
Lightweight Learner for Shared Knowledge Lifelong Learning

Yunhao Ge 1 Yuecheng Li * 1 Di Wu * 1 Ao Xu * 1 Adam M. Jones 2 Amanda Sofie Rios 3

Iordanis Fostiropoulos 1 Shixian Wen 4 Po-Hsuan Huang 2 Zachary William Murdock 2 Gozde Sahin 1

Shuo Ni 1 Kiran Lekkala 1 Sumedh Anand Sontakke 1 Laurent Itti 1 2 5

Abstract

In Lifelong Learning (LL), agents continually
learn as they encounter new conditions and
tasks. Most current LL is limited to a single
agent that learns tasks sequentially. Dedicated
LL machinery is then deployed to mitigate
the forgetting of old tasks as new tasks are
learned. This is inherently slow. We propose
a new Shared Knowledge Lifelong Learning
(SKILL) challenge, which deploys a decen-
tralized population of LL agents that each
sequentially learn different tasks, with all agents
operating independently and in parallel. After
learning their respective tasks, agents share and
consolidate their knowledge over a decentralized
communication network, so that, in the end,
all agents can master all tasks. We present
one solution to SKILL which uses Lightweight
Lifelong Learning (LLL) agents, where the goal
is to facilitate efficient sharing by minimizing
the fraction of the agent that is specialized for
any given task. Each LLL agent thus consists of
a common task-agnostic immutable part, where
most parameters are, and individual task-specific
modules that contain fewer parameters but are
adapted to each task. Agents share their task-
specific modules, plus summary information
(”task anchors”) representing their tasks in
the common task-agnostic latent space of all
agents. Receiving agents register each received

*Equal contribution 1Thomas Lord Department of Com-
puter Science, University of Southern California, Los Angeles,
California, US 2Neuroscience Graduate Program, University of
Southern California, Los Angeles, California, US 3Intel Labs,
Santa Clara, California, United States 4Shenzhen Institute of Ad-
vanced Technology, Chinese Academy of Sciences, Shenzhen,
Guangzhou, China 5Dornsife Department of Psychology, Univer-
sity of Southern California, Los Angeles, California, US. Corre-
spondence to: Yunhao Ge <yunhaoge@usc.edu>, Yuecheng Li
<liyueche@usc.edu>, Di Wu <dwu92983@usc.edu>, Ao Xu
<aoxu@usc.edu>, Laurent Itti <itti@usc.edu>.

In ICML Workshop on Localized Learning (LLW), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

task-specific module using the corresponding
anchor. Thus, every agent improves its ability
to solve new tasks each time new task-specific
modules and anchors are received. If all agents
can communicate with all others, eventually all
agents become identical and can solve all tasks.
On a new, very challenging SKILL-102 dataset
with 102 image classification tasks (5,033
classes in total, 2,041,225 training, 243,464
validation, and 243,464 test images), we achieve
much higher (and SOTA) accuracy over 8 LL
baselines, while also achieving near perfect
parallelization. Code and data can be found
at https://github.com/gyhandy/
Shared-Knowledge-Lifelong-Learning

1. Introduction
Lifelong Learning (LL) is a relatively new area of machine
learning (ML) research, in which agents continually learn
as they encounter new tasks, acquiring novel task knowl-
edge while avoiding forgetting of previous tasks (Parisi
et al., 2019). This differs from standard train-then-deploy
ML, which cannot incrementally learn without catastrophic
interference across successive tasks (French, 1999).

Most current LL research assumes a single agent that se-
quentially learns from its own actions and surroundings,
which, by design, is not parallelizable over time and/or
physical locations. In the real world, tasks may happen
in different places; for instance, we may need agents that
can operate in deserts, forests, and snow, as well as rec-
ognize birds in the sky and fish in the deep ocean. The
possibility of parallel task learning and sharing among mul-
tiple agents to speed up lifelong learning has traditionally
been overlooked. To solve the above challenges, we pro-
pose a new Lifelong Learning challenge scenario, Shared
Knowledge Lifelong Learning (SKILL): A population of
originally identical LL agents is deployed to a number of
distinct physical locations. Each agent learns a sequence of
tasks in its location. Agents share knowledge over a decen-
tralized network, so that, in the end, all agents can master
all tasks. SKILL promises the following benefits: speedup

1

https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning
https://github.com/gyhandy/Shared-Knowledge-Lifelong-Learning

Submission and Formatting Instructions for ICML 2023

of learning through parallelization; ability to simultane-
ously learn from distinct locations; resilience to failures as
no central server is used; possible synergies among agents,
whereby what is learned by one agent may facilitate future
learning by other agents.

However, to solve SKILL, one must address the following
challenges:

Chal-1 Distributed, decentralized learning of multiple
tasks. A solution to SKILL should support a popu-
lation of agents deployed over several physical loca-
tions and each learning one or more sequential tasks.
For resilience reasons, the population should not rely
on a single central server.

Chal-2 Lifelong learning ability: Each agent must be capa-
ble of lifelong learning, i.e., learning a sequence of
tasks with minimal interference and no access to pre-
vious data as each new task is learned.

Chal-3 Shareable knowledge representation: The knowl-
edge representation should easily be shared and under-
stood among agents. Agents must be able to consoli-
date knowledge from other agents in a decentralized,
distributed fashion.

Chal-4 Speedup through parallelization: Shared knowl-
edge should be sufficiently compact, so that the bene-
fits from using multiple parallel agents are not erased
by communications costs. Adding more agents should
result in greater speedup compared to a single agent.
We measure speedup as the the ratio of time it takes
for one agent to learn all tasks compared to N agents
(larger is better). As a goal for our work, we strive for
a speedup of at least 0.5 × N with N agents, where
perfect speedup would be 1.0×N if there was no par-
allelization and communications overhead.

Chal-5 Ability to harness possible synergies among tasks:
When possible, learning some tasks may improve
learning speed or performance at other, related tasks.

To address the SKILL challenge, we take inspiration from
neuroscience. Many approaches to LL involve at least par-
tially retraining the core network that performs tasks (fea-
ture extraction backbone plus classification head), as ev-
ery new task is learned. But transmitting and then merg-
ing these networks across multiple agents would incur very
high communications and computation costs. With the ex-
ception of perceptual learning, where human visual cor-
tex may indeed be altered when learning specific visual
discrimination tasks for days or weeks (Goldstone, 1998;
Dosher & Lu, 2017), there is little evidence that our en-
tire visual cortex — from early stage filters in primary vi-
sual cortex to complex features in inferotemporal cortex —
is significantly altered when we just learn, e.g., about a
new class of flowers from a few exemplars. Instead, the
perirhinal cortex (and more generally the medial tempo-
ral lobe) may be learning new representations for new ob-

jects by drawing upon and combining existing visual fea-
tures and representations from visual cortex (Deshmukh
et al., 2012). This may give rise to specialized ”grand-
mother cells” (Bowers, 2017) (or Jennifer Aniston neu-
rons; (Quiroga et al., 2005; Quiroga, 2017)) that can be
trained on top of an otherwise rather immutable visual cor-
tex backbone. While the grandmother cell hypothesis re-
mains debated in neuroscience (vs. distributed representa-
tions; (Valdez et al., 2015)), here, it motivates us to explore
the viability of a new lightweight lifelong learning scheme,
where the feature extraction backbone and the latent rep-
resentation are fixed, and each new object class learned is
represented by a single new neuron that draws from this
representation.

From this inspiration, we propose a simple but effective so-
lution to SKILL based on new lightweight lifelong learn-
ing (LLL) agents. Each LLL agent uses a common frozen
backbone built-in at initialization, so that only the last layer
(head) plus some small adjustments to the backbone (ben-
eficial biases) are learned for each task. To eliminate the
need for a task oracle, LLL agents also learn and share sum-
mary statistics about their training datasets, or share a few
training images, to help other agents assign test samples to
the correct head (task mapper). On a new, very challenging
dataset with 102 image classification tasks (5,033 classes in
total, 2,041,225 training, 243,464 validation, and 243,464
test images), we achieve higher accuracy compared to 8 LL
baselines, and also near-perfect parallelization speedup.

Our main contributions are: (1) We formulate a new
Lifelong learning challenge, Shared Knowledge Lifelong
Learning (SKILL), which focuses on parallel (sped up)
task learning and knowledge sharing among agents. We
frame SKILL and contrast it with multi-task learning, se-
quential LL, and federated learning (Sec. A). (2) A new
LL benchmark dataset: SKILL-102, with 102 complex im-
age classification tasks. To the best of our knowledge,
it is the most challenging benchmark to evaluate LL and
SKILL algorithms in the image classification domain, with
the largest number of tasks, classes, and inter-task variance
(Sec. 3). (3) A solution to the SKILL problem: Lightweight
Lifelong Learning (LLL) for efficient knowledge sharing
among agents, using a fixed shared core plus task-specific
shareable modules. The need for a task oracle is elimi-
nated by using a task mapper, which can automatically de-
termine the task at inference time from just an input im-
age (Sec. 4). (4) Our SKILL algorithm achieves SOTA
performance on three main metrics: High LL task accu-
racy (less catastrophic forgetting), low shared (communi-
cation) resources, and high speedup ratio (Sec. 5). (5) The
proposed Lightweight Lifelong Learner shows promising
forward knowledge transfer, which reuses the accumulated
knowledge for faster and more accurate learning of new
tasks.

2

Submission and Formatting Instructions for ICML 2023

	𝑇!"

	𝑇#"

	𝑇$"
	𝑇%"

	𝑇&"

…
𝐴"

𝑅"

a) Multi-task Learning c) Federated Learning

	𝑇!"
𝑅" 𝐴"

	𝑇!#
𝑅# 𝐴#

	𝑇!$
𝑅$ 𝐴$

	𝑇!%
𝑅%

𝐴%

	𝑇!&
𝑅&

𝐴&

𝐴'()*(+

	𝑇!" 	𝑇#" 	𝑇$"	𝑇%" 	𝑇&" …

𝐴"

𝑅"

b) Sequential Lifelong Learning

time
t-2 t-1 t+1

	𝑇!" 	𝑇#" 	𝑇$"	𝑇%" 	𝑇&" …

𝐴"

𝑅"

time
t-2 t-1 t+1

d) Shared Knowledge Lifelong Learning (SKILL)

	𝑇!' 	𝑇#' 	𝑇$'	𝑇%' 	𝑇&' …

𝐴'

𝑅'

time
t-2 t-1 t+1

	𝑇!(𝑇#(𝑇$(𝑇%(𝑇&(…
𝑅(

𝐴(time
t-2 t-1 t+1

	𝑇!) 	𝑇#) 	𝑇$)	𝑇%) 	𝑇&) …
𝑅)

𝐴) time
t-2 t-1 t+1 	𝑇!* 	𝑇#* 	𝑇$*	𝑇%* 	𝑇&* …

𝑅*𝐴* time
t-2 t-1 t+1

	 Task (T) Physical Region (R) Agent (A) Agent (A) with
all task abilities

Share knowledge
(communication) Learning time (t)legend

Comparison Parallel
Learning

Solve
multi tasks

Obtain
agent(s) solve

all tasks

Allow tasks in
different physical

locations

Communicate
between
agents

a) Multi-task
Learning ✓ ✓ ✓ ✕ ✕

b) Sequential
Lifelong
Learning

✕ ✓ ✓ ✕ ✕
c) Federated

Learning ✕ ✕ ✕ ✓ ✓
d) Shared
Knowledge

Lifelong
Learning
(SKILL)

✓ ✓ ✓ ✓ ✓

Figure 1. SKILL vs. related learning paradigms. a) Multi-task learning (Caruana, 1997): one agent learns all tasks at the same time in
the same physical location. b) Sequential Lifelong Learning (S-LL) (Li & Hoiem, 2017): one agent learns all tasks sequentially in one
location, deploying LL-specific machinery to avoid task interference. c) Federated learning (McMahan et al., 2017): multiple agents
learn the same task in different physical locations, then sharing learned knowledge (parameters) with a center agent. d) Our SKILL:
different S-LL agents in different physical regions each learn tasks, and learned knowledge is shared among all agents, such that finally
all agents can solve all tasks. Bottom-right table: Strengths & weaknesses of each approach.

2. Related Works
Lifelong Learning (LL) focuses on continual knowledge
acquisition and retention across numerous tasks, con-
strained by factors such as unavailability of past training
data (Masana et al., 2022; Parisi et al., 2019). It employs
methods like regularization, parameter isolation, and re-
hearsal. However, conventional LL methods often struggle
with parallel learning and knowledge sharing requirements
(De Lange et al., 2021; Kirkpatrick et al., 2017; Aljundi
et al., 2018; Zenke et al., 2017). Multi-Task Learning
(MTL) leverages information across multiple related tasks
to improve performance (Zhang & Yang, 2021; Crawshaw,
2020; Ruder, 2017). Unlike the Shared Knowledge and In-
telligence in Learning Locally (SKILL) approach, where
tasks are spatially separate, MTL presupposes co-location
of tasks. Federated Learning (FL) enables decentralized
data to collaboratively train a model across clients (Kairouz
et al., 2021; Li et al., 2020; Bonawitz et al., 2019). Unlike
SKILL, FL often deals with agents learning the same task
using a central server, and does not typically address se-
quences of tasks or the LL problem. Furthermore, FL’s re-
liance on a central server makes it susceptible to complete
failure (Yoon et al., 2021). A more detailed list of related

works is in B

3. SKILL-102 dataset
We use image classification as the basic task framework
and propose a novel LL benchmark dataset: SKILL-102
(Fig. 2). SKILL-102 consists of 102 image classification
datasets. Each one supports one complex classification
task, and the corresponding dataset was obtained from pre-
viously published sources (e.g., task 1: classify flowers
into 102 classes, such as lily, rose, petunia, etc using 8,185
train/val/test images (Nilsback & Zisserman, 2008a); task
2: classify 67 types of scenes, such as kitchen, bedroom,
gas station, library, etc using 15,524 images (Quattoni &
Torralba, 2009); full dataset sequence and details in Suppl.
Fig. S5.

In total, SKILL-102 is a subset of all datasets/tasks and im-
ages in DCT, and comprises 102 tasks, 5,033 classes and
2,041,225 training images (Suppl. Sec. A and Suppl. Fig.
S5). After training, the algorithm is presented 243,464
test images and decides, for each image, which of the
5,033 classes it belongs to (no task oracle). To the best of
our knowledge, SKILL-102 is the most challenging com-

3

Submission and Formatting Instructions for ICML 2023

Figure 2. (a) SKILL-102 dataset visualization. Task difficulty (y-axis) was estimated as the error rate of a ResNet-18 trained from scratch
on each task for a fixed number of epochs. Circle size reflects dataset size (number of images). (b) Comparison with other benchmark
datasets including Visual Domain Decathlon (Rebuffi et al., 2017a), Cifar-100 (Krizhevsky et al., 2009), F-CelebA (Ke et al., 2020),
Fine-grained 6 tasks (Russakovsky et al., 2014) (Wah et al., 2011), (Nilsback & Zisserman, 2008b), (Krause et al., 2013), (Saleh &
Elgammal, 2015), (Eitz et al., 2012) c) Qualitative visualization of other datasets, using the same legend and format as in a).

pletely real (not synthesized or permuted) image classifi-
cation benchmark for LL and SKILL algorithms, with the
largest number of tasks, number of classes, and inter-task
variance.

4. Lightweight Lifelong Learner for SKILL
To satisfy the requirements of SKILL (see Introduction),
we design Lightweight Lifelong Learning (LLL) agents.
The design motivation is as follows: We propose to de-
compose agents into a generic, pretrained, common repre-
sentation backbone endowed into all agents at manufactur-
ing time, and small task-specific decision modules. This
enables distributed, decentralized learning as agents can
learn their own tasks independently (Chal-1). It also en-
ables lifelong learning (Chal-2) in each agent by creating a
new task-specific module for each new task. Because the
shared modules are all operating in the common representa-
tion of the backbone, this approach also satisfies (Chal-3).
Using compact task-specific modules also aims to maxi-
mize speedup through parallelization (Chal-4). Finally, we
show a few examples where knowledge from previously
learned tasks may both accelerate the learning and improve
the performance on new tasks (Chal-5).

Fig. 3 shows the overall pipeline and 4 roles for each agent.
Agents use a common frozen backbone and only a com-

pact task-dependent ”head” module is trained per agent and
task, and then shared among agents. This makes the cost of
both training and sharing very low. Head modules sim-
ply consist of (1) a classification layer that operates on top
of the frozen backbone ((Appendix Sec. ??)), and (2) a
set of beneficial biases (BB) (Appendix Sec. ??) that pro-
vide lightweight task-specific re-tuning of the backbone, to
address potentially large domain gaps between the task-
agnostic backbone and the data distribution of each new
task. To eliminate the need for a task oracle, LLL agents
also learn and share task anchors, in the form of summary
statistics about their training datasets, or share a few train-
ing images, to help other agents assign test samples to the
correct head at test time (task mapper). Two representa-
tions for task anchors, and the corresponding task mapping
mechanisms, are explored: Gaussian Mixture Model Clas-
sifier (GMMC)(Rios & Itti, 2020) (Appendix Sec. ??) and
Mahalanobis distance classifier (MAHA)(Lee et al., 2018)
(Appendix Sec. ??). Receiving agents simply accumulate
received heads and task anchors in banks, and the anchors
for all tasks received so far by an agent are combined to
form a task mapper within that agent. We currently as-
sume a fully connected communication network among all
agents, and every agent, after learning a new task, broad-
casts its head and task anchor to all other agents. Hence,
all agents become identical after all tasks have been learned
and shared, and they all can master all tasks. At test time,

4

Submission and Formatting Instructions for ICML 2023

…More Agents
In more regions

…

𝑻𝒂𝟏: Scenes
67 classes,

15,620 images

𝑅!

…

time

𝑻𝒃𝟏: Sketches
250 classes

20,751 images

𝑻𝒄𝟏: Oregon Wildlife
20 classes

14013 images

Agent 2

𝑻𝒂𝟐	Flowers
102 classes;
8,189 images

𝑻𝒃𝟐: Fashion
45 classes

44000 images

𝑻𝒄𝟐: Blindness
5 classes

13000 images

…
𝑅"

…

time

Agent 1

𝑻𝒃𝟒: SVHN
10 classes;

99,289 images

𝑻𝒂𝟒: Places-365
365 classes
1.8M images

𝑻𝒄𝟒: CLEVR-count
8 classes

2560 images

…
𝑅#

…

time

Agent 4

𝑻𝒂𝟑: Birds
200 classes

11,788 images

𝑻𝒃
𝟑: Wiki-Art

22 classes
81,528 images

𝑻𝒄𝟑: Camelyon
2 classes

262,145 images

…
𝑅$

…

time

Agent3

𝑻𝒂𝒙: Cars
196 classes

16,185 images

𝑻𝒃
𝒙: Food-101

101 classes
101,304 images

𝑻𝒄𝒙: 100 sports
100 classes

14600 images

…
𝑅%

…

time

Agent x

𝐑𝐞𝐠𝐢𝐨𝐧	𝐱

Fixed backbone

Training
images of 𝑻𝒂𝒙

Training

Learnable
head

Learnable
Beneficial Bias

Task anchor

Share knowledge after each task learning
with other agents

Receive Knowledge
from other agents

Task
mapper

Knowledge
consolidate

Testing

Input

Output

Select which
head to use

Time
More tasks…

…

𝑻𝒃𝒙 𝑻𝒄𝒙 𝑻𝒃𝒙 𝑻𝒄𝒙𝑻𝒂𝒙 Time
More tasks…

…
…

Task
mapper

Figure 3. Algorithm design. Top: overall pipeline, where agents are deployed in different regions to learn their own tasks. Subsequently,
learned knowledge is shared among all agents. Bottom: Zoom into the details of each agent, with 4 main roles (Appendix Sec. Q)

using one of all identical agents, we first run input data
through the task mapper to recover the task, and then in-
voke the corresponding head to obtain the final system out-
put. The task mapper eliminates the need for a task oracle
at test time. The combination of using a pre-trained back-
bone, task-specific head and BB, and task mapper enables
lifelong learning in every agent with minimal forgetting as
each agent learns a sequence of tasks.

Pretrained backbone: We use the xception (Chollet,
2017) pretrained on ImageNet (Deng et al., 2009), as it
provides a good balance between model complexity and
expressivity of the embedding.

Beneficial Biases: To address potentially large domain
shifts between ImageNet and future tasks (e.g., line-
drawing datasets, medical imaging datasets, astronomy
datasets), we designed beneficial biases (BB). Inspired by
the Beneficial Perturbation Network (BPN) of (Wen et al.,
2021), BB provides a set of task-dependent, out-of-network
bias units which are activated per task. These units take no
input. Their constant outputs add to the biases of the neu-
rons already present in the backbone network; thus, they
provide one bias value per neuron in the core network. This
is quite lightweight, as there are far fewer neurons than

weights in the backbone (22.9M parameters but only 22k
neurons in xception). Different from BPN, which works
best in conjunction with an LL method like EWC (Kirk-
patrick et al., 2017) or PSP (Cheung et al., 2019), and only
works on fully-connected layers, BB does not require EWC
or PSP, and can perform as an add-on module on both con-
volutional layers (Conv) and fully-connected layers (FC).
Specifically, for each Conv layer, we have

y = Conv(x) + b+B (1)

with input feature x ∈ Rw∗h∗c, output feature y ∈
Rw′∗h′∗c′ . b ∈ Rc′ is the original frozen bias of the back-
bone, and B ∈ Rc′ is our learnable beneficial bias. The
size of B is equal to the number of kernels (c′) in this Conv
layer. (w, h, c and w′, h′, c′ denote the width, height and
channels of the input and output feature maps respectively.)
For FC layers,

y = FC(x) + b+B (2)

with x ∈ Rl, y ∈ Rl′ , b ∈ Rl′ and B ∈ Rl′ . The size of B
(beneficial bias) is equal to the number of hidden units (l′)
in this FC layer.

GMMC task mapper: To recover task at test time, each
agent also learns Gaussian Mixture clusters (GMMC) (Rios

5

Submission and Formatting Instructions for ICML 2023

& Itti, 2020) that best encompass each of its tasks’ data,
and shares the cluster parameters (means + diagonal co-
variances). This is also very fast to learn and very compact
to share. As shown in Fig. 3(bottom right), during training,
each agent clusters its entire training set into k Gaussian
clusters:

f(x) =

k∑
i=1

ϕiN (x|µi,Σi),

k∑
i=1

ϕi = 1 (3)

We use k = 25 clusters for every task (ablation studies
in Appendix). In sharing knowledge, each agent performs
a ”teacher” role on its learned task and shares the mean
and diagonal covariance of its clusters with all other agents
(students). In receiving knowledge, each agent performs
a ”student” role and just aggregates all received clusters
in a bank to form a task mapper with kT clusters, keep-
ing track of which task any given cluster comes from:
Dmap() = {(N1, ϕ1) : 1, ..., (NkT , ϕkT) : T}. At test
time, a image xi is evaluated against all clusters received
so far, and the task associated with the cluster closest to the
test image is chosen: Task = Dmap((Nm, ϕm)), where
m = argmaxm(P (m,xi)). The probability of image xi

belonging to the mth Gaussian cluster is given by:

P (m,xi) =
ϕmN (x|µm,Σm)∑kT
n=1 ϕnN (x|µn,Σn)

(4)

Mahalanobis task mapper: To perform as a task map-
per, the Mahalanobis distance (MAHA) method (Lee et al.,
2018) learns C class-conditional Gaussian distributions
N (x|µc, Σ̂), c = 1,2, ... C, where C is the total num-
ber of classes of all T tasks and Σ̂ is a tied covariance
computed from samples from all classes. The class mean
vectors and covariance matrix of MAHA are estimated as:
µc =

1
Nc

∑
i:yi=c xi (Nc: number of images in each class)

and Σ̂ = 1
N

∑C
c=1

∑
i:yi=c(xi − µc)(xi − µc)

T , (N : total
number of images shared to the student agent). In train-
ing, each teacher agent computes the mean of each class
within its task and randomly samples a variable number m
of images per class. In our experiments, we use m = 5 im-
ages/class for every task. During sharing knowledge, each
agent shares the sample class means along with the saved
images with all other agents. The shared images received
by the student agents are used to compute the tied covari-
ance. Similar to GMMC, the student agents also maintain
a task mapper to keep track of which task any given class
comes from. For a test image x, MAHA computes the Ma-
halanobis distance for all classes received so far and assigns
the test image to the task associated with the smallest Ma-
halanobis distance, defined as:

argmin
c

(x− µc)
T Σ̂−1(x− µc) (5)

System implementation details: (1) Frozen xception
backbone (Chollet, 2017), with 2048D latent representa-
tion. (2) Each agent learns one ”head” per task, which con-
sists of one fully-connected layer with 2048 inputs from
the backbone and c outputs for a classification task with c
classes (e.g., task 1 is to classify c = 102 types of flowers),
and BB biases that allow us to fine-tune the backbone with-
out changing its weights, to mitigate large domain shifts.
(3) Each agent also fits k = 25 Gaussian clusters in the
2048D latent space to its training data. (4) At test time,
a test image is presented and processed forward through
the xception backbone. The GMMC classifier then deter-
mines the task from the nearest Gaussian cluster. The cor-
responding head is loaded and it produces the final classi-
fication result: which image class (among 5,033 total) the
image belongs to. (5) The workflow is slightly different
with the Mahalanobis task mapper: while GMMC clus-
ters are learned separately at each teacher for each task as
the task is learned, the Mahalanobis classifier is trained by
students after sharing, using 5 images/class shared among
agents. (6) Agents are implemented in pyTorch and run on
desktop-grade GPUs (e.g., nVidia 3090, nVidia 1080).

5. Experiments and results
We first compare how well LLL can learn multiple tasks se-
quentially in a single agent, compared to baselines LL algo-
rithms (Appendix Sec. L.1). We plot the absolute accuracy
averaged over all tasks learned so far in Fig. 4. Experiments
show our method achieve such a great performance with
even lower computational cost compared to other baselines
(Appendix Sec. L.5). More experiments on the first task
performance (Fig. S11) and the first 10 tasks (Sec. L.4) are
shown in Appendix. S11.

Table. 1 shows the computation and networking expendi-
tures for our approach and our modified SUPSUP to learn
all tasks in the SKILL-102 dataset in a distributed man-
ner. We measure everything in terms of MACs (multiply-
accumulate operations, which are implemented as one
atomic instruction on most hardware). The amount of
data shared per task for our approach is quite small (see
Suppl. Fig. S5). Our results in Table. 1 show: (1) Our
approach has very low parallelization overhead, which
leads to almost perfect speedup > 0.99N for all variants.
(Suppl. Sec. G). Students either do nothing (just accumu-
late received knowledge in a bank) or update their Maha-
lanobis task mapper. (2) The baselines have compara-
tively much higher training cost, yet their performance
is poor. More details see Suppl. Sec. L.5

As our system learns many tasks, it may occur that some
tasks overlap with others, i.e., they may share similar im-
ages and/or class labels. Here, we explore two approaches
to handle such overlap: a corrective method K.1 and a

6

Submission and Formatting Instructions for ICML 2023

Figure 4. Average absolute accuracy on all tasks learned so far, as a function of the number of tasks learned. Our LLL approach is able
to maintain higher average accuracy than all baselines. BB provides a small but reliable performance boost (LLL w/BB vs. LLL w/o
BB). The sharp decrease in early tasks carries no special meaning except for the fact that tasks 4,8,10 are significantly harder than the
other tasks in the 0-10 range, given the particular numbering of tasks in SKILL-102. Note how again SUPSUP has a low accuracy for
the very first task. This is because of the nature of its design; indeed, SUPSUP is able to learn some other tasks in our sequence with
high accuracy (Suppl. Fig. S5).

learning-based method K.2. The corrective approach iden-
tifies semantic similarity between class names to alleviate
the issue of task overlap, providing a consistent improve-
ment in accuracy. The learning-based approach leverages
previously learned weights from similar classes to initialize
the learning of new classes, promoting faster convergence
and improved performance.

We proposed a specific strategy to handle the overlapping
of tasks that are likely to occur with a large number of
learned tasks K.2. We also introduced an approach that
reuses learned knowledge from old tasks to expedite the
learning speed and increase the accuracy of new tasks. Ex-
perimental results validated our strategies, showing faster
learning times and enhanced accuracy

Please note, this is a concise overview and for a more in-
depth understanding, kindly refer to the appendix for omit-
ted details.

5.1. Discussion and Future Work

We have presented a novel lightweight approach to life-
long learning, demonstrating superior performance and al-
most perfect benefit from parallelization on the SKILL-
102 benchmark. SKILL-102, possibly the largest non-
synthesized lifelong learning challenge dataset, contains
real data in each task with large inter-task variance, making
it a more realistic test scenario (Cheung et al., 2019).

Our approach utilizes a lightweight task-specific architec-
ture and rapid adaptation through a compact Beneficial
Biases (BB) module, maximizing leverage obtained from
task-agnostic knowledge. This design shows improved
performance in large scale lifelong learning tasks and ad-
dresses our SKILL challenge effectively.

The success of our approach can be attributed to the
lightweight learner design: a fixed backbone represent-
ing shared task-agnostic knowledge, Beneficial Biases that
shift the backbone to solve domain gaps with compact pa-

7

Submission and Formatting Instructions for ICML 2023

Table 1. Analysis of computation expenditures and accuracy for our approach and the baselines, to learn all 102 tasks (with a total of
5,033 classes, 2,041,225 training images) in a single agent. Here we select LLL, no BB, MAHA as reference (1x CPU usage) since it
is the fastest approach, yet still has higher accuracy than all baselines. For our approach, MAHA leads to slightly higher accuracy than
GMMC, at roughly the same computation cost. All baselines perform worse that our approach, even though they also requires more
computation than our approaches that do not use BB. BB adds significatly to our computation cost, but also leads to the best accuracy
when used with MAHA.

Training
(MACs)

CPU usage
VS. Ours, no BB, MAHA

Average accuracy
after learning 102 tasks

LLL(Ours)-Single Agent, no BB, GMMC 1.73E+16 ˜1x 67.43%
LLL(Ours)-Single Agent, BB, GMMC 1.56E+18 ˜90.7x 70.58%

LLL(Ours)-Single Agent, no BB, Mahalanobis 1.73E+16 1x (reference) 68.87%
LLL(Ours)-Single Agent, BB, Mahalanobis 1.56E+18 ˜90.7x 72.1%

EWC 1.75E+18 ˜101.3x 8.86%
PSP 6.28E+17 ˜36.4x 25.49%
ER 4.53E+18 ˜262.8x 35.32%

SUPSUP 1.01E+18 ˜58.6x 56.22%
EWC-ONLINE 1.55E+18 ˜90.1x 7.77%

LwF 1.56E+18 ˜90.5x 8.41%
SI 2.07E+18 ˜120.1x 13.89%

MAS 2.06E+18 ˜119.6x 20.54%

rameters, and a GMMC/MAHA global task anchor repre-
senting tasks in a common task-agnostic latent space, elim-
inating the need for a task oracle at test time.

For future work, we propose testing the use of BB on par-
tial layers to increase speed. We also aim to utilize vi-
sual semantic information for class matching, potentially
through the use of the GMMC mapper for new class recog-
nition. Further exploration of task mapping techniques be-
yond GMMC and MAHA may also be valuable.

6. Conclusions
We have proposed a new framework for shared-knowledge,
parallelized LL. On a new, very challenging SKILL-102
dataset, we find that this approach works much better than
previously SOTA baselines, and is much faster. Scaling to
> 500 difficult tasks like the ones in our new SKILL-102
dataset seems achievable with the current implementation.

Broader impacts statement: We believe that LLL will
spur a new generation of distributed LL systems, as it
makes LL more accessible to edge systems and more paral-
lelizable. Thus, broader impacts are expected to be positive
in enabling more lightweight devices to learn at the edge
and to share what they have learned.

Acknowledgement: This work was supported by DARPA
(HR00112190134), C-BRIC (one of six centers in JUMP,
a Semiconductor Research Corporation (SRC) program
sponsored by DARPA), and the Army Research Office

(W911NF2020053). The authors affirm that the views ex-
pressed herein are solely their own, and do not represent
the views of the United States government or any agency
thereof.

8

Submission and Formatting Instructions for ICML 2023

References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and

Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 139–154, 2018.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradi-
ent based sample selection for online continual learning.
Advances in neural information processing systems, 32,
2019.

Benjamin, A. S., Rolnick, D., and Kording, K. Measur-
ing and regularizing networks in function space. arXiv
preprint arXiv:1805.08289, 2018.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., In-
german, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Maz-
zocchi, S., McMahan, B., et al. Towards federated learn-
ing at scale: System design. Proceedings of machine
learning and systems, 1:374–388, 2019.

Bowers, J. S. Grandmother cells and localist representa-
tions: a review of current thinking, 2017.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual
learning: a strong, simple baseline. Advances in neural
information processing systems, 33:15920–15930, 2020.

Caruana, R. Multitask learning. Machine learning, 28(1):
41–75, 1997.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420, 2018.

Cheung, B., Terekhov, A., Chen, Y., Agrawal, P., and Ol-
shausen, B. Superposition of many models into one.
arXiv preprint arXiv:1902.05522, 2019.

Chollet, F. Xception: Deep learning with depthwise sep-
arable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
1251–1258, 2017.

Crawshaw, M. Multi-task learning with deep neural net-
works: A survey. arXiv preprint arXiv:2009.09796,
2020.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia,
X., Leonardis, A., Slabaugh, G., and Tuytelaars, T. A
continual learning survey: Defying forgetting in classifi-
cation tasks. IEEE transactions on pattern analysis and
machine intelligence, 44(7):3366–3385, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pp. 248–255. Ieee, 2009.

Deshmukh, S. S., Johnson, J. L., and Knierim, J. J. Perirhi-
nal cortex represents nonspatial, but not spatial, informa-
tion in rats foraging in the presence of objects: compari-
son with lateral entorhinal cortex. Hippocampus, 22(10):
2045–2058, 2012.

Dosher, B. and Lu, Z.-L. Visual perceptual learning and
models. Annual review of vision science, 3:343–363,
2017.

Eitz, M., Hays, J., and Alexa, M. How do humans sketch
objects? ACM Transactions on graphics (TOG), 31(4):
1–10, 2012.

Elsayed, G. F., Goodfellow, I., and Sohl-Dickstein, J.
Adversarial reprogramming of neural networks. arXiv
preprint arXiv:1806.11146, 2018.

Evci, U., Dumoulin, V., Larochelle, H., and Mozer, M. C.
Head2toe: Utilizing intermediate representations for bet-
ter transfer learning. arXiv preprint arXiv:2201.03529,
2022.

French, R. M. Catastrophic forgetting in connectionist
networks. Trends in cognitive sciences, 3(4):128–135,
1999.

Goldstone, R. L. Perceptual learning. Annual review of
psychology, 49(1):585–612, 1998.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial networks. Communications of
the ACM, 63(11):139–144, 2020.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. Foundations and Trends® in Ma-
chine Learning, 14(1–2):1–210, 2021.

Ke, Z., Liu, B., and Huang, X. Continual learning of a
mixed sequence of similar and dissimilar tasks. Ad-
vances in Neural Information Processing Systems, 33:
18493–18504, 2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., et al. Overcoming
catastrophic forgetting in neural networks. Proceed-
ings of the national academy of sciences, 114(13):3521–
3526, 2017.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object
representations for fine-grained categorization. In Pro-
ceedings of the IEEE international conference on com-
puter vision workshops, pp. 554–561, 2013.

9

Submission and Formatting Instructions for ICML 2023

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, 2009.

Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified
framework for detecting out-of-distribution samples and
adversarial attacks. Advances in neural information pro-
cessing systems, 31, 2018.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future direc-
tions. IEEE Signal Processing Magazine, 37(3):50–60,
2020.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. Advances in neural information
processing systems, 30:6467–6476, 2017.

Masana, M., Liu, X., Twardowski, B., Menta, M., Bag-
danov, A. D., and van de Weijer, J. Class-incremental
learning: survey and performance evaluation on image
classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-
ference on Computer Vision, Graphics and Image Pro-
cessing, Dec 2008a.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In 2008 Sixth
Indian Conference on Computer Vision, Graphics & Im-
age Processing, pp. 722–729. IEEE, 2008b.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and
Wermter, S. Continual lifelong learning with neural net-
works: A review. Neural Networks, 113:54–71, 2019.

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta,
A. The unsurprising effectiveness of pre-trained vision
models for control. arXiv preprint arXiv:2203.03580,
2022.

Quattoni, A. and Torralba, A. Recognizing indoor scenes.
In 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 413–420, 2009. doi: 10.1109/
CVPR.2009.5206537.

Quiroga, R. Q. The forgetting machine: Memory, percep-
tion, and the Jennifer Aniston neuron. BenBella Books,
2017.

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and
Fried, I. Invariant visual representation by single neu-
rons in the human brain. Nature, 435(7045):1102–1107,
2005.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., et al. Learning transferable visual models from natu-
ral language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. Learning mul-
tiple visual domains with residual adapters. volume 30,
2017a.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert,
C. H. icarl: Incremental classifier and representation
learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–
2010, 2017b.

Rios, A. and Itti, L. Closed-loop memory gan for continual
learning. arXiv preprint arXiv:1811.01146, 2018.

Rios, A. and Itti, L. Lifelong learning without a task oracle.
In 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI), pp. 255–263. IEEE,
2020.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123–146, 1995.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge (2014). arXiv preprint arXiv:1409.0575, 2(3),
2014.

Saleh, B. and Elgammal, A. Large-scale classification of
fine-art paintings: Learning the right metric on the right
feature. arXiv preprint arXiv:1505.00855, 2015.

Valdez, A. B., Papesh, M. H., Treiman, D. M., Smith,
K. A., Goldinger, S. D., and Steinmetz, P. N. Distributed
representation of visual objects by single neurons in the
human brain. Journal of Neuroscience, 35(13):5180–
5186, 2015.

Wah, C., Branson, S., Welinder, P., Perona, P., and Be-
longie, S. The caltech-ucsd birds-200-2011 dataset.
2011.

Wang, T., Zhu, J.-Y., Torralba, A., and Efros, A. A. Dataset
distillation. arXiv preprint arXiv:1811.10959, 2018.

10

Submission and Formatting Instructions for ICML 2023

Wen, S., Rios, A., Ge, Y., and Itti, L. Beneficial pertur-
bation network for designing general adaptive artificial
intelligence systems. IEEE Transactions on Neural Net-
works and Learning Systems, 2021.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A.,
Rastegari, M., Yosinski, J., and Farhadi, A. Supermasks
in superposition. Advances in Neural Information Pro-
cessing Systems, 33:15173–15184, 2020.

Yoon, J., Jeong, W., Lee, G., Yang, E., and Hwang, S. J.
Federated continual learning with weighted inter-client
transfer. In International Conference on Machine Learn-
ing, pp. 12073–12086. PMLR, 2021.

Zenke, F., Poole, B., and Ganguli, S. Continual learn-
ing through synaptic intelligence. In International Con-
ference on Machine Learning, pp. 3987–3995. PMLR,
2017.

Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L.,
Zhang, H., and Kuo, C.-C. J. Class-incremental learn-
ing via deep model consolidation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pp. 1131–1140, 2020.

Zhang, Y. and Yang, Q. A survey on multi-task learning.
IEEE Transactions on Knowledge and Data Engineer-
ing, 34(12):5586–5609, 2021.

11

Submission and Formatting Instructions for ICML 2023

supplementary

A. Shared knowledge in lifelong learning
(SKILL)

The chief motivation for SKILL is to enable the next gen-
eration of highly-efficient, parallelizable, and resilient life-
long learning.

Assumptions: (1) A population of N agents wants to learn
a total of T different tasks separated into N physical re-
gions. (2) Each agent i asynchronously learns 1 ≤ Ti ≤ T
tasks, in sequence, from the distinct inputs and operating
conditions it encounters. As in standard LL, training data
from previous tasks is not available anymore while learn-
ing the next task. (3) Each agent performs as a ”teacher”
for its Ti tasks, by sharing what it has learned with the other
N−1 agents; at the same time, each agent also performs as
a ”student” by receiving knowledge from the other N − 1
agents. In the end, every agent has the knowledge to solve
all T tasks. Fig. 1 contrasts SKILL with other learning
paradigms. Note how here we use ”teacher” and ”student”
to distinguish the two roles that every agent will perform;
this is different from and not to be confused with other uses
of student/teacher terminology, for example in knowledge
distillation. (4) There is a perfect task oracle at training
time, i.e., each agent is told which tasks it should learn.
(5) There is a clear separation between tasks, and between
training and test phases.

Evaluation metrics:

(1) CPU/computation expenditure. This metric is impor-
tant to gauge the efficacy of an approach and its ability to
scale up with more agents operating in parallel. Wall-clock
time is the main metric of interest, so that speedup can be
achieved through parallelism. Thus, if N agents learn for
1 unit of time, wall-clock time would be 1, which is an N -
fold speedup over a single sequential agent. In practice,
speedup < N is expected because of overhead for sharing,
communications, and knowledge consolidation. Because
wall clock time assumes a given CPU or GPU speed, we
instead report the number of multiply-accumulate (MAC)
operations. (2) Network/communication expenditure.
Sharing knowledge over a network is costly and hence
should be minimized. To relate communications to com-
putation, and hence allow trade-offs, we assume a factor
α = 1, 000 MACs / byte transmitted. It is a hyperparameter
in our results that can be easily changed to adapt to different
network types (e.g., wired vs. wireless). (3) Performance:
After the population of N agents has collectively learned
all T tasks, we report aggregated (averaged) performance
over all T tasks (correct classification rate over all tasks).
Note how here we assume that there is no task oracle at
test time. After training, agents should be able to handle
any input from any task without being told which task that

input corresponds to. SKILL does not assume a free task
oracle because transmitting training data across agents is
potentially very expensive. Thus, agents must also share
information that will allow receiving agents to know when
a new test input relates to each received task.

Open questions: What knowledge should be shared?
SKILL agents must share knowledge that is useful to other
agents and avoid sharing local or specialized knowledge
that may be misleading, in conflict with, or inappropriate to
other agents. The shared knowledge may include model pa-
rameters, model structure, generalizations/specializations,
input data, specific contextual information, etc. There
are also size/memory/communication constraints for the
shared knowledge. When and how to share? Differ-
ent communication network topologies and sharing fre-
quencies likely would lead to different results. Here, we
will sidestep this problem and assume a fully connected
communication network, and broadcast sharing from each
agent to all others each time a new task has been learned.

B. Related Works
B.1. Lifelong Learning

Lifelong Learning (LL) aims to develop AI systems that
can continuously learn to address new tasks from new
data, while preserving knowledge learned from previously
learned tasks (Masana et al., 2022). It also refers to
the ability to continually learn over time by accommo-
dating new knowledge while retaining previously learned
experiences (Parisi et al., 2019). LL is challenging be-
cause it is usually assumed that the training data from
previous tasks is not available anymore while learning
new tasks; hence one cannot just accumulate training data
over time and then learn from all the data collected so
far. Instead, new approaches have been proposed, which
fall under three main branches (De Lange et al., 2021):
(1) Regularization methods add an auxiliary loss term to
the primary task objective to constrain weight updates,
so as to minimally disturb previously learned knowledge
while learning new tasks. The extra loss can be a penalty
on the parameters (EWC (Kirkpatrick et al., 2017), MAS
(Aljundi et al., 2018) and SI (Zenke et al., 2017)) or on the
feature-space (FDR (Benjamin et al., 2018)), such as using
Knowledge Distillation (LwF (Li & Hoiem, 2017), DMC
(Zhang et al., 2020)). (2) Parameter-Isolation methods as-
sign a fixed set of model parameters to a task and avoid
over-writing them when new tasks are learned (SUPSUP
(Wortsman et al., 2020)), PSP (Cheung et al., 2019) and
BPN (Wen et al., 2021). (3) Rehearsal methods use a buffer
containing sampled training data from previous tasks, as an
auxiliary to a new task’s training set. The buffer can be
used either at the end of the task training (iCaRL, ER (Re-
buffi et al., 2017b; Robins, 1995)) or during training (GSS,

12

Submission and Formatting Instructions for ICML 2023

AGEM, AGEM-R, GSS, DER, DERPP (Lopez-Paz & Ran-
zato, 2017; Chaudhry et al., 2018; Aljundi et al., 2019;
Buzzega et al., 2020)). However, most traditional LL al-
gorithms cannot satisfy the requirement of SKILL: parallel
learning for speeding up, and sharing knowledge among
agents.

B.2. Multi-task Learning

Multi-Task Learning (MTL) aims to leverage useful infor-
mation contained in multiple related tasks to help improve
the generalization performance of all the tasks (Zhang &
Yang, 2021; Crawshaw, 2020; Ruder, 2017). The main
difference between MTL and SKILL is that MTL assumes
that all tasks are located in the same physical region, and
that one can access the datasets of all tasks at the same
time (Zhang & Yang, 2021). While MTL learns multiple
tasks together, SKILL assumes that different knowledge
sources are separated in different physical regions and dif-
ferent agents should learn them in parallel.

B.3. Federated Learning

Federated learning (FL) is a machine learning setting where
many clients (e.g., mobile devices, networked computers,
or even whole organizations) collaboratively train a model
under the orchestration of a central server, while keeping
the training data decentralized (Kairouz et al., 2021; Li
et al., 2020; Bonawitz et al., 2019). As shown in Fig. 1,
compared with SKILL: (1) FL agents usually learn the
same task from multiple partial datasets in different lo-
cations, relying on the central server to accumulate and
consolidate the partial knowledge provided by each agent.
In contrast, SKILL agents solve different tasks, and share
knowledge over a decentralized network. (2) Each SKILL
agent may learn multiple tasks in sequence, and hence
must solve the LL problem of accumulating new knowl-
edge while not forgetting old knowledge. Sequences of
tasks and the LL problem are usually not a primary focus
of FL, with a few exceptions (Yoon et al., 2021) which still
do not directly apply to SKILL, as they focus on a single
task for all agents and use a central server. Because feder-
ated learning relies on a central server, it is susceptible to
complete failure if that server is destroyed; in contrast, in
SKILL, as long as not all agents are destroyed, the surviv-
ing agents can still share and master some of the tasks.

B.4. Other methods that may help solve SKILL

One related direction is to share a compact representa-
tion dataset: Dataset distillation (Wang et al., 2018) com-
bines all training exemplars into a small number of super-
exemplars which, when learned from using gradient de-
scent, would generate the same gradients as the larger,
original training set. However, the distillation cost is very

high, which could not satisfy the 0.5N speedup require-
ment. Another related direction is to reuse shared param-
eters for different tasks: Adversarial reprogramming (El-
sayed et al., 2018) computes a single noise pattern for each
task. This pattern is then added to inputs for a new task and
fed through the original network. The original network pro-
cesses the combined input + noise and generates an output,
which is then remapped onto the desired output domain.
However, the cost of the reprogramming training process
is high, which could not satisfy the 0.5N speedup require-
ment. Another related direction is to use a generative ad-
versarial network (GAN (Goodfellow et al., 2020)) to learn
the distribution of different datasets and generate for re-
play. Closed-loop GAN (CloGAN (Rios & Itti, 2018))
could be continuously trained with new data, while at the
same time generating data from previously learned tasks
for interleaved training. However, the GAN needs more
parameters to transmit, and the high training time does not
satisfy the 0.5N speedup requirement.

C. Dataset subsampling details
Our SKILL-102 dataset comprises 102 distinct tasks that
were obtained from previously published datasets.

Here, we subsampled the source datasets slightly, mainly
to allow some of the baselines to converge in a reasonable
amount of time. For dataset sampling, the following rules
were used:

• For iNaturalist Insecta, since it contains a lot of
classes, 500 classes were randomly sampled.

• For all other tasks, all classes are kept.

• For all tasks, round(54000/c) training images and
round(6000/c) validation images and round(6000/c)
test images are used for each class. If a class does
not contain enough images, then all images for that
class are used.

• The exact datasets as we used them in our experiments
will be made available online after publication, to al-
low other researchers to reproduce (or beat!) our re-
sults.

The sequence of datasets and number of images in each
dataset are shown in Fig. S5.

D. GMMC number of clusters
Fig. S1 shows the GMMC performance with different num-
bers of clusters.

13

Submission and Formatting Instructions for ICML 2023

Figure S1. On a small subset of tasks, we found that k = 25 GMMC clusters provided the best compromise between generalization and
overfitting.

E. Mahalanobis training MACs
The slope of MACs/image is higher until the number of
training samples reaches 4,000. After that, the slope does
not change. If we use 5 images per class to train, then the
number of training samples would reach 4,000 after task
12. So for the majority of the tasks, the average MACs
per image for training the Mahalanobis distance is around
250k.

Figure S2. MACs for Mahalanobis training (vertical axis) as a
function of number of training images (horizontal axis).

F. CPU analysis
We compute everything in terms of MACs/image pro-
cessed. There are a few caveats:

• Data sharing does not occur per training image,
but rather per task (e.g., share 25 GMMC cluster
means+diagonal covariances per task). Hence we first
compute communication bytes/task and then convert
that to ”MACs equivalent” by assuming that sharing 1
byte takes the equivalent of 1,000 MACs. This value
is a hyper-parameter than can be tuned depending on
network type. Over wired Ethernet, it corresponds
to 1.5 million MACs per packet (with MTU of 1500
bytes).

• Mahalanobis training time increases with the number
of tasks received to date, as shown in Fig. S2.

• ER training increases over time as more tasks are
added:

– We first train task 1 using the whole task 1 train-
ing set (subsampled version described above).

– Then train task 2 using the whole task 2 train-
ing set + 10 images/class of task 1 (chosen ran-
domly). In what follows we use γ to represent
this fraction of data used for rehearsing of old
tasks, and we denote by S a nominal dataset size
per task (2,500 images on average). Hence, for
task 2, the episodic buffer method uses S×(1+γ)
images. With a normalized training time of 1 to
learn one task, learning task 2 for this baseline
takes normalized time 1 + γ.

– Then train task 3 using the whole task 3 training
set + 10 images/class of task 1 + 10 images/class
of task 2. Normalized training time 1 + 2γ.

– Then train task 4 using the whole task 4 training
set + 10 images/class of task 1 + 10 images/class
of task 2 + 10 images/class of task 3. Normalized
training time 1 + 3γ.

– etc. So the total normalized training time for N
tasks is (1)+(1+γ)+(1+2γ)+(1+3γ)+ ...+
(1+(N − 1)γ) = N +γ(1+2+ ...+N − 1) =
N+γ(N−1)(N−2)/2. With N = 102, the total
training time for all tasks is N+5050γ. In our ex-
periments, our subsampled training sets averaged
254 images/class and hence γ = 10/254 = 0.04
on average, leading to a total normalized train-
ing time of 304 (broken down as a cost of 102 to
learn the from 102 datasets, plus 202 to rehearse
old tasks as we learn new tasks).

– This is for γ = 0.04 but performance is low,
so using a higher γ is warranted for the episodic
buffer approach. This is very costly, though. In
the limit of retaining all images, which would
give best performance, the training time of this
approach is 102 + 5050 = 5152 times the time
it takes to learn one task. So, while the single-
agent will require anywhere between 304×T and
5152× T to learn 102 tasks sequentially, our ap-
proach will learn all 102 tasks in parallel during
just T .

Additional details used for our computations are in
Fig. S3.

14

Submission and Formatting Instructions for ICML 2023

Figure S3. Additional details for how we compute MACs and speedup. Different assumptions (e.g., higher or lower MACs/byte trans-
mitted) can be used, which would update the results in the main paper Figs. 9 and 10.

G. Summary of our new SKILL-102 for
image classification

Fig. S5 shows a summary of 102 datasets we are using
along with the accuracy of all our methods. Note that TM
stands for Task Mapper. The red text indicates datasets with
large domain gap which were mentioned in Sec. 6, the blue
text indicates datasets with poor GMMC accuracy which
are further examined below. Fig. S6 shows the baselines
performance on SKILL-102.

H. Cases of low accuracy in GMMC
In this section, we analyze in details the failures of GMMC
on three datasets: Office Home Art, Dragon Ball, and
Malacca Historical Buildings.

In certain cases, several datasets may share a common
characteristic, such as all of them are anime pictures (e.g.
Dragon Ball, Pokemon, and One-Piece). GMMC may cap-
ture the tasks’ characteristics as animation but fail to further
distinguish different tasks. On the other side, Mahalanobis
focus on the characteristics classwise, witch captures the
difference among classes (e.g., Wukong vs. Abra charac-
ters in Fig. S4-a) and hence is able to distinguish them.

Another case is that two tasks may share similar objects
(e.g., Office Home Art, Office Home, and Stanford On-
line Products; Fig. S4-b). Although represented in different
tasks, these are the same types of objects in the real life. We
address these GMMC confusions with our proposed ”cor-
rective approach” that would declare correct classification
for equivalent labels belonging to different tasks.

Other cases may include that one task is too general; for
example, Watermark non Watermark includes a large va-

riety of images with or without a watermark which may
also confuse GMMC as many similar images are present in
other datasets (Fig. S4-c).

I. Amount of data shared by LLL
The analysis below includes 2 options not exercised in the
main text of this paper:

• Head2Toe: If the input domain encountered by an
agent is very different than what the frozen backbone
was trained on, sharing only the last layer(s) + BPN
biases may not always work well, because the fea-
tures in the backbone are not able to well represent
the new domain. Our backbone is pretrained on Ima-
geNet, which is appropriate for many image classifica-
tion and visually-guided RL tasks in the natural world.
However, the latent features may not be well suited for
highly artificial worlds. This was recently addressed
by (Evci et al., 2022), who showed that this problem
can be alleviated using a last layer that connects to
several intermediary layers, or even to every layer in
the network, as opposed to only the penultimate layer.
Hence, instead of sharing the last layer, we may share
a so-called Head2toe layer when a large domain shift
is encountered. Note that AR will also be used in
this case as it is another way to counter large domain
shifts: the AR pattern essentially recasts an input from
a very different domain back into the ImageNet do-
main, then allowing the frozen backbone to extract
rich and meaningful features in that domain. Also see
(Parisi et al., 2022) for ideas similar to Head2toe, with
applications in RL.

15

Submission and Formatting Instructions for ICML 2023

Figure S4. Here we analyze the top 3 tasks into which images may be misclassified by GMMC. a) Out of 18 test images from the (very
small) Dragon Ball Dataset, 4 are correctly classified as belonging to Dragon Ball Dataset, 11 are misclassified as belonging to the One
Piece dataset, and 2 are misclassified as belonging to the Pokemon dataset. Since all three datasets contain cartoon images, GMMC was
confused to classify some images into an incorrect dataset. b) Out of 252 test images from Office Home Art, 86 are correctly classified,
33 are classified as belonging to the Stanford Online Product dataset, and 20 are classified as Office Home Product dataset. These three
datasets have many objects in common such as bicycles, chairs, and tables. Hence, it is easy for GMMC to get confused. c) Out of 18 test
images from Malacca Historical Buildings, 7 were correctly classified, 5 are classified as Art Images, and 5 are classified as belonging
to the Watermark dataset. The Art Image and Watermark datasets contain a large variety of images which may confuse the GMMC to
make wrong predictions.

• Adversarial reprogramming (AR) (Elsayed et al.,
2018): Adversarial reprogramming is quite similar in
spirit to BB, with the main difference being that it op-
erates in the input (image) space as opposed to BB
operating in the activation space. In adversarial re-
programming, one computes a single noise pattern for
each task. This pattern is then added to inputs for a
new task and fed through the original network. The
original network processes the combined input + noise
and generates an output, which is then remapped onto
the desired output domain. Unfortunately, the CPU
cost of this approach is prohibitive with respect to
0.5N speedup.

We denote the number of BB biases by N in what follows
(for xception, N = 17, 472). If Head2toe connects to the
same feature maps as BB, then the number of weights is
N × c for c output classes. We assume that each task is
modeled with k GMMC clusters (k = 25 currently), and
each is represented by a 2048D mean and 2048D diago-
nal covariance. We denote by 4 the number of bytes per
floating point number.

For a classification task with c classes: An agent receives
an image as input and produces a vector of c output values
(on SKILL-102, c is 49.34 on average), where the highest
output value is the most likely image class for the input
image (Table S1).

J. Discussion and Future Works
We have proposed a new lightweight approach to lifelong
learning that outperforms all baselines tested, and also can
benefit almost perfectly from parallelization. We tested the
approach on a new SKILL-102 benchmark dataset, which
we believe is the largest non-synthetized lifelong learning
challenge dataset to date. While many previous efforts

have employed many tasks, those were usually synthesized,
e.g., as permutations over a single base dataset (e.g., 50
permuted-MNIST tasks in (Cheung et al., 2019)). SKILL-
102 contains novel real data in each task, with large inter-
task variance, which is a better representative of realistic
test scenarios. Our proposed lightweight LL points to a
new direction in LL research, as we find that one can sim-
ply use lightweight task-specific weights (head) combined
with maximizing the leverage obtained from task-agnostic
knowledge that is rapidly adapted by a compact BB mod-
ule to handle each new task. Our results show how this
lightweight design is better able to handle large scale life-
long learning tasks, and also solves our SKILL challenge
very well.

We credit our good performance on both sequential life-
long learning and the SKILL challenge to our particu-
lar lightweight lifelong learner design: a fixed backbone,
which represent task-agnostic knowledge shared among
agents, to minimize the complexity of task-specific knowl-
edge parameters (the head); Beneficial Biases, which on-
demand shift the backbone to solve possibly large domain
gaps for each new task, with very compact parameters; a
GMMC/MAHA global task anchor for learned tasks, repre-
senting the tasks in the common task-agnostic latent space
of all agents, which is easy to share and consolidate, and
which eliminates the need for a task oracle at test time.
Our results show that combination of this three components
help our LLL work well.

Our approach uses a pretrained backbone to represent task-
agnostic knowledge, which our results show is a very ef-
fective strategy. For fair comparison, we also use the same
pretrained backbone as the initialization for the baselines
(except PSP and SUPSUP; see above). However, our fixed
backbone design often cannot handle large domain gaps be-
tween new tasks and ImageNet. This is the reason why we

16

Submission and Formatting Instructions for ICML 2023

Figure S5. Basic stats of dataset and accuracy. TM=task mapper.

17

Submission and Formatting Instructions for ICML 2023

Figure S6. Accuracy of baselines after all 102 tasks have been learned in the order shown.
18

Submission and Formatting Instructions for ICML 2023

Shared params and data Size (bytes) Implemented: N = 17, 472, c = 49.34, k = 25
Last layer weights 2048× c × 4 404 KBytes
BB biases N× 4 70 KBytes
GMMC clusters k × (2048 + 2048)× 4 409 KBytes
Optional: Head2toe adds N × c × 4 adds 3.45 MBytes
Optional: AR pattern adds 299× 299× 3 adds 268 KBytes
Alternative: 5 images/task for MAHA 5× 299× 299× 3 1.34 MBytes

Table S1. Total average sharing per task in our current implementation with GMMC+BB: 404+70+409 = 883 KBytes/task; for Maha-
lanobis+BB: 404+70+1341=1.81 MBytes/task.

proposed BB to relieve the domain gap by shifting the fixed
parameters towards each new task with compact biases.
Similar to other parameter-isolation methods, our model
structure is growing on demand (though slowly) with the
number of tasks (we add a new head per task, while they
add new masks, keys, etc). Rehearsal-based baselines (e.g.,
ER) also grow, by accumulating more rehearsing exemplars
over time. While some baselines do not grow (e.g., EWC),
they also perform very poorly on our challenging SKILL-
102 dataset.

To further speed up our method with BB, we could use BB
on only partial layers. For instance, if we use BB only the
last half of the layers in the backbone, we will use only
half of the current time to train the model. In future exper-
iments, we will test whether this still gives rise to a signifi-
cant accuracy benefit.

Currently, we use the CLIP embedding space to match a
new class with learned old classes, which uses only lan-
guage knowledge (class labels). As a future work, we
will use GMMC as a class matching mechanism to utilize
the visual semantic information for matching. Specifically,
when a agent learns a new class, the agent will collect a
few shots (e.g., 10 images) of the new class and then use
the GMMC mapper (trained on all previous tasks) to de-
cide whether these images belong to a learned task or not,
with a threshold. If most of the images are matched to a
learned task, we can then summon the shared head of that
task to classify them, now to obtain a possible match for in-
dividual previously learned classes. If most of the images
are classified into one previously learned specific class, we
can use the weights of that class to initialize the new class
weights, similar to what we have done in Sec. ??.

A good task mapper is essential in our approach if one is
to forego the use of a task oracle. Thankfully, our results
show that task mapping can be achieved with high accu-
racy even with a simple model like GMMC (over 84% cor-
rect for 102 tasks). Indeed, in our SKILL challenge, the
task mapper is only solving a 102-way classification prob-
lem at the granularity of tasks, vs. a 5,033-way full SKILL
classification challenge. Here, we focused on GMMC and
MAHA, but many other alternatives could be investigated

in future work. Our choice of GMMC was based on previ-
ous research that compared it to several other techniques,
including self-organizing maps and multilayer perceptrons
(Rios & Itti, 2020).

K. Shared Knowledge Accumulation, Reuse
and Boost

As our system learns many tasks, it may occur that some
tasks overlap with others, i.e., they may share similar im-
ages and/or class labels. Here, we explore two approaches
to handle such overlap.

K.1. Corrective approach to task overlap/synergy

Since our LLL learners can learn a large number of tasks
while solving SKILL problems, some synergy can occur
across tasks if one is able to detect when two classes from
two different tasks are equivalent, as shown in Fig. S7. We
implemented a method to compare the semantic distance of
the predicted class name and the actual class name. Origi-
nally, after the GMMC infers the task that a test image may
come from, we would immediately consider the image as
misclassified if the predicted task is wrong. With the con-
sideration of semantic similarity between class names, we
will now always load the prediction head corresponding to
the predicted task given by GMMC and use it to infer the
class name. If the class was guessed incorrectly, but, in the
end, the final class name is equivalent to the correct one,
then we can declare success on that particular test image
(Fig. S7). To obtain the pairwise similarity, we constructed
a similarity matrix that stores the semantic distance, mea-
sured by the cosine similarity of word embeddings, for all
the class names. Those embeddings were obtained from
CLIP’s (Radford et al., 2021) text encoder based on GPT-2.
If the similarity between the predicted class name and the
actual class name is greater than a threshold (empirically
chosen for now), then we declare it a correct prediction.

As our 102-task dataset contains 5,033 object classes, the
full similarity matrix is triangular 5,033 x 5,033 (too large
to display here).

19

Submission and Formatting Instructions for ICML 2023

Figure S7. Left: similar classes with a cosine similarity in the CLIP embedding greater than 0.90. Right: similar classes with a cosine
similarity greater than 0.95. This can help correct spurious errors where, for example, a test image from class ”bike” from the Stan-
ford Online Products dataset could also be considered correctly classified if the system output were ”bicycle” from the Sketches dataset.

The approach yields a small but consistent improvement in
accuracy (Fig. S8). This is one way in which we can handle
possible overlap between tasks, which may inevitably arise
when large numbers of tasks are learned.

K.2. Learning approach to task overlap/synergy

The ability to reuse learned knowledge from old tasks to
boost the learning speed and accuracy of new tasks is a po-
tential desirable feature of LL algorithms. Here, this might
be achieved if, when learning a new task, an LLL agent
could ”borrow” the knowledge of old tasks, from not only
itself but also the shared knowledge from any other agents.

One important design feature of our LLL agents is that they
can share partial heads across tasks: Our heads are a single
layer with 2,048 inputs (from the xception backbone) and c
outputs for a task with c classes. Thus, each of the c output
neurons is connected to the 2,048 inputs, but there are no
lateral connections. This means that we can consider each
of the c output neurons individually as evidence provider
for their associated class (remember the analogy to ”grand-
mother cells” in Introduction). We can then cherry-pick
sets of 2,048 weights corresponding to individual classes
of previously learned tasks, and use them as initialization
for some similar classes in new tasks to be learned. As we
show below, this greatly accelerates learning of the simi-
lar new classes, compared to starting with randomized ini-
tial weights, and also yields higher accuracy on these new
classes.

1) New task is a combination of old tasks: To validate
our idea, a new learning paradigm is proposed to use pre-
viously learned weights when a new task contains classes
that were already learned previously. This experiment con-
siders two datasets and two sets of weights representing the

old knowledge, and a new dataset that contains all classes
from both datasets. Simply normalizing and concatenating
the linear weights leads to poor performance. Hence, in-
stead, we normalize the weights during training by their p-
norm, and concatenate the normalized weights as the new
task’s weights. The experiment was conducted over 190
combinations of 2 datasets chosen from 20 datasets, and
the average results show that there is a very small accuracy
loss initially (epoch 0). After a few extra training epochs,
we reach a higher accuracy than training new weights from
scratch (random initialization; Fig. S9).

The mathematical version. During training, a constraint
is added. Let W1 be the full set of 2, 048× c weights of the
first dataset, and W2 be the weights of the second dataset,

where W1 =
(...w1

1...
...

...w1
n...

)
and W2 =

(...w2
1...

...
...w2

n...

)
. Normal Lin-

ear Layer training’s forward path is ŷ = Wx. Define W’

as
(w′

1
...
w′

n

)
where w′

i = wi/p-norm(wi) Hence, during train-

ing, Linear Layer training’s forward path is ŷ = W’x. And
concatenate(W1’, W2’) was used as the weights for the new
combined task.

Since the weights are normalized class-wise and not task-
wise, this method can be used on any combination of
previously leaned classes. For example, for 10 tasks
containing 100 classes c1 c100 and a new task contain-
ing c1, c3, c10, c20, we can simply find the corresponding
w′

1, w
′
3, w

′
10, w

′
20, and concatenate them together.

Choice of p: We find that using the 2-norm causes the clas-
sifier to converge to a state where all weight vectors have
the same magnitude, which causes an accuracy drop for
the old task. Hence, we choose to use the infinity norm,
which is still modulated by the weight magnitudes, and is
still easy to transfer.

20

Submission and Formatting Instructions for ICML 2023

Figure S8. Correcting spurious errors by realizing when two distinct classes from two tasks actually are the same thing. The approach
provides a small but consistent improvement in accuracy over baseline (which declares failure as soon as task mapping failed), here
shown on 15 datasets that have some overlap.

Figure S9. Learning speed for a given object class when the corre-
sponding weights are initialized randomly (orange) vs. from pre-
viously learned weights of a similar object class found in one of
the previously learned tasks (blue), averaged for 190 combina-
tions of two previously learned tasks. In this example, best accu-
racy is already reached after just 1 to 2 training epochs in the blue
curve. In contrast, it takes up to 30 epochs to train from random
initialization, with still a final accuracy in the orange curve that is
lower than the blue curve. This approach hence leads to signifi-
cant learning speedup when tasks contain some similar classes.

2) New task is different but similar to old tasks. In the
previous setting, we assumed the new task classes are a
combination of different old task classes. In a more gen-
eral situation, the new task classes are all new classes that
all other agents never learned before, but we could still bor-
row some learned knowledge from similar learned classes.
For instance, as shown in Fig. S7, the knowledge of classes
shown on top of the figure may be helpful to learn the new
classes shown at the bottom.

We conduct four different experiments (for 4 pairs of
datasets that share some related classes) to show the knowl-
edge boost when we learn a new task. We first check if
a learned old task shares similar knowledge with the new
one. For instance, before we learn the MIT indoor scenes
dataset, we find that the House Room Image Dataset con-
tains classes that are similar to the new classes, in the
CLIP embedding space. So we match each class from MIT
indoor scenes dataset to the previously learned classes,
which in this case come from the House Room Image
Dataset. If the class similarity is larger than a threshold, we
treat it as a matched class, then we use the similar old class
weights to initialize the weights of the new class. If a new
class was not matched with old classes, we use random ini-
tialization. We also conduct a corresponding controlled ex-
periment by using random initialization for all new classes.
The results of all 4 experiments are shown in Table S2

In a more general learning scenario, the new task classes

21

Submission and Formatting Instructions for ICML 2023

Datasets initialization All 10 shot 5 shot 3 shot
Old task House Room Image Dataset random 0.86 0.77 0.73 0.52
New task MIT Indoor Scenes ours 0.89 0.83 0.8 0.71
Old task Standford Online Products random 0.78 0.61 0.61 0.6
New task Office Home Product ours 0.8 0.62 0.59 0.6
Old task 100 Sports random 1 0.98 0.92 0.92
New task UIUC Sports Event Dataset ours 1 0.99 0.97 0.97
Old task iFood2019 random 0.61 0.42 0.35 0.3
New task Food-101 ours 0.64 0.5 0.46 0.43

Table S2. Boosted LLL learning when previously learned weights from similar classes can be used to initialize learning of new classes.
We repeat the experiment with either learning from all images in the training set of the new task, or only 10, 5, or 3 images per class.
Overall, re-using previously learned weights of similar classes boosts accuracy, usually (but not always) more so when the new task is
only learned from a few exemplars (which is much faster than learning from scratch from the whole dataset).

may correspond to similar but not necessarily identical
classes in different old tasks. For example, having learned
about SUVs may help learn about vans more quickly. Here
we conduct two new experiments (Fig. S10). In EXP-1, the
new task is sketch image classification, and the classifica-
tion weights of each class are initialized from a learned old
class that is harvested from different learned tasks with the
help of CLIP-based word matching. For instance, the clas-
sification weights of van are initialized with the weights of
SUV from the previously learned Stanford-CARs dataset;
the classification weights of Topwear are initialized with
the weights of t-shirt from the learned Fashion-Product
dataset, etc (total: 5 pairs of classes). The results show
that our initialization leads to better performance (0.98 v.s.
0.93) and faster convergence (3 v.s. 4 epochs) compared
with random initialization. This shows that our method can
reuse the shared knowledge from other agents to improve
the learning of new tasks. Similar performances are shown
in EXP-2, which is identical to EXP-1 except that it uses 5
different pairs of classes.

K.3. Further boost with Head2Toe

A possibly complementary approach to BB to address do-
main gaps is Head2Toe (Evci et al., 2022), where the last
layer can now directly draw from potentially any of the pre-
vious layers in the backbone. This has been shown to help
alleviate domain gaps, as some of the lower-level features
in the backbone may be useful to solve tasks with a big
gap, even though the top-level backbone features may not.
However, Head2Toe has a very high computation cost to
select which layers should connect to the head, which is
why we have not used it in our main results. Here, we ex-
plore how that cost of selection of the most appropriate lay-
ers to connect to the head for a given task can be eliminated
by re-using the computations already expended for BB: In-
tuitively, layers which have large absolute BB magnitude
may also be the most useful to connect to the head.

Compared to the conventional Head2Toe (Evci et al., 2022)
with two-stage training (first, select which layers will con-
nect to the head, then train those connections), our new
BB+H2T uses the biases that have been previously trained
and stored in the BB network for feature selection. Specifi-
cally, we first concatenated all the biases in the BB network
and selected the top 1% largest biases. Then, we picked the
feature maps corresponding to the selected indices, aver-
age pooled them and flattened them to 8,192-dimensional
vectors. After that, we concatenated all flattened feature
vectors along with the logits of the last layer (after pool-
ing layer, before softmax) in the BB network. Finally,
we trained the concatenated vector with Adam optimizer,
0.001 learning rate, and 100 epochs. This approach, when
combined with BB and MAHA, improved performance av-
eraged over all tasks by 0.78% (when a perfect task mapper
is available; or by 0.56% when using MAHA).

L. Additional Experiment Results
L.1. Baselines

We implemented 8 baselines from the literature. For those
that require a task oracle, we (unfairly to us) grant them
a perfect task oracle (while our approach uses imperfect
GMMC or Mahalanobis task mappers). When possible, we
re-implement the baselines to use the same pretrained xcep-
tion backbone as our approach. This ensures a fair com-
parison where every approach is granted the same amount
of pre-training knowledge and the same feature processing
ability. The two exceptions are PSP (Cheung et al., 2019)
that uses ResNet-18, and SUPSUP (Wortsman et al., 2020)
that uses ResNet-50.

Our baselines fall in the following 3 categories (De Lange
et al., 2021): (1) Regularization methods add an auxiliary
loss term to the primary task objective to constraint weight
updates. The extra loss can be a penalty on the parame-
ters (EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al.,

22

Submission and Formatting Instructions for ICML 2023

Weight
Initialization

Accuracy Converge
Epochs

Random 0.93 4
Ours 0.98 3

Weight
Initialization

Accuracy Converge
Epoch

Random 0.90 4
Ours 0.95 3

EXP-1 Results

EXP-2 Results

bicycle

New task:
Sketch

classification

Learned tasks
classes

EXP-2 Setting

truck

Stanford_Cars:
Land Rover Range Rover

SUV 2012

owl backpack mug

Office-Home_Product:
Bike

Office-Home_Product:
Backpack

Office-Home_Product:
Mug

Pokemon :
Dodrio

shoes
New task:

Sketch
classification

Learned tasks
classes

Office-Home_Clipart:
Sneakers

ilab_80m:
plane

CORe50:
light bulb

airplane lightbulb

Stanford_Cars:
AM General Hummer

SUV 2000

Fashion_Product:
Topwear

van t-shirt

EXP-1 Setting

Figure S10. Two experiments where the weights from previously learned similar but not identical classes are successful in boosting
learning of new classes. Left: pairs of similar classes (according to CLIP). Right: accuracy achieved with weight transfer vs. random
initialization.

2018) and SI (Zenke et al., 2017)) or on the feature-space
(FDR (Benjamin et al., 2018)), such as using Knowledge
Distillation (DMC (Zhang et al., 2020)). We use EWC as
the representative of this category: one agent learns all 102
tasks in sequence, using EWC machinery to constrain the
weights when a new task is learned, to attempt to not de-
stroy performance on previously learned tasks. We also
use SI, MAS, LwF, and Online-EWC as baselines of this
type. (2) Parameter-Isolation methods assign a fixed set of
model parameters to a task and avoid over-writing them
when new tasks are learned (SUPSUP (Wortsman et al.,
2020), PSP (Cheung et al., 2019)). We use PSP as the
representative of this category: one agent learns all 102
tasks in sequence, generating a new PSP key for each task.
The keys help segregate the tasks within the network in
an attempt to minimize interference. We used the origi-
nal PSP implementation, which uses a different backbone
than ours. PSP accuracy overall hence may be lower be-
cause of this, and thus we focus on trends (decline in ac-
curacy as more tasks are added) as opposed to only ab-
solute accuracy figures. We also used SUPSUP as base-
line of this type. (3) Rehearsal methods use a buffer con-
taining sampled training data from previous tasks, as an
auxiliary to a new task’s training set. The buffer can be
used either at the end of the task training (iCaRL, ER (Re-
buffi et al., 2017b; Robins, 1995)) or during training (GSS,
AGEM, AGEM-R, GSS, DER, DERPP (Lopez-Paz & Ran-
zato, 2017; Chaudhry et al., 2018; Aljundi et al., 2019;
Buzzega et al., 2020)). We use ER and as the representative

of this category: One agent learns all 102 tasks in sequence.
After learning each task, it keeps a memory buffer with 10
images/class (size hence keeps increasing when new tasks
are learned) that will later be used to rehearse old tasks.
When learning a new task, the agent learns from all the
data for that task, plus rehearses old tasks using the mem-
ory buffer.

L.2. Accuracy on first task

To gauge how well our approach is achieving lifelong
learning, we plot the accuracy on the first task as we learn
from 1 to 102 tasks, in Fig. S11. There is nothing spe-
cial in our dataset about the first task, except that it is
the first one. A good LL system is expected to maintain
its accuracy on task 1 even as more subsequent tasks are
learned; conversely, catastrophic interference across tasks
would rapidly decrease task 1 accuracy with more learned
tasks. Overall, our approach maintains the highest accuracy
on task 1 over time, and virtually all of the accuracy degra-
dation over time is due to increasing confusion in the task
mapper (e.g., curves for Mahalanobis task mapper alone
and LLL w/BB w/MAHA are nearly shifted versions of
each other). Indeed, once the task is guessed correctly, the
corresponding head always performs exactly the same, no
matter how many tasks have been learned.

23

Submission and Formatting Instructions for ICML 2023

L.3. Task mapper accuracy after learning 1 to 102
tasks:

To investigate how well our approach is expected to scale
with more tasks, we computed task mapper accuracy on all
tasks learned so far, after learning 1, 2, 3, ... 102 tasks. This
allows us to evaluate degradation with more tasks that is
due to increasing confusion in the task mapper, as opposed
to being due to classification difficulty of newly added
tasks. Results are shown in Fig. S12: Task mapping accu-
racy starts at 100% after learning 1 task (all test samples are
correctly assigned to that task by Mahalanobis or GMMC),
then decreases as more tasks are learned, eventually still
achieving 87.1% correct after 102 tasks for MAHA, and
84.94% correct for GMMC. It is important to note that in
our approach, any loss in accuracy with more tasks only
comes from the task mapper: once the correct head is se-
lected for a test sample, the accuracy of that head remains
the same no matter how many heads have been added to
the system. In contrast, other baseline methods may suffer
from catastrophic forgetting for both the task mapper and
the classification model when more tasks are learned, as
further examined below.

When using GMMC task mapping, the regression line is
y = −0.0012x+0.952, which intercepts zero for T = 800
tasks. Thus, with the distribution of tasks in our dataset, we
extrapolate that T = 500 is realistic as is. Since task inter-
ference in our system only comes from GMMC, pushing
beyond T = 500 might require more than k = 25 GMMC
clusters per task, which would increase CPU and commu-
nications expenditure. When using Mahalanobis task map-
ping, the results are similar with an intercept at T = 978,
though this approach incurs a slightly higher communica-
tions cost (discussed below).

L.4. Normalized accuracy on first 10 tasks

We compare our method to the baselines on the first 10
tasks, when up to 20 subsequent tasks are learned. A good
LL system should be able to maintain accuracy on the first
10 tasks, while at the same time learning new tasks. Be-
cause in SKILL-102 different tasks have different levels of
difficulty, we normalize accuracy here to focus on degrada-
tion with an increasing number of new tasks. For example,
the accuracy of our method (LLL w/o BB) when learning a
single task is 92.02% for task 1, but only 52.64% for task
6, which is much harder. Here, we define a normalized
accuracy as the accuracy divided by the initial accuracy
just after a given task was learned (which is also the best
ever accuracy obtained for that task). This way, normal-
ized accuracy starts at 100% for all tasks. If it remains near
100% as subsequent tasks are learned, then the approach is
doing a good job at minimizing interference across tasks.
Conversely, a rapidly dropping normalized accuracy with

an increasing number of subsequent tasks learned indicates
that catastrophic interference is happening.

Our results in Fig. S13 show that, although not perfect,
our approach largely surpasses the baselines in its ability to
maintain the accuracy of previously learned tasks, with the
exception of SUPSUP, which suffers no degradation (see
caption of Fig. S13 for why).

L.5. Computation and communication costs, SKILL
metrics:

The baselines are sequential in nature, so trying to imple-
ment them using multiple agents does not make sense as
it would only add communication costs but not alleviate
the sequential nature of these LL approaches. For exam-
ple, for the EWC baseline, one could learn task 1 on agent
A then communicate the whole xception weights to agent
B (22.9 M parameters = 91.6 MBytes) plus the diagonal
of the Fisher Information matrix (another 22.9 M parame-
ters), then agent B would learn task 2 and communicate its
resulting weights and Fisher matrix to agent C, etc. Agent
B cannot start learning task 2 before it has received the
trained weights and Fisher matrix from agent A because
EWC does not provide a mechanism to consolidate across
agents. Thus, we first consider one agent that learns all 102
tasks sequentially, with no communication costs.

Table. 1 shows the computation expenditures (training time
in terms of the number of multiply-accumulate (MAC) op-
erations needed to learn all 102 datasets) for our approach
and the baselines. Our approach overall has by far the low-
est computation burden when BB is not used, yet all 4 vari-
ants of our approach perform better than all baselines. BB
increases accuracy but at a significant computation cost:
This is because, to compute BB biases, one needs to com-
pute gradients through the entire frozen backbone, even
though those gradients will only be used to update biases
while the weights remain frozen in the backbone.

Our approach presents the advantage that it can also be
parallelized over multiple agents that each learn their own
tasks in their own physical region. All agents then learn
their assigned tasks in parallel. Each agent is the ”teacher”
for its assigned tasks, and ”student” for the other tasks.
Then all agents broadcast their shared knowledge to all
other agents. As they receive shared knowledge, the stu-
dents just accumulate it in banks, and update their task
mapper. After sharing, all agents know all tasks (and are
all identical). As mentioned above, the main source of per-
formance degradation in our approach is in the task mapper,
which gets increasingly confused at T increases.

For our baselines, we are not aware of a way to parallelize
their operation, except that we were able to create a modi-
fied version of SUPSUP that works on several parallel pro-

24

Submission and Formatting Instructions for ICML 2023

cessors. In our modified SUPSUP, each agent learns a mask
for each of its tasks, then communicates its masks to all
other agents. At test time, we (unfairly to us) grant it a per-
fect task oracle, as our GPUs did not have enough mem-
ory to use the built-in task mapping approach of SUPSUP,
given our 102 tasks and 5,033 classes (this would theoreti-
cally require 1.02 TB of GPU memory).

Table. S3 shows the computation and networking expendi-
tures for our approach and our modified SUPSUP to learn
all tasks in the SKILL-102 dataset. Because some algo-
rithms run on GPU (e.g., xception backbone) but others
on CPU (e.g., GMMC training), and because our tasks use
datasets of different sizes, we measure everything in terms
of MACs (multiply-accumulate operations, which are im-
plemented as one atomic instruction on most hardware). To
measure MACs for each component of our framework, we
used a combination of empirically measured, framework-
provided (e.g., pyTorch can compute MACs from the spec-
ification of all layers in a network), or sniffed (installing a
hook in some algorithm that increments a counter each time
a MAC is executed). To translate communication costs to
MACs, we assume a nominal cost of α = 1, 000 MACs to
transmit one byte of data. This is a hyperparameter in our
results that can be changed based on deployment charac-
teristics (e.g., wireless vs. wired network). The amount of
data shared per task for our approach is quite small (details
in Suppl. Sec. G): 813 KBytes/task for LLL with GMMC,
no BB; 883 KBytes/task for LLL with GMMC, BB; 1.74
MBytes for LLL with MAHA, no BB; and 1.81 MBytes
for LLL with MAHA, BB (on average, given that our tasks
have 49.34 classes each on average; see Suppl. Fig. S5).

Our results in Table. S3 show:

1. Our approach has very low parallelization over-
head, which leads to almost perfect speedup > 0.99N
for all variants. Indeed, teachers just learn their task
normally, plus a small overhead to train GMMC on
their own tasks, when GMMC is used. Communica-
tions are less than 2 MBytes per task (Suppl. Sec.
G). Students either do nothing (just accumulate re-
ceived knowledge in a bank) or update their Maha-
lanobis task mapper.

2. The baselines have comparatively much higher
training cost, yet their performance is poor. Perfor-
mance of episodic buffer / rehearsing methods might
be improved further by increasing buffer size, but note
that in the limit (keeping all training data for future
rehearsing), this gives rise to a > 5, 000× increase in
training time (Suppl. Sec. D).

M. GMMC visual explanation
A visual explanation of how GMMC works in LLL agents
is shown in Fig. S14.

N. Pairs of similar classes according to CLIP
Table S4, Table S5, Table S6, and Table S7 show exam-
ples of pairs of similar classes according to CLIP embed-
ding. The first and the second column are the names of
similar class pairs from two different tasks (i.e iFood2019
and Food-101). The third column is the cosine similarity
score between the CLIP embeddings of the name of the
class pairs.

O. Performance on Visual Domain Decathlon
We also perform our methods on a well-known benchmark
Visual Domain Decathlon (Ke et al., 2020) in Fig. S15. The
baselines and our method implementations are the same as
the experiments in SKILL-102 dataset.

P. Inspiration from neroscience
Many approaches to LL involve at least partially retrain-
ing the core network that performs tasks (feature extrac-
tion backbone plus classification head), as every new task is
learned. But transmitting and then merging these networks
across multiple agents would incur very high communica-
tions and computation costs. With the exception of percep-
tual learning, where human visual cortex may indeed be al-
tered when learning specific visual discrimination tasks for
days or weeks (Goldstone, 1998; Dosher & Lu, 2017), there
is little evidence that our entire visual cortex — from early
stage filters in primary visual cortex to complex features in
inferotemporal cortex — is significantly altered when we
just learn, e.g., about a new class of flowers from a few ex-
emplars. Instead, the perirhinal cortex (and more generally
the medial temporal lobe) may be learning new representa-
tions for new objects by drawing upon and combining ex-
isting visual features and representations from visual cortex
(Deshmukh et al., 2012). This may give rise to specialized
”grandmother cells” (Bowers, 2017) (or Jennifer Aniston
neurons; (Quiroga et al., 2005; Quiroga, 2017)) that can be
trained on top of an otherwise rather immutable visual cor-
tex backbone. While the grandmother cell hypothesis re-
mains debated in neuroscience (vs. distributed representa-
tions; (Valdez et al., 2015)), here, it motivates us to explore
the viability of a new lightweight lifelong learning scheme,
where the feature extraction backbone and the latent rep-
resentation are fixed, and each new object class learned is
represented by a single new neuron that draws from this
representation.

25

Submission and Formatting Instructions for ICML 2023

Table S3. Analysis of computation and network expenditures for our parallelized LLL approach and our parallelized SUPSUP, to learn
all T = 102 tasks. Our approach supports any number of agents N such that 1 ≤ N ≤ T . Maximum speedup is expected when N = T
and each agent learns one task, then shares with all others. Here, we report numbers for T = 102, N = 51, and each agent learns 2 tasks
in sequence. Note that in our approach, accuracy is not affected by N , only the amount of parallelization speedup increases with N .
Note how in this table we still report MACs but taking parallelization into account (e.g., teacher CPU for N agents is single-agent CPU
divided by N). Teacher CPU: Time to learn tasks from their training datasets, plus to possibly prepare data for sharing (e.g., compute
GMMC clusters). Communications: Our LLL agents communicate either GMMC clusters or Mahalanobis training images, while our
modified SUPSUP communicates masks. Here we assume that there is a communication bottleneck at the receiver (student): the shared
data from 100 tasks needs to be received serially, over a single networking interface for each student. Hence our communication figures
are for all the shared data from all other tasks apart from those an agent learned itself. We convert communication costs to equivalent
MACs by assuming 1,000 MACs per byte transmitted. BB adds a small extra communication cost, to transmit the biases. Student CPU:
For GMMC, students do not do any extra work (hence, student CPU is 0); for Mahalanobis, students compute a covariance matrix for
all 102 tasks. Speedup factor: is just total MACs for single agent divided by total MACs for parallel agents and by N . All approaches
here achieve near perfect parallelization (> 0.99N , where 1.0N is perfect). Accuracy: In addition to being faster when BB is not used,
our LLL variants still all outperform the parallel SUPSUP in accuracy, by a large margin (> 10%).

Teacher CPU
(MACs)

Communi-
-cations
(bytes)

Student
CPU

(MACs)

Total
(MACs)

Parallelization
efficiency (xN)

CPU
usage

vs. Ours-SKILL,
no BB, MAHA

Average
accuracy

after learning
102 tasks

LLL(Ours)-Multiple Agents,
no BB, GMMC 1.69E+14 8.22E+07 0.00E+00 1.69E+14 0.99999519 ˜0.96x 67.43%

LLL(Ours)-Multiple Agents,
BB, GMMC 1.53E+16 1.03E+08 0.00E+00 1.53E+16 0.999999934 ˜87.2x 70.58%

LLL(Ours)-Multiple Agents,
no BB, Mahalanobis 1.69E+14 6.72E+09 5.00E+09 1.76E+14 0.996630551 1x (reference) 68.87%

LLL(Ours)-Multiple Agents,
BB, Mahalanobis 1.53E+16 6.74E+09 5.00E+09 1.53E+16 0.999962712 ˜87.3x 72.1%
Parallel SUPSUP,

Perfect Task Oracle 9.91E+15 3.03E+08 0.00E+00 9.91E+15 0.999999697 ˜56.4x 56.22%

Table S4. Matched Class for MIT Indoor Scene and House Room Images
learned class(weight source) target class score

0 Dinning dining room 0.9106
1 Kitchen kitchen 0.9995
2 Bathroom bathroom 1.0
3 Bedroom bedroom 1.0
4 Livingroom livingroom 1.0

Q. 4 Main Roles of SKILL Agents
1) Training: agents use a common pre-trained and frozen
backbone, stored in ROM memory at manufacturing time
(gray trapezoid with lock symbol). The backbone allows
the agent to extract compact representations from inputs
(e.g., with an xception backbone, the representation is a la-
tent vector of 2048 dimensions, and inputs are 299 × 299
RGB images). Each agent learns a task-specific head (red
triangle) for each new task. A head consists of the last
fully-connected layer of the network plus our proposed LL
beneficial biasing units (BB) that provide task-dependent
tuning biases to all neurons in the network (one float num-
ber per neuron). During training, each agent also learns
a GMMC or Mahalanobis task anchor which will form
a task mapper. 2) Share knowledge with other agents:
each agent shares the learned task-specific head, Benefi-

cial Bias (BB), and GMMC module (or training images
for Mahalanobis) with all other agents. 3) Receive knowl-
edge from other agents: each agent receives different heads
and GMMC/Mahalanobis task mapper anchors from other
agents. All heads are stored in a head bank and all task
anchors are consolidated to form a task mapper. 4) Test-
ing: At test time, an input is first processed through the
task mapper. This outputs a task ID, used to load up the
corresponding head (last layer + beneficial biases) from the
bank. The network is then equipped with the correct head
and is run on the input to produce an output.

26

Submission and Formatting Instructions for ICML 2023

Table S5. Matched Class for Office-Home Product and Standford Online Products
learned class(weight source) target class score

0 stapler Paper Clip 0.757
1 toaster Oven 0.838
2 coffee Mug 0.882
3 cabinet File Cabinet 0.9126
4 lamp Lamp Shade 0.9453
5 sofa Couch 0.9736
6 bicycle Bike 0.978
7 mug Mug 1
8 chair Chair 1
9 fan Fan 1

10 kettle Kettle 1

Table S6. Matched Class for UIUC Sports Event Dataset and 199 Sports
learned class(weight source) target class score

0 bocce bowling 0.7837
1 badminton tennis 0.823
2 sailing sailboat racing 0.9
3 snowboarding snow boarding 0.9355
4 RockClimbing rock climbing 0.989
5 polo polo 0.9995
6 croque madame croque madame 1
7 Rowing rowing 1

27

Submission and Formatting Instructions for ICML 2023

Figure S11. Accuracy on task 1 (learning to classify 102 types of flowers) as a function of the number of tasks learned. a) Comparison
between our methods. b) Comparison between our best and other baselines. Our approach is able to maintain accuracy on task 1 much
better than the baselines as more and more tasks are learned: while our approach does suffer some interference, task 1 accuracy remains
to within 90% of its initial best even after learning 101 new tasks (for the 4 LLL variants, BB=beneficial biases, MAHA=Mahalanobis
Distance task mapper, GMMC=GMMC task mapper). In contrast, the accuracy of EWC, PSP, and several other baselines on task 1
catastrophically degrades to nearly zero after learning just 10 new tasks, even though we granted these methods a perfect task oracle.
The best performing baseline, ER, is of the episodic buffer type (a fraction of the training set of each task is retained for later rehearsing
while learning new tasks), with an un-bounded buffer that grows by 10 images/class. This methods does incur higher (and increasing)
training costs because of the rehearsing (Suppl. Sec. D.) Note how SUPSUP does not experience any degradation on task 1, which is
a desirable feature of this approach. However, a drawback is that SUPSUP is not able, even from the beginning, to learn task 1 as well
as other methods (50.64% accuracy vs. over 90% for most other approaches). We attribute this to SUPSUP’s limited expressivity and
capacity to learn using masks over a random backbone, especially for tasks with many classes. Indeed, SUPSUP can perform very well
on some other tasks, usually with a smaller number of classes (e.g., 91.93% correct on SVHN, 93.18% on Brazillian Coins, 99.11% on
UMNIST Face Dataset; see Supp. Fig. S6).

28

Submission and Formatting Instructions for ICML 2023

Figure S12. Task mapper accuracy on all tasks learned so far, as a function of the number of tasks learned, when using Mahalanobis
(left) or GMMC (right) task mappers. Our approach is able to maintain good task mapping accuracy as the number of tasks increases.

Figure S13. Normalized accuracy on the first 10 tasks (one per curve color) as up to 20 additional tasks are learned. Our LLL approach
is able to maintain high normalized accuracy on the first 10 tasks, while all other baselines except SUPSUP suffer much stronger
catastrophic interference. SUPSUP is a special case as there is no interference among successive tasks when a perfect task oracle is
available. Hence normalized accuracy for all tasks remains at 100%. However, we will see below that the absolute accuracy of SUPSUP
is not as good.

29

Submission and Formatting Instructions for ICML 2023

Table S7. Food-101 vs iFood2019
learned class(weight source) target class score

0 cheese plate grilled cheese sandwich 0.8574
1 cup cakes cupcake 0.904
2 steak steak au poivre 0.9185
3 scallops scallop 0.929
4 breakfast burrito burrito 0.939
5 nachos nacho 0.9517
6 dumplings dumpling 0.9536
7 mussels mussel 0.955
8 churros churro 0.9585
9 spring rolls spring roll 0.9585

10 chicken wings chicken wing 0.9604
11 escargots escargot 0.962
12 waffles waffle 0.966
13 baby back ribs baby back rib 0.966
14 oysters oyster 0.9663
15 beignets beignet 0.97
16 tacos taco 0.9727
17 donuts donut 0.9756
18 crab cakes crab cake 0.9756
19 deviled eggs deviled egg 0.976
20 macarons macaron 0.9775
21 pancakes pancake 0.982
22 pad thai pad thai 0.999
23 grilled salmon grilled salmon 0.999
24 fried calamari fried calamari 0.999
25 omelette omelette 0.9995
26 beef carpaccio beef carpaccio 0.9995
27 hamburger hamburger 0.9995
28 clam chowder clam chowder 0.9995
29 chocolate cake chocolate cake 0.9995
30 lobster roll sandwich lobster roll sandwich 0.9995
31 macaroni and cheese macaroni and cheese 0.9995
32 seaweed salad seaweed salad 0.9995
33 shrimp and grits shrimp and grits 0.9995
34 sushi sushi 0.9995
35 creme brulee creme brulee 0.9995
36 sashimi sashimi 0.9995
37 cheesecake cheesecake 0.9995
38 chicken curry chicken curry 0.9995
39 fried rice fried rice 0.9995
40 pork chop pork chop 0.9995
41 bruschetta bruschetta 0.9995
42 edamame edamame 0.9995
43 cannoli cannoli 0.9995
44 caprese salad caprese salad 0.9995
45 red velvet cake red velvet cake 0.9995
46 spaghetti bolognese spaghetti bolognese 1
47 spaghetti carbonara spaghetti carbonara 1
48 takoyaki takoyaki 1
49 tiramisu tiramisu 1
50 tuna tartare tuna tartare 1

30

Submission and Formatting Instructions for ICML 2023

Figure S14. GMMC task mapper. (left) Each teacher clusters its
entire training set into a number of Gaussian clusters. Here, a
variable number of clusters is shown for each task, but in our re-
sults we use 25 clusters for every task. Each teacher then shares
the mean and diagonal covariance of its clusters with all students.
(right) Students just aggregate all received clusters in a bank,
keeping track of which task any given cluster comes from. At
test time, a sample is evaluated against all clusters received so far,
and the task associated with the cluster closest to the test sample
is chosen.

31

Submission and Formatting Instructions for ICML 2023

Figure S15. Average absolute accuracy on 10 Visual Domain Decathlon tasks learned so far, as a function of the number of tasks learned.

32

	Introduction
	Related Works
	SKILL-102 dataset
	Lightweight Lifelong Learner for SKILL
	Experiments and results
	Discussion and Future Work

	Conclusions
	Shared knowledge in lifelong learning (SKILL)
	Related Works
	Lifelong Learning
	Multi-task Learning
	Federated Learning
	Other methods that may help solve SKILL

	Dataset subsampling details
	GMMC number of clusters
	Mahalanobis training MACs
	CPU analysis
	Summary of our new SKILL-102 for image classification
	Cases of low accuracy in GMMC
	Amount of data shared by LLL
	Discussion and Future Works
	Shared Knowledge Accumulation, Reuse and Boost
	Corrective approach to task overlap/synergy
	Learning approach to task overlap/synergy
	Further boost with Head2Toe

	Additional Experiment Results
	Baselines
	Accuracy on first task
	Task mapper accuracy after learning 1 to 102 tasks:
	Normalized accuracy on first 10 tasks
	Computation and communication costs, SKILL metrics:

	GMMC visual explanation
	Pairs of similar classes according to CLIP
	Performance on Visual Domain Decathlon
	Inspiration from neroscience
	4 Main Roles of SKILL Agents

