CONCLUSION AND FUTURE WORK

Though we definitely lose the isometry property compared to the setting of (Giryes et al. (2016)) due
to the effect pointed out in figure 1, binarized activated states preserve astonishing distinguishability
capabilities. The analysis could be refined by taking the geometry of the cells into account. This
means, by checking which of the activation states βk,ik refer to hyperplanes that touch the cell.
This way we expect to establish an isometry embedding, what is left for an upcoming paper. In
this context we will also check applications, e.g., by constructing a two-sample test statistics using
binarized activation values of some sample. Moreover, we will check the effects where data is sparse
compared to the number of dimensions.
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A CONVERGENCE RESULTS BETWEEN SPACES

In this section we present some convergence results between samples x,y and their binarized acti-
vations β(x), β(y) in Wasserstein-p distance. We consider a ReLU network with L hidden layers
and total number of neurons on hidden layers N =

∑L
k=1 nk, denote the activation vector at layer

k by ak(x) = (a
(k)
1 (x), . . . , a

(k)
nk (x)) = relu ◦ gk ◦ relu ◦ . . . ◦ relu ◦ g0(x), and denote its binarized

activation by β(x) := (β
(k)
1 (x), . . . , β

(k)
nk (x)), where β(k)

i (x) = 1 if a(k)
i (x) > 0 and β(k)

i (x) = 0
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otherwise. Remark that, for truncated Hamming distance dH,θ(x, y) := min{dH(x, y), θ} and
ReLU network f , a pair (Xf , dH,θ), where Xf := {β(x) ∈ {0, 1}N | x ∈ Rd}, is a metric space.

For any β = (β1, . . . , βn1 , . . . , βnL
) ∈ β(x) let Lx

N be the associated empirical measure:

Lβ
N (·) :=

1

N

N∑
i=1

δβi
(·),

where δβi
represents the Dirac delta mass at βi ∈ β(x). We also denote with Ln the following set

Ln = {ν : ν = Lβ
n for some β ∈ β(x)}

Theorem A.1. For n ≥ m, let µ1, µ2 ∈ P(β(x)). Let also X1
1 , . . . X

1
n and X2

1 . . . X
2
m, be in-

dependent β(x) valued random variables with distributions µ1 and µ2 respectively. We have
P(|Wp(µ

1, µ2) − Wp(L
X1

n , LX2

m )| > ε) < (n + 1)|β(x)| exp(−εn2−(1+2p)/2p|β(x)|−1), where
|β(x)| := sup{dH(βi, βj), βi, βj ∈ β(x)}.

To ease notation, we will write W (·, ·) instead of Wp(·, ·).

Proof. By triangular inequality we have

|W (µ1, µ2)−W (LX1

n , LX2

m )| ≤W (µ1, LX1

n ) +W (µ2, LX1

m ),

Therefore we have

P
(
|W (µ1, µ2)−W (LX1

n , LX2

m )| ≥ ε
)
≤ P

(
W (µ1, LX1

n ) +W (µ2, LX1

m ) ≥ ε
)
≤

P
(
W (µ1, LX1

n ) ≥ ε/2 or W (µ2, LX2

m ) ≥ ε/2
)
≤

P
(
W (µ1, LX1

n ) ≥ ε/2
)

+ P
(
W (µ2, LX2

m ) ≥ ε/2
)
≤

max
(
P
(
W (µ1, LX1

n ) ≥ ε/2
)
,P
(
W (µ2, LX2

m ) ≥ ε/2
))

.

Let Γ = {ν ∈ P(β(x)) : W (µ1, ν) ≥ ε/2}. We have

P
(
W (µ1, LX1

n ) ≥ ε/2
)

= P(LX1

n ∈ Γ)

By equation 2.1.12 in Dembo & Zeitouni (2010) we have that for every closed set, it holds

P(LX1

n ∈ Γ) ≤ (n+ 1)|β(x)| exp(−n inf
ν∈Γ∩Ln

H(ν|µ1))

where
inf

ν∈Γ∩Ln

H(ν|µ1) = inf{H(ν|µ1) : ν ∈ Ln and W (ν, µ1) ≥ ε/2}.

From the relationship between mutual entropy H and Wasserstein-p distance Wp stated in
Bolley & Villani (2005) on a bounded and measurable space X it holds that Wp(µ, ν) ≤
21/2p|β(x)|H(µ|ν)1/2p for µ, ν ∈ P(β(x)). Thus joining above equations we obtain

H(ν, µ1) ≥ 2−1/2p|β(x)|−1Wp(ν, µ
1) ≥ 2−(1+2p)/2p(|β(x)|)−1ε,

which results in

P(|W (µ1, µ2)−W (LX1

n , LX2

m )| > ε) ≤ (n+ 1)|β(x)| exp
(
− εn2−(1+2p)/2p|β(x)|−1

)
.
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