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Abstract
Explainable AI (XAI) is seen as important for
AI-driven clinical decision support tools but most
XAI has been evaluated on non-expert popula-
tions for proxy tasks and in low-fidelity settings.
The rise of generative AI and the potential safety
risk of hallucinatory AI suggestions causing pa-
tient harm has once again highlighted the ques-
tion of whether XAI can act as a safety mitigation
mechanism. We studied intensive care doctors in
a high-fidelity simulation suite with eye-tracking
glasses on a prescription dosing task to better
understand their interaction dynamics with XAI
(for both intentionally safe and unsafe (i.e. hal-
lucinatory) AI suggestions). We show that it is
feasible to perform eye-tracking and that the at-
tention devoted to any of 4 types of XAI does
not differ between safe and unsafe AI suggestions.
This calls into question the utility of XAI as a
mitigation against patient harm from clinicians
erroneously following poor quality AI advice.

1. Introduction
In the healthcare landscape, artificial intelligence (AI) is
primarily anticipated to manifest within the confines of a
clinical decision support system (CDSS) as opposed to func-
tioning as an independent entity, at least in the foreseeable
future (Festor et al., 2021). Consequently, fine-tuning the
engagement between healthcare providers and the AI-CDSS
is imperative for large-scale acceptance and impact, an as-
pect that has thus far neglected (van de Sande et al., 2021).
Explainable AI (XAI) has been put forth as a possible so-
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lution by presenting clear and comprehensible rationale for
AI-based suggestions to human users (Barredo Arrieta et al.,
2020). Besides enhancing overall trust in AI, XAI has been
suggested as a tool for averting the potential threat of un-
usual or even harmful AI advice being unintentionally acted
upon (Jia et al., 2022; Gordon et al., 2019; Antoniadi et al.,
2021). This is of increasing concern given the rise of gener-
ative AI (predominantly as large language models, LLMs)
which have a tendency towards hallucinatory (and therefore
if applied in a clinical context, unsafe) advice at times (Lee
et al., 2023). However, the evidence as to whether XAI can
fulfil this role as a defence against inadvertent following of
unsafe (i.e. hallucinatory) AI suggestions remains ambigu-
ous at best (Evans et al., 2022; Jacobs et al., 2021; Ghassemi
et al., 2021).

Regarding the practical implementation of clinical XAI,
there are few clinical evaluations involving XAI with ex-
pert end-users and fewer still in a high-fidelity environment
(Schoonderwoerd et al., 2021). Recent data suggests that
the correlation between the actual prescribing pattern be-
haviour of doctors and self-reported XAI utility is much
lower than anticipated (Nagendran et al., 2023). Notably,
other researchers have pointed out that both self-reports and
actual behaviours can only be recorded post-event (Cao &
Huang, 2022). As a result, the application of these retrospec-
tive metrics as part of a reinforcement learning feedback
loop is significantly limited compared to other real-time
indicators of clinical attention, such as eye-tracking (Ball &
Richardson, 2022; Harston & Faisal, 2022). This technology
has been employed extensively in scenarios outside of the
hospital to determine the focus of an individual’s attention
(Auepanwiriyakul et al., 2018; Makrigiorgos et al., 2019;
Ranti et al., 2020; Harston et al., 2021). A high-fidelity simu-
lation suites provide a platform to scrutinise XAI in a setting
that mirrors actual clinical practice while maintaining stan-
dardised experimental conditions (and is thereofe frequently
used in medical training (Cato & Murray, 2010; Cook et al.,
2011)). Our approach therefore addresses the weaknesses of
prior work (non-clinical subjects, proxy tasks, low fidelity
settings) by integrating eye-tracking within a high-fidelity
environment to more accurately gauge the doctor-XAI inter-
action dynamic.
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In this study, we examined the impact of four different
AI explanation types on clinicians within a high-fidelity
simulation suite while they carried out a common hospital
task: deciding how much of a given drug to prescribe to
a patient after evaluating them. We aimed to quantify the
effect of XAI on doctors’ prescribing decisions and looked
specifically to explore whether the attentional engagement
of doctors (as measured by eye-tracking) varied between
safe and unsafe AI scenarios.

Figure 1. Trial protocol (a) and simulation suite (b) – where
numbers in the simulation suite refer to (1) vital signs monitor, (2)
AI screen, (3) subject, (4) bedside nurse (played by experimenter),
(5) high-fidelity patient mannequin, (6) bedside ICU data chart

2. Methods
Experimental Setup and AI-driven decision support tool
– Our study entailed an observational exploration of human-
AI interaction within a simulation suite. Doctors encoun-
tered one of six patient scenarios under either of two con-
ditions: a safe AI recommendation or an unsafe (i.e. poten-
tially hallucinatory) one. The distinction between safe and
unsafe was determined by significantly high or low prescrip-
tions of fluid and vasopressors, as established in previous
research (Festor et al., 2022). The AI advice given was
artificially generated, as the study’s main focus was to evalu-
ate the interaction dynamics between medical professionals
and AI. We devised four distinct explanations for the sim-
ulated AI system, each based on methods we have applied
to reinforcement learning decision support systems. The
first provided a natural language narrative of the Q-value
difference between the suggested action and other potential
actions. The second elucidated the predicted short-term
mortality changes following dosing alterations as forecast
by the AI. The third highlighted the five most impactful
features of the input data that influenced the AI’s suggestion.
Lastly, the three most influential training examples during
the Q-learning process were identified.

Eye-tracking for Gaze Detection – We made use of eye-
tracking for gaze detection as a surrogate marker to ascertain
the focus of clinicians’ attention during simulations and
its variability. Participating subejcts wore non-obtrusive,

Figure 2. Pupil detection (a) and eye-tracking glasses (b) – Auto-
matic pupil detection -¿ triangulates gaze position after calibrating
software for each subject. Eye-tracking glasses have 3 cameras
(‘ego-centric’ world-view camera plus one camera for each eye).

commercially available eye-tracking glasses (Pupil Labs
Core) equipped with three cameras (Figure 2b). The primary
camera recorded the subject’s viewpoint, while the other
two focused on their eyes. The Pupil Labs software (Pupil
Capture, version 3.5.7) used the eye cameras to outline the
pupil and determine where the gaze was directed within the
world-view (Figure 3a).

A 2D calibration exercise was conducted before the experi-
ment, which consisted of two stages. Initially, a static cali-
bration exercise was done with five screen markers on a lap-
top screen (default Pupil Labs ‘screen marker’ calibration).
Subsequently, a depth-oriented static exercise was executed,
with doctors sequentially concentrating on nine screen mark-
ers (‘natural features’ mode) on a 60-inch TV screen, first
at 1 metre and then at 2 metres distance. The depth vari-
ation aided calibration for real-world environments where
natural head movements were expected. The eye-tracking
glasses were linked to a laptop (Lenovo Thinkpad) through-
out the experiment, housed in a lightweight backpack worn
by participants for unrestricted movement within the suite.

We defined four key regions of interest (ROIs) (Figure 1b):
the patient mannequin (Simman 3G, Laerdal Medical, Sta-
vanger, Norway), the vital signs monitor, the paper intensive
care unit (ICU) data chart, and the AI display screen. Within
the AI display screen, we further identified four sub-regions
corresponding to the four types of AI explanation. ROIs
were determined in the post-processing phase by recog-
nizing pre-placed QR codes (known as April tags, refer
Figure 3a) within the simulation suite to define ROI bound-
ary boxes. Post-processing allowed for the analysis of the
following eye-tracking metrics: (i) gaze-time per ROI, (ii)
number of fixations per ROI (a fixation is the most common
eye movement, occurring when eyes halt scanning and focus
the foveal area of the visual field in one location), (iii) blink
rate (per minute) per ROI. Blink rate is typically inversely
proportional to concentration or focus on an object.

We also developed a unique proxy for behavioural attention,
which takes into account the portion of the visual field oc-
cupied by a region of interest (ROI). In essence, if an ROI
takes up 50% of the visual field for half of the time, we
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Figure 3. Post-processing of eye-tracking data - Left-hand image shows bounding boxes around regions (surfaces) of interest (ROIs).
Right-hand side shows gaze density per ROI as heatmaps.

would expect, based purely on randomness, that the gaze
would fall within the ROI 25% of the time during the exper-
iment. Comparing this 25% ’random gaze’ figure with the
actual gaze proportion allows us to compute a proxy for the
relative significance of ROIs by juxtaposing the proportions
of random and actual gaze.

Simulation Experiment – Subjects initially received a
standard experiment briefing. This was followed by a pre-
experiment questionnaire on attitudes towards AI and de-
mographics. Following orientation in the simulation suite
and eye-tracking calibration exercises, they commenced
the simulated scenarios. An experimenter role-played the
ICU bedside nurse. The doctors were required to assess six
simulated ICU patients with sepsis.

Within each of the six scenarios, clinicians were tasked
with conducting an assessment, which included reviewing
available patient data and performing patient examinations.
Following this, the bedside nurse requested their prescrip-
tion for fluid and vasopressors for the subsequent hour of
the patient’s admission, their confidence level in their pre-
scription, and whether they would seek senior advice (or a
second opinion in the case of a consultant). Doctors were
then presented with the AI suggestions and explanations on
a large display near the patient bed, after which they were
asked to confirm or modify their prescription doses and
revise their responses to the confidence and senior advice
questions (Figure 1a).

Subject recruitment – Recruitment of ICU doctors used
targeted advertising and convenience sampling to a local
hospital region. Inclusion criteria were: (i) practising doctor,
(ii) has worked for two or more months in an adult ICU, (iii)
currently works in ICU or has worked in ICU within the last
6 months. Subjects went through a standard informed con-
sent procedure prior to taking part and were compensated
for their time. Each experiment lasted approximately 60

minutes. The study received ethical approval from the Re-
search Governance and Integrity Team (RGIT) at Imperial
College London and the Health Research Authority (Ref:
22/HRA/1610).

3. Results
Cohort recruited – So far, twelve ICU doctors with eye-
tracking data available were included (8 male, 4 female).
Mean doctor age was 31 years (standard deviation (SD) 5
years). Mean ICU experience was 2.5 years (SD 3.2 years,
range 2 months to 10 years).

Eye-tracking metrics on ROIs – There were more gaze
fixations for the AI suggestion during unsafe scenarios but
this was only significant for ICU doctors (¿1 year experience
in ICU, p=0.046, Figure 4). There were no significant dif-
ferences in number of gaze fixations between the different
XAI modalities for either safe or unsafe scenario, regardless
of doctor seniority.

Mean blink rate was lowest for the ICU chart (5.7 blinks
per minute (bpm), SD 4.4), similar for both patient and
vital signs monitor (mean 15.0 bpm and 14.9 bpm, SD 9.2
and 9.4 respectively) and notably higher for the AI screen
(mean 18.4 bpm, SD 7.6). When comparing all conventional
clinical ROIs (chart, patient, monitor; blue bars in Figure
5) to all AI ROIs (including XAIs; orange bars in Figure
3), there was a significantly lower mean blink rate on the
conventional clinical ROIs than the AI ROIs (11.5 bpm vs.
22.7 bpm, p=0.005).

For every ROI except the patient mannequin, there was a sig-
nificantly higher actual gaze proportion than random chance
gaze proportion (p¡0.001 for all seven comparisons). For
the major ROIs (AI screen, ICU chart, vital signs monitor,
patient) the ratio of actual gaze to random gaze was 6.7,
1.6, 11.8 and 1.2 respectively. For the XAI ROIs (training
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Figure 4. Fixations per scenario by safety status of scenario and
experience level of doctor – Mean and SEM error bars.

examples, Q-value difference, mortality, feature importance)
the ratio of actual gaze to random gaze was 5.9, 4.2, 5.3 and
3.2 respectively (see Figure 6).

Self-reported XAI usefulness – Self-reported data on the
utility of XAI was only available for 6 of the 12 subjects
(Figure 7). The overall mean post-experiment usefulness
rating for the XAI was 3.5 (SD 0.8) on a zero to four scale
with higher value implying the XAI was more useful. The
training examples explanation was the only one of the four
to be rated significantly lower than the overall rating for
explanations in general (mean 1.0, SD 0.9, p¡0.001). When
comparing the ‘objective’ marker of how many fixations
there were on the four different types of XAI to the ‘sub-
jective’ marker of how clinicians rated the usefulness of the
four XAIs, we found no significant correlation for any of
the four XAIs.

Adherence to AI suggestions among doctors – We defined
adherence to AI as the distance between a doctor’s final
prescription (having had the opportunity to view the AI sug-
gestion) and the value of the AI suggestion for any given
trial/scenario (higher distance suggesting that the doctor
was less adherent to AI and vice versa). For fluid, there
was no significant difference in adherence between safe and
unsafe AI suggestions (absolute difference of 208 ml/hr
and 167 ml/h distance respectively between doctor and AI,
p=0.47). For vasopressor, there was significantly more ad-

Figure 5. Blink rate by region of interest – Mean and SEM error
bars. Blue bars are traditional clinical surfaces while orange bars
are AI / XAI surfaces.

Figure 6. Ratio of actual to random gaze per ROI – Random
gaze is the proportion expected based on the area occupied by an
ROI within the visual field (i.e. if ROI takes up 50% of the screen,
50% of the time, we would expect gaze to randomly fall within it
25% of the time). Actual gaze is the proportion observed during
the experiment.

herence for safe AI than unsafe AI (0.05 mcg/kg/min and
0.30 mcg/kg/min distance respectively between doctor and
AI, p¡0.0001). However, there was no evidence of correla-
tion between eye-tracking metrics (blink rate or number of
gaze fixations) and AI adherence regardless of safety status
or drug. Nor was there evidence of correlation between
number of gaze fixations and AI adherence regardless of
safety status or drug. Nor was there a significant association
between number of fixations specifically on XAI ROIs and
drug (either fluid or vasopressor) for either AI scenario (safe
or unsafe).
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Figure 7. Usefulness rating for each type of explanation as well
as overall rating – Mean and SEM error bars. The only signif-
icantly different explanation type compared to overall was the
‘most influential training examples’.

4. Discussion
Our study reveals several new findings that augment our
knowledge base on clinicians’ interaction with AI-assisted
decision support instruments and their associated explana-
tions. First, the utility of gaze fixations and blink rate as
surrogate indicators for attention to an AI tool was success-
fully demonstrated within a high-fidelity simulation setup.
The extension of this to real-life clinical situations would be
contingent on the availability of less intrusive eye-tracking
hardware and addressing privacy concerns linked to video
recording of staff and patients. Second, we observed that
there was no marked elevation in attention to any of the
four explanation types when dealing with an unsafe AI sug-
gestion versus a safe one. This negates the assumption of
increased reliance on explanations during unsafe scenarios.
Third, there was no correlation between the self-reported
utility of explanations and the degree of attention they re-
ceived, suggesting that self-reports alone are insufficient for
assessing XAI tools. Fourth, blink rate, a potential marker
of cognitive effort, was lowest for the ICU chart packed
with granular data and highest for the AI screen and ex-
planations, suggesting less cognitive effort is required to
interpret the AI data. Fifth, we were unable to draw consis-
tent connections between eye-tracking metrics and clinical
practice variations or adherence to AI suggestions.

Several limitations must temper these findings. First, despite
the high fidelity of our simulation suite, it falls short of repli-
cating the intricate dynamics of a real hospital environment,
such as dynamic patient examination, continuous patient
observation, and multi-disciplinary team interactions before
considering an AI recommendation. However, these com-
plexities make it challenging to standardise real-world ex-
periments and require unfeasibly large sample sizes. Hence,
simulation experiments remain vital for exploring human-AI

interaction dynamics before embarking on larger real-world
studies. Second, our small sample size implies that certain
comparisons could have been significantly different with
a larger number of participants. Third, the categorisation
of AI suggestions into safe or unsafe inherently imposes
an arbitrary boundary on a continuous spectrum. Fourth,
the explanations varied in their presentation format: some
were primarily graphical, and others were text-heavy, po-
tentially confounding comparisons between explanations.
Fifth, the safe and unsafe AI suggestions were synthetic
and this may not accurately capture how a real AI system
might hallucinate an incorrect explanation. As an example,
LLMs can often be confidently wrong. This may be further
exacerbated during reinforcement learning with human feed-
back (RLHF) which optimises the output towards human
preference and thereby potentially makes wrong answers
even more convincing.

Regardless of these constraints, our findings offer invalu-
able insights into the optimisation of XAI-based medical
decision support tools when assessed alongside existing
literature. One prevalent presumption is that explanations
should aid users in correctly discarding poor or unsafe AI
advice. This process typically involves the following steps:
[A] an unsafe AI suggestion is presented to the user, [B] an
explanation for the AI suggestion is subsequently offered,
[C] the user either identifies a flaw in the explanation or
cannot find reasons justifying the inappropriateness of the
AI suggestion, and finally [D] the user discards the unsafe
AI advice. Evidence from a study in non-clinicians hints
at a possible breakdown in the causal link between steps
[C] and [D] (Shafti et al., 2022). The authors discovered
that the presence of an explanation amplified the impact of
AI advice, with the quality of explanation seemingly irrele-
vant, indicating a potential automation bias where the mere
existence of an explanation is used as a heuristic to follow
the AI advice, bypassing critical evaluation. The risk of
such automation bias is well documented in other clinical
investigations (Micocci et al., 2021; Panigutti et al., 2022).

Another piece of evidence is an experiment examining a
mental health drug decision support tool, where explana-
tions failed to prevent clinical users from following inten-
tionally subpar AI recommendations (Jacobs et al., 2021).
Our study corroborates that the substantially higher rejec-
tion rate of unsafe advice over safe advice was not driven
by an increased reliance on, or attention paid to, expla-
nations. We validated this by concurrently evaluating the
trio of doctors’ actual prescription decisions, their visual
attention during decision-making, and their post-experiment
subjective explanation ratings.

The deployment of eye-tracking technology in AI-user stud-
ies has been minimal to date, with one significant example
being the work by Cao and colleagues, who utilized a spatial
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reasoning task and detected a positive association between
gaze percentage on the AI suggestion and both perceived
user reliance on AI and their agreement with AI suggestions
(Cao & Huang, 2022). Interestingly, gaze did not appear to
correspond with perceived trust. In line with this, our study
also found no correlation between subjective explanation
ratings and the number of gaze fixations on the AI expla-
nation. One of the touted benefits of using eye-tracking
for assessing human-AI interactions is its real-time nature,
which contrasts with retrospective subjective ratings or hu-
man agreement with AI suggestions, potentially forming
the backbone of an adaptive collaboration feedback loop
(Cao & Huang, 2022). Our results caution that before eye-
tracking can take center stage in such a feedback system
involving XAI, there is a pressing need to establish robust
eye movement patterns that can accurately categorize users
and, optimally, forecast their interactions with an AI system
(though this might be possible with a larger sample size).

5. Conclusion
Overall, our findings suggest that eye-tracking is a feasible
method for evaluating clinicians’ interactions with XAI. We
demonstrate that clinicians’ responses to safe and unsafe
AI are noticeably different. However, the lack of ’rescue’
effect provided by XAI raises questions about its role in pre-
venting patient harm from clinicians following poor quality
AI advice. Our findings underscore the need for the next
generation of AI decision support tools to tailor not only
their advice but also the manner in which they interact with,
and provide explanations to, their clinician end-users.
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A. Appendix - Standardised experiment briefing to participants
This simulation experiment aims at studying how clinicians might interact with an AI decision support tool for patients with
sepsis. The AI takes patient variables as input and outputs a treatment recommendation for both fluid and vasopressor. We
have some evidence of effectiveness of the AI you will interact with on retrospective data from an American dataset and
further validation on retrospective data from the Netherlands. However, there has not yet been prospective evidence of either
effectiveness or safety.

You will conduct a brief ward round review of 6 ICU patients with sepsis. Between each patient, you will exit the room and
be called in again to see the next patient by the nurse.

For each patient, you will first be asked:

• Treatment prescriptions for:

• Fluid in ml for the next hour

• Vasopressor in mcg/kg/min for the next hour

• Your confidence in the prescription on a scale from 1 (low) to 10 (high)

• Whether or not you want to get advice from another doctor / senior doctor

You will then be shown the AI treatment recommendation on a digital screen. The screen contains the AI dose suggestions
in the middle (for fluid and vasopressor) along with 4 explanations for the suggestions (one in each corner)

You will then be asked:

• To what extent you agree with the AI suggestion on a scale from 1 (strongly disagree) to 5 (strongly agree)

• Whether you wish to adjust your treatment prescription for:

– Fluid in ml for the next hour
– Vasopressor in mcg/kg/min for the next hour

• Whether your confidence in your prescription (on a scale from 1 [low] to 10 [high]) has changed as a result of seeing
the AI suggestion

• Whether or not you want to get advice from another doctor / senior doctor

• If the AI suggested treatment was to be administered to the patient, would you act to stop the administration?

We will now show you an example of the AI screen that you will encounter in the experiment. You can see that there is an
AI suggestion in the centre of the screen which is how much fluid and vasopressor the AI recommends over the next hour.

Around the corners of the screen there are four different types of explanation which can be thought of as the AI trying
to convey the rationale for its suggested doses. The mortality change explanation conveys information on what the AI
predicts will happen to the overall mortality risk in the short-term based on potential dose increases or decreases. The most
influential training examples explanation conveys which three training cases were most helpful for learning the current
suggestion in the same way that we might base our own treatment choices on previous notable cases we learnt from. The
feature importance explanation conveys which were the top five features (or items in the data) that were most useful to
the AI in generating its current suggestion. The ‘AI treatment options gap’ explanation conveys how much one treatment
strategy looks superior compared to alternatives. If all potential options are similar (i.e. a low gap) then it suggests that the
AI has near equipoise for options and you may wish to use your own judgement more strongly (as you will have additional
information from examining the patient for example). However, if the gap is high it suggests that the AI has identified one
particular treatment strategy as superior to the alternatives and therefore it would be worth considering this recommendation
more strongly than with a low gap recommendation.
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B. Appendix - AI explanations used
Q-value difference – This approach leverages the fact that once training is complete, the reinforcement learning (RL) Q
table will contain Q values for any given state-action pair. The optimal action is the one with the highest Q value for any
given state. However, the difference between this highest Q value and the alternatives might be very small or large. If large,
then there is much higher anticipated value from following the recommended action compared to an alternative. This is
dichotomised arbitrarily from a continuous value to make interpretation more simple for non-AI users.

Mortality predictions – This approach leverages the fact that mortality can be predicted for any given state in the RL state
space. Therefore the impact of different dosing strategies that might result in transition to alternative states with different
predicted mortalities can be displayed to the subject to highlight how alternate strategies might change the risk of death.

Feature importance – This approach leverages the fact that the state space for RL based sepsis algorithms is commonly
constructed using a k-means clustering algorithm to enable dimensionality reduction. After the algorithm converges, the
cluster centroids represent the average feature values for patients in a particular state/cluster. A new patient would be
assigned to the state/cluster that minimised the distance from their feature values to the respective cluster centroid. Intuitively,
with often over 40 features, some features will be closer to the cluster centroid value than others for any patient assigned to a
given state. This is exploited to rank features in terms of their proximity to the cluster centroid (or average state feature
values) given that the archetypal patient for whom an RL agent policy action most applies is a patient who is most typical of
that state. So subjects can be shown the top five ranked features contributing to state assignment.

Most influential training examples – This approach leverages the fact that the difference in Q values for any given
state-action pair between one iteration of Q-learning and the previous iteration reflects how valuable the currently seen
training episode is for learning the optimal action for any given state. This is similar to an instance-based explanation used
in deep learning imaging XAI where the explanation consists of showing similar image instances from the training instance
to explain why a particular image classification has been made.

• Create empty Q and ‘Q-difference’ tables (both indexed by Q(S,A) tuple)

• For 500,000 episodes:

– Select random training episode:

* For each time-step:
· Perform Q learning
· Check the Q differences table → is the Q difference (i.e. difference between old and updated new Q values)

from this step among the top 3 for this state-action tuple?
· If so → update differences table with the ID for this episode

• End with a dictionary of top 3 influential episodes per Q(S,A) tuple
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